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We show that a properly stratified algebra is Gorenstein if and only if the 
characteristic tilting module coincides with the characteristic cotilting module. We 
further show that properly stratified Gorenstein algebras A enjoy strong homological 
properties such as all Gorenstein projective modules being properly stratified and all 
endomorphism rings EndA(Δ(i)) being Frobenius algebras. We apply our results to 
the study of properly stratified algebras that are minimal Auslander-Gorenstein 
algebras in the sense of Iyama-Solberg and calculate under suitable conditions 
their Ringel duals. This applies in particular to all centraliser algebras of nilpotent 
matrices.
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0. Introduction

Quasi-hereditary algebras constitute an important class of finite dimensional algebras including many 
well-studied algebras such as algebras of global dimension at most two, Schur algebras, see for example [13]
or [18], and blocks of category O, see for example [20].

Standardly stratified algebras were introduced as a generalisation of quasi-hereditary algebras in [11]. It 
can be shown that a standardly stratified algebra A is quasi-hereditary if and only if A has finite global 
dimension and standardly stratified algebras include many important algebras with infinite global dimension 
arising for example in Lie theory, see [27]. Standardly stratified algebras always have a characteristic tilting 
module but in general no characteristic cotilting module. When the opposite algebra of a standardly stratified 
algebra is also standardly stratified, the algebra is properly stratified. The properly stratified algebras where 
the characteristic tilting and cotilting modules coincide are of particular importance as they have many 
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strong homological properties that are in general missing in the more general case of standardly stratified 
algebras, see for example [17]. In [29], Mazorchuk and Parker conjectured that the finitistic dimension 
of any properly stratified algebra with a simple preserving duality is equal to two times the projective 
dimension of the characteristic tilting module. This conjecture was proven by Mazorchuk and Ovsienko in 
[28] under the additional assumption that the characteristic tilting module coincides with the characteristic 
cotilting module and in [26] it was shown that the conjecture is wrong without this assumption. Our main 
result gives a new homological characterisation when the characteristic tilting module coincides with the 
characteristic cotilting module and implies for example that the main theorem of Mazorchuk and Ovsienko 
can be simplified as the finitistic dimension coincides with the Gorenstein dimension of the algebra under 
their assumptions.

Theorem (2.2). For a properly stratified algebra A, the characteristic tilting module coincides with the char-
acteristic cotilting module if and only if A is Gorenstein.

We show that properly stratified Gorenstein algebras enjoy strong homological properties. The next 
theorem collects the most important properties.

Theorem (2.4, 2.5). Let A be a properly stratified Gorenstein algebra with standard modules Δ.

(1) Every Gorenstein projective A-module is properly stratified (i.e. it belongs to F(Δ)).
(2) A module M is in F (Δ) if and only if M is in F (Δ) with finite projective dimension.
(3) All endomorphism rings EndA(Δ(i)) are Frobenius algebras.

We introduce GIGS algebras as gendo-symmetric properly stratified Gorenstein algebras having a duality. 
Those algebras generalise the algebras introduced by Fang and Koenig in [15] from the quasi-hereditary 
scenario to the more general case of properly stratified algebras. We will see that central results obtained 
by Fang and Koenig still hold even when the algebras are not necessarily quasi-hereditary. The class of 
GIGS algebras contain all Schur algebras S(n, k) for n � k, blocks of category O and we will show that 
they also contain centraliser algebras of nilpotent matrices, which are properly stratified but in general 
not quasi-hereditary. By the result of Mazorchuk-Ovsienko, GIGS algebras always have even Gorenstein 
dimension and since they are gendo-symmetric by definition they are always isomorphic to an algebra of 
the form EndU (X) for a symmetric algebra U and a generator X of mod-U . One of the most important 
subclasses of Gorenstein algebras are the minimal Auslander-Gorenstein algebras introduced by Iyama and 
Solberg in [22] as a generalisation of higher Auslander algebras that were introduced in [23]. Our main result 
for GIGS algebras that are minimal Auslander-Gorenstein is as follows:

Theorem (3.5). Let A = EndU (U ⊕ M) be a GIGS algebra with a symmetric algebra U and a generator 
U⊕M of mod-U , where we can assume that M has no projective direct summands. Assume A is furthermore 
a minimal Auslander-Gorenstein algebra with Gorenstein dimension equal to 2d for some d � 1. Then the 
Ringel dual RA of A is isomorphic to EndU (U ⊕ Ωd(M)). In particular, RA is again a GIGS algebra that 
is minimal Auslander-Gorenstein with Gorenstein dimension 2d.

Recall that for an n × n-matrix M with entries in a field K, the centralizer algebra of M is defined as 
the K-algebra of all n × n-matrices X with XM = MX. In Subsection 3.1, we will apply the previous 
theorem to calculate the Ringel duals of centraliser algebras of nilpotent matrices and determine when they 
are Ringel self-dual.
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1. Preliminaries

In this paper, unless stated otherwise, all algebras under consideration are finite dimensional over a field 
K and all modules are right modules. We assume the reader is familiar with the basic representation theory 
and homological algebra of finite dimensional algebras and refer for example to [33] and [5] for a basic 
introduction. For a subcategory C of mod-A for a finite dimensional algebra A, we denote by add(C) the full 
subcategory of direct sums of direct summands of a module X ∈ C. For a module X, add(X) simply denotes 
the full subcategory of modules that are direct summands of Xn for some n. By D we denote the functor 
HomK(−, K) and J denotes the Jacobson radical of an algebra A. For a subcategory U of mod-A we denote 
by Û (or qU) the full subcategory of mod-A consisting of modules X such that there is an exact sequence 
0 → Cn → · · · → C0 → X → 0 (or 0 → X → C0 → · · · → Cn → 0) with Ci ∈ U . For a module X we 
define ⊥X := {Y ∈ mod-A| ExtiA(Y, X) = 0 for i > 0} and X⊥ := {Y ∈ mod-A| ExtiA(X, Y ) = 0 for i > 0}. 
By Fac(X) we denote the full subcategory of modules that are an epimorphic image of X. We denote by 
P<∞ the full subcategory of modules having finite projective dimension and by I<∞ the full subcategory 
of modules having finite injective dimension. A subcategory U of mod-A is called resolving if it contains 
all projective A-modules and is closed under direct summands, extensions and kernels of epimorphisms. A 
coresolving subcategory is defined dually.

1.1. Gorenstein algebras and cotilting modules

An algebra A is called Gorenstein in case the left and right injective dimensions of the regular module 
A are finite, in which case they coincide and the common number is the Gorenstein dimension of A. A 
selfinjective algebra is a Gorenstein algebra with Gorenstein dimension zero, or equivalently an algebra 
where all projective modules are injective. A is called Frobenius algebra when D(A) ∼= A as A-right modules 
and it is called symmetric when D(A) ∼= A as A-bimodules. Every Frobenius algebra is selfinjective and every 
selfinjective quiver algebra is a Frobenius algebra. An algebra A is called gendo-symmetric if D(A) ⊗AD(A) ∼=
D(A) or equivalently when A is isomorphic to EndB(M) for a symmetric algebra B with a generator M
of mod-B. We refer to [16] and [14] for more information and properties of gendo-symmetric algebras. The 
finitistic dimension of an algebra A is defined as the supremum of all projective dimensions of modules 
having finite projective dimension. A module C ∈ mod-A is called cotilting if it has no self-extensions, finite 
injective dimension and DA ∈ ̂addC. Tilting modules are defined, analogously.

Theorem 1.1. The following are equivalent:

(1) A is Gorenstein.
(2) A module is a tilting module if and only if it is a cotilting module.
(3) P<∞ = I<∞.

Proof. See [19, Lemma 1.3]. �
Proposition 1.2. Let A be an algebra such that A and Aop have finite finitistic dimension. In case the left 
or right injective dimension of A is finite, A is Gorenstein. In this case the Gorenstein dimension coincides 
with the finitistic dimension of A and Aop.

Proof. See [4, Proposition 6.10]. That the finitistic dimension coincides with the Gorenstein dimension for 
Gorenstein algebras can be found for example in [9, Lemma 2.3.2]. �

Recall that a pair (X , Y) of subcategories of mod-A is called a cotorsion pair when Y = {M ∈
mod-A| Ext1A(X , M) = 0} and X = {N ∈ mod-A| Ext1A(N, Y) = 0}. A cotorsion pair is called complete



4 T. Cruz, R. Marczinzik / Journal of Pure and Applied Algebra 225 (2021) 106757
when X is contravariantly finite. The next result gives a correspondence between basic cotilting modules 
and certain complete cotorsion pairs.

Theorem 1.3. Let A be a general finite dimensional algebra. There is a one-one correspondence between 
basic cotilting modules U and complete cotorsion pairs (X , Y) with X resolving and X̂ = mod-A, given by 

U → (⊥U, ̂add(U)) and (X , Y) → the direct sum of all indecomposable modules in X ∩ Y.

Proof. See [32, 2.3 (b)]. �
1.2. Standardly and properly stratified algebras

For the convenience of the reader, we will recall some definitions and elementary properties involving 
stratified algebras.

Let e = {e1, . . . , en} be a linearly ordered complete set of primitive orthogonal idempotents. For each 
i = 1, . . . , n, we write

P (i) = eiA, S(i) = top(eiA), I(i) = D(Aei), Δ(i) = P (i)/eiA(ei+1 + · · · + en)A.

That is, Δ(i) is the maximal quotient of P (i) without composition factors S(j), j > i. Define Δ(i) to be the 
maximal quotient of Δ(i) having only once S(i) as composition factor. We call Δ = {Δ(1), . . . , Δ(n)} the 
(right) standard modules of A and Δ = {Δ(1), . . . , Δ(n)} the proper standard modules. Let Δop and Δop be 
the standard and proper standard modules of Aop, respectively. By the costandard and proper costandard 
(right) modules of A we mean ∇(i) = DΔop(i) and ∇(i) = DΔop(i).

For a given set of modules Θ, by F(Θ) we mean the full subcategory of mod-A having a filtration by the 
modules in the set Θ.

Definition 1.4. An algebra together with a linearly ordered complete set of orthogonal primitive idempotents 
(A, e) is called

• standardly stratified if AA ∈ F(Δ);
• properly stratified if AA ∈ F(Δ) ∩ F(Δ).

Note that AA ∈ F(Δ) if and only if DAA ∈ F(∇op). This last condition is equivalent to Aop being 
standardly stratified (see [2, Theorem 1.1], [1, 2.2] and [24]).

The next theorem collects some results on properly stratified algebras:

Theorem 1.5. Let (A, e) be a properly stratified algebra. Then the following assertions hold:

(a) F(Δ) = {M ∈ mod-A| Ext1A(M, F(∇)) = 0} is a resolving subcategory of mod-A.
(b) F(∇) = {N ∈ mod-A| Ext1A(F(Δ), N) = 0} is a coresolving subcategory of mod-A.
(c) F(Δ) ⊆ P<∞ and F(∇) ⊆ I<∞.
(d) ExtkA(F(Δ), F(∇)) = 0 for all k � 1.
(e) There exists a (unique) basic tilting module T such that F(∇) = T⊥ and ­F(∇) = mod-A.
(f) There exists a unique basic tilting module T such that addT = F(Δ) ∩ F(∇).
(g) There exists a (unique) basic cotilting module C such that F(Δ) = ⊥C and ̂F(Δ) = mod-A.
(h) There exists a unique basic tilting module C such that addC = F(Δ) ∩ F(∇).
(i) T⊥ ⊆ Fac(T ).
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Proof. Assertions (a) and (b) are the content of Theorem 1.6 of [2]. For (c), see [30, Proposition 1.3]. 
Assertion (d) follows from Aop being standardly stratified and from [1, Theorem 3.1]. For assertions (e) and 
(f) see Theorem 2.1 and Proposition 2.2 of [2]. See also Theorem 3.3 of [34]. Assertions (g) and (h) follow 
from assertions (e) and (f) since Aop is standardly stratified. For (i), see [2] on page 151. �

We call the tilting module T in the conditions of Theorem 1.5(e) and 1.5(f) the characteristic tilting 
module of the properly stratified algebra (A, e). Dually, we call the cotilting module C in the conditions
1.5(g) and 1.5(h) the characteristic cotilting module of the properly stratified algebra (A, e). By the previous 
theorem we have that F(Δ) = ­addT , F(∇) = T⊥ and (F(Δ), F(∇)) is a complete cotorsion pair, see also 
[32, Theorem 3.6] for this and the dual result.

The following lemma although being elementary and in some sense folklore in the literature of stratified 
algebras will be useful afterwards to characterize Gorenstein properly stratified algebras.

Lemma 1.6. Let (A, e) be a standardly stratified algebra. Then the following assertions hold.

(1) AenA is projective as right A-module and (A/AenA, {e1, . . . , en−1}) is standardly stratified, where e is 
the image of e in the quotient A/AenA;

(2) Aen is a projective generator of enAen;

Moreover, if (A, e) is properly stratified then Δ(i) ∈ F(Δ(i)), for each i = 1, . . . , n.

Proof. Taking into account that each Δ(j) with j 
= n belongs to mod-A/AenA and filtrations of A can be 
chosen so that higher indexes appear at the bottom, A having a filtration by standard modules gives that 
A/AenA ∈ F(Δ(i)i�=n) (see for example [12, Lemma A2.2]).

Since F(Δ) is a resolving subcategory of mod-A, the exact sequence

0 → AenA → A → A/AenA → 0

yields that AenA ∈ F(Δ). Since AenA ∈ Fac(enA) and all Δ(j) have no composition factors of the form 
S(n) we must have AenA ∈ F(Δ(n)). It follows that AenA is projective and addAenA = add enA. In 
particular, HomA(enA, A/AenA) = 0. This shows (1).

Write e = en. Since AeA is projective we can write Ae ⊗eAe eA ∼= AeA. Therefore,

addeAe Ae = addeAe Ae⊗eAe eAe = addeAe AeAe = addeAe HomA(eA,AeA) = addeAe EndA(eA).

This shows (2).
Assume now that (A, e) is properly stratified. Then (Aop, e) is standardly stratified and F(∇op) is a 

coresolving subcategory of mod-Aop (see [2, Theorem 1.6]). Thus, F(Δ) is a resolving subcategory of mod-A. 
Therefore, Δ(n) ∈ F(Δ). Further, since Ext1(Δ(i), Δ(j)) = 0, for i > j (see [2, Lemma 1.2]) we can 
rearrange, if necessary, the filtration of modules in F(Δ) so that proper standard modules with lower index 
appear in the top of the filtration. So, there exists a surjective map Δ(n) → Δ(j), where j is the lowest 
index in the filtration of Δ(n). Then S(n) = top Δ(n) → topΔ(j) = S(j) is surjective. So j must be n. 
Hence, Δ(n) ∈ F(Δ(n)). Since each Δ(j) has no composition factors of the form S(i) with i > j the last 
claim follows by induction. �
Proposition 1.7. Let A be a finite dimensional algebra with an idempotent e such that the ideal AeA is 
projective as a right A-module. Then ExtiA/AeA(M, N) = ExtiA(M, N) for all M, N ∈ mod-A/AeA.

Proof. See for example [3, Example 1]. �
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Theorem 1.8. Let (A, e) be a standardly stratified algebra. Then A has finite finitistic dimension.

Proof. See [2, Corollary 2.7]. �
Let A be a properly stratified algebra with the associated subcategory F(ΔA) and B a properly stratified 

algebra with the associated subcategory F(ΔB). Then A and B are said to be equivalent as properly stratified 
algebras when F(ΔA) and F(ΔB) are exact equivalent. When T is the characteristic tilting module of A
and RA := EndA(T ) the Ringel dual of A (which is also properly stratified by [32, Theorem 3.7]), then A is 
said to be Ringel self-dual if A and RA are equivalent as properly stratified algebras. This generalises the 
classical notion of being Ringel self-dual for quasi-hereditary algebras, see for example [8, Section 5].

1.3. Standardly stratified algebras with a duality

The algebra (A, e) is said to have a duality ι if ι is an anti-automorphism of A fixing the complete set of 
primitive orthogonal idempotents e and ι2 = idA. Algebras with a duality were studied in [15]. The existence 
of the duality implies the existence of exact functors (−)ι : mod-A → A -mod and ι(−) : A -mod → mod-A
satisfying, in particular, (eiA)ι ∼= Aei and ι(M ι) ∼= M , for every M ∈ mod-A. Denote by (−)� : mod-A →
mod-A the composition of functors D ◦ (−)ι. In addition, assume in the remaining of this subsection that 
(A, e) is a standardly stratified algebra. Then P (i)� ∼= D(Aei) = I(i) and S(i)� ∼= S(i). So, (−)� is a simple 
preserving duality of A. Moreover, Δ(i)� ∼= ∇(i) and Δ(i)� ∼= ∇(i), for all i. Applying D to the isomorphism 
Δ(i)� ∼= ∇(i) we obtain Δ(i)ι ∼= D∇(i) ∼= Δop(i). It follows that AA ∼= (AA)ι ∈ F(Δι) = F(Δop). Therefore, 
a standardly stratified algebra (A, e) with a duality is a properly stratified algebra (see also [7, Proposition 
2.3]).

Theorem 1.9. Let (A, e) be a properly stratified algebra having a duality with characteristic tilting module T
coinciding with the characteristic cotilting module. Then findim(A) = 2 pd(T ).

Proof. See [28]. �
2. A characterisation of Gorenstein properly stratified algebras

We will need the following lemma on local algebras in this section:

Lemma 2.1. Let A be a local algebra.

(1) A has finitistic dimension equal to zero.
(2) A is Gorenstein if and only if A is selfinjective.

Proof. Note that in a local algebra there is a unique indecomposable projective module and thus all projec-
tive modules have the same Loewy length. Let M be a non-projective module and let f0 be the projective 
cover f0 : P → M . Then Ω1(M) = Ker(f0) has Loewy length strictly smaller than the Loewy length of 
P and thus Ω1(M) cannot be projective. Therefore all Ωi(M) are non-projective and thus M has infinite 
projective dimension and the finitistic dimension is zero. This shows (1). Clearly any selfinjective algebra is 
Gorenstein. Now assume that A is a local Gorenstein algebra. Since A is Gorenstein, the finitistic dimension 
of A coincides with the Gorenstein dimension of A by 1.2. Thus the Gorenstein dimension is zero and A is 
selfinjective, which shows (2). �
Theorem 2.2. Let (A, e) be a properly stratified algebra with characteristic tilting module T and characteristic 
cotilting module C. Then the following are equivalent:
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(1) A is Gorenstein.
(2) T = C.
(3) ̂add(T ) = F(∇).

Proof. We first show that (2) is equivalent to (3) and that (3) implies (1). Assume (2). Then T = C and 

thus ̂add(T ) = ̂add(C) = F(∇). Now assume (3), so that we have ̂add(T ) = F(∇). Since A is properly 

stratified we have D(A) ∈ F(∇) = ̂add(T ). Thus there is by definition an exact sequence

0 → Tr → · · · → T0 → D(A) → 0

with Ti ∈ add(T ). Now since T is a tilting module, it has finite projective dimension. Let Ki+1 be defined as 
the kernel of the maps Ti → Ti−1 for i � 0 with T−1 := D(A). Then the exact sequence 0 → Tr → Tr−1 →
Kr−1 → 0 shows that Kr−1 has finite projective dimension since Tr, Tr−1 ∈ add(T ) have finite projective 
dimension. Inductively we see that also each Ki has finite projective dimension because of the short exact 
sequences 0 → Ki+1 → Ti → Ki → 0 for each i � 1. Thus also D(A) has finite projective dimension 
because of the short exact sequence 0 → K1 → T0 → D(A) → 0. Since the right module D(A) has finite 
projective dimension, by duality the left module A has finite injective dimension. Since A is assumed to 
be properly stratified, A and Aop have finite finitistic dimension by 1.8 and thus by 1.2 A is Gorenstein. 
Thus we see already that (3) implies (1) and we go further that (3) implies also (2). To see this, note 
that since A is Gorenstein we know that the tilting module T is also a cotilting module by 1.1. By the 
cotilting correspondence 1.3, T as a cotilting module corresponds to the cotorsion pair (⊥T, ̂add(T )). But 
the characteristic cotilting module C also has ̂add(T ) = F(∇) as the right side in the cotorsion pair (and 
the left and right sides in a cotorsion pair determine each other) and this implies T = C.

Assume now that (1) holds. The characteristic cotilting module is the unique module (up to multiplicities) 
satisfying addC = F(Δ) ∩ F(∇). Thus, it is enough to prove that addT = F(Δ) ∩ F(∇). The category 
F(Δ) ∩ F(∇) only contains n non-isomorphic indecomposables modules, so we just need to show that 
T ∈ F(Δ) ∩ F(∇). Since T is the characteristic tilting module addT = F(Δ) ∩ F(∇). By Lemma 1.6, 
T ∈ F(Δ) ⊂ F(Δ). Due to T ∈ F(∇) and Lemma 1.2 (vi) of [2], Extj>0

A (Δ(i), T ) = 0, for all i. In view of 
Theorem 1.6 of [2] and Aop being standardly stratified, we want

0 = Ext1Aop(DT,∇op(i)) ∼= Ext1A(D∇op(i), T ) ∼= Ext1A(Δ(i), T ),

for all i. By Theorem 1.1, T has finite injective dimension. Let si be the smallest non-negative integer such 
that ExtsiA (Δ(i), T ) 
= 0 and Extsi+1

A (Δ(i), T ) = 0, for each i. Let i = {1, . . . , n} be arbitrary and assume 
that si > 0. Since A is properly stratified then Δ(i) admits a filtration 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xt = Δ(i) with 
factors of the form Δ(i) by Lemma 1.6. Applying HomA(−, T ) to this filtration yields the exact sequence

ExtsiA (Xr, T ) → ExtsiA (Xr−1, T ) → Extsi+1
A (Δ(i), T ) = 0, r = 1, . . . , t. (2.2.1)

Since X1 = Δ(i) it follows by (2.2.1) that ExtsiA (Xr, T ) 
= 0, for all r � 1. In particular, 0 
= ExtsiA (Xt, T ) =
ExtsiA (Δ(i), T ). This contradicts T belonging to F(∇). Thus, si = 0. As i was arbitrary, this shows that 
T ∈ F(∇). �
Remark 2.3. Given a characteristic tilting module T of a properly stratified algebra A, to check condition 
(2) of Theorem 2.2 it is enough to observe whether T ∈ F(∇). For a characteristic cotilting module C of a 
properly stratified algebra A, it is enough to observe that C ∈ F(Δ).
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2.1. Properties of Gorenstein properly stratified algebras

We record some further properties of Gorenstein properly stratified algebras. Recall that a module M over 
a Gorenstein algebra A is called Gorenstein projective (or also maximal Cohen-Macaulay in the literature) 
if ExtiA(M, A) = 0 for all i > 0. Dually N is called Gorenstein injective if ExtiA(D(A), N) = 0 for all i > 0.

Proposition 2.4. Let (A, e) be a properly stratified Gorenstein algebra.

(1) Every Gorenstein injective module is in F(∇).
(2) Every Gorenstein projective module is in F(Δ).
(3) P<∞ ∩ F(Δ) = F(Δ).
(4) I<∞ ∩ F(∇) = F(∇).

Proof. We prove (1), the proof of (2) is dual. Let T be a tilting module. T has by definition finite projective 
dimension and since A is Gorenstein, T also has finite injective dimension. Let

0 → T → I0 → · · · → Ir+1 → 0

be a minimal injective coresolution of T . Then we have the short exact sequence 0 → Ω−r(T ) → Ir →
Ir+1 → 0. Now let X be an A-module with X ∈ D(A)⊥, then we apply the functor HomA(−, X) to the 
above short exact sequence and obtain the following exact sequence as a part of the resulting long exact 
Ext-sequence for every t � 1:

· · · → ExttA(Ir+1, X) → ExttA(Ir, X) → ExttA(Ω−r(T ), X) → Extt+1
A (Ir+1, X) → · · · .

Since we assume X ∈ D(A)⊥, we obtain ExttA(Ω−r(T ), X) = 0 for all t � 1. Now we apply the functor 
HomA(−, X) to the short exact sequence 0 → Ω−(r−1)(T ) → Ir−1 → Ω−r(T ) → 0 conclude that also 
ExttA(Ω−(r−1)(T ), X) = 0 for all t � 1 and by using induction we obtain in the same way ExttA(T, X) = 0
for all t � 1. Thus we have D(A)⊥ ⊆ T⊥ for every tilting module T assuming that A is Gorenstein. Choosing 
for T the characteristic tilting module, we obtain D(A)⊥ ⊆ F (∇).
We prove now (3), the proof of (4) is dual. F(Δ) ⊆ P<∞ ∩ F(Δ) is clear by 1.5(c). Now assume X ∈
P<∞ ∩ F(Δ). By the dual of Lemma 2.5. (iii) of [2], every module M ∈ F(Δ) has a (possibly infinite) 
add(T )-coresolution. Thus X has such a coresolution as follows:

0 → X → T0 → T1 → · · · → Ti → · · · ,

with Ti ∈ add(T ). Now since A is Gorenstein, X ∈ P<∞ has finite injective dimension. If the add(T )-
coresolution would be infinite, we would have ExtiA(Ki, X) 
= 0 for all i > 0 when Ki is the kernel of 
Ti → Ti+1 and X would have infinite injective dimension. Thus the coresolution is finite and X ∈ ­add(T ) =
F(Δ). �
Theorem 2.5. Let (A, e) be a properly stratified Gorenstein algebra. Then the following hold for any i:

(1) EndA(Δ(i)) is a Frobenius algebra.
(2) EndA(∇(i)) is a Frobenius algebra.
(3) The quotient (A/A(ei+1+ · · ·+en)A, ei) is a properly stratified Gorenstein algebra, with ei = {ei1, . . . , eii}

where eij denotes the image of ej in A/A(ei+1 + · · · + en)A.
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Proof. We prove (1), the proof of (2) is dual. Assume A is properly stratified Gorenstein with linear order 
1, ..., n of the n simple A-modules. Let I be an injective A-module. Since F(Δ) is contravariantly finite, 
there exists a minimal right F(Δ)-approximation of I:

0 → KI → F0 → I → 0,

where F0 ∈ F(Δ). Since F(Δ) is extension-closed we obtain Ext1A(F(Δ), KI) = 0 from Wakamatsu’s 
Lemma. Thus KI ∈ F(∇). Now we apply the functor HomA(X, −) for X ∈ F(Δ) to the above short exact 
sequence to obtain from the long exact Ext-sequence:

· · · → 0 = Ext1A(X,KI) → Ext1A(X,F0) → Ext1A(X, I) = 0 → · · · .

Thus Ext1A(X, F0) = 0 for all X ∈ F(Δ) and thus F0 ∈ F(Δ) ∩ F(∇) = add(T ). Since KI ∈ F(∇) we can 
continue this process to obtain an add(T )-resolution of I as follows:

· · · → Ft → Ft−1 → · · · → F0 → I → 0.

Let Kt denote the kernel of the map Ft → Ft−1 then if this resolution would be infinite, we would have 
Extt(I, Kt) 
= 0 for all t � 1 and thus I would have infinite projective dimension, contradicting our assump-
tion that A is Gorenstein. Thus there exists a finite add(T )-resolution of I:

0 → Tr → Tr−1 → · · · → T0 → I → 0,

with Ti ∈ add(T ) for all injective A-modules I. Since Δ(n) is projective, the module I := DHomA(Δ(n), A)
is injective. We apply the functor HomA(Δ(n), −) to the above finite add(T )-resolution of this I to obtain 
the exact sequence:

0 → HomA(Δ(n), Tr) → · · · → HomA(Δ(n), T0) → HomA(Δ(n), I) → 0. (2.5.1)

By [2, Lemma 2.5], there is a left F(∇)-approximation of Δ(i) as follows:

0 → Δ(i) → T (i) → Yi → 0,

where Yi ∈ F(Δj<i) and T (i) is the indecomposable i-th summand of the characteristic tilting module T . 
We apply HomA(Δ(n), −) to the left approximation as above for i = n to obtain:

0 → HomA(Δ(n),Δ(n)) → HomA(Δ(n), T (n)) → HomA(Δ(n), Yn) = 0 → 0.

Thus HomA(Δ(n), T (n)) ∼= HomA(Δ(n), Δ(n)) is a projective R-module, where R := EndA(Δ(n)). Since 
HomA(Δ(n), T (j)) = 0 for j < n, we have that HomA(Δ(n), T ′) is a projective R-module for any T ′ ∈
add(T ). Thus the exact sequence (2.5.1) gives us that the module HomA(Δ(n), I) has finite projective 
dimension as an R-module. But since R is local and therefore has finitistic dimension equal to zero by 2.1
(1), HomA(Δ(n), I) must be even projective. Now, since Δ(n) is A-projective

HomA(Δ(n), I) = HomA(Δ(n), DHomA(Δ(n), A)) ∼= D(HomA(Δ(n), A) ⊗A Δ(n)) = DR

is injective as an R-module. Thus HomA(Δ(n), I) is a projective-injective non-zero module for the local 
algebra R and thus R is selfinjective and therefore also a Frobenius algebra (using that every selfinjective 
local algebra is automatically Frobenius). We proved that R = EndA(Δ(n)) is Frobenius and now we can 



10 T. Cruz, R. Marczinzik / Journal of Pure and Applied Algebra 225 (2021) 106757
use ExtiA/AenA(M, N) ∼= ExtiA(M, N) for every A/AenA-modules M and N , which is true by 1.7. This 
gives us that ExtiA/AenA(M, A/AenA) ∼= ExtiA(M, A/AenA) = 0 for all i > p for some finite number p since 
as an A-module A/AenA has finite projective dimension (since AenA has finite projective dimension) and 
therefore also finite injective dimension, using that A is Gorenstein. Thus with A, also the properly stratified 
algebra A/AenA is Gorenstein. Now we can use induction to conclude that EndA(Δ(i)) is Frobenius for all 
i = 1, ..., n and the remaining cases of (3). �

The next example shows that there are non-Gorenstein properly stratified algebras such that P<∞ ∩
F(Δ) = F(Δ) and such that all endomorphism rings of the Δ(i) are Frobenius algebras. This shows that 
those properties can not be used to characterise the Gorenstein property for properly stratified algebras.

Example 2.6. Let Q be the quiver 2 1β
α and A = KQ/I with I =< α2, βα >. A is a radical 

square zero algebra and it is easily checked that A has exactly five indecomposable modules and add(P<∞) =
add(e1A ⊕ e2A). Thus A has finitistic dimension equal to zero. Since for Gorenstein algebras, the finitistic 
dimension coincides with the Gorenstein dimension, A can only be Gorenstein when it is selfinjective. 
Since the indecomposable projective modules are not injective, A is not selfinjective and therefore also not 
Gorenstein. We have Δ(1) = e1A, Δ(2) = e2A, Δ(1) = S1 and Δ(2) = e2A. Thus A is properly stratified and 
not Gorenstein. We have EndA(Δ(1)) ∼= K[x]/(x2) and EndA(Δ(2)) ∼= K, which are Frobenius algebras. 
We have P<∞ ∩ F(Δ) = F(Δ) since add(P<∞) = add(e1A ⊕ e2A) = F(Δ).

The following example shows that unlike quasi-hereditary algebras, in general, Gorenstein properly strat-
ified algebras have no recollements of bounded derived categories for A/AeA, A and eAe.

Example 2.7. Let K be an algebraically closed field and let A be the bound quiver K-algebra
1 2 3

α1

β1

α2

β2

with relations 0 = β1α1α2 = β2β1α1 = β2α2, α2β2 = β1α1β1α1.

A is a properly stratified algebra with Δ(3) = Δ(3) = e3A, Δ(1) = Δ(1) = S(1), Δ(2) = e2A/Δ(3), 

and Δ(2) = 2
1

. A has injective dimension two and A/Ae3A is the bound quiver algebra 1 2
α1

β1

with 

relation β1α1β1α1 = 0. Note that HomA(A/Ae3A, P (3)) ∼= Δ(2) as A/Ae3A-modules. Since Δ(2) has infinite 
injective dimension it follows that the condition (1) of Proposition 3.4 in [10] holds but condition (3) fails.

3. GIGS algebras

We first define a generalised version of the algebras studied by Fang and Koenig in [15].

Definition 3.1. A GIGS algebra is a gendo-symmetric properly stratified Gorenstein algebra (A, e) having a 
duality.

In [15], the class of gendo-symmetric and quasi-hereditary algebras (A, e) having a duality is called A. 
Note that a GIGS algebra has finite global dimension if and only if it is in the class A of [15]. By 1.9, GIGS 
algebras have even Gorenstein dimension equal to two times the projective dimension of the characteristic 
tilting module since the Gorenstein dimension coincides with the finitistic dimension. Our main result 2.2
says that being Gorenstein is equivalent to the characteristic tilting module coinciding with the characteristic 
cotilting module, which is the central property used by Fang and Koenig in [15] to prove their main results. 
For a properly stratified algebra A, we will denote by RA the Ringel dual of A. Note that since being 
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Gorenstein is a derived invariant, A is Gorenstein if and only if RA is Gorenstein. We give an example of a 
GIGS algebra with infinite global dimension.

Example 3.2. Let A = K[x, y]/(xy, x2 − y3) and M = A ⊕ xA ⊕ yA ⊕ x2A and B = EndA(M). Note that A
is a (commutative) symmetric Frobenius algebra and thus B is gendo-symmetric. By results of Chen and 
Dlab in [7] B is also properly stratified with a duality. B has Gorenstein dimension 4, dominant dimension 
2 and infinite global dimension.

The next result was proven in [15, Theorem 4.3] for GIGS algebras with finite global dimension, but the 
arguments remain valid for GIGS algebras once we establish that the Ringel dual is also gendo-symmetric.

Theorem 3.3. Let (A, e) be a GIGS algebra with characteristic tilting module T .

(1) The Ringel dual of A, RA, is again a GIGS algebra.
(2) 2 domdim(T ) = domdim(A).

Proof. By Theorem 2.2, T is also the characteristic cotilting module and therefore the Ringel dual of A, 
RA, is a properly stratified algebra by Theorem 5 of [17]. Using the exact sequences for tilting modules 
established in [2, Lemma 2.5] we can see that T (i)� ∼= T (i), for all i. In particular, T ∼= T �. By Proposition 
2.4 of [15], RA has a duality τ which fixes all the idempotents T � T (i) ↪→ T . For the statement (1), it 
remains to show that RA is gendo-symmetric. Let eA be the minimal faithful projective-injective module 
of A. In particular (eA)� ∼= eA. Analogously to [15, Lemma 4.2], HomA(T, eA) is a right minimal faithful 
projective-injective module over RA and HomA(DT, Ae) is a left minimal faithful projective-injective module 
over RA. Further, as (eAe, RA)-bimodules

HomRA
(HomA(T, eA), RA) ∼= HomRA

(HomA(T, eA),HomA(T, T )) (3.3.1)
∼= HomA(eA, T ) ∼= HomA(DT,D(eA)) ∼= HomA(DT,Ae). (3.3.2)

The last isomorphism follows from A being gendo-symmetric. Note also that since HomA(T, −) is fully 
faithful on F(∇), we also have the isomorphism eAe ∼= EndA(eA) ∼= EndRA

(HomA(T, eA)). Since Lemma 
4.2 of [15] remains true for properly stratified algebras, part (2) of the proof of Theorem 4.3 of [15] also 
holds for RA. That is, domdimRA � 2. By Theorem 3.2 of [14], RA is gendo-symmetric and (1) holds. It 
is now clear that the analogous statement of [15, Lemma 3.2(5)] holds for RA. Finally, since the remaining 
arguments that are involved in the proof of [15, Theorem 4.3] remain true under the assumption of (A, e)
being properly stratified in place of just being quasi-hereditary, (2) follows. �

We can now apply our results to calculate the Ringel dual of GIGS algebras that are minimal Auslander-
Gorenstein algebras. Recall that an algebra A is called minimal Auslander-Gorenstein if it has finite 
Gorenstein dimension equal to the dominant dimension and both dimensions are at least two (we ex-
clude selfinjective algebras in the definition for minimal Auslander-Gorenstein algebras here for simplicity 
as selfinjective algebras are not interesting for standardly stratified algebras). Minimal Auslander-Gorenstein 
algebras generalise higher Auslander algebras, which are exactly those minimal Auslander-Gorenstein alge-
bras with finite global dimension.

We will need the following result on minimal Auslander-Gorenstein algebras, see [22, Theorem 4.5].

Theorem 3.4. There is a bijection between Morita equivalence classes of minimal Auslander-Gorenstein 
algebras A of Gorenstein dimension n � 2 and equivalence classes of tuples (B, N) of algebras B with a 
generator-cogenerator N of mod-B such that ExtiB(N, N) = 0 for i = 1, ..., n −2 and τ(Ωn−2(N)) ∈ add(N). 
The bijection associates to (B, N) the algebra A = EndB(N).
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Note that when B is symmetric and N = B ⊕M with M having no projective direct summands as in 
the previous theorem, then τ ∼= Ω2 (see for example [5, Proposition 3.8 in Chapter IV]) and the condition 
τ(Ωn−2(N)) ∈ add(N) simplifies to Ωn(M) ∼= M .

Theorem 3.5. Let A = EndU (U⊕M) be a GIGS algebra with a symmetric algebra U and a generator U⊕M

of mod-U , where we can assume that M has no projective direct summands. Assume A is furthermore a 
minimal Auslander-Gorenstein algebra with Gorenstein dimension equal to 2d for some d � 1. Then the 
Ringel dual RA of A is isomorphic to EndU (U ⊕ Ωd(M)). In particular, RA is again a GIGS algebra that 
is minimal Auslander-Gorenstein with Gorenstein dimension 2d.

Proof. A is properly stratified and Gorenstein and thus we can apply our main result 2.2 to conclude that the 
characteristic tilting module of A coincides with the characteristic cotilting module, which we denote by T . 
By [25, Theorem 2.5 and Theorem 2.6.], T ∼= eA ⊕Ω−d(A) when eA denotes the minimal faithful projective-
injective A-module. Now RA

∼= EndA(eA ⊕ Ω−d(A)). Since d � 1, the module T has dominant dimension 
at least one and codominant dimension at least one. By [3, Lemma 3.1 (2) (ii)] the functor HomA(eA, −)
induces an isomorphism of algebras between EndA(eA ⊕ Ω−d(A)) and EndeAe(eAe ⊕ Ω−d(A)e). Now since 
the functor HomA(eA, −) is exact and sends projective-injective A-modules to injective eAe-modules, we 
have Ω−d(A)e ∼= Ω−d(Ae). Thanks to the Morita-Tachikawa correspondence and since eAe is symmetric, 
we have Ae ∼= U ⊕M as (A, eAe)-bimodules and thus

RA
∼= EndA(eA⊕ Ω−d(A)) ∼= EndeAe(eAe⊕ Ω−d(Ae)) ∼= EndU (U ⊕ Ω−d(M)).

Since eAe is symmetric and A is minimal Auslander-Gorenstein, M is 2d-periodic: Ω2d(M) ∼= τ(Ω2d−2(M)) ∼=
M and thus EndU (U ⊕ Ω−d(M)) ∼= EndU (U ⊕ Ωd(M)). When B is a general symmetric algebra and N
a B-module without projective direct summands, the algebras EndB(B ⊕ N) and EndB(B ⊕ Ωi(N)) are 
almost ν-stable derived equivalent in the sense of [21] and this derived equivalence preserves the Gorenstein 
and dominant dimensions, see [21, Corollary 1.3 (2)] and [21, Corollary 1.2]. Now, the Ringel dual has also 
a duality and is properly stratified by Theorem 3.3 and thus the statement follows. �

We have the following corollary:

Corollary 3.6. Let A be a GIGS basic algebra that is minimal Auslander-Gorenstein. Then A is Ringel 
self-dual if and only if A is isomorphic to its Ringel dual RA.

Proof. For any properly stratified algebra A, being Ringel self-dual implies that A and RA are, in particular, 
Morita equivalent. Since both algebras are basic, A and RA are isomorphic. Now assume that A and RA

are isomorphic, then the isomorphism induces a Morita equivalence between mod-A and mod-RA. Now by 
[25, Main theorem] a GIGS algebra C that is minimal Auslander-Gorenstein has the property that F(Δ)
is equal to the subcategory of mod-C consisting of the modules with projective dimension at most r2 when 
r is the Gorenstein dimension of C. Since by 3.5 A and RA have the same Gorenstein dimension and a 
Morita equivalence preserves the projective dimension of modules, the subcategories F(ΔA) and F(ΔRA)
are isomorphic and A is Ringel self-dual. �
3.1. Centraliser algebras of nilpotent matrices

Let H be an arbitrary nilpotent matrix in Kn×n for a field K and n � 2. Then it is well known, 
see for example [6, Proposition 4.1], that the centraliser {X ∈ Kn×n | XH = HX} is isomorphic to 
HomK[x](VH , VH), where we view VH

∼= Kn as an K[x]-module by letting x act as H on Kn. Now since H
is nilpotent xn annihilates VH and thus HomK[x](VH , VH) ∼= HomK[x]/(xn)(VH , VH) is a finite dimensional 
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K-algebra. Since every indecomposable K[x]/(xn)-module is isomorphic to a module of the form (xk)/(xn)
for some k = 0, 1, ..., n − 1 we can assume that VH is a direct sum of such indecomposable modules and 
we can up to Morita equivalence assume that VH is basic. Furthermore, we can assume that H is nilpotent 
with Hn = 0 and Hn−1 
= 0 and thus that the indecomposable module K[x]/(xn) (which is the unique 
indecomposable projective K[x]/(xn)-module) appears as a direct summand. We call HomK[x](VH , VH) ∼=
HomK[x]/(xn)(VH , VH) the centraliser algebra of the nilpotent matrix H. A classical theorem of Frobenius 
gives the vector space dimension of a general centraliser algebra of a matrix. For this and more on centraliser 
algebras we refer for example to [6, Section 5.5]. We will see that this algebra satisfies the assumption of 
3.5 and we will use this to determine when the algebra is Ringel self-dual.

We now fix notation for our problem. Let U = K[x]/(xn) and N = U ⊕M an arbitrary non-projective 
generator of mod-U , where we can assume that M has no projective direct summands and up to Morita 
equivalence we can also assume that N is basic. The algebra A = EndU (N) is properly stratified (see [7, 
Theorem 2.4]) and has a duality (this is explained in [7] at the end of page 64).

Example 3.7. Let U = K[x]/(x3) and N = U ⊕ S, where S is the unique simple U -module. Then 

A = EndU (N) is isomorphic to the following quiver algebra KQ/I with quiver Q: 1 2
β1

β3
β2

and 

relations I = 〈β1β2, β1β3, β3β2, β2β1 −β2
3〉. A has infinite global dimension and thus is not quasi-hereditary.

Proposition 3.8. A = EndU (N) is a GIGS algebra that is minimal Auslander-Gorenstein of Gorenstein 
dimension 2. It is Ringel self-dual if and only if M ∼= Ω1(M).

Proof. That A is properly stratified with a duality follows from [7]. Now A is minimal Auslander-Gorenstein 
of Gorenstein dimension 2 since M is 2-periodic. Thus A is a GIGS algebra that is Auslander-Gorenstein 
and we can use 3.6 that shows that A is Ringel self-dual if and only if A is isomorphic to its Ringel dual. 
By 3.5, the Ringel dual of A is isomorphic to EndU (U ⊕ Ω1(M)). Thus when M ∼= Ω1(M), A is Ringel 
self-dual.
Now assume that A = EndU (N) is Ringel self-dual. We show that then M ∼= Ω1(M). Let M have 
indecomposable non-projective direct summands U/Jpi for i = 0, ..., r with p0 < p1 < ... < pr, 
where we recall that J denotes the Jacobson of the algebra U . Then Ω1(M) has indecomposable non-
projective direct summands U/Jn−pi . If B1 := EndU (U ⊕ M) and B2 := EndU (U ⊕ Ω1(M)) are 
isomorphic, which is equivalent to being Ringel self-dual, they have the same dimensions of their in-
decomposable projective modules. Note that we have in general HomU (U/Jk, U/J t) ∼= Jmax(0,t−k)/J t

and thus dim(HomU (U/Jk, U/J t)) = dim Jmax(0,t−k)/J t = min(k, t). The indecomposable projective 
B1-modules are given by P i

B1
= HomU (U ⊕ M, U/Jpi). Similarly, the indecomposable projective B2-

modules are given by P i
B2

= HomU (U ⊕ Ω1(M), U/Jn−pr−i). Here we choose the ordering for the 
indecomposable projective B1 and B2 modules in increasing order of their vector space dimensions. 
When B1 and B2 are isomorphic, we have dim(P i

B1
) = dim(P i

B2
) for i = 0, ..., r. Now dim HomU (U ⊕

M, U/Jpi) = dim HomU (U, U/Jpi) + dim HomU (M, U/Jpi) = pi +
r∑

k=0
min(pk, pi). In the same way 

we obtain dim HomU (U ⊕ Ω1(M), U/Jn−pr−i) = n − pr−i +
r∑

s=0
min(n− ps, n− pr−i). The condition 

dim(P 0
B1

) = dim(P 0
B2

) gives us that p0 + (r + 1)p0 = n − pr + (r + 1)(n − pr) and thus p0 = n − pr
and using induction and the equations dim(P i

B1
) = dim(P i

B2
) we conclude that pi = n − pr−i for all 

i = 0, ..., r. This is equivalent to M = Ω1(M). �
Thus in the situation of the previous algebra, we have Ringel self-duality if and only if the generators are 

stable 1-periodic.
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3.2. Representation-finite blocks of Schur algebras

The next application shows that the representation-finite blocks of Schur algebras are Ringel self-dual 
even when the generator is not stable d-periodic. For statements without proofs about the representation-
finite blocks of Schur algebras, we refer for example to [25, section 4]. Recall that the representation-finite 
blocks of Schur algebras are given by quiver and relations as

1 2 3 4 · · · m− 1 m

a1

b1

a2

b2

a3

b3

am−1

bm−1

, m � 1,

bm−1am−1, bi−1ai−1−aibi, ai−1ai, bibi−1, i = 2, . . . , m −1. We denote the quiver algebra of a representation-
finite block of a Schur algebra with n simples by An. By P (i) we mean the projective indecomposable of 
An associated to the vertex i. We denote by Bn the endomorphism algebra EndAn+1(P (1) ⊕ · · · ⊕ P (n)) if 
n � 1 and B0 = A1. These algebras have the same quiver as An (A1 if n = 0) and these correspond to the 
finite-type blocks of basic algebras of the group algebras of a symmetric group. Of course, B0 corresponds 
to the simple block. Hence, the interesting case lies in n � 1 which we will assume from now on. Moreover, 
(An+1, P (1) ⊕ · · · ⊕ P (n)) is a quasi-hereditary cover of Bn and An+1 has global dimension and dominant 
dimension equal to 2n. In particular, An+1 ∼= EndBn

(Bn ⊕ Sn), where Si denotes the simple module in the 
quiver of Bn corresponding to vertex i. Thus, the Ringel dual of An+1 is isomorphic to EndBn

(Bn⊕Ωn(Sn)) ∼=
EndBn

(Bn ⊕ S1) by Theorem 3.5, since Ωn(Sn) ∼= S1. Note that due to the symmetry in the relations, we 
also have An+1 ∼= EndBn

(Bn ⊕ S1) and An+1 is Ringel self-dual. Thus, in contrast to the previous class of 
examples, one can have Ringel self-duality even when the corresponding modules U ⊕M and U ⊕ Ωd(M)
are not isomorphic.
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