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1. Introduction

Let g be an affine Kac—-Moody Lie algebra, and denote by Ué(g) the associated quantum affine algebra
without the degree operator. Kirillov-Reshetikhin (KR for short) modules are a distinguished family of
finite-dimensional simple Uj(g)-modules (see, for example, [2]). In this article KR modules are denoted by
Wnt where r is a node of the Dynkin diagram of g except the node 0 prescribed in [8] and £ is a positive
integer. KR modules are known to have several good properties, such as their g-characters satisfy the T
(Q,Y)-system relations, fermionic formulas for their graded characters, and so on (see [4-6,17], for example,
and references therein).

Another important (conjectural) property of a KR module is the existence of a crystal base in the sense
of Kashiwara, which was presented in [6,7]. In this article, we mainly consider a slightly weaker version of
the conjecture, the existence of a crystal pseudobase (crystal base modulo signs, see Subsection 2.2).
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If a given KR module W is multiplicity free as a U, (go)-module, it is known to have a crystal pseudobase,
where gg is the subalgebra of g whose Dynkin diagram is obtained from that of g by removing 0. In
nonexceptional types, in which all W™ are multiplicity free, this was shown by Okado and Schilling [20].
Recently this was also proved for all multiplicity free W™ of exceptional types by Biswal and the second
author [1] in a similar fashion.

On the other hand, if W is not multiplicity free, then the conjecture has been solved in only a few cases
so far. Kashiwara showed for all affine types that all fundamental modules W! have crystal bases [11], and
in types Ggl) and Df), the first author verified the existence of a crystal pseudobase for all W™¢ [19].

We say a node r is near adjoint if the distance from 0 is precisely 2. The goal of this paper is to show
the conjecture for all KR modules associated with near adjoint nodes in exceptional types. This has already
been done in [19] for types Gél) and Df), and our main theorem below covers all remaining types.

Theorem 1. Assume that g is either of type Efll) (n=26,7,8), 4(1), or Eéz), and r is the near adjoint node.
Then for every £ € Zg, the KR module W™ has a crystal pseudobase.

In particular, since a KR module W™ in type Eél) is multiplicity free if r is not the near adjoint node,
Theorem 1 solves the conjecture for all KR modules of this type.

As with previous works [1,19,20], Theorem 1 is proved by applying the criterion for the existence of a
crystal pseudobase introduced in [12]. In our cases, however, this is much more involved and we need a new
idea, which we will explain below.

By the criterion, the existence of a crystal pseudobase is reduced to showing that certain vectors are almost
orthonormal with respect to a prepolarization (bilinear form having some properties) and satisfy additional
conditions concerning the values of the prepolarization. In the previous works these statements were proved
by directly calculating the values of the prepolarization (although in [19] the amount of calculations was
reduced using an induction argument on ¢). However, this appears to be quite difficult to do in our cases.
Hence we apply a more sophisticated method using the global basis of an extremal weight module introduced
by Kashiwara [10]. For example, it is previously known that a global basis is almost orthonormal [18], and
therefore the required almost orthonormality of given vectors is deduced by connecting them with a global
basis. The other conditions are also proved in a similar spirit.

Besides the KR modules treated in this paper, there are several families of W™ for which the existence
of crystal pseudobases remain open: r = 3,5 in type E§1)7 3 <r < 7in type Eél), and » = 3 in types F4(1)
and E(().z)7 where the labeling of nodes are given in Fig. 1 in Subsection 3.1. We hope to study these in our
future work.

The paper is organized as follows. In Section 2, we recall the basic notions needed in the proof of the
main theorem. In Subsection 3.1, we reduce the main theorem to three statements (C1)—(C3), and these are
proved in Subsections 3.2-3.4. In Subsection 3.4, we use a certain relation (3.4.15) in W™*, whose proof is
postponed to Appendix A since, while straightforward, it is slightly lengthy and technical.

Acknowledgments

The authors would like to thank Rekha Biswal for helpful discussions. This work benefited from computa-
tions using SAGEMATH [21]. The first author was supported by JSPS Grant-in-Aid for Young Scientists (B)
No. 16K17563. The second author was partially supported by the Australian Research Council DP170102648.

Index of notation

We provide for the reader’s convenience a brief index of the notation which is used repeatedly in this
paper:
Subsection 2.1: g, I, C = (¢ij)ijer, i, hiy, Ny, 0, P, P, Q, Q1 W, s;, Iy, @i, P*, d, Pa, g, D, qs, Uy(g),
ei, fir ", Uj(9), Ug(ns), e, wip, Uy(8), tiy A, whp,.
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Subsection 2.2: &, fi, A, ~.

Subsection 2.3: |Jul|?.

Subsection 2.4: V(A), va, L(A), B(A), B(A), V(A)z, B(Al, —A2?).

Subsection 2.5: My, ta, t, W™ 2., LOIW™Y) wy, .

Subsection 2.6: go, Po, P, Vo()).

Subsection 3.1: W*, Io1, J, R, R*, R}, Ry, 61, 65, e, EX) ¢q, i, 4, i[ka, k1], j[k2, k1], s, AY, EP for
pE Z6, wt, Sp.

Subsection 3.3: €;, EP for p € Z°, Sy, m(py,-- -, Dt A)-

Subsection 3.4: a, m(p,Ps).

2. Preliminaries
2.1. Quantum affine algebra

Let g be an affine Kac—Moody Lie algebra not of type Agi) over Q with index set I = {0,1,--- ,n} and
Cartan matrix C' = (¢;5)i jer. We assume that the index 0 coincides with the one prescribed in [8] (we do
not assume this for the other indices, and in fact later we use another labeling, see Fig. 1 in Subsection 3.1).
Let «; and h; (i € I) be the simple roots and simple coroots respectively, A; (i € I) the fundamental
weights, ¢ the generator of null roots, P = €, ZA; ® Z6 the weight lattice, Pt = @ZEIZZOAZ» ® Z6 the
set of dominant weights, Q@ = @,.; Za; the root lattice, QT = 3", ; Z>oa; € Q, W the Weyl group with
reflections s; (i € I), and (, ) a nondegenerate W-invariant bilinear form on P satisfying (ag, ap) = 2. Set
Iy =1T1\{0}, and

w; = A; — <K, AZ>A0 fori e I,

where K € P* = Hom(P, Z) is the canonical central element. Let d € P* be the element satisfying (d, A;) =0
(¢ € I) and (d,d) = 1. Set P, = P/ZJ, and let cl: P — P, be the canonical projection. For simplicity of
notation, we will write a;, wo; for cl(e;), cl(w;) when there should be no confusion.

Let ¢ be an indeterminate. Set ¢; = ¢(@#®)/2,

[m]i[m —1];---[m —n+1];

m__—m

e = Tl = el - 1) [, and [

q;i — q; i

fori € I, m € Z, n € Z>¢. Choose a positive integer D such that (a;,a;)/2 € ZD™! for all i € I, and
set gs = ¢*/P. Let Uy(g) be the quantum affine algebra, which is an associative Q(gs)-algebra generated by
ei, fi (i € I), ¢" (h € D™'P*) with certain defining relations (see, for example, [11]). Denote by U;(g) the
quantum affine algebra without the degree operator, that is, the subalgebra of U,(g) generated by e;, f;
(i € I) and ¢" (h € D71P3). Let U,(ny.) (resp. Uy(n_)) be the subalgebra generated by e; (resp. fi) (i € I).
Fori e I and n € Z, set egn) =el'/[n];! if n > 0, and egn) = 0 otherwise. Define fi(n) analogously. We define
a Q-grading U,(g) = @QGQ Uy(9)a by

Uq(g)a = {X € Uq(g) | thq_h = q<h’a>X for h € D_lp*}-

If 0 # X € Uy(g)a, we write wtp(X) = . For a proper subset J C I, denote by g; the corresponding
simple Lie subalgebra, and by Ug(gs) (resp. Ug(ny 5), Ug(n— s)) the Q(gs)-subalgebra of U,(g) generated
by ei, fi,qEP M (resp. e, fi) with i € J.

Set t; = ql@»@)hi/2 for i € I, and denote by A the coproduct of U,(g) defined by

Al =q"@q¢" A@e™) =3¢ Pe @ tkel™
k=0
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AF™) Z gEm=R) ks ¢ (8) g §m=)

for h € D'P*, i€ I, m € Zy.
For a U,(g)-module (resp. U;(g)-module) M and A € P (resp. A € Pry), write

My ={veM|q"w=q¢g" v for he D"'P* (resp. h € D™'P})},

and if v € My with v # 0, we write wtp(v) = A (resp. wtp, (v) = A). We will omit the subscript P or P
when no confusion is likely. We say a U, (g)-module (or U, (g)-module) M is integrable if M = @, M and
the actions of e; and f; (i € I) are locally nilpotent.

Throughout the paper we will repeatedly use the following assertions. For 4,5 € I such that ¢ # j and
r,8 € Z>p, it follows from the Serre relations that

(T) ( € Uy(n4)s(aj—cija l)e(MCUS) if r+c¢;58 >0,
(2.1.1)
e§s)€§r) c el(.TJrCijS)Uq(nJr)s(aijijai) if r+ c;ijs > 0,
where Uy(ny)a = Ug(ny) NUg(g)a. For ¢,j € I such that ¢;; = ¢j; = —1 and r,s,t € Z>(, we have
r—s+t "
ez(-T)eg.s)ez(-t) = Z [T 77781+ ] egt_m)ez(»r+t)e§3_t+m) ifr+t¢t>s, (2.1.2)
m=0 4
see [16, Lemma 42.1.2]. Given a U,(g)-module M, v € My and r, s € Z>, we have
min(r,s) st <h )\>
ez('r)fz‘(S)U = Z [T ’ k ) } fi(87k)€z('rik)v’ (2.1.3a)
k=0 i
min(r,s) L <h >\>
fi(r)egs)v = [T s i v } egs_k)fi(r_k)v (2.1.3b)
k=0 i

for i € I, and egr)f](s) = f;s)egr) for i, € I such that i # j, see [16, Corollary 3.1.9].
2.2. Crystal (pseudo)bases and global bases
Let M be an integrable U,(g)-module (or U, (g)-module). For i € I, we have
(hi,A)
M= @ EB fi(n)(kereiﬂMA).

As(hi,A) >0 n=0

Endomorphisms é;, ﬁ (i € I) on M called the Kashiwara operators are defined by
TG0y = 1, () = £

for u € kere; N My with 0 < n < (h;, A). These operators also satisfy that

éi(egn)v) = egnﬂ)v, fi(egn)v) = egn_l)v
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for v € ker f; " M, with 0 < n < —(h;, n). Let A be the subring of Q(g,) consisting of rational functions
without poles at gs = 0. A free A-submodule L of M is called a crystal lattice of M if M = Q(qs) ®a L,
L =@, Ly where Ly = L N M, and &, fi (i € I) preserve L.

Definition 2.2.1 (/9,12]).

(1) A pair (L, B) is called a crystal base of M if
(i) L is a crystal lattice of M,
(ii) B is a Q-basis of L/q,L,
(iii) B = ||y Bx where By = BN (LA/qSL)\),
(iv) &B C BU{0}, f;B C BU{0},
(v) for bt/ € B and i € I, fb =1V if and only if &b’ = b.
(2) (L, B) is called a crystal pseudobase of M if they satisfy the conditions (i), (iii)—(v), and (ii’) B =
B’ U (—B’) with B’ a Q-basis of L/qsL.

Recall that, if M; and M, are integrable U, (g)-modules and (L;, B;) is a crystal base of M; (i = 1,2),
then (L1 ® 4 Lo, B1 ® Bs) is a crystal base of My ® Ms, where By ® Ba = {b1 ® ba | b; € B;} C (L1 ®a4
L)/qs(L1 ®4 La).

Let ~ denote the automorphism of Q(g,) sending ¢ to ¢!, and set A = {@| a € A}. We also denote by
~ the involutive Q-algebra automorphism of U,(g) defined by

g=¢, fi=fn d"=q" alg)r=a0alg;")T

for i € I, h € D7'P*, a(qs) € Q(gs) and x € Uy(g). Let U,(g)g be the Q[gs, g, !]-subalgebra of U,(g)
generated by e\, f ¢" for i € I, n € Zg, h € D~1P*.

Definition 2.2.2 (/9]).
(1) Let V be a vector space over Q(gs), Lo a free A-submodule, L., a free A-submodule, and Vg a free

Qlgs, g5 ']-submodule. We say that (Lo, Lo, Vi) is balanced if each of Lo, Lo, and Vg generates V as
a Q(gs)-vector space, and the canonical map

LO N Loo N VQ — LO/QSLO
is an isomorphism.
(2) Let M be an integrable U,(g)-module with a crystal base (L, B), ~ be an involution of M (called a bar
involution) satisfying 7u = 7w for x € Uy(g) and uw € M, and Mg a U,(g)g-submodule of M such that

Mg = Mg, u-—u€ (gs—1)Mg foru e Mg.

Assume that (L,L, Mg) is balanced, where L = {u | u € L}. Then, letting G be the inverse of
LNLNMg = L/qsL, the set

B ={G()|be B}
forms a basis of M called a global basis of M (with respect to the bar involution 7).

Note that the global basis B is an A-basis of L.
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2.3. Polarization

A Q(gs)-bilinear pairing ( , ) between U,(g)-modules (resp. U,;(g)—modules) M and N is said to be
admissible if it satisfies
(qh’u7v) = (u7qh,v)7 (egm)u’ 'U) — (U’ qZ—'rthl_'rnf'l(T’)’L)U)7

(™ 0) = (g™ e 0)

7

(2.3.1)

for h € D™1P* (vesp. h€ D'P}),i € I, m € Z~o, u € M, v € N. A bilinear form (, ) on M is called a
prepolarization if it is symmetric and satisfies (2.3.1) for u,v € M. A prepolarization is called a polarization
if it is positive definite with respect to the following total order on Q(gs):

f>gifandonlyif f—ge | |{g/(c+qA)|c€ Qsol,
nez

and f > g if f = g or f > g. Throughout the paper, we use the notation ||ul|?> = (u,u) for u € M.
2.4. Ezxtremal weight modules

For an arbitrary A € P, let V(A) be the extremal weight module [10] with generator va, which is an
integrable U,(g)-module generated by va of weight A with certain defining relations. If A belongs to the
W-orbit of a dominant (resp. antidominant) weight, say A°, then V(A) is a simple highest (resp. lowest)
weight module with highest (resp. lowest) weight A°. In [loc. cit.], it was shown for any A € P that V(A)
has a crystal base (L(A), B(A)) and (L(A), L(A), V(A)g) is balanced, where the bar involution is defined
by Zua = Ty for € Uy(g), and V(A)g = Uy(g)gua. We denote by

B(A) = {G(b) | b e B(A)} C V(A)

the associated global basis. Let U,(g)z denote the Z[gs, g5 ']-subalgebra of U,(g) generated by egn),fi(”)
(i € I, n € Zso) and ¢" (h € D™'P*), and set V(A)z = U,(g)zva C V(A). The following proposition is
due to [9] for highest and lowest weight cases, and [18] for level zero cases.

Proposition 2.4.1. Let A € P.

(1) There exists a polarization ( , ) on V(M) such that ||vp|* = 1.

(2) We have (L(A),L(A)) C A, and (é;u,v) = (u, fiv) mod qsA for u,v € L(A) and i € I.
(3) B(A) is an almost orthonormal basis with respect to ( , ), that is,

(v,0") € 8ypr +qsA  for v,v" € B(A).
(4) We have
LA ={veVQ)||lv|* €A}, +B(A)={veV(A)z|v=u, |[v]* €1+ qA}.

Let A', A% € P*. By [15] (see also [10]), the triple

(L") @4 L(=A?), I(AT) @4 L(—A7), V(A')g Ogy,. oy V(=A%)
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in the tensor product V(A') ® V(—A?) is balanced. Here the bar involution is defined by
z(va, ®v_p,) =T(vp, ®v_p,) for x € U,(g).
Denote the associated global basis by
B(AY, —A%) = {G(b) | b € B(A') ® B(—A%)} CV(AY) ®@ V(—A?).
It is easily checked from the definition that
var @ B(=A?%) C B(A', —A?). (2.4.1)

By the construction of the global basis of an extremal weight module in [10, Subsection 8.2], the following
lemma is obvious.

Lemma 2.4.2. Let A € P, and suppose that A*, A?> € Pt satisfy A' —A? = A. There exists a unique surjective
U, (g)-module homomorphism ¥ from V(AY) @V (—A?) to V(A) mapping var @ v_a2 to va, and ¥ maps the
subset {X € B(AY, =A%) | W(X) # 0} bijectively to B(A).

2.5. Kirillov—Reshetikhin modules

Given a U/ (g)-module M, we define a U, (g)-module Mug = Q(gs)[2, 27 '] ® M by letting e; and f; (i € I)
act by 2% @ e; and 7% @ f; respectively, and qD_ld on z*¥ ® M by the scalar multiplication by ¢¥. Set
M, = Mg /(2 — a) Mg for nonzero a € Q(q;), which is again a Ué(g)—module. We denote by tq: M = M,
the Q(gs)-linear (not U, (g)-linear) isomorphism defined by ¢4(v) = pa(1 ® v), where p,: Mag — M, is the
projection. If no confusion is likely, we will write ¢ for ¢, sometimes.

Let r € Ip. In [11], a Uj(g)-module automorphism 2, of weight § is constructed on the level-zero funda-
mental extremal weight module V' (w, ), which preserves the global basis B(w,). Set

Wt =V(w,) /(2 — 1)V (@),

which is a finite-dimensional simple integrable U, é(g)—module called a fundamental module. Note that V[/'arf’f1 =
V(w,). Let p: V(w,) — W™ be the canonical projection, and define a bilinear form ( , ) on W"! by

(p(w),p(v)) = Z(zfu,v) for u,v € V(w,). (2.5.1)
keZ
Since (u,v) = (zyu, z;v) holds for u,v € V(w,) by [18, Lemma 4.7], this is a well-defined polarization on
Wl Let L(W"!) = p(L(w,)). It follows from Proposition 2.4.1 that
LW ={ue W™ | |u||> € A}, and (u,v) € A for any u,v € L(W™"). (2.5.2)

Fix r € Iy and ¢ € Z~g. Let w; € W"! denote a vector such that wtp,(w1) = @, and ||w|* = 1.
Hereafter we write ¢y, for v,v (k € D'Z). Set

) (ar,a;)/2  g: nontwisted affine type,
1 g: twisted affine type.

Let

7,1 r,1 r,1 r,1
W=w (1—¢) ® qu(g—e) Q- qu(z—s) & qu(e—my

qm
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and denote by w, a vector of W defined by

W = Lypy(1-0) (W1) @ Lpn(z—g) (W1) @+ @ Ly 0—3) (W1) @ Lyn(e—1)(w1)-

The Uy (g)-submodule Wrt = Uy(@)we € W is called the Kirillov—Reshetikhin module (KR module for
short) associated with r, £.

Proposition 2.5.1. Let r € Iy, { € Z~y.

(1) Wn* is a finite-dimensional simple integrable U,(g)-module.
(2) The weight space Wgé,’. is 1-dimensional and spanned by wy.
(3) The weight set {\ € Py | W;’e # 0} coincides with the intersection of bw, — 3 .1 Z>oi and the
convex hull of the W -orbit of {w,.
(4) The vector w, € W™t satisfies
ewe=0 ifiely and fiwe=0 ifiel\{r}.

Proof. The assertion (1) is proved in [20, Proposition 3.6]. The assertions (2) and (3) follow from [11,
Theorem 5.17], and (4) is proved from (3). O

Next we shall recall how to define a prepolarization on W7¢. There exists a unique U, é (g)-module homo-
morphism

7,1 r,1 7,1 r,1
R W m(( 1 ® W Tn(f 3) ® ® W 771.(1 2) — W m(l 2) ® ® Wq'm(éfL’)) ® anl(éfl)

mMapping ty,e—1)(W1) ® + -+ ® ty1—p(w1) to wy, and its image is W* (see [20]). The following lemma is
proved straightforwardly.

Lemma 2.5.2. Assume that { € Z~o, My, Ny (1 <k <€) are Uj(g)-modules, and (, )x: My x N, — Q(qs)
(1 <k < ¥{) are admissible pairings. Then the Q(qs)-bilinear pairing (1, ): (M1 ®- QM) x (N1®---QNy) —
Q(gs) defined by

(U1 @U@+ @up, v @Ua ® -+ ®wp) = (ur,v1)1(U2,v2)2 - - (g, ve)e
is admissible.

The lemma gives an admissible pairing ( , )o between W o1 m(e—1) & VVT;,L(1 » and VVT;,L(1 H® @
WT"IV(,Z,1 , which defines a bilinear form (, ) on W™ by
gm=1)

(R(u), R(v)) = (u, R(v)), for u,ve we ey ® - W;;nl(l_[). (2.5.3)

By [12, Proposition 3.4.3], ( , ) is a nondegenerate prepolarization on W™ and |jw¢||*> = 1 holds. We will
use the following lemma later, whose proof is similar to that of [19, Lemma 3.6].

Lemma 2.5.3. Let r € Iy and £ € Z~g, and set
Wi = Wi @ W and Wy = Wi, @ Weil ™

There are unique U;(g)—module homomorphisms Ry: Wi — W™t and Ry: W™t — Wy satisfying
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Ry (L(wl) ® L(’U)g_l)) =w; and Ra(wy) = t(wy) ® t(we—1)
respectively, and for any u,v € W1 we have
(Rl(u),Rl(v)) = (u,R2 o Rl(v))l,
where (1, )1 is the admissible pairing between W1 and Wy obtained from Lemma 2.5.2.
2.6. Criterion for the existence of a crystal pseudobase

Following the previous works [1,19,20], we will prove Theorem 1 by applying a criterion for the existence
of a crystal pseudobase introduced in [12].

We write go = gy, for short. We identify the weight lattice Py of go with the subgroup €
P, and set P&' =>
highest weight A.

Let Az and Kgz be the subalgebras of Q(gs) defined respectively by

iel, Zwi of

ie1o L=owi. For X\ € Py, denote by Vy(\) the simple integrable Ug(go)-module with

Az = {f(as)/9(as) | f(as),9(as) € Z[gs],9(0) =1}, Kz = Az[a;"].
Let U;(g)x, denote the Kz-subalgebra of U, (g) generated by e;, f;, " (iel,he D71PY).

Proposition 2.6.1 (/12, Propositions 2.6.1 and 2.6.2]). Assume that M is a finite-dimensional integrable
Ué(g)—module having a prepolarization ( , ) and a U(;(g)KZ -submodule My, such that (Mg, ,Mk,) C Kgz.
We further assume that there exist weight vectors u,, € Mk, (1 < k < m) satisfying the following conditions:

(i) wt(uy) € P for 1 <k <m and M = @}, Vo(wt(ur)) as Uy(go)-modules,
(i) (ug,w;) € Ogr + qsA for 1 < k, 1 <m,
_2<hi’Wt(uk))_2qu foralliely and 1 <k <m.

(iii) [leiurl]® € g;
Then (, ) is a polarization, and the pair (L, B) with
L={ueM]||ul®>€ A} and B = {be (Mx, NL)/(Mx, NqsL) | (b,b)o = 1},
where (, )o is the Q-valued bilinear form on L/qsL induced by ( , ), is a crystal pseudobase of M.
From [12], we know the U,(g)x,-submodule W}é = Uj(g)k,we © W™ satisfies (W;;,W;é) C Kz.
Hence if we show for M = W™ the existence of weight vectors uy,...,u,, satisfying (i)—(iii), Theorem 1

follows from Proposition 2.6.1. We will show this in the next section with an explicit construction of the
vectors Uy, ..., Um.

3. Proof of Theorem 1
3.1. Set of vectors

In the rest of this paper, assume that g is either of type Y (n=6,7,8), F4(1) or Eé2) and the nodes of
the Dynkin diagram is labeled as in Fig. 1. We have

¢ =q"? (g: Féfl),i =3,4), ¢=q¢ (9 Eéz),i =3,4), ¢ =q (otherwise).
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Fig. 1. Dynkin diagrams of types Eé};,s, Ff), and Eéz) (e: nodes belonging to J).

Table 1
Explicit forms of 6, and 6.
g 01 9.]
EW a2 +azt+og+as+oas az + a3 + oy
6 = —wi + w5 + we = —wi + w3 + W4 — W5 — We
oie) az + 2a3 + ag + 2a5 + 2a6 + az az + 2a3 + ag + as
7 = —w; + we = —wi + w3 — we
) az + 2a3 + 3ag + 4as + 2a6 + 3ar + 2as agz + 2a3 + 2a4 + 2a5 + ag + ar
8 = —w1 + ws = —wi + w3 — ws
Fil) as + 2as3 + 2a4 = —wq + 2004 as + 2a3 = —wq + 2wy — 204
E((;2) ag + a3+ oy = —w; + Wy az + a3z = —wi + w3 — Wy

From now on, for ¢ € I such that ¢; = ¢ we write [m] for [m];, [n]! for [n];!, and {ZZ] for {ZL] . Note that in

all types r = 2 is the unique near adjoint node. In the sequel, we will consider W2 only and, hence, write
Wt for W3¢,
Let us prepare several notation. Define two subsets Ip; and J of I by Io; = Ip \ {1}, and

(2,3,4} (g: E§V),
S_Jzsasy (e B,

(2,3,4,5,6,7} (g Eg”),

(2,3} (g: F{V,ES).

Let R C @Q denote the root system of gg, and R™ = RN Q™ the set of positive roots. For a subset L C I
denote by Ry, the root subsystem of R generated by the simple roots corresponding to the elements of L,
and let Rf = R, NR*™. We write Ry = Ry,,. Let 61 be the highest short root of Ry if g is of type Eéz), and
the highest root of R; otherwise. Define 6; € R similarly (see Table 1).

Fori eI and k € Z, set

{eg%) if g is of type Ff) and «; is short,
(
7

otherwise.

For p € Z and a sequence r = (rgrg—1 ---r1) of elements of I (in this paper we always read such sequences
from right to left), we use the abbreviations

elP) = e(P)e(P) --egf) and EP) = Eﬁf) : ~-E$’f). (3.1.1)

Tk Tk—1
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Set

B {2 (g: F{V),
Cg =

1 (otherwise),
and choose a sequence ¢ = (ipir_1---i1ip) of elements of Iy satisfying
io=2, Si, - -Siy(a2) =01, and (h,si -5 (a2)) = —¢g for 1 <k < L. (3.1.2)

Similarly, choose a sequence j = (jr/jr'—1 - J1jo) of elements of J satisfying
Jo=2, s, i () =0y, and (hj,, s, 55 (a2)) = —¢g for 1 <k <L

In the rest of this paper, we fix ¢ = (i1, ---ig) and j = (jr - - - jo) satisfying these conditions. For 0 < k; <
ko < L, denote by i[ko, k1] the subsequence (ik,ik,—1 - - - i, ) of ¢, and let i[ks, k1] be the empty set if ko < ky.
We define j[ko, k1] similarly. For a sequence r = (ryrg—1---71) of elements of I, set s, = s, -8, € W,
and let s, be the identity element of W if  is the empty set. Let h, € P* (a € R) denote the coroots, and
AY € P*®z Q (i € I) elements satisfying (A}, o) = 0;; for i,j € I.

Lemma 3.1.1.

(1) Neither of the subsequences ¢[L, 1] and j[L', 1] contains 2.
(2) We have (h;,01) =0 for alli € J.
(3) For any p € Z>o, we have

WtP(EEf;c),o]) = psipa)(ae) (0<k<L) and th(EJ(.Z[),;O]) =psjmay(az) (0<k<L).

In particular, WtP(E,Ep)) = pb, and wtp (E;p)) =pl; hold.

(4) Both s; and s; are reduced expressions.

(5) If « € R* satisfies si_[;l}(a) € —R*t (resp. 5;[2/,1](04) € —R™"), then we have (hq,61) > 0 (resp.
<ha, 9J> > 0)

(6) For any p € Z>y, Eép) (resp. Ej(.p)) does not depend on the choice of © (resp. j).

Proof. The assertion (1) is obvious since (Ay,0;1) = (AY,0;) = 1 (see Table 1), and (2) is checked directly.
The assertion (3) is easily seen from the conditions on ¢ and j. We will show the assertion (4) for s; (the
proof for s; is similar). By the condition on %, we have for any 0 < k < L that

(831L,k41] (Piy )5 01) = (P, Sip,1) () > 0.

Since (h;,01) > 0 for all i € Ip; and sz g41)(cs,,) € Ry, this implies that s;z r41)(,) is a positive root
for any k, which implies that s; is reduced. Let us show the assertion (5) for s;1,1) (the proof for sz 1) is
similar). There exists 1 < k < L such that o = 547 x41](,), and we have

(ha, 01) = (Sipnk41) (hiy ), 01) = (i, Sipe,1)(a2)) > 0,

as required. Finally, let us show the assertion (6) for E(”) (the proof for EJ(.p ) is similar). If g is either of
type F4(1) or Eé2), i = (43) is the unique choice. Hence we may assume that g is of type Y (n=6,7,8).
Assume that ¢ = (i, ..., i) is another choice. Since Zf:o @ = Zﬁio vy, = 01, we have Lo = L. Let r
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!/
™

be the smallest number such that 4, # 4., and let s be the smallest number such that r < s and i, = 7.

Then since

s—1

r—1
<h7;'r7zaik> =-1l= <hz‘;7zai;€>
k=0

k=0

and i), # i, for r <k <s, we have (h;,, ;) =0 for 7 <k < s. Hence setting

7 = (ilL"'ilsHi;—l"'i/rir"'io)v
we have Ezg/p) = ng). By repeating this argument we can show that Eg,p) = Ez@)
(6) is proved. O

, and hence the assertion

For p = (p1,p2,---,p6) € Z5, we write
P — eéps)egps)egm)E§P3)E§P2)e§%1) € Uy(ny),

K2

and define a map wt: Z% — P by
wt(p) = (p1 — P2 — P3 — pa + 2p5 — Pe)@1 + (—p1 + 2ps — ps)wa2 + (p2 — pa)m1 + (P3 — Pa)y2,
where we set
71 =w +cl(f1) € Py and o = +v1 +cl(0y) € P (3.1.3)
For { € Z, define a finite subset Sy C Z%, by

ng{(pl,...,p(;)eZGZO ‘p6§p5 <pas<p3<p2, p2+p3+ps—ps <p1 < pat+ L}

Note that if p € Sy, then wtp, (EPw,) = wt(p) + fwa € P;. As stated in the final part of the previous
section, Theorem 1 is proved once we show the following.

Proposition 3.1.2. For any { € Z~, the vectors {EPw, | p € S¢} C W* satisfy the following conditions:

(C1) Wt Dpes, Vo (Wt(p) + lw2) as Uy(go)-modules,
(C2) (EP’LU(7EP/IU5> € dpp + qsA for p,p’ € Sy,
(C3) |les EPw||?* € q;2<hi’Wt(p)>72€6i272qu foriely and p € Sy.

3.2. Proof of (C1) in Proposition 3.1.2
By [3,4,17], the multiplicities of a KR module are known to coincide with the cardinalities of highest
weight rigged configurations. In our cases, explicit formulas for the number of them have been obtained
using the Kleber algorithm [13], and hence we have the following.
Proposition 3.2.1 (/22, Section 9]). Let £ € Zq. Define a subset Ty C 72, by
T, = {’I": (7"1,7"2,...,7‘5) S 2520 | ri+1ro+1r3+nry Sf, T4 + 275 §7“2},

and a map wtr: 2520 — Py by

wtr(r) = (ro —rqy — 2r5)wwy + (—r1 — 19 — 13 — 14 + 75) 02 + 371 + TaY2,
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where y1,72 are given in (3.1.3). Then we have

We = @ %(WtT(T‘) + ZWQ)@(H_TZ_M_QTS)
reTy

as Uy(go)-modules.

Now (C1) is easily deduced from Proposition 3.2.1. Indeed, the map ¢: Z® — Z5 defined by

¢(p1,---,p6) = (P6;P1 — P2 — P6, P2 — P3,P3 — Pa;Pa — P5)
sends Sy to Ty, wtp o ¢ = wt holds, and for any r € T},
)N Sy ={ro+k(1,1,1,1,1,0) | ry <k <7y +75— 14 — 215},
where
ro=(r1+ro+rs+rat+rs,rs+ry+rs,ra+7r5,75,0,71),
and hence Proposition 3.2.1 is equivalent to (C1).
3.8. Proof of (C2) in Proposition 5.1.2

In this and next subsections, we need to consider prepolarizations on several types of modules (extremal
weight modules, KR modules, or tensor products of them) simultaneously. Therefore, when we would like
to indicate what prepolarization we are considering, we will occasionally write (, ) and || ||%; for (, )
and || ||* on a module M.

We begin with the following lemma.

Lemma 3.3.1. Let M be a U, (g)-module with a prepolarization ( , ), and u € My for some A € P. Assume
that fou = equ = fiu = 0. Then for any p,p’ € Zﬁzo with p # p', (EPu, E? u) = 0 holds.

Proof. Set p = (p1,...,p6) and p' = (p},...,p;). We may assume that pg > pg. By the admissibility, we
have

(Epu,Ep/u) _ qC(Ep*pGEGu,fépﬁ)Eplu),
where ¢ is a certain integer and &; = (0,...,0,1,0,...,0) (1 < i < 6) is the standard basis of Z°. Since
~——
ega)eéb)u =0if a > b by (2.1.1), it follows from (2.1.3) that
(Ps) ', _ ¢ p’ —pees
Jo TEP u=0ppq° B U
with ¢/ € Z, and hence we may (and do) assume that pg = pi = 0. If we further assume that p5 = pf, then

p # p/ implies wtp, (EPu) # wtp, (EPu), which forces (EPu, B u) = 0.
Hence we may assume that ps > pf. In this case, we have

(EPu, EP u) = ¢ (EP~Ps&sqy, f{P9) EP'y) (3.3.1)
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with ¢’ € Z, and by applying (2.1.1) and (2.1.3), it is easily proved that
fl(m)Eplu € eoUq(g)u.
Since foEP~Ps€sy =0, (3.3.1) implies (EPu, Eplu) =0, and the assertion is proved. O

Since the vector wy, € W satisfies the assumption of the lemma, (EPwy, Ep/wg) =0 follows if p # p’. In
order to verify (C2) in Proposition 3.1.2, it remains to show ||EPwy||? € 1+ gsA for p € S,.

Lemma 3.3.2. For any p = (p1,...,p6) € Zﬁzo such that p1 — ps + ps < 3¢, we have |EPw,||* € (1 +
qA)|| EP~Pecowy||?.

Proof. We have
|| EPw,||2 = gPoBL—Pitps—po) (EP—Pocoy, fépG)Epwg). (3.3.2)
Since foEP~Ps6q, = 0 holds, it follows from (2.1.3) that

30 —p1+ps

3.3.9) — gPo(3(—p1+ps—ps)
(3.3.2) =¢ n

] [EP=Pe=owy||* € (1 + g A)||EP~Po=owy||*.

The lemma is proved. O

In the sequel, we regard Z° as a subgroup of Z° via Z° > p < (p,0) € Z°. Hence for p = (p1,...,ps) € Z°,
we have

EP — 65105)6%174)E;P3)E§P2)e§161).
For ¢ € Z~, set

Se=8NZ"={(p1,-...p5) | ps <ps <p3 < po, p2+p3+ps—ps <p1 <pa+l}

By the lemma, the proof of the assertion ||EPwy||? € 1+ g,A for p € S, is reduced to the case p € Sy. An
idea for the proof of this assertion is to use the almost orthonormality of B(¢ws), the global basis of the
extremal weight module V (¢w3). To do this we need to show that EPvy, € £B({w2) U {0} for p € Z3,.
For this purpose, we prepare several lemmas. -

Lemma 3.3.3. Let A € P and i € I, and assume that u € £B(A).

(1) 1f
fi(n)u € £B(A) U {0} for alln >0,

then we have el(-n)u € £B(A) U {0} for alln > 0.
(2) In particular, if fiu =0 then egn)u € £B(A) U {0} for alln > 0.

Proof. Let us prove the assertion (1) (note that (2) is just a special case). Since u € £B(A), it follows from
Proposition 2.4.1 (4) that e\ u is bar-invariant and ¢™u € V(A)z for any n > 0. Hence, again by the same

proposition, it suffices to show that Hez(»")uH2 €1+ qsA for n > 0 such that e{™u # 0. Set

)
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Li={veV(A)|[lv]* € 1+ qsA} C L(A).
Let A € P be the weight of u, and set A\; = (h;, \) € Z. Write
N
U = Z fi(k)uk, where uy, € kere; N V(A)atka, -

k=max(0,—\;)

Here we set N = max{k € Z>¢ | ux, # 0}. By Proposition 2.4.1 (2), it follows for every uy that

1 w2 = (1 Fun]? € (1 + goA)|Jugl? i 0 < m < 2k + Ai. (3.3.3)
We shall show that ug € qf()‘ﬁk)Ll for every k by the descending induction. For 0 <n < N + )\;, we have

N
0 M= Y [k k n] S5y € £B(A) € Ly (3.34)
k=max(0,—X;)

7

N

€ L1. Hence we have uy € qZN(NH”')Ll by (3.3.3), and the induction begins. Next let ko be an integer such
that max (0, —\;) < ko < N. By (3.3.4) with n = kg + );, we have

by the assumption. Since fi(k+N+)‘i)uk = 0for k < N, (3.3.4) with n = N+); implies [2N . Ai] fi(2N+/\i)uN

(2

N
3 {k + k]?: + /\i] flthorA, e (3.3.5)
k=ko ‘

It is easily checked from the admissibility that fi(k+k°+>"")uk’s are pairwise orthogonal with respect to the

fi(2ka+)\i)u

polarization, and then it follows from (3.3.5) that ko € gFokotX) I, since the induction hypothesis

implies for k > kg that

k+ko+ N i _
|: ](g) z:| ‘fi(k-i-ko-i-/\ )Uk c qf(k ko)Ll C g, L(A).

3

Hence uy, € qf(’(k”)‘i)Ll holds by (3.3.3), as required.

Now assume that 0 < n < N. It follows from (2.1.3) that
- k+mn+ A
n n i k—n
Wum > [P (33
k=max(0,—\;) ?

and since we have

ktnt A (b c qz(k—n)(k-i-/\i)Ll (k> n),
fi Uk
7

n =0 (otherwise)

(n)

9

(n)

by the above argument, (3.3.6) and the pairwise orthogonality of fi(l)uk’s imply e; "u € Ly. Since e; "u =0

for n > N, this completes the proof. O

Lemma 3.3.4. Let p = (p1,p2,p3,p4) € Z‘éo. In V(—{Ag), we have the following:
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(1) For any 1 <k < L, we have

fin E(f}j) . 0]651?2) (p1 )'U—ZAO _ eikE,EPS) egpz)e(():ﬂl)

i [k,0] vtp, = 0.

(2) For any i € Io; such that (h;,01) = 0, we have fiEipa)egm)eépl)v_Mo =0.
(3) For any 1 <k < L', we have

E(p4) E(ps) (p2)€(pl)

E(pii)eng)eépl)vier = ey, 31k,0] 0 VU—tAy = 0.

kaE(pij 1,0]

or any v € J such that (h;,05) =0, we have f;E; e e =
4) F € J such that (hi,0;) = 0, we have f;ESY B e el = 0

Proof. Set v = e§p2)eép1)v,mo and A = wtp(v) = —lAg + prag + paay.

(1) We have
Si_[li—l,l]WtP(fikEzgi[oljil,o]v) =A+psas — 5;[;—1,1] (aiy.),
and since s, [k 1] (o), ) is a positive root in Rrp\{1,2y by Lemma 3.1.1 (1) and (4), the right-hand side does
not belong to —¢Ag + Q*. Hence f;, E z[k 1,9¢ = 0 holds. Since (hzk,wt(Ez(ﬁf) 1,0 v)) = —cgps3, we also have
Z(Ii”p3+l)Ez(ff) LoV = 0, and the proof of (1) is complete.
(2) We have

s;[i’l]wt(fiElgm)v) = A+ p3ag — S;[i,l] (), (3.3.7)

and Sz[L 1](ozi) € R by Lemma 3.1.1 (5). Moreover, we have sz[L 1 () # ag since a; # 61, and hence the
right-hand side of (3.3.7) does not belong to —¢Ag + Q, which implies (2).

(3) Set W = Uq(gJ)E,EPS)U. The assertion (2), together with Lemma 3.1.1 (2), implies that W) = 0 unless
A € A+ p3f; + Q7. Using this, the assertion (3) is proved by a similar argument to that of (1). Finally the
proof of the assertion (4) is similar to that of (2). O

Lemma 3.3.5. Let ¢ € Z~g.

(1) For any (p1,...,ps5) € Z;O, the vector

egps)EJ(p4)Ez(p3)egm)e((]pl)v_mo

in V(—LAg) belongs to £B(—£Ay) U {0}.
(2) Foranyp = (p1,...,p5) € L%y, EPv_yp, € V(—LAg) belongs to £B(—LAg) U {0}.

Proof. Obviously,

fov—in, = f168p Ju_ tho = fze§p2)eé”“v_mg =0

holds. Then the assertion (1) is proved by applying Lemma 3.3.3 (2) repeatedly using Lemma 3.3.4. For any
n > 0, it is easily seen using (2.1.3) that

fl(n)egp“)EJ(.p:‘)EEm)egpl)

D)y gy = egp4)E§p3)E£pz)e§p1—n)6(()191)

U—KA() Y

which belongs to £B(—¢A)U{0} by (1). Hence it follows from Lemma 3.3.3 that EPv_zs, € £B(—¢A)U{0}.
The assertion (2) is proved. O
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Now we prove the following.
Proposition 3.3.6. Let £ € Z~. For any p € 7, the vector EPvie, € V(lwy) belongs to £B(fwy) U {0}.
Proof. By Lemma 3.3.5 (2) and (2.4.1), we have
Vep, @ EPv_gpp, € £B(CA2, —30A0) U {0},
and then Lemma 2.4.2 implies that EPvyy, € £B(fw2) U {0} as required, since wy = Ag —3A¢. O

Next we will show that || EPv/e, ||%,(£w2) = ||Epwi®£||%wl)®z for p € Z%,,. Before doing that we prepare a

lemma, which is also used in the next subsection.

Lemma 3.3.7. Let My, ..., M, be integrable U,(g)-modules, A = (A1,...,\,) an n-tuple of elements of Pe,
and uy, € (Mk)Ak (1 < k < n). Assume that each uy, satisfies e;ur, = 0 for i € Iy. Then for any p € ZSZO,
the vector EP(u1 ® -+ Q uy,) € My ® -+ @ My, can be written in the form

EP(u1 @+ ®up) = > P PR N EPLy @ @ EPoy,, (3.3.8)
P17---7PW,EZE§0§
Pt +P, =P

where m(py,...,p, : A) € D™YZ are certain numbers depending only on py,...,p, and .

Proof. By the definition of the coproduct, EP(u; ® - - - @ uy,) is a sum of vectors of the form

Jr’ Jo 1L 20

n
q™ ® egs’“)eér’“)e(-h“/) ... glheo)glon) e(.g’“‘))egb’“)e(()a’“)uk. (3.3.9)
k=1

Since egb’“)eéa’“)uk = 01if by > a by (2.1.1) and Y, ar = Y, bx = p1, the vector (3.3.9) becomes 0 unless
ay = by, for all k.

Take a sufficiently large positive integer ¢. For any k, there is a U,(n;)-module homomorphism from
V(—¢Ao) to M), mapping v_sa, to ug, which follows from the well-known fact that V(—¢Ag) is generated
by v_sa, as a Uy(n,)-module with relations

es™v_ga, =0 and ev_g, =0 (i € Ip).

Then since ), gre = 2p2 if g is of type F4(1) and t # 0 and ), gxe = p2 otherwise, we see from Lemma 3.3.4

(1) that the vector (3.3.9) becomes 0 unless cggro = gr1 = --- = gir for all k. By a similar argument
using Lemma 3.3.4 (3), we also see that the vector (3.3.9) with cggro = gr1 = - -+ = grz becomes 0 unless
cghro = hgr = -+ = hgr for all k. The proof is complete. O

Proposition 3.3.8. Let £ € Z~q and p € Z3,.

(1) We have ||Epvéw2||%/(er) = “Epw?[‘l?wl)@w-
(2) If EPw®" # 0, we have | EPwE||? € 1 + ¢, A.

Proof. (1) First we show the following:

IEP V0, |13 () = IEPVELN[} (e for p € 22 (3.3.10)
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By [18], there exists an injective U,(g)-module homomorphism ® from V({z3) to V(ws)®* mapping
Vpery 1O vgﬁ. Although ® does not preserve the values of the polarizations in general, the relations between
(1, )V(ws) and (1, )y (wy)ee are explicitly described in [loc. cit.], which we recall here. Define a Q(gs)[t*F1]-
valued bilinear form ((, )): on V(wz) by

uvt—Etm R
keZ

where z; is the automorphism on V(zwy) in Subsection 2.5. Define a Q(g,)[tE!, ... ,t;tl]

(. ) on V(w2)®" by

-valued bilinear form

() o

Then by [18, Proposition 4.10], it holds for u,v € V(fzoy) that

(u,v):% (®(u), @) [T -ttzh)| (3.3.11)

k#m 1

where [f]; denotes the constant term in f.
For p,p’ € Z5 2o such that p # p', we have (EPwy, EP"w)y1 = 0 by Lemma 3.3.1. Then by (2.5.1), this,
together with the weight consideration, implies

(25 " EPvgy, E”/vm)v(m) =0 unless p=p’ and m = 0.
Hence in particular, it follows that
(BEPmy, BP 05,))e = (EPUwy, BP0, )y (g for pp’ € 23, (3.3.12)

which implies (EPvEf, Ep/vgﬁ ) = (EPuEL, Ep/vgﬁ)v(zm)@e by Lemma 3.3.7. Now Equation (3.3.11) implies
for p € Z2, that

1 _
||Epvfw2”%/(iw2) = E ((Epvgﬁﬂ Ep,U(X)Z)) H (1 - tktml)
: k#m

1 _
= 1EPUS R myor - g7 | TT 0= tatiD) | = IEP0Z T oy
" k#m

and the claim (3.3.10) is proved.
In order to verify the assertion (1), by (3.3.10) it suffices to show ||Epv®£||v(w2)®,g = HEpw?ZH%WI)W for
pE Z o- We see from (2.5.1) that

(p(u),p(v)) = ((u,v))t|t:1 for u,v € V(ws).
Hence by (3.3.12), we have
(Ep'l,U17Ep,w1)Wl = (Epvm,Ep/vwz)V(m) for p,p’ € ZSZO,

and then || EPv& ||2 e = HEPw?éH?WUW follows by Lemma 3.3.7. The assertion (1) is proved.
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(2) Since (, )wyee is positive definite, v € (W')®* satisfies [|v]|> = 0 if and only if v = 0. Hence the
assertion (2) follows from (1), Proposition 3.3.6 and Proposition 2.4.1 (3). O

Proposition 3.3.9. Let £ € Z~q. If p € Sy, then EPw®’ # 0, and hence |[EPw®||? € 1 + g, A follows from
Proposition 3.5.8.

Proof. Let us prove the assertion by the induction on ¢. First assume that £ = 1. In this case, we have
S1=1{0,e1,e1 +e2,(2,1,1,1,1)}.

If p € S1\{e1+e2}, EPvy, # 0is checked from the following elementary fact: for an integrable U, ,(g)-module
M, e Pyandi€ I,

if w € My \ {0}, then eMu 0 for 0 < k < —(hy, A). (3.3.13)
On the other hand, by Proposition 2.5.1 we have

leaereows||? = ¢ (ereqwr, faezereqwr) = g~ (ereqwy, ezereq faws)
= |lereo fowr ||* = ¢~ (e fowr, exeq f1 fawr)

= |leo fr fown ||* = q(f1 fow1, foeo f1fowr) = q2]|| f fown ||* = ¢[2].

Hence we have esejeqw; # 0, and then E€17¢2q; # 0 is proved by applying (3.3.13). Thus the case £ = 1
is proved.
Assume ¢ > 1. By Lemma 3.3.7, Epw?l can be written in the form

EP(w;, ® w?(@—l)) _ Z g PP ()@ Py, @ EPQ’LU?(Z_D’
P +Py=pP

and for the vectors {EP1w; | p; € ZSZO such that EP1w; # 0} are linearly independent by Lemma 3.3.1, it
is enough to show the existence of p; satisfying

EPiw; #£0 and E”_plw?w*l) # 0. (3.3.14)

If p; < py + £, then p; = 0 satisfies (3.3.14) by the induction hypothesis since p € S;_;. Assume that
p1 = ps + ¢, and set kg = max{l < k < 5 | pp # 0}. If kg # 2, set p; = (2,1,...,1,0,...,0). That
——

ko
EPiw; # 0 follows from (3.3.13), and it is easily checked that p — p; € Sy_;. Therefore (3.3.14) holds.
Finally if ko = 2, p; = (1,1,0,0,0) satisfies (3.3.14). The proof is complete. O

The following lemma connects values of the prepolarizations on (W1)®¢ and W*.
Lemma 3.3.10. Let £ € Zso, and X,Y € U,(g). Suppose that the images of X,Y wunder the (-iterated
coproduct A : Ul(g) — Ul(@)® are written in the forms
N
AM)(X) = ka(QS)Xk,l @ Xp2® - QXpe, and

k=1

N2
AOY) =3 gn(g:)Yima @ Vo2 ® - @ Vi

m=1
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respectively, where N1, No € Z>o, fr,gr € Q(qs), and Xy j,Ym ; € Uy(g) are vectors homogeneous with
respect to the Q-grading. We further assume that, for any 1 <k < N7 and 1 < m < Ns,

0
if TT(Xejw1, Yo jwi)wr #0, then wtp(Xy;) = wtp (Yo ;) for all 1 < j < L. (3.3.15)

j=1
Then we have (Xw?Z,Yw?Z)(Wl)m = (Xwe, Ywe)yye.

Proof. By (2.5.3), we have

(Xwe, Ywe)we = (X(Lé—l(wl) @@ u—g(w1)),Y (—e(w1) @ @ Le—l(wl))>0- (3.3.16)
For an arbitrary homogeneous vector Z & Ué(g) g and k € Z, we have
Zug(wr) = "4 (Zwy).
Hence setting wtp(Xy ;) = Bi,; and wtp (Y5, ;) = ¥m,j, it follows that
X (m1(w1) @ - @ t1—g(wr)) = Zfk(qs)qzj(l+lf2j)<dwﬂk,j>L(Xhlrwl) @ - @ u( Xy ow1),
k
and
Y(Llfe('U)l) ® . ® Lé—l(wl)) — Zgm(qs)qzj(2j—l—1)<d,7m,j>L<Ym,1w1) ® e ® L(Ym,€w1)~
m
Then we have
(3:3.16) = Y f(qs)gm (gs)g>s 172 G Pa=1m ) TT(X, jaon, Vi, juwr )
k,m J

= ka(qS)gm(qS) H(Xk,jwhym,jwl)wl = (Xw, YwP*) e
k,m

J

by the assumption, and the assertion is proved. O

Now the following proposition, together with Proposition 3.3.9, completes the proof of (C2) in Proposi-
tion 3.1.2.

Proposition 3.3.11. Let £ € Z~q. For any p € 2%, we have ||Epwi®£||% = [|[EPwe |3, -

Wl)@l

Proof. It suffices to show that X =Y = EP satisfy the assumptions of Lemma 3.3.10. The vector A)(EP)
can be written in the form -, ¢7** ¢" Ey @ - - @ ¢ Eyy, where my, € Z, Ey; are some products of egm)’s
and Hy; € D™'P}. By Lemma 3.3.7, ¢ By ® - - @ ¢ Eppw, = 0 unless Eyj = EPi (1 <j <) for
some p; € Z;O, and then Hj(qujEkjwl,qujEmjwl) # 0 implies Ey; = E,,; for all j by Lemma 3.3.1.

Hence (3.3.15) is obviously satisfied, and the proof is complete. O
3.4. Proof of (C3) in Proposition 3.1.2

First we show the case ¢ = 1. The proof is similar to [19, proof of Eq. (3.3) with ¢ = 1]. We reproduce it
here for the reader’s convenience.
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Lemma 3.4.1. For any p € Sy, we have
|ex EPwyl||? € g 2hvwt@) 4,
Proof. Set
p = (h1,wt(p)) = p1 — p2 — p3 — pa +2p5 — ps > 0.
We have
les EPwel]? = ¢ (EPwe, frer EPwe) = ¢ " ([=pll| EPwel]® + (EPwe, ex frEPwy) )
= ¢ | fLEPw|* mod ¢ A,
where we have used the fact | EPw||? € 1+ ¢sA by (C2) (which we have already proved). Hence it suffices

to show that || fiEPwyl||? € A. Set 7 = 3¢ — p1 + ps. It is easily checked that fék)flEp_pGEng =0 for k > 1,
and hence we have

| AEPwe||* = q7o v D (L EP Py, fi™) e fLEP o wy)
el (U 1T e P T s )
€ || f1EPTPof0wy |2 A + g0 || fo f EPTPoS0 || A. (3.4.1)
It follows that
| BPPoSsuug|[2 = PP (BP P50y, e fy EP o)
= gtret ([P + || EPPeSswy |2 + (EP~PeSeuwy, f161Ep7p656w£))
= 7 ([p+ pe] [ BP0 4 P74 [ + 12 BPH S o) € A,
Moreover, it is easily checked that
fof1EPTPoS0w, = [30 — py + 1| EP~S17Poes,
and hence it also follows that
U fo frEP TP wy || = g*T P30 — py 4 1] EP TS PoSowy |2 € ? PP A C A
Hence || f1 EPwyl||? € A follows from (3.4.1), and the proof is complete. O

When we show (C3) for i € Ip\{1}, as we did in the proof of (C2), we may assume that p € S¢( = SgﬂZgo)
by the following lemma.

Lemma 3.4.2. For any p = (p1,...,p6) € Zgo such that p1 — ps + pe < 3 and i € Iy \ {1}, we have
lei EPwe||* € (14 gA)||e; EP~Peow,||.

(pe)
0

Proof. Since e; EPwy = ey ' e; EPTP6€6qy,, the same proof for Lemma 3.3.2 holds here. O
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Our next goal is to give estimates for the values |e; EPw®‘||? (i € I\ {1}). For this purpose, let us
prepare some lemmas. The proof of the following lemma is almost the same with that of Lemma 3.3.3, with
L4 replaced by L(A).

Lemma 3.4.3. Let A € P and i € I, and assume that v € V(A) is a weight vector. If fi(n)u € L(A) for all
n € Zx>q, then el(-n)u € L(A) for alln > 0.

Lemma 3.44. Let A, A€ P, i € 1, and u € V(A)y, and assume that
u € q"L(A), and fiu € ¢"L(A)
for some a,b € D'Z. Set r; = (o, ;) /2.
(1) We have
eq € @M@ b=THhL ) LAY
(2) Further assume that (h;,A\) <0 and fi(Z)u = 0. Then we have
egn)u € qmi“(“’bf”(<hi’)‘>+"*1))L(A) for any n > 0.

Proof. Set \; = (h;,\) € Z, and write

N
u = Z fi(k)uk, where uy € kere; NV (A) xtkq,-
k=max(0,—X;)
We have
N
fiu= Z [k + 1], f 5y, € ¢PL(A),

k=max(0,—X;)

and since fl-(kﬂ)uk’s are pairwise orthogonal with respect to (, ), it follows from Proposition 2.4.1 (4) that

[k + 1]ifi(k+1)uk € ¢°L(A) for every k. Then since fi(kﬂ)uk # 0 for k > max(0, —\; + 1) such that uy # 0,
we have

u € ¢"TFL(A) for max(0,—\; +1) <k <N (3.4.2)

by Proposition 2.4.1 (2). We have

N

e;U = Z [/C + N\ + l]ifi(k_l)uk,
k=max(1,—X;)

and hence if \; > 0, (3.4.2) implies e;u € ¢®~"* L(A) and the assertion (1) holds. When ); < 0, we need to
show further that

fi(_’\"_l)ufxi € gmin(ab=TiX) [ (7). (3.4.3)

Similarly as above, we see that u € ¢ L(A) implies ug, € ¢*L(A) for all k, and hence (3.4.3) follows. The proof

of (1) is complete. Under the assumption of (2), we may put N = —\;+1 and we have egn)u = fi(fAFn)u,)\i—i—

[n+ l]if.(_’\#l_”)u_,\#l, which belongs to g™ir(@b=riXxi+n=1)(A) Hence (2) is also proved. 0O

K2
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Lemma 3.4.5. Assume that the sequence © satisfies the following condition: there exists 1 < m < L such that
Im, tmi1, - -, 9L are pairwise distinct, ca;, < 0, and c;,4,,, = —1 form <k < L — 1.! Let £ € Z~¢ and
(p17p27p37p4) € Zéoz and set

Uk = fin finsn ~-~fiLE§p3)e§p2)e(()pl)v,mo e V(—tAy) form<k<L.
(1) We have
v = eg[cif)]:]_l)Eif’;ﬂlyo]egpﬁegpl)v_mo form <k <L.

(2) We have v, € £B(—€Ag) U {0} for m <k < L.
(3) If g is not of type Eéz), we have

Eéfgzl)m]eéﬂ)vk € £B(—4Ao) U{0} form <k <L. (3.4.4)
On the other hand if g is of type Eé2), we have

B e o € 0P P DL(—tAo) - form < k< L.
Proof. The assertion (1) is easily proved using (2.1.3) and Lemma 3.3.4 (1).

(2) Set v = e&pz)e(()pl)v,mo and A = wtp(v) = —0Ag + prag + peavy, and fix m < k < L. By (the proof
of) Lemma 3.3.5, we have

el VETY) | v € £B(—0Ag) U {0} (3.4.5)

For each k < k¥’ < L, we have

_ c —1
Si[;/—l,thP(fik/eg[lgfpjl,k])Eéfljil,o]v) =A+psas — Si[;/—l,l](aik +tag,)

= A+ paan — sy g (@ o Fag, ) (3.4.6)

by the assumption on i. We have (h;,,61) > 0 by the condition (3.1.2) on ¢, and then it is easily checked
that (h;,,01) =0 for m <r < L —1 (see Fig. 1 and Table 1). Hence (3.4.6) does not belong to —¢Ag + Q"
by Lemma 3.1.1 (5), which implies f;, eg[c;?fii})Eiﬁleo]
from (3.4.5) by applying Lemma 3.3.3 (2) repeatedly.

(3) First assume that g is not of type Eéz). We shall prove the assertion by the induction on k. In the
case k = m, since v,, € £B(—¢A) U{0} by (2) it suffices to show that fov,, = 0, and as above, this is done
by checking S;[i’l]wtp(fgvm) ¢ —¢Ag + Q7. Hence the induction begins. Assume that k > m. It follows

from Lemma 3.3.4 (2) that

v = 0 for all ¥. Now the assertion (2) follows

favi = fiy "'fz‘szEEm)v =0,
and

fik’E'Ef;:’)fl m]eép4)vk = fi, - fiLE,E:[D]:/),l m]eép4)fik,E£p3)v =0 foranym <k <k-2.

L If g is not of type Eél), this condition, together with the condition (3.1.2) on %, uniquely determines the sequence

(ir,iL—1,--.,%m) (see Fig. 1 and Table 1). In type Eél), on the other hand, there are two possibilities; (5, 3) or (6,4).
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Hence we have ng]ﬁZ,m]egp“)vk € £B(—¢Ay) U {0}. Since

fi(leng]:zgym]eém)vk = plEéf;:jz’m]eépél)kal for p € Z o,

(3.4.4) is now proved from the induction hypothesis and Lemma 3.3.3.
Next assume that g is of type EéQ). In this case @ = (432), L =2, m =1 and

v = eip3—1)6§p3—5k1)egpa)egpz)e(()pl)v_EAo (k =1, 2).

We have

®, _ JlP2—ps+ ey Vel el v_gn, € g PP L(—LAy) (p=1),
2 V1 —
0 (p € Z>1)

(note that v; = 0if p3 > p2), and hence it follows from Lemma 3.4.4 (2) that eém)vle qmin(Ops=Pa=1) [,(—¢A).
On the other hand, since fave = 0 we have e;m)vg € £B(—(lAy) U {0}, and then eém)eép“)vg €
qminOps=pa=1) 1(_pA4) also follows since fép)eém)vg = plegp“)vl for p € Z~g. The proof is complete. O

Lemma 3.4.6. Let £ € Z~o and p = (p1,...,D5) € Zsz(r
(1) We have
eaBPv_gp, € O mPatPs) [ (_gA).

(2) If g is not of type Eé2) and i € In\ {1,2}, we have

e;EPv_gp, € q;ﬂin(ox—wi ’Wt(p»)L(—EAO).

(3) If g is of type Eéz), we have

esEPu_gp, € q2 MO —PstP)=0nsna [(—(Ag), and

esBPv_gp, € ¢2MnOmP2tPs)=0msns (g A).

Proof. (1) It suffices to show that foEPv_sz, € ¢ Pr*P+L(—¢Ag) by Lemmas 3.3.5 and 3.4.4. Since
fQEJ(.pS)EEm)E%I)U,gAO = 0 by Lemma 3.3.4 (4), it follows from the weight consideration that EPv_sy, = 0
if p4 > p1, and hence we may assume that p; < p;. By a direct calculation, we have

JoEPv_gny = [p1 — pa + 1 EP 40_yp,,

which belongs to ¢ P1TP4 [(—{Ay), as required.

(2) It suffices to show that f;EPv_sz, € L(—¢Ap). The proof is divided into three cases. First assume
that (h;,01) = (h;,0;) = 0. In this case Lemma 3.3.4 implies f; EPv_gp, = 0, and hence the assertion holds.
Next assume that (h;,6;) > 0. By Lemma 3.1.1 (6), we may assume that the sequence j is chosen so that
jrr = 1. For each n € Z>, set

_ egcgm—l)E(Ps) E£p2)egpl—n) (p1)

Un §(L/~1,0] €0 U—tho

We easily see using Lemma 3.3.4 (3) that
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JiEPv_gp, = egpS)eép“)vo, and fln)egp“)vo = e;p‘l)vn for any n € Z>o. (3.4.7)

Hence by Lemma 3.4.3, it suffices to show that eép“)vn € +B(—¢Ag) U {0} C L(—{Ay) for any n. We have
v, € £B(—£¢A() U {0} by (the proof of) Lemma 3.3.5. Since as + «; is a positive root (see Table 1), we have

Sﬁi/,thP(fzvn) = wtp(Egpﬂegprn)eépl)

¢ wip (B el et v_ing) +QF,

V_gA,) + P3a2 — SJ[IL’,I] (a2 + )

and the same argument as in the proof of Lemma 3.3.4 (3) shows that this implies fav,, = 0. Hence

ép“)vn € +B(—¢Ap) U {0} holds, as required. Finally assume that (h;,6;) > 0. We may assume that
the sequence % is chosen so that i;, = 4, and the assumption of Lemma 3.4.5 is satisfied. Let m be as
in the assumption. Further, we may also assume that the sequence j is chosen so that jx = @;4+x—1 for
1<k <L—m. Foreachn € Zxg, set

Uy, = fiEzgpz)egm*n)e(()Pl)v (cgp2— 1)E(P2) (Pl n) (:Dl)

—lAy = €; i[L—1 0] V—_tAp-
As above it is enough to show for any n that
eV B u, € £B(—lAo) U {0}. (3.4.8)

It follows from Lemma 3.4.5 (3) that Ej(fz) 0 Un € +B(—¢Ap)U{0}. We easily see from Fig. 1 and Table 1
that

{jedlec;#0}={ir-1}, and #{1<k<L'|jr=ir1}=1.
Then, since jr—p = ip—1, we have ¢;;, =0 for L—m <k < L', and hence we have

i E(Pa) flfjkE(ps) E(:Dz)e(:lh n) (Pl) Ay =0 forall L—m<k< I

jlk—1,0/% [k—1,0]

by Lemma 3.3.4. Similarly, ng](.pS)un = 0 is proved. Now (3.4.8) is shown using Lemma 3.3.3, and the proof
of (2) is complete.
(3) We shall prove

fsEPu_gn, _egpo) ém) (ps—1) (p3)e(gz2)e§%1)v n, € qPOPs=Pa DL pAG),

which implies the former assertion by Lemma 3.4.4, and for this it is enough to show for any n € Z>( that

e eI ey, = e Ve el T e _,
€ ¢minOPa=Pa=lI [ (_pA) (3.4.9)

by Lemma 3.4.3. We have
egp?’*l)egpg)e%é)egpﬁn) gpl)v,mo € £B(—¢Ao) U {0} C L(—CAy),
and since

1 ; _
fép)egp?’ )6éps)6511;22)6§p1 n)egm)v_mo

I ps e VBP0, € g PINL(—0Ay) (p= 1),
0 (p € Z>1)
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(note that the left-hand side is 0 if p3 > p1 — n), (3.4.9) follows from Lemma 3.4.4, as required. The latter
assertion is proved in a similar manner using Lemma 3.4.5. O

Now we obtain the following estimates for |e; EPw®*|2.
Proposition 3.4.7. Let £ € Z~g and p = (p1,...,ps) € L.
(1) We have
||62E”w?£||2 c qzmin(o,—pﬁps)A
(2) Ifie Io\{1,2}, we have
||€iEpwi®eH2 c quin((J,*(tht(P)))*lA.
Proof. By (2.4.1), Lemma 2.4.2, [18, Theorem 1 (2)] and the definition of L(W1), we have
P 0 ® oW (vn, ® L(—30Ag)) € L(WH)®",

where W: V (fAy) @V (—3¢A¢) — V ({3) is the homomorphism given in the lemma, ®: V (fog) < V (w2)®*
is the one satisfying ®(v¢w,) = v&¢, and p: V(ws) — W is the canonical projection. The assertions follow

from this and Lemma 3.4.6. O

Let My,..., M, and ux € (M), (1 <k <n) be as in Lemma 3.3.7. We see that the vector e;EP(u; ®
- ®@uy) for i € I and p € Z%, can be written in the form

e EP(u1 @ - ®up)
= Z Z g P PR AR EPLy L @ @ e PRy @ - - @ EPry, (3.4.10)
k=1 P11-~~7PnEZ520§

Pyt P, =P

with some m(py,...,p, : A,i,k) € D7'Z. Now the following lemma, together with Proposition 3.4.7 (2),
completes the proof of (C3) for i € Iy \ {1, 2}.

Lemma 3.4.8. Let i € Iy \ {1,2}.

(1) If p,p’ € 2520 satisfy (e; EPwy, EP wy) # 0, then we have wtp(e;EP) = wtp(EP').
2) For any p € Z2, and { € Z~g, we have
( >0

le BPwi fwyee = leiEPwelye-

Proof. Since (e; EPwy, EP wy) # 0 implies wtp(e; EP) € wtp(EP )+ Z4, in order to prove (1) it is enough to
show that (e; EPw, Ep/wl) = 0if p5 # ps. Since e;, f; (j = 0,1) commute with e;, this follows from the same
argument as in the proof of Lemma 3.3.1. Then we see from Lemma 3.3.1 and (3.4.10) that X =Y = ¢, EP
satisfy the assumptions of Lemma 3.3.10, and hence the assertion (2) is proved. O

It remains to prove (C3) for i = 2 and p € Sy, which is more involved. We will prove the following
stronger statement, and the proof will occupy the rest of this paper.
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Proposition 3.4.9. Let ¢ € Z~q. For any p = (p1, p2, P3, P4, Ps5) € 2520, we have
HegE”wZHQ € ¢ min(0,—pa+ps,p1—pa—Lf)—1 4 (3.4.11)

Lemma 3.4.10. Let £ € Z~q. If p € 73 2o satisfies (WhHet 5 Epww # 0, then p1 < 3¢ and p; < min(2¢,p;)
for j €4{2,3,4}.

Proof. By Lemma 3.3.7, it is enough to show the assertion for £ = 1. In this case, since (hg,w=2) = —3 and
fow; =0, p1 < 3 follows. Moreover, since

(hg,wt(e% )wl)) =—p;+1 and f2 610 w1 0,

(p1+1)6§%1)

we have e, wy = 0, which implies ps < p;. We easily see using Lemma 3.3.4 (2) that

V(lAs) ® V(=30Ao) > P EP PV (), @ v_gp,) =0,

?

and then the existence of the map poW: V(A3) ® V(—3A¢) — W' implies that f(2 E(m) (pl)wl = 0. Hence
p3 < pp is proved by the weight consideration. Similarly py < p; is proved from Lemma 3.3.4 (4). Finally
we have to show that p; <2 for j € {2,3,4} even if p; = 3. Similarly as above, these are deduced from the
fact that fge%)wl =0, and this fact follows since w; is an extremal weight vector (see [11, Theorem 5.17]).
The proof is complete. O

In the sequel, we use the symbol
a=(1,1,1,0,1) € Z3,

The difficulty in the case ¢ = 2 is that the statements of Lemma 3.4.8 for ¢ = 2 do not hold in general.
Instead, we have the following.

Lemma 3.4.11. Let ¢ € Z~q, and assume that either w = wi@z € WH® or w = w, € W*. For any
p,p € .711520, we have

(e2EPw, EP w) =0 wunless p =p—a or p' =p+ey.
Proof. By the weight consideration, it is enough to show that (engw,Ep'w) = 0 holds if p5 < p§ or
ps — 1> pg. If ps < pf, the proof is similar to that of Lemma 3.3.1.
Assume that p5 — 1 > pk. It follows from (2.1.2) that

(e2EPw, EP w) = ((egp"’*l)egel —[ps — 1}egp5)eg)Ep_p5€5w, EP w). (3.4.12)

As in Lemma 3.3.1, it can be proved using p5 — 1 > pf that
(egpsfl)egelEp_“EE’mEp/ )=0=(e (p°)eng Pses gy, BP w),

and hence the right-hand side of (3.4.12) is zero. The proof is complete. O

We shall prove Proposition 3.4.9 by the induction on ¢. By Proposition 3.4.7 (1) with £ = 1, we have

|ea EPwy ||? € g2 min(0—Patps) g C ¢2min(0,—patps.pi—pa—1)—1 4
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for any p € Z‘L”ZO, and hence the induction begins. Throughout the rest of this section, fix ¢ € Z~q and
assume that (3.4.11) holds for this £. Our goal is to prove (3.4.11) with ¢ replaced by ¢+ 1, that is,

lea BPwy || € 20 —Patpspi=pa—t=D=1 4 for any p € Z3,. (3.4.13)
From now on, we write

m(py, Py) = M(py, Pg; w2, lwwz) for py,py € 2520

for short (the right-hand side is defined in Lemma 3.3.7). For any p € Zgo we have

EPuf Y = N gmenr) gRuy; @ EP2 (3.4.14)
Pl;P’zEZ;o;
P1+D2=DP

Lemma 3.4.12. For p,,p, € Z520 with p, = (Pr1,- -, Pks), we have

5
m(p1,py) = — > p1jp2; + (P12 + P13 + pra)pa
j=1

+ p15(—p21 + paz + p2s + p24) + €(3p11 — P12 — P13 — P14).

Proof. Given weight vectors uy,uz of some Ug(g)-modules, it follows for i € I and p € Z>¢ that

Pl @uy) = S et ) B0y, g o2y,
P1,p2€Z>0;
P1+p2=p
In particular, if egmﬂ)ul =0, eEsz)uQ = 0 and (h;, wt(uz)) = —pa, it follows that e§p1+p2)(u1 ® ug) =

ez(-p 1)u1 ® ez(»p 2)U2. Using these equalities, the assertion is obtained straightforwardly by calculating the coef-
ficient of EP1w; ® EP2w(’ in Ep1+p2wi®(£+1). ad

Lemma 3.4.13. Let py,p, € 2520, and assume that EP1w; # 0 and EP2w®* # 0. Then m(p,,py) > 0 holds.
Proof. Let p = p; + p,. By (3.4.14) and Lemma 3.3.1, it follows that

||Epw§(€+1) ”2 _ Z q2m(p/1,p'2) ”Ep'lwl H2||Ep/2wi®ﬁ‘|2

P1+P5r=p

Then Proposition 3.3.8 (2) implies that, if EP1w; and E”,?wi@e are both nonzero, then m(p!, p4) > 0. Hence
the assertion is proved. O

For p € Z5,,, we have

le2 BPwe 1 = (€2EP(Lf(w1) ® t-1(we)), e2EP (1—¢(w1) ® Ll(we)))l

by Lemma 2.5.3, and



K. Naoi, T. Scrimshaw / Journal of Pure and Applied Algebra 225 (2021) 106593 29

e2 EP (140(w1)®@t1(we))

_ Z " (PP 1T (Lﬂ(Eplw1> ® 11 (e2EP2wy)

P1.P2€Z%;
P1+P2=P

g~ Pt (EPRw0) (g BPYwy) @ L:Fl(EPQUJg)).
Set
z(p) = —(ha, wt(EPwy)) = p1 — 2ps +p5 — £ for p € Z2,.
It follows from Lemma 3.4.11 that
llea EPwii1||?> = Z1 + Zo + Z3 + Zy,
where

7 = Zqzm(”l’pQ)llE”lw1||2 - le2 EP2w, |2,
Zo = [2) e Z g PP EUPL—a ot a)F2(Ps) (o) EP1Ly, | EPL %, ) (EP2wy, ea EP2 %),
Zs =2 Z g PPt m(PitesPa—e) e (P2) (o) EP1y | EP1 T4, ) (EP2wy, ea EP2S4wy),

7, = Zq2m(p1,p2)+2r(p2)HGZEplwl”? |IEP2w, 2.

Here all the sums are over the set {p,,py € Z%, | p; +p; = p}. Now it suffices to show that Z; +Zs+Z3+ 24
belongs to the subset of Q(gs) in (3.4.13).
First we shall show that Z5 does. For k € Z, write

Lemma 3.4.14. Let p € ZE’ZO, and set k =p1 —pg — £+ 1.

(1) The vector (foEP — [k]4+ EP~ %4 )vpm, € V(lwog) belongs to £B(Lw2) U {0}.
(2) We have (foEP — k] EP~=)w®* € L(W1)®~,

Proof. (1) By Lemma 2.4.2, it is enough to show that (foEP — [k]+EP%4)(vsn, ® v_3ea,) belongs to
+B(¢Ay, —30Ag) U {0}. The bar-invariance is obvious, and it is easily checked that

(f2EP — [k] L EP754) (ver, ® v_30n,)
= fover, ® EPv_gen, + (¢°[p1 — pa + 1] — [k] 4 )ven, ® EP " S4v_g0n,.

We have fovpp, € B(¢A2), EPv_gpp, € £B(—30Ag) U {0} by Lemma 3.3.5, and
(¢“[p1 — pa + 1] — [k] 4 Jven, ® BEP 4 v_zpp, € qL(LA2) ® L(—3Ao)
since p; — ps + 1 < 0 implies EP~4v_3pp, = 0 (see the proof of Lemma 3.4.6 (1)). Hence we have (foEP —

[k]+ EP~%4)(von, ® v_30n,) € £B(lAs, —30Ag) U {0}, as required. The assertion (2) follows from (1) since
the map p®‘ o ®: V(lwy) — (WH®! sends L(fwsy) to L(IWH)®L. 0O
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We need the following relation in W¥: there exists a certain element ¢, € +1 + ¢, A such that
es EPwy = CzEp_a+e4f2wf + [p4 — ps + 1]Ep+€4wg (3.4.15)

for p € Z‘;O. It is a rather straightforward computation, but we will give a proof in Appendix A (Proposi-
tion A.1) as it is somewhat lengthy and technical.

Lemma 3.4.15. Let p € Z3,.
(1) We have
(eoEPwy, EP™%wy) € qmi“(o’pl_pf‘_oA.
(2) When £ =1, the following stronger statement holds:
(eoEPwq, EP ™ %wq) € qmax(o’pl_p“_l)A.
Proof. (1) By (3.4.15) and Lemma 3.3.1, we have
(ea EPwy, EP~%wy) = co(EP~%TE fow,, EP~ %wy). (3.4.16)

It is easily checked that X = EP~2™€1fy and Y = EP~% satisfy the assumptions of Lemma 3.3.10, and
hence we have

(3.4.16) = co(BP~F fowd’, BP0 (1 yee. (3.4.17)
A calculation using Lemma 3.3.4 shows that
EP=9%es o (vpn, @ v_g0n,) = (f2EP~ T4 + [—p1 + pa + £+ 1] EP™%) (vpp, ® v_301,);
and then the existence of the map V (fA) ® V(=30Ag) — (WH®* implies that
(3.4.17) = co(foEPTTSwP” + [—py + ps + € + 1 EP wP’, BP0 (y1yee. (3.4.18)
By Lemma 3.4.14 (2), we have

fo BP0 e 4 [—py + py + £+ 1 BP0
= [—p1 +pa+ L+ 1] EP %P mod L(WH)®,
and hence it follows from Proposition 3.3.8 and (2.5.2) that
(foEP~ote1®l 4 [—p) + py + £ + 1] EP~ 2w, EP~3®Y) g gmin(Opi=pa=) 4,
Now the assertion (1) is proved since ¢, € £1 + g5 A.
(2) We may assume that EP~%w; # 0, and hence that py < p; — 1 by Lemma 3.4.10. Then by (1), it is
enough to consider the case p; — ps > 2. First assume that p; — py = 2. By (3.4.16) and (3.4.18), it suffices

to show that

(foEP~ ey, EP~ %)) € qA, (3.4.19)



K. Naoi, T. Scrimshaw / Journal of Pure and Applied Algebra 225 (2021) 106593 31

and we may assume that the two vectors are both nonzero. Since the two vectors fo EP~%€4(vy, ® v_3p,)
and vp, ® EP~%v_sp, both belong to £B(Ag, —3A¢) and are obviously linearly independent, we see from
Lemma 2.4.2 that foEP~%*€iy_ and EP %v,, both belong to +B(ws) and are linearly independent.
Moreover since their P-weights are the same, (foEP~ ¢4y zKEP=2y_ ) = 0 if k # 0. Hence (3.4.19)
follows from Proposition 2.4.1 (3) and (2.5.1).

It remains to show the assertion in the case p; —py = 3, that is, p; = 3 and py = 0. By the admissibility,
we have

(eoEPwy, EP™%wy) = qp’)“(Epwl,ngp*“wl).

Since EPw; and fo EP~%w; both belong to L(W?) and EP~%w; # 0 implies p5 > 1, this belongs to ¢>A.
The proof is complete. O

Now we show the following proposition, which assures that Z5 belongs to the set in (3.4.13).
Proposition 3.4.16. Let p,,p, € Zszo, and set p = p; + py. Then we have

qm(P1’P2)+m(P1*a’P2+‘I)+Z(Pz) (62Ep1 wi, Eplfawl)(Epz ’u}g,engera’LUg)

c qmin(o,pl —pa—0)+p1 —p4—1A,

where b= (pla s ap5) and 'T’(pZ) = _<h2aWt(Ep2w€)>'

Proof. Set p, = (pi1,...,pi5) (i = 1,2). It is directly checked from Lemma 3.4.12 that

m(py, Py) +x(pg) = m(p; — a,py +a) +p1 —ps — 1. (3.4.20)

We may assume that EP1~%w; # 0 and EP2T%w, # 0. By the induction hypothesis, it follows from Proposi-
tion 2.6.1 that the prepolarization (, )y is positive definite, and hence EP2%w, # 0 implies EP2T¢w®* £ 0
by Proposition 3.3.11. Then it follows from Lemmas 3.4.13 and 3.4.15 that

¢ (PrP2) (P —a.pyta)ta(py) (ea EPwy, EP1 =%, ) (EP2wy, e EP2 T %wy)

c qzm(Plfa’P2+a)+P1*P4*1 ,qmaX(O,Pn*PM*l) . qmin(o,p21fpz4*f+1)A

C ¢min(Op1—pa—b)+p1—pa=1 4

The assertion is proved. 0O
Next we shall show that Z; belongs to the set in (3.4.13).
Lemma 3.4.17. Assume that p € Z‘;O satisfies Epwi@é #0.

(1) If p1 > pa + ¢, then Ep+e4wi®f 20,
(2) If pa > ps, then either EP~Stwi®* #0 or EP*<w* £ 0 holds.

Proof. (1) First consider the case £ = 1. By (the proof of) Lemma 3.4.14 (1) and Lemma 2.4.2, the vector
(foEPTe4 —[p; —py— 1] EP)w is either 0, or not proportional to EPw;. In both cases we have fo EPT1w; # 0,
and hence the assertion (1) is proved for £ = 1.

Assume that £ > 1. Obviously, Epwfu # 0 implies EP1w; ® - - - @ EPrwy # 0 for some py,...,p, € Z5ZO
such that p = p; +- - -+p,. The assumption implies that there exists some k such that px1 —prs > 1, and then
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EPrte4qp; £ 0 holds by the argument for £ = 1. Since the nonzero vectors of the form EPiw, @@ EPewy
are linearly independent by Lemma 3.3.1, this implies that Ep+e4wim is nonzero. The assertion is proved.
(2) First assume that £ = 1. If p5 = 0, EP~%%w; # 0 obviously holds, and hence we may assume ps > 1.
That EPw; # 0 implies py < 2 by Lemma 3.4.10, which forces py = 2 and p5; = 1. If
(h1, wt(EP~*w)) = p1 — p2 —p3 — 2 < =2,

then EPT€sq; # 0 follows, and hence we may assume that p; > ps + p3. If p3 = 0, since (2.1.2) implies
elEgpg)eggl)wl =0, we have

ea EP %4, = EPw, + 652)Ep_2€4w1 = EPw, # 0,

which implies EP~%4w; # 0. It is also checked similarly that EP~%4w; # 0 holds if p; = 0. The remaining
case is p = (3,1,1,2,1) only, and in this case EG151w; £ 0 is proved from (3.3.13) and

flE(3,1,1,1,0)wl _ E(0,1,1,1,0)652)683)101 £0.

The proof for £ =1 is complete. Then the same argument used in the proof of (1) also works here, and (2)
for general ¢ is proved. O

Lemma 3.4.18. Let p,,p, € Zszo be such that EP1wy, # 0 and Ep2w?e #£0.

(1) If p11 > p1a + 1, then m(py, py) > —pa1 + paa + L.
(2) If paa > p2s, then we have m(py,py) > —p1a + P15-

Proof. (1) By Lemma 3.4.17 (1), we have EP1*®4w; # 0, and hence m(p; + €4,p,) > 0 follows from
Lemma 3.4.13. Since we have

m(py,Py) = m(py + €4,P3) — P21 + pasa + 4

by Lemma 3.4.12, the assertion (1) follows.
(2) By Lemma 3.4.17 (2), we have either EP2=51®* =£ 0 or EP2te5p®* £ 0, and hence either m(p,, py —
g4) > 0 or m(p,,p, + €5) > 0 holds. Since we have

m(py,P2) = m(py, Py — €4) —pra+p15 and m(py, py) = m(py, P + €5) + P15,
in both cases m(py,py) > —p1a + p15 holds, and the proof is complete. O
Now the following proposition implies that Z; belongs to the set in (3.4.13).

Proposition 3.4.19. Assume that p;,py € Z‘;O satisfy EPrwy # 0 and EP2wy # 0. Setting p = p, + p,, we
have

q2m(p1,p2)||Ep1w1||2 . ||62Ep2w¢||2 € ¢? min(0,—ps+ps,p1—pa—L—1)—1 4 (3.4.21)
Proof. Set

N =min(0, —=ps + ps,p1 —pa — £ —1) and Ny = min(0, —pag + pas, p21 — P24 — £).
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Since ||[EPrw1 || € 1+ gsA by Proposition 3.3.8 and |lea EP2w,||? € ¢*N271 A by (3.4.11) with p replaced by
Po (which we are assuming to hold), it suffices to show that

m(p;,Py) + N2 > N. (3.4.22)

If Ny = 0, this follows from Lemma 3.4.13. Moreover if Ny = —poy + pas < 0, this holds since

m(py, Py) + (—p2sa + p2s) > (—p1a + p15) + (P2 + pas) = —pa + ps
by Lemma 3.4.18 (2). Finally assume that No = pa; — pag — £. If p11 < p14 + 1, then (3.4.22) holds since
Ny > Na+ (p11 —p1a—1) =p1 —ps — £ — 1.
On the other hand if p11 > p14 + 1, (3.4.22) follows from Lemma 3.4.18 (1). The proof is complete. O

Finally, we shall show that Zs + Z4 belongs to the set in (3.4.13), which completes the proof of Proposi-
tion 3.4.9. By a similar calculation that we did for |lea EPw1||?, we have

leaBPuwP VP = Wy 4+ Wy + Wy + W,
where
W, = Zq%(pl,pz)”Emwl”? |lea EP20®Y|2,
Wy =2 Z qmPrP)tm(Pima Pt a)te(p) (o) BPLy  BP1T %, ) (EP2w | eq EP2 T PY),
W3 =2 Z g PP Fm(PitenPa—e) e (P2) (o) EP1y) | EP1 TS ) (EP2w®, ey EP2 1 @)

)

W, = Zq2m(p1,p2)+2w(pz)HezEmMH? | EP2w® 2,
We have Wy = Z, by Proposition 3.3.11. Moreover, the equality
(Ep2’w?z, 62EP2—€4wi®5)(W1)®€ = (Epzwg, eQEPZ_E“wg)Wz

is proved for any p, by checking X = EP2 and Y = e P2 %4 satisfy the assumptions of Lemma 3.3.10, and
hence W3 = Z3 follows. On the other hand, the left-hand side ||62E”w?(1“]'~_1)||2 belongs to ¢?™in(0,=patps)
by Proposition 3.4.7 (1). Hence in order to show that Zs + Z4(= W5 + W) belongs to the set in (3.4.13),
it is enough to prove that both W7 and W5 do. The assertion for W7 is deduced from the following lemma.

Lemma 3.4.20. For any p;,py € Z>0, we have
M PrP) || EPryy |2 - ||leg EP2w®||? € ¢? MmO mpatps) 4
where we set p = p,; + ps.

Proof. We may assume that EPr1w; # 0 and EP2w®’ # 0. We have || EP1w; |2 € 14¢,A by Proposition 3.3.8,
and ||eg EP2w®*||? € ¢?™in(0,=P2atp23) A by Proposition 3.4.7 (1). If —pas+p2s > 0, the assertion follows from
Lemma 3.4.13. Otherwise we have m(p;, py) > —p14 + p15 by Lemma 3.4.18 (2), and hence the assertion is
proved. O

The assertion for W is easily proved from the following lemma and (3.4.20).
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Lemma 3.4.21. For any p € Z‘;O, we have
(ea EPw®t, EP~20w®Y) € A. (3.4.23)
Proof. We proceed by the induction on £. The assertion for the base case of £ = 1 follows from Lemma 3.4.15
(2).
Assume (3.4.23) for a fixed £ and any p. Our task is to prove this with ¢ replaced by ¢+ 1. We have
(e BPw Y, BPmew )

= Z ¢ (P1P2) <qm(p1—a,p2)+z(p2)(62E171w1’Epl—awl)”Epzwi@f‘P
P1+P2=P

+ " PP EPuy [2 (e B wf’, BPwf) ).
By the induction hypothesis and Lemma 3.4.13,
qm(pl’p"‘)*m(”l’p?*“)||Ep1w1||2(egE”2w?£,E”?’aw?lz) cA
holds. On the other hand, EP: w?e # 0 implies pa1 > pog by Lemma 3.4.10. Since
m(py, Py) + 2(py) = m(Py — @, Py) + P21 — P2u
by Lemma 3.4.12, it also follows from the induction hypothesis that

qM(pl,p2)+m(p1—a,p2)+r(p2)(62Ep1w1’Epl—awl)”EpQwi@e'F c A
The proof is complete. O
Appendix A
The goal of this appendix is to show the following.
Proposition A.1. Let £ € Z~q. There exists an element ¢y € 1 + q;A such that
es EPwy = ¢ EP~*% fowy + [ps — ps + 1| EP T4,
for any p € Z%,.

A fundamental tool for the proof is the braid group action on U,(g) introduced by Lusztig. For ¢ € I, let
T; = T}', be the algebra automorphism of U,(g) in [16, Chapter 37]. For a sequence i, - --4; of elements of
I, write T; = T;, ---T;,. Here we collect the properties of Tj; for the proofs, see [14,16].

peein

Lemma A.2.

(a) Foric I and a € Q, we have TiUqy(g)a = Uqg(8)s,(a)-
(b) Fori,j €I and p € Z~o, we have

Ti(egp)) = (—qi)fkeg_c”p_k)egp)egk).



K. Naoi, T. Scrimshaw / Journal of Pure and Applied Algebra 225 (2021) 106593

(c) Fori,j€ I, we have T;T;--- =T;T; - - -.
—_—

~—
cijcjit2 CijCji+2

35

(d) If ip---i1 is a reduced word, then Tj ., (e;) € Ug(ny). Moreover, if we further assume that

5i, - 8iy(iy) = o for some j € I, then we have Tj ...i,(e;,) = e;.
(e) Leti,j €I be such that ¢;; = cj; = —1 and p € Z~¢o. Then we have

eieg-p) :egp_l)T( )+ g pe(p) e; and T;(ej)e; = qe;Ti(e;).

f) Let M be an integrable U,(g)-module, and i € I. There is a Q(qs)-linear automorphism ﬁ denoted by
q
T}, in [16]) satisfying Ti(Xm) = Ti(X)Ti(m) for X € Uy(g) and m € M. Moreover if m € My for

A€ D7'P and fim =0, we have

for p € Z>q, where we set A; = (hi, A).
Lemma A.3. The word ji = (jr -+ - joir - io) is reduced.

Proof. For any 0 < k < L, we have

(858311, k+1)(hiy, ), 01) = (hiy s Sipp,1) (2)) > 0,

which implies ;851 k41)(@i, ) € R . This, together with Lemma 3.1.1 (4), implies the assertion.

In the sequel, we write 39 = ¢[L, 1] and j, = j[L', 1] for short.

Lemma A.4. Let M be an integrable U,(g)-module, v € M \ {0}, and p € Z~y.

(1) Ife;w=0 (i e {1} U J\{2}) and e1eqv = 0 then Tj(e1)v = 0.
(2) Ifev =0 (i € {1} UJ\{2}), then Tj,(e)v = E(p)v = (—q)PTj ().
(3) Ifev =0 (i € J\{2}), then Ty, (e )v = Ev.
(4) We have T;y1(e2) = e1Ti,(e2) — ¢ 1T, (e2)eq -
(5) Ife;v =0 (i € Iy), then T;1(eo)v = Eyiov.
(6) We have elTiO(egp)) =T;,(es (= 1))Tl (62) +q PT; (e (p))el.
(7) If exv =0, then exTy, (e$)o = Ty, (e )Ty, 1(e2)o.
(8) Ife;v =0 (i € Ipy), then Ty, (e2)elPv = elP~ 1>T (e1)v.
(9) If e;u =0 (i € Iy), then T;(e1)eg Py = eé 1y, (eg)v.
(10) We have Tj(e1)ey () = eé )TJ (eo) +q_pe(()p)Tj(el).
(11) We have Tj (el)e(lp) = qpegp)Tj(el).
(12) We have e1Tj1(e0)Ts1(e0) = Tj1(e0)Ts1(eo)er
(13) Ife;u =0 (i € In\ {1,2}), then T, (eép))v = Egp)v = aijiO(eép))v with some nonzero a € Q(gs).

Proof. Let us prepare some notation. For a subset L C I and A € —P™, denote by Vi(A) the U,(g

L)-

submodule of V(A) generated by vy, which is isomorphic to the simple lowest weight U, (gz,)-module whose

lowest weight is the restriction of A on _;.; D™ 'h;.

Let us prove the assertion (1). Set J' = {1} U J, and ¢ = max{m € Z>( | eém)v # 0}. By the well-known
fact for the defining relations (see the proof of Lemma 3.3.7), there is a Uy(n jv)-module homomorphism
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from Vj/(—¢As) to M mapping v_ga, to v. Hence we may assume that v = v_ga,, and then the assertion (1)
is proved as follows: By Lemma A.2 (b) and (f),

Tj(e1)v = Tj, (e2e1 — qilelez)v =Tj, ((6261 — qileleg)v) =0.

Next we shall prove the assertion (2). As above, we may assume that v = v_gs, for some ¢ € Z~q. The
first equality is proved using Lemma A.2 (f) as follows:

Tj1(e¥ o = Ta(efv) = B,
By Lemma A.2 (b), we have

_ —k k _ —k k
Ti ("o =3 (—a) T, (e Ve ef o = 3 (—q) T, (€ )Ty, (50,
k k

and since f17}, (eék))v =0, egp )Tjo (eék))v = 0 holds unless £ = p. Now the second equality is proved similarly
as above. The proofs of the assertions (3)—(5) are similar.
The assertion (6) is proved as follows: By Lemma A.2 (b) and (e), we have

1Ty, (e) = Tiy(e16) = Tig (e VT (e2) + g Peier)

Ty (e ) Ti01(e2) + 4 PTiy (e

The assertions (7)—(10) are proved similarly.
The assertion (11) is proved as follows: By Lemma A.2 (e), we have

Tj(er)e” =Ty, (T2(€1)€(1p)) = ¢"Tj}, (egp)TQ(el)) = PP Tj(er).
The assertion (12) is proved as follows: Since s2s1(ag) = 1, from Lemma A.2 (d), it follows that

e1Tj1(e0)Ti1(e0) = Tj1 (e2e0) Ti1(eo) = Tj1(eo)e1Ts1(eo)
= Tj1(e0)Ts1(e2e0) = Tj1(eo)Ts1(eo)er.

Finally let us show the assertion (13). As above, setting { = max{m € Z>¢ | egm)v # 0}, we may
assume that v = v_ya,, and the first equality is proved similarly. To prove the other one, note first that
wtp (Tjio (egp))) = pby, and

1 (0<p<y),

0 (p>0), (A1)

dim ij (—£A2)7€A2+p91 = {

which is proved by taking the classical limit and applying the Poincaré—Birkhoff-Witt theorem. Moreover,

since

Tjio (e )0 = Tyio (e T2 (v) and (ho, wtpTj;1(v)) = (ho,, —A) = —,

we have Tjio(eép))v # 0 if and only if 0 < p < £. Hence for each 1 < p < ¢ there is some nonzero a, € Q(qg;)

such that a,Tji, (e )v = EPv, and Ty, (e )0 = EPv = 0/if p > £. Tt remains to prove that a, = df,

which we show by the induction on p. The case p = 1 is trivial. Assume that p > 1. By Lemma 3.3.4 and
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weight considerations, we see that eiEgp Dy =0foriel, \ {1, 2}, and hence it follows from the induction
hypothesis that

Tjio (e )0 = a7 " ] Tyiy (e2) B Vo = arPlp) BV EF Do

(p) _
(note that EEp) # (Eﬁl)) by our convention (3.1.1)). Hence it suffices to show that EEI)EEP Dy
[p]Egp Jv. Tt is proved by a direct calculation that

JEeo) L o) g0 Ry _ o=V — [Py = [P . fean) g0,
which implies Ei(l)Ezgp_l)v = [p]Eip)v by (A.1). The proof of (13) is complete. O
Lemma A.5. For any ¢ € Z~¢ and (p1,p2,p3) € Z%O, we have
61E§p3)E§p2)€§%1)wg = Ej(.prl)El(prl)e%l71)ang
Proof. If p; < po, the left-hand side is 0 by (2.1.1), and so is the right-hand side since
e, eaE%w, € W;wz+ai1 =0.
Hence we may assume that p; > ps. Set

(p1)

w = ey we, and w' E(Pz) (pl)wz'

We have
e;w' =0 forie{1}UJ\{2} and eiEJ(.l)w’ =0 forieJ
by Lemma 3.3.4 and (2.1.2), and therefore we have the following;

61E§p3)E£p2)e§%1)we _ 61E§p3)w/ (i) elTjD (egpa))wl

D 1y, (e )y

(2) (3) -
Jo 301(62)11)/ = E;'p3 1)€1ij,’

where a number over an equality indicates which assertion of Lemma A .4 is used there. Since e;w = 0 for
i € Ip\ {2} and ejeaw = 0, we have the following;

e1 Ejuw’ @ —qu(el)EépZ)w 13 —qaP?Tj(e1)Tji, (e;m))w

Y —gor1y (Tio(eéprl))Tiol(@z) +q T (egp))el) v
CLY a2, (e V)T (1) T, (e2)w

@09 poa1) o 50 E0,,

Finally, we have

2) (13
elEgl)Eil)w = elEJ(-l)EEl)e%l)wg A —qTj(e1)Ts, (ez)e%l)wg
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8) (9 _
LD 1y (e1)elB DT (eo)wi

(1w —gPh eﬁm—l)Tj(el)eépl_l)Tﬂ(eo)we

(2) _qplegplfl) (egpliz)le(eo) + q—p1+le(()P1*1)Tj(el)) Til(eO)we
12 -

) e DT (1) Ty (e0)we

(2):(5)

egﬁl_l)ang.
The assertion is proved. O

Proof of Proposition A.1. By (2.1.2) and Lemma A.5, we have

eQEpw[ — (egps—1)egp4+1)elE§p3)E£p2)eg%1) 4 [p4 —ps + 1]Ep+e4) wy

= (EP~9T*1E® 4 [py — p5 + 1]EPTEY) wy.

Hence it suffices to show that E%w, = ¢; fowy holds for some ¢, € £1 + g5 A. We see from Proposition 3.1.2
(C1) that dim waTaz = 1, and hence we have E%w; = ¢y fowy for some ¢, € Q(gs). Now ¢y € £1 4 ¢, A
follows since both ||E%w;||? and || fawe||? belong to 1 + gsA. The proof is complete. O
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