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We prove that, in types E(1)
6,7,8, F

(1)
4 and E(2)

6 , every Kirillov–Reshetikhin module 
associated with the node adjacent to the adjoint one (near adjoint node) has a 
crystal pseudobase, by applying the criterion introduced by Kang et al. In order to 
apply the criterion, we need to prove some statements concerning values of a bilinear 
form. We achieve this by using the global bases of extremal weight modules.
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1. Introduction

Let g be an affine Kac–Moody Lie algebra, and denote by U ′
q(g) the associated quantum affine algebra 

without the degree operator. Kirillov–Reshetikhin (KR for short) modules are a distinguished family of 
finite-dimensional simple U ′

q(g)-modules (see, for example, [2]). In this article KR modules are denoted by 
W r,�, where r is a node of the Dynkin diagram of g except the node 0 prescribed in [8] and � is a positive 
integer. KR modules are known to have several good properties, such as their q-characters satisfy the T
(Q, Y )-system relations, fermionic formulas for their graded characters, and so on (see [4–6,17], for example, 
and references therein).

Another important (conjectural) property of a KR module is the existence of a crystal base in the sense 
of Kashiwara, which was presented in [6,7]. In this article, we mainly consider a slightly weaker version of 
the conjecture, the existence of a crystal pseudobase (crystal base modulo signs, see Subsection 2.2).

* Corresponding author.
E-mail addresses: naoik@cc.tuat.ac.jp (K. Naoi), tcscrims@gmail.com (T. Scrimshaw).
URL: https://people.smp.uq.edu.au/TravisScrimshaw/ (T. Scrimshaw).
https://doi.org/10.1016/j.jpaa.2020.106593
0022-4049/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2020.106593
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2020.106593&domain=pdf
mailto:naoik@cc.tuat.ac.jp
mailto:tcscrims@gmail.com
https://people.smp.uq.edu.au/TravisScrimshaw/
https://doi.org/10.1016/j.jpaa.2020.106593


2 K. Naoi, T. Scrimshaw / Journal of Pure and Applied Algebra 225 (2021) 106593
If a given KR module W r,� is multiplicity free as a Uq(g0)-module, it is known to have a crystal pseudobase, 
where g0 is the subalgebra of g whose Dynkin diagram is obtained from that of g by removing 0. In 
nonexceptional types, in which all W r,� are multiplicity free, this was shown by Okado and Schilling [20]. 
Recently this was also proved for all multiplicity free W r,� of exceptional types by Biswal and the second 
author [1] in a similar fashion.

On the other hand, if W r,� is not multiplicity free, then the conjecture has been solved in only a few cases 
so far. Kashiwara showed for all affine types that all fundamental modules W r,1 have crystal bases [11], and 
in types G(1)

2 and D(3)
4 , the first author verified the existence of a crystal pseudobase for all W r,� [19].

We say a node r is near adjoint if the distance from 0 is precisely 2. The goal of this paper is to show 
the conjecture for all KR modules associated with near adjoint nodes in exceptional types. This has already 
been done in [19] for types G(1)

2 and D(3)
4 , and our main theorem below covers all remaining types.

Theorem 1. Assume that g is either of type E(1)
n (n = 6, 7, 8), F (1)

4 , or E(2)
6 , and r is the near adjoint node. 

Then for every � ∈ Z>0, the KR module W r,� has a crystal pseudobase.

In particular, since a KR module W r,� in type E(1)
6 is multiplicity free if r is not the near adjoint node, 

Theorem 1 solves the conjecture for all KR modules of this type.
As with previous works [1,19,20], Theorem 1 is proved by applying the criterion for the existence of a 

crystal pseudobase introduced in [12]. In our cases, however, this is much more involved and we need a new 
idea, which we will explain below.

By the criterion, the existence of a crystal pseudobase is reduced to showing that certain vectors are almost 
orthonormal with respect to a prepolarization (bilinear form having some properties) and satisfy additional 
conditions concerning the values of the prepolarization. In the previous works these statements were proved 
by directly calculating the values of the prepolarization (although in [19] the amount of calculations was 
reduced using an induction argument on �). However, this appears to be quite difficult to do in our cases. 
Hence we apply a more sophisticated method using the global basis of an extremal weight module introduced 
by Kashiwara [10]. For example, it is previously known that a global basis is almost orthonormal [18], and 
therefore the required almost orthonormality of given vectors is deduced by connecting them with a global 
basis. The other conditions are also proved in a similar spirit.

Besides the KR modules treated in this paper, there are several families of W r,� for which the existence 
of crystal pseudobases remain open: r = 3, 5 in type E(1)

7 , 3 ≤ r ≤ 7 in type E(1)
8 , and r = 3 in types F (1)

4
and E(2)

6 , where the labeling of nodes are given in Fig. 1 in Subsection 3.1. We hope to study these in our 
future work.

The paper is organized as follows. In Section 2, we recall the basic notions needed in the proof of the 
main theorem. In Subsection 3.1, we reduce the main theorem to three statements (C1)–(C3), and these are 
proved in Subsections 3.2–3.4. In Subsection 3.4, we use a certain relation (3.4.15) in W r,�, whose proof is 
postponed to Appendix A since, while straightforward, it is slightly lengthy and technical.
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Index of notation

We provide for the reader’s convenience a brief index of the notation which is used repeatedly in this 
paper:
Subsection 2.1: g, I, C = (cij)i,j∈I , αi, hi, Λi, δ, P , P+, Q, Q+, W , si, I0, �i, P ∗, d, Pcl, qi, D, qs, Uq(g),

ei, fi, qh, U ′
q(g), Uq(n±), e(n)

i , wtP , Uq(gJ), ti, Δ, wtPcl .
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Subsection 2.2: ẽi, f̃i, A, .
Subsection 2.3: ‖u‖2.
Subsection 2.4: V (Λ), vΛ, L(Λ), B(Λ), B(Λ), V (Λ)Z, B(Λ1, −Λ2).
Subsection 2.5: Ma, ιa, ι, W r,�, zr, L(W r,1), w�, ιk.
Subsection 2.6: g0, P0, P+

0 , V0(λ).
Subsection 3.1: W �, I01, J , R, R+, R+

L , R1, θ1, θJ , e(p)
r , E(p)

r , cg, i, j, i[k2, k1], j[k2, k1], sr, Λ∨
i , Ep for

p ∈ Z6, wt, S�.
Subsection 3.3: εi, Ep for p ∈ Z5, S�, m(p1, . . . , pn : λ).
Subsection 3.4: a, m(p1, p2).

2. Preliminaries

2.1. Quantum affine algebra

Let g be an affine Kac–Moody Lie algebra not of type A(2)
2n over Q with index set I = {0, 1, · · · , n} and 

Cartan matrix C = (cij)i,j∈I . We assume that the index 0 coincides with the one prescribed in [8] (we do 
not assume this for the other indices, and in fact later we use another labeling, see Fig. 1 in Subsection 3.1). 
Let αi and hi (i ∈ I) be the simple roots and simple coroots respectively, Λi (i ∈ I) the fundamental 
weights, δ the generator of null roots, P =

⊕
i ZΛi ⊕ Zδ the weight lattice, P+ =

⊕
i∈I Z≥0Λi ⊕ Zδ the 

set of dominant weights, Q =
⊕

i∈I Zαi the root lattice, Q+ =
∑

i∈I Z≥0αi ⊆ Q, W the Weyl group with 
reflections si (i ∈ I), and ( , ) a nondegenerate W -invariant bilinear form on P satisfying (α0, α0) = 2. Set 
I0 = I \ {0}, and

�i = Λi − 〈K,Λi〉Λ0 for i ∈ I0,

where K ∈ P ∗ = Hom(P, Z) is the canonical central element. Let d ∈ P ∗ be the element satisfying 〈d, Λi〉 = 0
(i ∈ I) and 〈d, δ〉 = 1. Set Pcl = P/Zδ, and let cl : P � Pcl be the canonical projection. For simplicity of 
notation, we will write αi, �i for cl(αi), cl(�i) when there should be no confusion.

Let q be an indeterminate. Set qi = q(αi,αi)/2,

[m]i = qmi − q−m
i

qi − q−1
i

, [n]i! = [n]i[n− 1]i · · · [1]i, and
[
m
n

]
i

= [m]i[m− 1]i · · · [m− n + 1]i
[n]i!

for i ∈ I, m ∈ Z, n ∈ Z≥0. Choose a positive integer D such that (αi, αi)/2 ∈ ZD−1 for all i ∈ I, and 
set qs = q1/D. Let Uq(g) be the quantum affine algebra, which is an associative Q(qs)-algebra generated by 
ei, fi (i ∈ I), qh (h ∈ D−1P ∗) with certain defining relations (see, for example, [11]). Denote by U ′

q(g) the 
quantum affine algebra without the degree operator, that is, the subalgebra of Uq(g) generated by ei, fi
(i ∈ I) and qh (h ∈ D−1P ∗

cl). Let Uq(n+) (resp. Uq(n−)) be the subalgebra generated by ei (resp. fi) (i ∈ I). 
For i ∈ I and n ∈ Z, set e(n)

i = eni /[n]i! if n ≥ 0, and e(n)
i = 0 otherwise. Define f (n)

i analogously. We define 
a Q-grading Uq(g) =

⊕
α∈Q Uq(g)α by

Uq(g)α = {X ∈ Uq(g) | qhXq−h = q〈h,α〉X for h ∈ D−1P ∗}.

If 0 
= X ∈ Uq(g)α, we write wtP (X) = α. For a proper subset J ⊂ I, denote by gJ the corresponding 
simple Lie subalgebra, and by Uq(gJ) (resp. Uq(n+,J), Uq(n−,J)) the Q(qs)-subalgebra of Uq(g) generated 
by ei, fi, q±D−1hi (resp. ei, fi) with i ∈ J .

Set ti = q(αi,αi)hi/2 for i ∈ I, and denote by Δ the coproduct of Uq(g) defined by

Δ(qh) = qh ⊗ qh, Δ(e(m)
i ) =

m∑
q
k(m−k)
i e

(k)
i ⊗ t−k

i e
(m−k)
i ,
k=0
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Δ(f (m)
i ) =

m∑
k=0

q
k(m−k)
i tm−k

i f
(k)
i ⊗ f

(m−k)
i

for h ∈ D−1P ∗, i ∈ I, m ∈ Z>0.
For a Uq(g)-module (resp. U ′

q(g)-module) M and λ ∈ P (resp. λ ∈ Pcl), write

Mλ = {v ∈ M | qhv = q〈h,λ〉v for h ∈ D−1P ∗ (resp. h ∈ D−1P ∗
cl)},

and if v ∈ Mλ with v 
= 0, we write wtP (v) = λ (resp. wtPcl(v) = λ). We will omit the subscript P or Pcl
when no confusion is likely. We say a Uq(g)-module (or U ′

q(g)-module) M is integrable if M =
⊕

λ Mλ and 
the actions of ei and fi (i ∈ I) are locally nilpotent.

Throughout the paper we will repeatedly use the following assertions. For i, j ∈ I such that i 
= j and 
r, s ∈ Z≥0, it follows from the Serre relations that

e
(r)
i e

(s)
j ∈ Uq(n+)s(αj−cijαi)e

(r+cijs)
i if r + cijs > 0,

e
(s)
j e

(r)
i ∈ e

(r+cijs)
i Uq(n+)s(αj−cijαi) if r + cijs > 0,

(2.1.1)

where Uq(n+)α = Uq(n+) ∩ Uq(g)α. For i, j ∈ I such that cij = cji = −1 and r, s, t ∈ Z≥0, we have

e
(r)
i e

(s)
j e

(t)
i =

r−s+t∑
m=0

[
r − s + t

m

]
i

e
(t−m)
j e

(r+t)
i e

(s−t+m)
j if r + t ≥ s, (2.1.2)

see [16, Lemma 42.1.2]. Given a Uq(g)-module M , v ∈ Mλ and r, s ∈ Z≥0, we have

e
(r)
i f

(s)
i v =

min(r,s)∑
k=0

[
r − s + 〈hi, λ〉

k

]
i

f
(s−k)
i e

(r−k)
i v, (2.1.3a)

f
(r)
i e

(s)
i v =

min(r,s)∑
k=0

[
r − s− 〈hi, λ〉

k

]
i

e
(s−k)
i f

(r−k)
i v (2.1.3b)

for i ∈ I, and e(r)
i f

(s)
j = f

(s)
j e

(r)
i for i, j ∈ I such that i 
= j, see [16, Corollary 3.1.9].

2.2. Crystal (pseudo)bases and global bases

Let M be an integrable Uq(g)-module (or U ′
q(g)-module). For i ∈ I, we have

M =
⊕

λ;〈hi,λ〉≥0

〈hi,λ〉⊕
n=0

f
(n)
i (ker ei ∩Mλ).

Endomorphisms ẽi, f̃i (i ∈ I) on M called the Kashiwara operators are defined by

f̃i(f (n)
i u) = f

(n+1)
i u, ẽi(f (n)

i u) = f
(n−1)
i u

for u ∈ ker ei ∩Mλ with 0 ≤ n ≤ 〈hi, λ〉. These operators also satisfy that

ẽi(e(n)
i v) = e

(n+1)
i v, f̃i(e(n)

i v) = e
(n−1)
i v
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for v ∈ ker fi ∩Mμ with 0 ≤ n ≤ −〈hi, μ〉. Let A be the subring of Q(qs) consisting of rational functions 
without poles at qs = 0. A free A-submodule L of M is called a crystal lattice of M if M ∼= Q(qs) ⊗A L, 
L =

⊕
λ Lλ where Lλ = L ∩Mλ, and ẽi, f̃i (i ∈ I) preserve L.

Definition 2.2.1 ([9,12]).

(1) A pair (L, B) is called a crystal base of M if
(i) L is a crystal lattice of M ,
(ii) B is a Q-basis of L/qsL,
(iii) B = �λ Bλ where Bλ = B ∩

(
Lλ/qsLλ),

(iv) ẽiB ⊆ B ∪ {0}, f̃iB ⊆ B ∪ {0},
(v) for b, b′ ∈ B and i ∈ I, f̃ib = b′ if and only if ẽib′ = b.

(2) (L, B) is called a crystal pseudobase of M if they satisfy the conditions (i), (iii)–(v), and (ii’) B =
B′ � (−B′) with B′ a Q-basis of L/qsL.

Recall that, if M1 and M2 are integrable Uq(g)-modules and (Li, Bi) is a crystal base of Mi (i = 1, 2), 
then (L1 ⊗A L2, B1 ⊗ B2) is a crystal base of M1 ⊗ M2, where B1 ⊗ B2 = {b1 ⊗ b2 | bi ∈ Bi} ⊆ (L1 ⊗A

L2)/qs(L1 ⊗A L2).
Let denote the automorphism of Q(qs) sending qs to q−1

s , and set A = {a | a ∈ A}. We also denote by 
the involutive Q-algebra automorphism of Uq(g) defined by

ei = ei, fi = fi, qh = q−h, a(qs)x = a(q−1
s )x

for i ∈ I, h ∈ D−1P ∗, a(qs) ∈ Q(qs) and x ∈ Uq(g). Let Uq(g)Q be the Q[qs, q−1
s ]-subalgebra of Uq(g)

generated by e(n)
i , f (n)

i , qh for i ∈ I, n ∈ Z>0, h ∈ D−1P ∗.

Definition 2.2.2 ([9]).

(1) Let V be a vector space over Q(qs), L0 a free A-submodule, L∞ a free A-submodule, and VQ a free 
Q[qs, q−1

s ]-submodule. We say that (L0, L∞, VQ) is balanced if each of L0, L∞, and VQ generates V as 
a Q(qs)-vector space, and the canonical map

L0 ∩ L∞ ∩ VQ → L0/qsL0

is an isomorphism.
(2) Let M be an integrable Uq(g)-module with a crystal base (L, B), be an involution of M (called a bar 

involution) satisfying xu = xu for x ∈ Uq(g) and u ∈ M , and MQ a Uq(g)Q-submodule of M such that

MQ = MQ, u− u ∈ (qs − 1)MQ for u ∈ MQ.

Assume that (L, L, MQ) is balanced, where L = {u | u ∈ L}. Then, letting G be the inverse of 
L ∩ L ∩MQ

∼→ L/qsL, the set

B = {G(b) | b ∈ B}

forms a basis of M called a global basis of M (with respect to the bar involution ).

Note that the global basis B is an A-basis of L.
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2.3. Polarization

A Q(qs)-bilinear pairing ( , ) between Uq(g)-modules (resp. U ′
q(g)-modules) M and N is said to be 

admissible if it satisfies

(qhu, v) = (u, qhv), (e(m)
i u, v) = (u, q−m2

i t−m
i f

(m)
i v),

(f (m)
i u, v) = (u, q−m2

i tmi e
(m)
i v)

(2.3.1)

for h ∈ D−1P ∗ (resp. h ∈ D−1P ∗
cl), i ∈ I, m ∈ Z>0, u ∈ M , v ∈ N . A bilinear form ( , ) on M is called a 

prepolarization if it is symmetric and satisfies (2.3.1) for u, v ∈ M . A prepolarization is called a polarization
if it is positive definite with respect to the following total order on Q(qs):

f > g if and only if f − g ∈ �
n∈Z

{qns (c + qsA) | c ∈ Q>0} ,

and f ≥ g if f = g or f > g. Throughout the paper, we use the notation ‖u‖2 = (u, u) for u ∈ M .

2.4. Extremal weight modules

For an arbitrary Λ ∈ P , let V (Λ) be the extremal weight module [10] with generator vΛ, which is an 
integrable Uq(g)-module generated by vΛ of weight Λ with certain defining relations. If Λ belongs to the 
W -orbit of a dominant (resp. antidominant) weight, say Λ◦, then V (Λ) is a simple highest (resp. lowest) 
weight module with highest (resp. lowest) weight Λ◦. In [loc. cit.], it was shown for any Λ ∈ P that V (Λ)
has a crystal base 

(
L(Λ), B(Λ)

)
and 

(
L(Λ), L(Λ), V (Λ)Q

)
is balanced, where the bar involution is defined 

by xvΛ = xvΛ for x ∈ Uq(g), and V (Λ)Q = Uq(g)QvΛ. We denote by

B(Λ) = {G(b) | b ∈ B(Λ)} ⊆ V (Λ)

the associated global basis. Let Uq(g)Z denote the Z[qs, q−1
s ]-subalgebra of Uq(g) generated by e(n)

i , f (n)
i

(i ∈ I, n ∈ Z>0) and qh (h ∈ D−1P ∗), and set V (Λ)Z = Uq(g)ZvΛ ⊆ V (Λ). The following proposition is 
due to [9] for highest and lowest weight cases, and [18] for level zero cases.

Proposition 2.4.1. Let Λ ∈ P .

(1) There exists a polarization ( , ) on V (Λ) such that ‖vΛ‖2 = 1.
(2) We have 

(
L(Λ), L(Λ)

)
⊆ A, and (ẽiu, v) ≡ (u, f̃iv) mod qsA for u, v ∈ L(Λ) and i ∈ I.

(3) B(Λ) is an almost orthonormal basis with respect to ( , ), that is,

(v, v′) ∈ δvv′ + qsA for v, v′ ∈ B(Λ).

(4) We have

L(Λ) =
{
v ∈ V (Λ)

∣∣ ‖v‖2 ∈ A
}
, ±B(Λ) =

{
v ∈ V (Λ)Z

∣∣ v = v, ‖v‖2 ∈ 1 + qsA
}
.

Let Λ1, Λ2 ∈ P+. By [15] (see also [10]), the triple

(
L(Λ1) ⊗A L(−Λ2), L(Λ1) ⊗A L(−Λ2), V (Λ1)Q ⊗ −1 V (−Λ2)Q

)

Q[qs,qs ]
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in the tensor product V (Λ1) ⊗ V (−Λ2) is balanced. Here the bar involution is defined by

x(vΛ1 ⊗ v−Λ2) = x(vΛ1 ⊗ v−Λ2) for x ∈ Uq(g).

Denote the associated global basis by

B(Λ1,−Λ2) = {G(b) | b ∈ B(Λ1) ⊗B(−Λ2)} ⊆ V (Λ1) ⊗ V (−Λ2).

It is easily checked from the definition that

vΛ1 ⊗ B(−Λ2) ⊆ B(Λ1,−Λ2). (2.4.1)

By the construction of the global basis of an extremal weight module in [10, Subsection 8.2], the following 
lemma is obvious.

Lemma 2.4.2. Let Λ ∈ P , and suppose that Λ1, Λ2 ∈ P+ satisfy Λ1−Λ2 = Λ. There exists a unique surjective 
Uq(g)-module homomorphism Ψ from V (Λ1) ⊗V (−Λ2) to V (Λ) mapping vΛ1 ⊗v−Λ2 to vΛ, and Ψ maps the 
subset {X ∈ B(Λ1, −Λ2) | Ψ(X) 
= 0} bijectively to B(Λ).

2.5. Kirillov–Reshetikhin modules

Given a U ′
q(g)-module M , we define a Uq(g)-module Maff = Q(qs)[z, z−1] ⊗M by letting ei and fi (i ∈ I) 

act by zδ0i ⊗ ei and z−δ0i ⊗ fi respectively, and qD
−1d on zk ⊗M by the scalar multiplication by qks . Set 

Ma = Maff/(z − a)Maff for nonzero a ∈ Q(qs), which is again a U ′
q(g)-module. We denote by ιa : M ∼→ Ma

the Q(qs)-linear (not U ′
q(g)-linear) isomorphism defined by ιa(v) = pa(1 ⊗ v), where pa : Maff → Ma is the 

projection. If no confusion is likely, we will write ι for ιa sometimes.
Let r ∈ I0. In [11], a U ′

q(g)-module automorphism zr of weight δ is constructed on the level-zero funda-
mental extremal weight module V (�r), which preserves the global basis B(�r). Set

W r,1 = V (�r)/(zr − 1)V (�r),

which is a finite-dimensional simple integrable U ′
q(g)-module called a fundamental module. Note that W r,1

aff
∼=

V (�r). Let p : V (�r) → W r,1 be the canonical projection, and define a bilinear form ( , ) on W r,1 by(
p(u), p(v)

)
=
∑
k∈Z

(zkru, v) for u, v ∈ V (�r). (2.5.1)

Since (u, v) = (zru, zrv) holds for u, v ∈ V (�r) by [18, Lemma 4.7], this is a well-defined polarization on 
W r,1. Let L(W r,1) = p

(
L(�r)

)
. It follows from Proposition 2.4.1 that

L(W r,1) = {u ∈ W r,1 | ‖u‖2 ∈ A}, and (u, v) ∈ A for any u, v ∈ L(W r,1). (2.5.2)

Fix r ∈ I0 and � ∈ Z>0. Let w1 ∈ W r,1 denote a vector such that wtPcl(w1) = �r and ‖w1‖2 = 1. 
Hereafter we write ιk for ιqk (k ∈ D−1Z). Set

m =
{

(αr, αr)/2 g : nontwisted affine type,
1 g : twisted affine type.

Let

W̃ = W r,1
m(1−�) ⊗W r,1

m(3−�) ⊗ · · · ⊗W r,1
m(�−3) ⊗W r,1

m(�−1) ,
q q q q



8 K. Naoi, T. Scrimshaw / Journal of Pure and Applied Algebra 225 (2021) 106593
and denote by w� a vector of W̃ defined by

w� = ιm(1−�)(w1) ⊗ ιm(3−�)(w1) ⊗ · · · ⊗ ιm(�−3)(w1) ⊗ ιm(�−1)(w1).

The U ′
q(g)-submodule W r,� = U ′

q(g)w� ⊆ W̃ is called the Kirillov–Reshetikhin module (KR module for 
short) associated with r, �.

Proposition 2.5.1. Let r ∈ I0, � ∈ Z>0.

(1) W r,� is a finite-dimensional simple integrable U ′
q(g)-module.

(2) The weight space W r,�
��r

is 1-dimensional and spanned by w�.
(3) The weight set {λ ∈ Pcl | W r,�

λ 
= 0} coincides with the intersection of ��r −
∑

i∈I0
Z≥0αi and the 

convex hull of the W -orbit of ��r.
(4) The vector w� ∈ W r,� satisfies

eiw� = 0 if i ∈ I0 and fiw� = 0 if i ∈ I \ {r}.

Proof. The assertion (1) is proved in [20, Proposition 3.6]. The assertions (2) and (3) follow from [11, 
Theorem 5.17], and (4) is proved from (3). �

Next we shall recall how to define a prepolarization on W r,�. There exists a unique U ′
q(g)-module homo-

morphism

R : W r,1
qm(�−1) ⊗W r,1

qm(�−3) ⊗ · · · ⊗W r,1
qm(1−�) → W r,1

qm(1−�) ⊗ · · · ⊗W r,1
qm(�−3) ⊗W r,1

qm(�−1)

mapping ιm(�−1)(w1) ⊗ · · · ⊗ ιm(1−�)(w1) to w�, and its image is W r,� (see [20]). The following lemma is 
proved straightforwardly.

Lemma 2.5.2. Assume that � ∈ Z>0, Mk, Nk (1 ≤ k ≤ �) are U ′
q(g)-modules, and ( , )k : Mk ×Nk → Q(qs)

(1 ≤ k ≤ �) are admissible pairings. Then the Q(qs)-bilinear pairing ( , ) : (M1⊗· · ·⊗M�) ×(N1⊗· · ·⊗N�) →
Q(qs) defined by

(u1 ⊗ u2 ⊗ · · · ⊗ u�, v1 ⊗ v2 ⊗ · · · ⊗ v�) = (u1, v1)1(u2, v2)2 · · · (u�, v�)�

is admissible.

The lemma gives an admissible pairing ( , )0 between W r,1
qm(�−1) ⊗ · · · ⊗ W r,1

qm(1−�) and W r,1
qm(1−�) ⊗ · · · ⊗

W r,1
qm(�−1), which defines a bilinear form ( , ) on W r,� by

(
R(u), R(v)

)
=
(
u,R(v)

)
0 for u, v ∈ W r,1

qm(�−1) ⊗ · · · ⊗W r,1
qm(1−�) . (2.5.3)

By [12, Proposition 3.4.3], ( , ) is a nondegenerate prepolarization on W r,�, and ‖w�‖2 = 1 holds. We will 
use the following lemma later, whose proof is similar to that of [19, Lemma 3.6].

Lemma 2.5.3. Let r ∈ I0 and � ∈ Z>0, and set

W1 = W r,1
qm(�−1) ⊗W r,�−1

q−m and W2 = W r,1
qm(1−�) ⊗W r,�−1

qm .

There are unique U ′
q(g)-module homomorphisms R1 : W1 → W r,� and R2 : W r,� → W2 satisfying
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R1
(
ι(w1) ⊗ ι(w�−1)

)
= w� and R2(w�) = ι(w1) ⊗ ι(w�−1)

respectively, and for any u, v ∈ W1 we have

(
R1(u), R1(v)

)
=
(
u,R2 ◦R1(v)

)
1,

where ( , )1 is the admissible pairing between W1 and W2 obtained from Lemma 2.5.2.

2.6. Criterion for the existence of a crystal pseudobase

Following the previous works [1,19,20], we will prove Theorem 1 by applying a criterion for the existence 
of a crystal pseudobase introduced in [12].

We write g0 = gI0 for short. We identify the weight lattice P0 of g0 with the subgroup 
⊕

i∈I0
Z�i of 

Pcl, and set P+
0 =

∑
i∈I0

Z≥0�i. For λ ∈ P+
0 , denote by V0(λ) the simple integrable Uq(g0)-module with 

highest weight λ.
Let AZ and KZ be the subalgebras of Q(qs) defined respectively by

AZ = {f(qs)/g(qs) | f(qs), g(qs) ∈ Z[qs], g(0) = 1}, KZ = AZ[q−1
s ].

Let U ′
q(g)KZ

denote the KZ-subalgebra of U ′
q(g) generated by ei, fi, qh (i ∈ I, h ∈ D−1P ∗

cl).

Proposition 2.6.1 ([12, Propositions 2.6.1 and 2.6.2]). Assume that M is a finite-dimensional integrable 
U ′
q(g)-module having a prepolarization ( , ) and a U ′

q(g)KZ
-submodule MKZ

such that (MKZ
, MKZ

) ⊆ KZ. 
We further assume that there exist weight vectors uk ∈ MKZ

(1 ≤ k ≤ m) satisfying the following conditions:

(i) wt(uk) ∈ P+
0 for 1 ≤ k ≤ m and M ∼=

⊕m
k=1 V0

(
wt(uk)

)
as Uq(g0)-modules,

(ii) (uk, ul) ∈ δkl + qsA for 1 ≤ k, l ≤ m,
(iii) ‖eiuk‖2 ∈ q

−2〈hi,wt(uk)〉−2
i qsA for all i ∈ I0 and 1 ≤ k ≤ m.

Then ( , ) is a polarization, and the pair (L, B) with

L = {u ∈ M | ‖u‖2 ∈ A} and B = {b ∈ (MKZ
∩ L)/(MKZ

∩ qsL) | (b, b)0 = 1},

where ( , )0 is the Q-valued bilinear form on L/qsL induced by ( , ), is a crystal pseudobase of M .

From [12], we know the U ′
q(g)KZ

-submodule W r,�
KZ

= U ′
q(g)KZ

w� ⊆ W r,� satisfies 
(
W r,�

KZ
, W r,�

KZ

)
⊆ KZ. 

Hence if we show for M = W r,� the existence of weight vectors u1, . . . , um satisfying (i)–(iii), Theorem 1
follows from Proposition 2.6.1. We will show this in the next section with an explicit construction of the 
vectors u1, . . . , um.

3. Proof of Theorem 1

3.1. Set of vectors

In the rest of this paper, assume that g is either of type E(1)
n (n = 6, 7, 8), F (1)

4 or E(2)
6 and the nodes of 

the Dynkin diagram is labeled as in Fig. 1. We have

qi = q1/2 (g : F (1)
4 , i = 3, 4), qi = q2 (g : E(2)

6 , i = 3, 4), qi = q (otherwise).
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(
E

(1)
6

) •
3

◦
5◦

0
◦
1

•
2 •

4
◦
6

(
E

(1)
7

) •
4◦

0
◦
1

•
2

•
3 •

5
◦
6

◦
7

(
E

(1)
8

) •
6◦

0
◦
1

•
2

•
3

•
4

•
5 •

7
◦
8(

F
(1)
4

) ◦
0

◦
1

•
2

•
3

◦
4

(
E

(2)
6

) ◦
0

◦
1

•
2

•
3

◦
4

Fig. 1. Dynkin diagrams of types E
(1)
6,7,8, F

(1)
4 , and E

(2)
6 (•: nodes belonging to J).

Table 1
Explicit forms of θ1 and θJ .

g θ1 θJ

E
(1)
6

α2 + α3 + α4 + α5 + α6
= −�1 + �5 + �6

α2 + α3 + α4
= −�1 + �3 + �4 − �5 − �6

E
(1)
7

α2 + 2α3 + α4 + 2α5 + 2α6 + α7
= −�1 + �6

α2 + 2α3 + α4 + α5
= −�1 + �3 − �6

E
(1)
8

α2 + 2α3 + 3α4 + 4α5 + 2α6 + 3α7 + 2α8
= −�1 + �8

α2 + 2α3 + 2α4 + 2α5 + α6 + α7
= −�1 + �3 − �8

F
(1)
4 α2 + 2α3 + 2α4 = −�1 + 2�4 α2 + 2α3 = −�1 + 2�3 − 2�4

E
(2)
6 α2 + α3 + α4 = −�1 + �4 α2 + α3 = −�1 + �3 − �4

From now on, for i ∈ I such that qi = q we write [m] for [m]i, [n]! for [n]i!, and 
[
m
n

]
for 

[
m
n

]
i

. Note that in 

all types r = 2 is the unique near adjoint node. In the sequel, we will consider W 2,� only and, hence, write 
W � for W 2,�.

Let us prepare several notation. Define two subsets I01 and J of I by I01 = I0 \ {1}, and

J =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{2, 3, 4} (g : E(1)

6 ),
{2, 3, 4, 5} (g : E(1)

7 ),
{2, 3, 4, 5, 6, 7} (g : E(1)

8 ),
{2, 3} (g : F (1)

4 , E
(2)
6 ).

Let R ⊆ Q denote the root system of g0, and R+ = R ∩Q+ the set of positive roots. For a subset L ⊂ I0
denote by RL the root subsystem of R generated by the simple roots corresponding to the elements of L, 
and let R+

L = RL ∩R+. We write R1 = RI01 . Let θ1 be the highest short root of R1 if g is of type E(2)
6 , and 

the highest root of R1 otherwise. Define θJ ∈ RJ similarly (see Table 1).
For i ∈ I and k ∈ Z, set

E
(k)
i =

{
e
(2k)
i if g is of type F

(1)
4 and αi is short,

e
(k)
i otherwise.

For p ∈ Z and a sequence r = (rkrk−1 · · · r1) of elements of I (in this paper we always read such sequences 
from right to left), we use the abbreviations

e(p)
r = e(p)

r e(p)
r · · · e(p)

r and E(p)
r = E(p)

r · · ·E(p)
r . (3.1.1)
k k−1 1 k 1
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Set

cg =
{

2 (g : F (1)
4 ),

1 (otherwise),

and choose a sequence i = (iLiL−1 · · · i1i0) of elements of I01 satisfying

i0 = 2, siL · · · si1(α2) = θ1, and 〈hik , sik−1 · · · si1(α2)〉 = −cg for 1 ≤ k ≤ L. (3.1.2)

Similarly, choose a sequence j = (jL′jL′−1 · · · j1j0) of elements of J satisfying

j0 = 2, sjL′ · · · sj1(α2) = θJ , and 〈hjk , sjk−1 · · · sj1(α2)〉 = −cg for 1 ≤ k ≤ L′.

In the rest of this paper, we fix i = (iL · · · i0) and j = (jL′ · · · j0) satisfying these conditions. For 0 ≤ k1 ≤
k2 ≤ L, denote by i[k2, k1] the subsequence (ik2ik2−1 · · · ik1) of i, and let i[k2, k1] be the empty set if k2 < k1. 
We define j[k2, k1] similarly. For a sequence r = (r�r�−1 · · · r1) of elements of I, set sr = sr� · · · sr1 ∈ W , 
and let sr be the identity element of W if r is the empty set. Let hα ∈ P ∗ (α ∈ R) denote the coroots, and 
Λ∨
i ∈ P ∗ ⊗Z Q (i ∈ I) elements satisfying 〈Λ∨

i , αj〉 = δij for i, j ∈ I.

Lemma 3.1.1.

(1) Neither of the subsequences i[L, 1] and j[L′, 1] contains 2.
(2) We have 〈hi, θ1〉 = 0 for all i ∈ J .
(3) For any p ∈ Z≥0, we have

wtP
(
E

(p)
i[k,0]

)
= psi[k,1](α2) (0 ≤ k ≤ L) and wtP

(
E

(p)
j[k,0]

)
= psj[k,1](α2) (0 ≤ k ≤ L′).

In particular, wtP
(
E

(p)
i

)
= pθ1 and wtP

(
E

(p)
j

)
= pθJ hold.

(4) Both si and sj are reduced expressions.
(5) If α ∈ R+ satisfies s−1

i[L,1](α) ∈ −R+ (resp. s−1
j[L′,1](α) ∈ −R+), then we have 〈hα, θ1〉 > 0 (resp. 

〈hα, θJ〉 > 0).
(6) For any p ∈ Z≥0, E(p)

i (resp. E(p)
j ) does not depend on the choice of i (resp. j).

Proof. The assertion (1) is obvious since 〈Λ∨
2 , θ1〉 = 〈Λ∨

2 , θJ〉 = 1 (see Table 1), and (2) is checked directly. 
The assertion (3) is easily seen from the conditions on i and j. We will show the assertion (4) for si (the 
proof for sj is similar). By the condition on i, we have for any 0 ≤ k ≤ L that

〈si[L,k+1](hik), θ1〉 = 〈hik , si[k,1](α2)〉 > 0.

Since 〈hi, θ1〉 ≥ 0 for all i ∈ I01 and si[L,k+1](αik) ∈ R1, this implies that si[L,k+1](αik) is a positive root 
for any k, which implies that si is reduced. Let us show the assertion (5) for si[L,1] (the proof for sj[L′,1] is 
similar). There exists 1 ≤ k ≤ L such that α = si[L,k+1](αik), and we have

〈hα, θ1〉 = 〈si[L,k+1](hik), θ1〉 = 〈hik , si[k,1](α2)〉 > 0,

as required. Finally, let us show the assertion (6) for E(p)
i (the proof for E(p)

j is similar). If g is either of 
type F (1)

4 or E(2)
6 , i = (43) is the unique choice. Hence we may assume that g is of type E(1)

n (n = 6, 7, 8). 
Assume that i′ = (i′L , . . . , i′0) is another choice. Since 

∑L
αik =

∑L0 αi′ = θ1, we have L0 = L. Let r

0 k=0 k=0 k
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be the smallest number such that ir 
= i′r, and let s be the smallest number such that r < s and ir = i′s. 
Then since

〈hir ,
r−1∑
k=0

αik〉 = −1 = 〈hi′s ,
s−1∑
k=0

αi′k
〉

and i′k 
= ir for r ≤ k < s, we have 〈hir , αi′k
〉 = 0 for r ≤ k < s. Hence setting

i′′ = (i′L · · · i′s+1i
′
s−1 · · · i′rir · · · i0),

we have E(p)
i′ = E

(p)
i′′ . By repeating this argument we can show that E(p)

i′ = E
(p)
i , and hence the assertion 

(6) is proved. �
For p = (p1, p2, . . . , p6) ∈ Z6, we write

Ep = e
(p6)
0 e

(p5)
1 e

(p4)
2 E

(p3)
j E

(p2)
i e

(p1)
10 ∈ Uq(n+),

and define a map wt: Z6 → P0 by

wt(p) = (p1 − p2 − p3 − p4 + 2p5 − p6)�1 + (−p1 + 2p4 − p5)�2 + (p2 − p3)γ1 + (p3 − p4)γ2,

where we set

γ1 = �1 + cl(θ1) ∈ P+
0 and γ2 = �1 + γ1 + cl(θJ) ∈ P+

0 . (3.1.3)

For � ∈ Z>0, define a finite subset S� ⊆ Z6
≥0 by

S� =
{
(p1, . . . , p6) ∈ Z6

≥0
∣∣ p6 ≤ p5 ≤ p4 ≤ p3 ≤ p2, p2 + p3 + p4 − p5 ≤ p1 ≤ p4 + �}.

Note that if p ∈ S�, then wtPcl(Epw�) = wt(p) + ��2 ∈ P+
0 . As stated in the final part of the previous 

section, Theorem 1 is proved once we show the following.

Proposition 3.1.2. For any � ∈ Z>0, the vectors {Epw� | p ∈ S�} ⊆ W � satisfy the following conditions:

(C1) W � ∼=
⊕

p∈S�
V0
(
wt(p) + ��2

)
as Uq(g0)-modules,

(C2) (Epw�, Ep′
w�) ∈ δp,p′ + qsA for p, p′ ∈ S�,

(C3) ‖eiEpw�‖2 ∈ q
−2〈hi,wt(p)〉−2�δi2−2
i qsA for i ∈ I0 and p ∈ S�.

3.2. Proof of (C1) in Proposition 3.1.2

By [3,4,17], the multiplicities of a KR module are known to coincide with the cardinalities of highest 
weight rigged configurations. In our cases, explicit formulas for the number of them have been obtained 
using the Kleber algorithm [13], and hence we have the following.

Proposition 3.2.1 ([22, Section 9]). Let � ∈ Z>0. Define a subset T� ⊆ Z5
≥0 by

T� = {r = (r1, r2, . . . , r5) ∈ Z5
≥0 | r1 + r2 + r3 + r4 ≤ �, r4 + 2r5 ≤ r2},

and a map wtT : Z5
≥0 → P0 by

wtT (r) = (r2 − r4 − 2r5)�1 + (−r1 − r2 − r3 − r4 + r5)�2 + r3γ1 + r4γ2,
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where γ1, γ2 are given in (3.1.3). Then we have

W � ∼=
⊕
r∈T�

V0
(
wtT (r) + ��2

)⊕(1+r2−r4−2r5)

as Uq(g0)-modules.

Now (C1) is easily deduced from Proposition 3.2.1. Indeed, the map φ : Z6 → Z5 defined by

φ(p1, . . . , p6) �→ (p6, p1 − p2 − p6, p2 − p3, p3 − p4, p4 − p5)

sends S� to T�, wtT ◦ φ = wt holds, and for any r ∈ T�,

φ−1(r) ∩ S� = {r0 + k(1, 1, 1, 1, 1, 0) | r1 ≤ k ≤ r1 + r2 − r4 − 2r5},

where

r0 = (r1 + r2 + r3 + r4 + r5, r3 + r4 + r5, r4 + r5, r5, 0, r1),

and hence Proposition 3.2.1 is equivalent to (C1).

3.3. Proof of (C2) in Proposition 3.1.2

In this and next subsections, we need to consider prepolarizations on several types of modules (extremal 
weight modules, KR modules, or tensor products of them) simultaneously. Therefore, when we would like 
to indicate what prepolarization we are considering, we will occasionally write ( , )M and ‖ ‖2

M for ( , )
and ‖ ‖2 on a module M .

We begin with the following lemma.

Lemma 3.3.1. Let M be a U ′
q(g)-module with a prepolarization ( , ), and u ∈ Mλ for some λ ∈ Pcl. Assume 

that f0u = e1u = f1u = 0. Then for any p, p′ ∈ Z6
≥0 with p 
= p′, (Epu, Ep′

u) = 0 holds.

Proof. Set p = (p1, . . . , p6) and p′ = (p′1, . . . , p′6). We may assume that p6 ≥ p′6. By the admissibility, we 
have

(Epu,Ep′
u) = qc(Ep−p6ε6u, f

(p6)
0 Ep′

u),

where c is a certain integer and εi = (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0) (1 ≤ i ≤ 6) is the standard basis of Z6. Since 

e
(a)
1 e

(b)
0 u = 0 if a > b by (2.1.1), it follows from (2.1.3) that

f
(p6)
0 Ep′

u = δp6p′
6
qc

′
Ep′−p6ε6u

with c′ ∈ Z, and hence we may (and do) assume that p6 = p′6 = 0. If we further assume that p5 = p′5, then 
p 
= p′ implies wtPcl(Epu) 
= wtPcl(Ep′

u), which forces (Epu, Ep′
u) = 0.

Hence we may assume that p5 > p′5. In this case, we have

(Epu,Ep′
u) = qc

′′
(Ep−p5ε5u, f

(p5)
1 Ep′

u) (3.3.1)
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with c′′ ∈ Z, and by applying (2.1.1) and (2.1.3), it is easily proved that

f
(p5)
1 Ep′

u ∈ e0Uq(g)u.

Since f0E
p−p5ε5u = 0, (3.3.1) implies (Epu, Ep′

u) = 0, and the assertion is proved. �
Since the vector w� ∈ W � satisfies the assumption of the lemma, (Epw�, Ep′

w�) = 0 follows if p 
= p′. In 
order to verify (C2) in Proposition 3.1.2, it remains to show ‖Epw�‖2 ∈ 1 + qsA for p ∈ S�.

Lemma 3.3.2. For any p = (p1, . . . , p6) ∈ Z6
≥0 such that p1 − p5 + p6 ≤ 3�, we have ‖Epw�‖2 ∈ (1 +

qA)‖Ep−p6ε6w�‖2.

Proof. We have

‖Epw�‖2 = qp6(3�−p1+p5−p6)(Ep−p6ε6w�, f
(p6)
0 Epw�). (3.3.2)

Since f0E
p−p6ε6w� = 0 holds, it follows from (2.1.3) that

(3.3.2) = qp6(3�−p1+p5−p6)
[
3�− p1 + p5

p6

]
‖Ep−p6ε6w�‖2 ∈ (1 + qA)‖Ep−p6ε6w�‖2.

The lemma is proved. �
In the sequel, we regard Z5 as a subgroup of Z6 via Z5 � p ↪→ (p, 0) ∈ Z6. Hence for p = (p1, . . . , p5) ∈ Z5, 

we have

Ep = e
(p5)
1 e

(p4)
2 E

(p3)
j E

(p2)
i e

(p1)
10 .

For � ∈ Z>0, set

S� = S� ∩ Z5 = {(p1, . . . , p5) | p5 ≤ p4 ≤ p3 ≤ p2, p2 + p3 + p4 − p5 ≤ p1 ≤ p4 + �}.

By the lemma, the proof of the assertion ‖Epw�‖2 ∈ 1 + qsA for p ∈ S� is reduced to the case p ∈ S�. An 
idea for the proof of this assertion is to use the almost orthonormality of B(��2), the global basis of the 
extremal weight module V (��2). To do this we need to show that Epv��2 ∈ ±B(��2) ∪ {0} for p ∈ Z5

≥0. 
For this purpose, we prepare several lemmas.

Lemma 3.3.3. Let Λ ∈ P and i ∈ I, and assume that u ∈ ±B(Λ).

(1) If

f
(n)
i u ∈ ±B(Λ) ∪ {0} for all n > 0,

then we have e(n)
i u ∈ ±B(Λ) ∪ {0} for all n > 0.

(2) In particular, if fiu = 0 then e(n)
i u ∈ ±B(Λ) ∪ {0} for all n > 0.

Proof. Let us prove the assertion (1) (note that (2) is just a special case). Since u ∈ ±B(Λ), it follows from 
Proposition 2.4.1 (4) that e(n)

i u is bar-invariant and e(n)
i u ∈ V (Λ)Z for any n > 0. Hence, again by the same 

proposition, it suffices to show that ‖e(n)
i u‖2 ∈ 1 + qsA for n > 0 such that e(n)

i u 
= 0. Set
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L1 = {v ∈ V (Λ) | ‖v‖2 ∈ 1 + qsA} ⊆ L(Λ).

Let λ ∈ P be the weight of u, and set λi = 〈hi, λ〉 ∈ Z. Write

u =
N∑

k=max(0,−λi)

f
(k)
i uk, where uk ∈ ker ei ∩ V (Λ)λ+kαi

.

Here we set N = max{k ∈ Z≥0 | uk 
= 0}. By Proposition 2.4.1 (2), it follows for every uk that

‖f (m)
i uk‖2 = ‖f̃m

i uk‖2 ∈ (1 + qsA)‖uk‖2 if 0 ≤ m ≤ 2k + λi. (3.3.3)

We shall show that uk ∈ q
k(λi+k)
i L1 for every k by the descending induction. For 0 ≤ n ≤ N + λi, we have

0 
= f
(n)
i u =

N∑
k=max(0,−λi)

[
k + n
k

]
i

f
(k+n)
i uk ∈ ±B(Λ) ⊆ L1 (3.3.4)

by the assumption. Since f (k+N+λi)
i uk = 0 for k < N , (3.3.4) with n = N+λi implies 

[
2N + λi

N

]
i

f
(2N+λi)
i uN

∈ L1. Hence we have uN ∈ q
N(N+λi)
i L1 by (3.3.3), and the induction begins. Next let k0 be an integer such 

that max(0, −λi) ≤ k0 < N . By (3.3.4) with n = k0 + λi, we have

N∑
k=k0

[
k + k0 + λi

k

]
i

f
(k+k0+λi)
i uk ∈ L1. (3.3.5)

It is easily checked from the admissibility that f (k+k0+λi)
i uk’s are pairwise orthogonal with respect to the 

polarization, and then it follows from (3.3.5) that f (2k0+λi)
i uk0 ∈ qk0(k0+λi)L1, since the induction hypothesis 

implies for k > k0 that [
k + k0 + λi

k

]
i

f
(k+k0+λi)
i uk ∈ q

k(k−k0)
i L1 ⊆ qsL(Λ).

Hence uk0 ∈ q
k0(k0+λi)
i L1 holds by (3.3.3), as required.

Now assume that 0 < n ≤ N . It follows from (2.1.3) that

e
(n)
i u =

N∑
k=max(0,−λi)

[
k + n + λi

n

]
i

f
(k−n)
i uk, (3.3.6)

and since we have

[
k + n + λi

n

]
i

f
(k−n)
i uk

{
∈ q

(k−n)(k+λi)
i L1 (k ≥ n),

= 0 (otherwise)

by the above argument, (3.3.6) and the pairwise orthogonality of f (l)
i uk’s imply e(n)

i u ∈ L1. Since e(n)
i u = 0

for n > N , this completes the proof. �
Lemma 3.3.4. Let p = (p1, p2, p3, p4) ∈ Z4

≥0. In V (−�Λ0), we have the following:
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(1) For any 1 ≤ k ≤ L, we have

fikE
(p3)
i[k−1,0]e

(p2)
1 e

(p1)
0 v−�Λ0 = eikE

(p3)
i[k,0]e

(p2)
1 e

(p1)
0 v−�Λ0 = 0.

(2) For any i ∈ I01 such that 〈hi, θ1〉 = 0, we have fiE
(p3)
i e

(p2)
1 e

(p1)
0 v−�Λ0 = 0.

(3) For any 1 ≤ k ≤ L′, we have

fjkE
(p4)
j[k−1,0]E

(p3)
i e

(p2)
1 e

(p1)
0 v−�Λ0 = ejkE

(p4)
j[k,0]E

(p3)
i e

(p2)
1 e

(p1)
0 v−�Λ0 = 0.

(4) For any i ∈ J such that 〈hi, θJ〉 = 0, we have fiE
(p4)
j E

(p3)
i e

(p2)
1 e

(p1)
0 = 0.

Proof. Set v = e
(p2)
1 e

(p1)
0 v−�Λ0 and Λ = wtP (v) = −�Λ0 + p1α0 + p2α1.

(1) We have

s−1
i[k−1,1]wtP (fikE

(p3)
i[k−1,0]v) = Λ + p3α2 − s−1

i[k−1,1](αik),

and since s−1
i[k−1,1](αik) is a positive root in RI0\{1,2} by Lemma 3.1.1 (1) and (4), the right-hand side does 

not belong to −�Λ0 + Q+. Hence fikE
(p3)
i[k−1,0]v = 0 holds. Since 〈hik , wt(E(p3)

i[k−1,0]v)〉 = −cgp3, we also have 

e
(cgp3+1)
ik

E
(p3)
i[k−1,0]v = 0, and the proof of (1) is complete.

(2) We have

s−1
i[L,1]wt(fiE(p3)

i v) = Λ + p3α2 − s−1
i[L,1](αi), (3.3.7)

and s−1
i[L,1](αi) ∈ R+

1 by Lemma 3.1.1 (5). Moreover, we have s−1
i[L,1](αi) 
= α2 since αi 
= θ1, and hence the 

right-hand side of (3.3.7) does not belong to −�Λ0 + Q+, which implies (2).
(3) Set W = Uq(gJ)E(p3)

i v. The assertion (2), together with Lemma 3.1.1 (2), implies that Wλ = 0 unless 
λ ∈ Λ + p3θ1 +Q+. Using this, the assertion (3) is proved by a similar argument to that of (1). Finally the 
proof of the assertion (4) is similar to that of (2). �
Lemma 3.3.5. Let � ∈ Z>0.

(1) For any (p1, . . . , p5) ∈ Z5
≥0, the vector

e
(p5)
2 E

(p4)
j E

(p3)
i e

(p2)
1 e

(p1)
0 v−�Λ0

in V (−�Λ0) belongs to ±B(−�Λ0) ∪ {0}.
(2) For any p = (p1, . . . , p5) ∈ Z5

≥0, Epv−�Λ0 ∈ V (−�Λ0) belongs to ±B(−�Λ0) ∪ {0}.

Proof. Obviously,

f0v−�Λ0 = f1e
(p1)
0 v−�Λ0 = f2e

(p2)
1 e

(p1)
0 v−�Λ0 = 0

holds. Then the assertion (1) is proved by applying Lemma 3.3.3 (2) repeatedly using Lemma 3.3.4. For any 
n > 0, it is easily seen using (2.1.3) that

f
(n)
1 e

(p4)
2 E

(p3)
j E

(p2)
i e

(p1)
10 v−�Λ0 = e

(p4)
2 E

(p3)
j E

(p2)
i e

(p1−n)
1 e

(p1)
0 v−�Λ0 ,

which belongs to ±B(−�Λ0) ∪{0} by (1). Hence it follows from Lemma 3.3.3 that Epv−�Λ0 ∈ ±B(−�Λ0) ∪{0}. 
The assertion (2) is proved. �
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Now we prove the following.

Proposition 3.3.6. Let � ∈ Z>0. For any p ∈ Z5
≥0, the vector Epv��2 ∈ V (��2) belongs to ±B(��2) ∪ {0}.

Proof. By Lemma 3.3.5 (2) and (2.4.1), we have

v�Λ2 ⊗ Epv−3�Λ0 ∈ ±B(�Λ2,−3�Λ0) ∪ {0},

and then Lemma 2.4.2 implies that Epv��2 ∈ ±B(��2) ∪ {0} as required, since �2 = Λ2 − 3Λ0. �
Next we will show that ‖Epv��2‖2

V (��2) = ‖Epw⊗�
1 ‖2

(W 1)⊗� for p ∈ Z5
≥0. Before doing that we prepare a 

lemma, which is also used in the next subsection.

Lemma 3.3.7. Let M1, . . . , Mn be integrable U ′
q(g)-modules, λ = (λ1, . . . , λn) an n-tuple of elements of Pcl, 

and uk ∈
(
Mk)λk

(1 ≤ k ≤ n). Assume that each uk satisfies eiuk = 0 for i ∈ I0. Then for any p ∈ Z5
≥0, 

the vector Ep(u1 ⊗ · · · ⊗ un) ∈ M1 ⊗ · · · ⊗Mn can be written in the form

Ep(u1 ⊗ · · · ⊗ un) =
∑

p1,...,pn∈Z5
≥0;

p1+···+pn=p

qm(p1,...,pn:λ)Ep1u1 ⊗ · · · ⊗Epnun, (3.3.8)

where m(p1, . . . , pn : λ) ∈ D−1Z are certain numbers depending only on p1, . . . , pn and λ.

Proof. By the definition of the coproduct, Ep(u1 ⊗ · · · ⊗ un) is a sum of vectors of the form

qm
n⊗

k=1

e
(sk)
1 e

(rk)
2 e

(hkL′ )
jL′ · · · e(hk0)

j0
e
(gkL)
iL

· · · e(gk0)
i0

e
(bk)
1 e

(ak)
0 uk. (3.3.9)

Since e(bk)
1 e

(ak)
0 uk = 0 if bk > ak by (2.1.1) and 

∑
k ak =

∑
k bk = p1, the vector (3.3.9) becomes 0 unless 

ak = bk for all k.
Take a sufficiently large positive integer �. For any k, there is a Uq(n+)-module homomorphism from 

V (−�Λ0) to Mk mapping v−�Λ0 to uk, which follows from the well-known fact that V (−�Λ0) is generated 
by v−�Λ0 as a Uq(n+)-module with relations

e�+1
0 v−�Λ0 = 0 and eiv−�Λ0 = 0 (i ∈ I0).

Then since 
∑

k gkt = 2p2 if g is of type F (1)
4 and t 
= 0 and 

∑
k gkt = p2 otherwise, we see from Lemma 3.3.4

(1) that the vector (3.3.9) becomes 0 unless cggk0 = gk1 = · · · = gkL for all k. By a similar argument 
using Lemma 3.3.4 (3), we also see that the vector (3.3.9) with cggk0 = gk1 = · · · = gkL becomes 0 unless 
cghk0 = hk1 = · · · = hkL′ for all k. The proof is complete. �
Proposition 3.3.8. Let � ∈ Z>0 and p ∈ Z5

≥0.

(1) We have ‖Epv��2‖2
V (��2) = ‖Epw⊗�

1 ‖2
(W 1)⊗� .

(2) If Epw⊗�
1 
= 0, we have ‖Epw⊗�

1 ‖2 ∈ 1 + qsA.

Proof. (1) First we show the following:

‖Epv��2‖2
V (�� ) = ‖Epv⊗�

� ‖2
V (� )⊗� for p ∈ Z5

≥0. (3.3.10)

2 2 2
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By [18], there exists an injective Uq(g)-module homomorphism Φ from V (��2) to V (�2)⊗� mapping 
v��2 to v⊗�

�2
. Although Φ does not preserve the values of the polarizations in general, the relations between 

( , )V (��2) and ( , )V (�2)⊗� are explicitly described in [loc. cit.], which we recall here. Define a Q(qs)[t±1]-
valued bilinear form ( ( , ) )t on V (�2) by

((u, v))t =
∑
k∈Z

tm(z−m
2 u, v)V (�2),

where z2 is the automorphism on V (�2) in Subsection 2.5. Define a Q(qs)[t±1
1 , . . . , t±1

� ]-valued bilinear form 
( ( , ) ) on V (�2)⊗� by ((

�⊗
k=1

uk,

�⊗
k=1

vk

))
=

�∏
k=1

((uk, vk))tk .

Then by [18, Proposition 4.10], it holds for u, v ∈ V (��2) that

(u, v) = 1
�!

⎡⎣((Φ(u),Φ(v)))
∏
k �=m

(1 − tkt
−1
m )

⎤⎦
1

, (3.3.11)

where [f ]1 denotes the constant term in f .
For p, p′ ∈ Z5

≥0 such that p 
= p′, we have (Epw1, Ep′
w1)W 1 = 0 by Lemma 3.3.1. Then by (2.5.1), this, 

together with the weight consideration, implies

(z−m
2 Epv�2 , E

p′
v�2)V (�2) = 0 unless p = p′ and m = 0.

Hence in particular, it follows that

((Epv�2 , E
p′
v�2))t = (Epv�2 , E

p′
v�2)V (�2) for p,p′ ∈ Z5

≥0, (3.3.12)

which implies ( (Epv⊗�
�2

, Ep′
v⊗�
�2

) ) = (Epv⊗�
�2

, Ep′
v⊗�
�2

)V (�2)⊗� by Lemma 3.3.7. Now Equation (3.3.11) implies 
for p ∈ Z5

≥0 that

‖Epv��2‖2
V (��2) = 1

�!

⎡⎣((Epv⊗�
�2

, Epv⊗�
�2

))
∏
k �=m

(1 − tkt
−1
m )

⎤⎦
1

= ‖Epv⊗�
�2

‖2
V (�2)⊗� ·

1
�!

⎡⎣∏
k �=m

(1 − tkt
−1
m )

⎤⎦
1

= ‖Epv⊗�
�2

‖2
V (�2)⊗� ,

and the claim (3.3.10) is proved.
In order to verify the assertion (1), by (3.3.10) it suffices to show ‖Epv⊗�

�2
‖2
V (�2)⊗� = ‖Epw⊗�

1 ‖2
(W 1)⊗� for 

p ∈ Z5
≥0. We see from (2.5.1) that

(p(u), p(v)) = ((u, v))t
∣∣
t=1 for u, v ∈ V (�2).

Hence by (3.3.12), we have

(Epw1, E
p′
w1)W 1 = (Epv�2 , E

p′
v�2)V (�2) for p,p′ ∈ Z5

≥0,

and then ‖Epv⊗�
� ‖2

⊗� = ‖Epw⊗�
1 ‖2

1 ⊗� follows by Lemma 3.3.7. The assertion (1) is proved.

2 V (�2) (W )
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(2) Since ( , )(W 1)⊗� is positive definite, v ∈ (W 1)⊗� satisfies ‖v‖2 = 0 if and only if v = 0. Hence the 
assertion (2) follows from (1), Proposition 3.3.6 and Proposition 2.4.1 (3). �
Proposition 3.3.9. Let � ∈ Z>0. If p ∈ S�, then Epw⊗�

1 
= 0, and hence ‖Epw⊗�
1 ‖2 ∈ 1 + qsA follows from 

Proposition 3.3.8.

Proof. Let us prove the assertion by the induction on �. First assume that � = 1. In this case, we have

S1 = {0, ε1, ε1 + ε2, (2, 1, 1, 1, 1)}.

If p ∈ S1\{ε1+ε2}, Epv�2 
= 0 is checked from the following elementary fact: for an integrable U ′
q(g)-module 

M , λ ∈ Pcl and i ∈ I,

if u ∈ Mλ \ {0}, then e
(k)
i u 
= 0 for 0 ≤ k ≤ −〈hi, λ〉. (3.3.13)

On the other hand, by Proposition 2.5.1 we have

‖e2e1e0w1‖2 = q−1(e1e0w1, f2e2e1e0w1) = q−1(e1e0w1, e2e1e0f2w1)

= ‖e1e0f2w1‖2 = q−1(e0f2w1, e1e0f1f2w1)

= ‖e0f1f2w1‖2 = q(f1f2w1, f0e0f1f2w1) = q[2]‖f1f2w1‖2 = q[2].

Hence we have e2e1e0w1 
= 0, and then Eε1+ε2w1 
= 0 is proved by applying (3.3.13). Thus the case � = 1
is proved.

Assume � > 1. By Lemma 3.3.7, Epw⊗�
1 can be written in the form

Ep(w1 ⊗ w
⊗(�−1)
1 ) =

∑
p1+p2=p

qm(p1,p2:�1,(�−1)�1)Ep1w1 ⊗Ep2w
⊗(�−1)
1 ,

and for the vectors {Ep1w1 | p1 ∈ Z5
≥0 such that Ep1w1 
= 0} are linearly independent by Lemma 3.3.1, it 

is enough to show the existence of p1 satisfying

Ep1w1 
= 0 and Ep−p1w
⊗(�−1)
1 
= 0. (3.3.14)

If p1 < p4 + �, then p1 = 0 satisfies (3.3.14) by the induction hypothesis since p ∈ S�−1. Assume that 
p1 = p4 + �, and set k0 = max{1 ≤ k ≤ 5 | pk 
= 0}. If k0 
= 2, set p1 = (2, 1, . . . , 1︸ ︷︷ ︸

k0

, 0, . . . , 0). That 

Ep1w1 
= 0 follows from (3.3.13), and it is easily checked that p − p1 ∈ S�−1. Therefore (3.3.14) holds. 
Finally if k0 = 2, p1 = (1, 1, 0, 0, 0) satisfies (3.3.14). The proof is complete. �

The following lemma connects values of the prepolarizations on (W 1)⊗� and W �.

Lemma 3.3.10. Let � ∈ Z>0, and X, Y ∈ U ′
q(g). Suppose that the images of X, Y under the �-iterated 

coproduct Δ(�) : U ′
q(g) → U ′

q(g)⊗� are written in the forms

Δ(�)(X) =
N1∑
k=1

fk(qs)Xk,1 ⊗Xk,2 ⊗ · · · ⊗Xk,�, and

Δ(�)(Y ) =
N2∑
m=1

gm(qs)Ym,1 ⊗ Ym,2 ⊗ · · · ⊗ Ym,�
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respectively, where N1, N2 ∈ Z≥0, fk, gk ∈ Q(qs), and Xk,j , Ym,j ∈ U ′
q(g) are vectors homogeneous with 

respect to the Q-grading. We further assume that, for any 1 ≤ k ≤ N1 and 1 ≤ m ≤ N2,

if
�∏

j=1
(Xk,jw1, Ym,jw1)W 1 
= 0, then wtP (Xk,j) = wtP (Ym,j) for all 1 ≤ j ≤ �. (3.3.15)

Then we have (Xw⊗�
1 , Y w⊗�

1 )(W 1)⊗� = (Xw�, Y w�)W � .

Proof. By (2.5.3), we have

(Xw�, Y w�)W � =
(
X
(
ι�−1(w1) ⊗ · · · ⊗ ι1−�(w1)

)
, Y
(
ι1−�(w1) ⊗ · · · ⊗ ι�−1(w1)

))
0
. (3.3.16)

For an arbitrary homogeneous vector Z ∈ U ′
q(g)β and k ∈ Z, we have

Zιk(w1) = qk〈d,β〉ιk(Zw1).

Hence setting wtP (Xk,j) = βk,j and wtP (Ym,j) = γm,j , it follows that

X
(
ι�−1(w1) ⊗ · · · ⊗ ι1−�(w1)

)
=
∑
k

fk(qs)q
∑

j(�+1−2j)〈d,βk,j〉ι(Xk,1w1) ⊗ · · · ⊗ ι(Xk,�w1),

and

Y
(
ι1−�(w1) ⊗ · · · ⊗ ι�−1(w1)

)
=
∑
m

gm(qs)q
∑

j(2j−�−1)〈d,γm,j〉ι(Ym,1w1) ⊗ · · · ⊗ ι(Ym,�w1).

Then we have

(3.3.16) =
∑
k,m

fk(qs)gm(qs)q
∑

j(�+1−2j)〈d,βk,j−γm,j〉
∏
j

(Xk,jw1, Ym,jw1)W 1

=
∑
k,m

fk(qs)gm(qs)
∏
j

(Xk,jw1, Ym,jw1)W 1 = (Xw⊗�
1 , Y w⊗�

1 )(W 1)⊗�

by the assumption, and the assertion is proved. �
Now the following proposition, together with Proposition 3.3.9, completes the proof of (C2) in Proposi-

tion 3.1.2.

Proposition 3.3.11. Let � ∈ Z>0. For any p ∈ Z5
≥0, we have ‖Epw⊗�

1 ‖2
(W 1)⊗� = ‖Epw�‖2

W � .

Proof. It suffices to show that X = Y = Ep satisfy the assumptions of Lemma 3.3.10. The vector Δ(�)(Ep)
can be written in the form 

∑
k q

mk
s qHk1Ek1 ⊗· · ·⊗ qHk�Ek�, where mk ∈ Z, Ekj are some products of e(m)

i ’s 
and Hkj ∈ D−1P ∗

cl. By Lemma 3.3.7, qHk1Ek1w1 ⊗ · · · ⊗ qHk�Ek�w1 = 0 unless Ekj = Epj (1 ≤ j ≤ �) for 
some pj ∈ Z5

≥0, and then 
∏

j(qHkjEkjw1, qHmjEmjw1) 
= 0 implies Ekj = Emj for all j by Lemma 3.3.1. 
Hence (3.3.15) is obviously satisfied, and the proof is complete. �
3.4. Proof of (C3) in Proposition 3.1.2

First we show the case i = 1. The proof is similar to [19, proof of Eq. (3.3) with i = 1]. We reproduce it 
here for the reader’s convenience.
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Lemma 3.4.1. For any p ∈ S�, we have

‖e1E
pw�‖2 ∈ q−2〈h1,wt(p)〉A.

Proof. Set

p = 〈h1,wt(p)〉 = p1 − p2 − p3 − p4 + 2p5 − p6 ≥ 0.

We have

‖e1E
pw�‖2 = q−p−1(Epw�, f1e1E

pw�) = q−p−1
(
[−p]‖Epw�‖2 + (Epw�, e1f1E

pw�)
)

≡ q−2p‖f1E
pw�‖2 mod q−2pA,

where we have used the fact ‖Epw�‖2 ∈ 1 + qsA by (C2) (which we have already proved). Hence it suffices 
to show that ‖f1E

pw�‖2 ∈ A. Set r = 3� − p1 + p5. It is easily checked that f (k)
0 f1E

p−p6ε6w� = 0 for k > 1, 
and hence we have

‖f1E
pw�‖2 = qp6(r−p6−1)(f1E

p−p6ε6w�, f
(p6)
0 e

(p6)
0 f1E

p−p6ε6w�)

= qp6(r−p6−1)
([

r − 1
p6

]
‖f1E

p−p6ε6w�‖2 +
[
r − 1
p6 − 1

]
(f1E

p−p6ε6w�, e0f0f1E
p−p6ε6w�)

)
∈ ‖f1E

p−p6ε6w�‖2A + q2(r−p6)‖f0f1E
p−p6ε6w�‖2A. (3.4.1)

It follows that

‖f1E
p−p6ε6w�‖2 = qp+p6−1(Ep−p6ε6w�, e1f1E

p−p6ε6w�)

= qp+p6−1
(
[p + p6]‖Ep−p6ε6w�‖2 + (Ep−p6ε6w�, f1e1E

p−p6ε6w�)
)

= qp+p6−1
(
[p + p6]‖Ep−p6ε6w�‖2 + qp+p6+1[p5 + 1]2‖Ep+ε5−p6ε6w�‖2

)
∈ A.

Moreover, it is easily checked that

f0f1E
p−p6ε6w� = [3�− p1 + 1]Ep−ε1−p6ε6 ,

and hence it also follows that

q2(r−p6)‖f0f1E
p−p6ε6w�‖2 = q2(r−p6)[3�− p1 + 1]2‖Ep−ε1−p6ε6w�‖2 ∈ q2(p5−p6)A ⊆ A.

Hence ‖f1E
pw�‖2 ∈ A follows from (3.4.1), and the proof is complete. �

When we show (C3) for i ∈ I0\{1}, as we did in the proof of (C2), we may assume that p ∈ S�

(
= S�∩Z5

≥0
)

by the following lemma.

Lemma 3.4.2. For any p = (p1, . . . , p6) ∈ Z6
≥0 such that p1 − p5 + p6 ≤ 3� and i ∈ I0 \ {1}, we have 

‖eiEpw�‖2 ∈ (1 + qA)‖eiEp−p6ε6w�‖2.

Proof. Since eiEpw� = e
(p6)
0 eiE

p−p6ε6w�, the same proof for Lemma 3.3.2 holds here. �
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Our next goal is to give estimates for the values ‖eiEpw⊗�
1 ‖2 (i ∈ I0 \ {1}). For this purpose, let us 

prepare some lemmas. The proof of the following lemma is almost the same with that of Lemma 3.3.3, with 
L1 replaced by L(Λ).

Lemma 3.4.3. Let Λ ∈ P and i ∈ I, and assume that u ∈ V (Λ) is a weight vector. If f (n)
i u ∈ L(Λ) for all 

n ∈ Z≥0, then e(n)
i u ∈ L(Λ) for all n > 0.

Lemma 3.4.4. Let Λ, λ ∈ P , i ∈ I, and u ∈ V (Λ)λ, and assume that

u ∈ qaL(Λ), and fiu ∈ qbL(Λ)

for some a, b ∈ D−1Z. Set ri = (αi, αi)/2.

(1) We have

eiu ∈ qmin(a,b−ri〈hi,λ〉)L(Λ).

(2) Further assume that 〈hi, λ〉 ≤ 0 and f (2)
i u = 0. Then we have

e
(n)
i u ∈ qmin(a,b−ri(〈hi,λ〉+n−1))L(Λ) for any n > 0.

Proof. Set λi = 〈hi, λ〉 ∈ Z, and write

u =
N∑

k=max(0,−λi)

f
(k)
i uk, where uk ∈ ker ei ∩ V (Λ)λ+kαi

.

We have

fiu =
N∑

k=max(0,−λi)

[k + 1]if (k+1)
i uk ∈ qbL(Λ),

and since f (k+1)
i uk’s are pairwise orthogonal with respect to ( , ), it follows from Proposition 2.4.1 (4) that 

[k + 1]if (k+1)
i uk ∈ qbL(Λ) for every k. Then since f (k+1)

i uk 
= 0 for k ≥ max(0, −λi + 1) such that uk 
= 0, 
we have

uk ∈ qb+rikL(Λ) for max(0,−λi + 1) ≤ k ≤ N (3.4.2)

by Proposition 2.4.1 (2). We have

eiu =
N∑

k=max(1,−λi)

[k + λi + 1]if (k−1)
i uk,

and hence if λi ≥ 0, (3.4.2) implies eiu ∈ qb−riλiL(Λ) and the assertion (1) holds. When λi < 0, we need to 
show further that

f
(−λi−1)
i u−λi

∈ qmin(a,b−riλi)L(Λ). (3.4.3)

Similarly as above, we see that u ∈ qaL(Λ) implies uk ∈ qaL(Λ) for all k, and hence (3.4.3) follows. The proof 
of (1) is complete. Under the assumption of (2), we may put N = −λi+1 and we have e(n)

i u = f
(−λi−n)
i u−λi

+
[n + 1]if (−λi+1−n)

i u−λi+1, which belongs to qmin(a,b−ri(λi+n−1))L(Λ). Hence (2) is also proved. �
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Lemma 3.4.5. Assume that the sequence i satisfies the following condition: there exists 1 ≤ m ≤ L such that 
im, im+1, . . . , iL are pairwise distinct, c2im < 0, and cikik+1 = −1 for m ≤ k ≤ L − 1.1 Let � ∈ Z>0 and 
(p1, p2, p3, p4) ∈ Z4

≥0, and set

vk = fikfik+1 · · · fiLE
(p3)
i e

(p2)
1 e

(p1)
0 v−�Λ0 ∈ V (−�Λ0) for m ≤ k ≤ L.

(1) We have

vk = e
(cgp3−1)
i[L,k] E

(p3)
i[k−1,0]e

(p2)
1 e

(p1)
0 v−�Λ0 for m ≤ k ≤ L.

(2) We have vk ∈ ±B(−�Λ0) ∪ {0} for m ≤ k ≤ L.
(3) If g is not of type E(2)

6 , we have

E
(p4)
i[k−1,m]e

(p4)
2 vk ∈ ±B(−�Λ0) ∪ {0} for m ≤ k ≤ L. (3.4.4)

On the other hand if g is of type E(2)
6 , we have

E
(p4)
i[k−1,m]e

(p4)
2 vk ∈ qmin(0,p3−p4−1)L(−�Λ0) for m ≤ k ≤ L.

Proof. The assertion (1) is easily proved using (2.1.3) and Lemma 3.3.4 (1).
(2) Set v = e

(p2)
1 e

(p1)
0 v−�Λ0 and Λ = wtP (v) = −�Λ0 + p1α0 + p2α1, and fix m ≤ k ≤ L. By (the proof 

of) Lemma 3.3.5, we have

e
(cgp3−1)
ik

E
(p3)
i[k−1,0]v ∈ ±B(−�Λ0) ∪ {0}. (3.4.5)

For each k < k′ ≤ L, we have

s−1
i[k′−1,1]wtP (fik′ e

(cgp3−1)
i[k′−1,k]E

(p3)
i[k−1,0]v) = Λ + p3α2 − s−1

i[k′−1,1](αik + · · · + αik′ )

= Λ + p3α2 − s−1
i[L,1](αik + · · · + αik′−1) (3.4.6)

by the assumption on i. We have 〈hiL , θ1〉 > 0 by the condition (3.1.2) on i, and then it is easily checked 
that 〈hir , θ1〉 = 0 for m ≤ r ≤ L − 1 (see Fig. 1 and Table 1). Hence (3.4.6) does not belong to −�Λ0 + Q+

by Lemma 3.1.1 (5), which implies fik′ e
(cgp3−1)
i[k′−1,k]E

(p3)
i[k−1,0]v = 0 for all k′. Now the assertion (2) follows 

from (3.4.5) by applying Lemma 3.3.3 (2) repeatedly.
(3) First assume that g is not of type E(2)

6 . We shall prove the assertion by the induction on k. In the 
case k = m, since vm ∈ ±B(−�Λ0) ∪{0} by (2) it suffices to show that f2vm = 0, and as above, this is done 
by checking s−1

i[L,1]wtP (f2vm) /∈ −�Λ0 + Q+. Hence the induction begins. Assume that k > m. It follows 
from Lemma 3.3.4 (2) that

f2vk = fik · · · fiLf2E
(p3)
i v = 0,

and

fik′E
(p4)
i[k′−1,m]e

(p4)
2 vk = fik · · · fiLE

(p4)
i[k′−1,m]e

(p4)
2 fik′E

(p3)
i v = 0 for any m ≤ k′ ≤ k − 2.

1 If g is not of type E(1)
6 , this condition, together with the condition (3.1.2) on i, uniquely determines the sequence 

(iL, iL−1, . . . , im) (see Fig. 1 and Table 1). In type E(1)
6 , on the other hand, there are two possibilities; (5, 3) or (6, 4).
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Hence we have E(p4)
i[k−2,m]e

(p4)
2 vk ∈ ±B(−�Λ0) ∪ {0}. Since

f
(p)
ik−1

E
(p4)
i[k−2,m]e

(p4)
2 vk = δp1E

(p4)
i[k−2,m]e

(p4)
2 vk−1 for p ∈ Z>0,

(3.4.4) is now proved from the induction hypothesis and Lemma 3.3.3.
Next assume that g is of type E(2)

6 . In this case i = (432), L = 2, m = 1 and

vk = e
(p3−1)
4 e

(p3−δk1)
3 e

(p3)
2 e

(p2)
1 e

(p1)
0 v−�Λ0 (k = 1, 2).

We have

f
(p)
2 v1 =

{
[p2 − p3 + 1]e(p3−1)

432 e
(p2)
1 e

(p1)
0 v−�Λ0 ∈ q−p2+p3L(−�Λ0) (p = 1),

0 (p ∈ Z>1)

(note that v1 = 0 if p3 > p2), and hence it follows from Lemma 3.4.4 (2) that e(p4)
2 v1∈ qmin(0,p3−p4−1)L(−�Λ0). 

On the other hand, since f2v2 = 0 we have e(p4)
2 v2 ∈ ±B(−�Λ0) ∪ {0}, and then e(p4)

3 e
(p4)
2 v2 ∈

qmin(0,p3−p4−1)L(−�Λ0) also follows since f (p)
3 e

(p4)
2 v2 = δp1e

(p4)
2 v1 for p ∈ Z>0. The proof is complete. �

Lemma 3.4.6. Let � ∈ Z>0 and p = (p1, . . . , p5) ∈ Z5
≥0.

(1) We have

e2E
pv−�Λ0 ∈ qmin(0,−p4+p5)L(−�Λ0).

(2) If g is not of type E(2)
6 and i ∈ I0 \ {1, 2}, we have

eiE
pv−�Λ0 ∈ q

min(0,−〈hi,wt(p)〉)
i L(−�Λ0).

(3) If g is of type E(2)
6 , we have

e3E
pv−�Λ0 ∈ q2 min(0,−p3+p4)−δp3,p4L(−�Λ0), and

e4E
pv−�Λ0 ∈ q2 min(0,−p2+p3)−δp2,p3L(−�Λ0).

Proof. (1) It suffices to show that f2E
pv−�Λ0 ∈ q−p1+p4L(−�Λ0) by Lemmas 3.3.5 and 3.4.4. Since 

f2E
(p3)
j E

(p2)
i E

(p1)
10 v−�Λ0 = 0 by Lemma 3.3.4 (4), it follows from the weight consideration that Epv−�Λ0 = 0

if p4 > p1, and hence we may assume that p4 ≤ p1. By a direct calculation, we have

f2E
pv−�Λ0 = [p1 − p4 + 1]Ep−ε4v−�Λ0 ,

which belongs to q−p1+p4L(−�Λ0), as required.
(2) It suffices to show that fiEpv−�Λ0 ∈ L(−�Λ0). The proof is divided into three cases. First assume 

that 〈hi, θ1〉 = 〈hi, θJ〉 = 0. In this case Lemma 3.3.4 implies fiEpv−�Λ0 = 0, and hence the assertion holds. 
Next assume that 〈hi, θJ〉 > 0. By Lemma 3.1.1 (6), we may assume that the sequence j is chosen so that 
jL′ = i. For each n ∈ Z≥0, set

vn = e
(cgp3−1)
i E

(p3)
j[L′−1,0]E

(p2)
i e

(p1−n)
1 e

(p1)
0 v−�Λ0 .

We easily see using Lemma 3.3.4 (3) that
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fiE
pv−�Λ0 = e

(p5)
1 e

(p4)
2 v0, and f

(n)
1 e

(p4)
2 v0 = e

(p4)
2 vn for any n ∈ Z≥0. (3.4.7)

Hence by Lemma 3.4.3, it suffices to show that e(p4)
2 vn ∈ ±B(−�Λ0) ∪ {0} ⊆ L(−�Λ0) for any n. We have 

vn ∈ ±B(−�Λ0) ∪{0} by (the proof of) Lemma 3.3.5. Since α2 +αi is a positive root (see Table 1), we have

s−1
j[L′,1]wtP (f2vn) = wtP (E(p2)

i e
(p1−n)
1 e

(p1)
0 v−�Λ0) + p3α2 − s−1

j[L′,1](α2 + αi)

/∈ wtP (E(p2)
i e

(p1−n)
1 e

(p1)
0 v−�Λ0) + Q+,

and the same argument as in the proof of Lemma 3.3.4 (3) shows that this implies f2vn = 0. Hence 
e
(p4)
2 vn ∈ ±B(−�Λ0) ∪ {0} holds, as required. Finally assume that 〈hi, θ1〉 > 0. We may assume that 

the sequence i is chosen so that iL = i, and the assumption of Lemma 3.4.5 is satisfied. Let m be as 
in the assumption. Further, we may also assume that the sequence j is chosen so that jk = im+k−1 for 
1 ≤ k ≤ L −m. For each n ∈ Z≥0, set

un = fiE
(p2)
i e

(p1−n)
1 e

(p1)
0 v−�Λ0 = e

(cgp2−1)
i E

(p2)
i[L−1,0]e

(p1−n)
1 e

(p1)
0 v−�Λ0 .

As above it is enough to show for any n that

e
(p4)
2 E

(p3)
j un ∈ ±B(−�Λ0) ∪ {0}. (3.4.8)

It follows from Lemma 3.4.5 (3) that E(p3)
j[L−m,0]un ∈ ±B(−�Λ0) ∪{0}. We easily see from Fig. 1 and Table 1

that

{j ∈ J | cij 
= 0} = {iL−1}, and #{1 ≤ k ≤ L′ | jk = iL−1} = 1.

Then, since jL−m = iL−1, we have cijk = 0 for L −m < k ≤ L′, and hence we have

fjkE
(p3)
j[k−1,0]un = fifjkE

(p3)
j[k−1,0]E

(p2)
i e

(p1−n)
1 e

(p1)
0 v−�Λ0 = 0 for all L−m < k ≤ L′

by Lemma 3.3.4. Similarly, f2E
(p3)
j un = 0 is proved. Now (3.4.8) is shown using Lemma 3.3.3, and the proof 

of (2) is complete.
(3) We shall prove

f3E
pv−�Λ0 = e

(p5)
1 e

(p4)
2 e

(p3−1)
3 e

(p3)
2 e

(p2)
432 e

(p1)
10 v−�Λ0 ∈ qmin(0,p3−p4−1)L(−�Λ0),

which implies the former assertion by Lemma 3.4.4, and for this it is enough to show for any n ∈ Z≥0 that

f
(n)
1 e

(p4)
2 e

(p3−1)
3 e

(p3)
2 e

(p2)
432 e

(p1)
10 v−�Λ0 = e

(p4)
2 e

(p3−1)
3 e

(p3)
2 e

(p2)
432 e

(p1−n)
1 e

(p1)
0 v−�Λ0

∈ qmin(0,p3−p4−1)L(−�Λ0) (3.4.9)

by Lemma 3.4.3. We have

e
(p3−1)
3 e

(p3)
2 e

(p2)
432 e

(p1−n)
1 e

(p1)
0 v−�Λ0 ∈ ±B(−�Λ0) ∪ {0} ⊆ L(−�Λ0),

and since

f
(p)
2 e

(p3−1)
3 e

(p3)
2 e

(p2)
432 e

(p1−n)
1 e

(p1)
0 v−�Λ0

=
{

[p1 − n− p3 + 1]e(p3−1)
32 e

(p2)
432 e

(p1−n)
1 e

(p1)
0 v−�Λ0 ∈ q−p1+p3+nL(−�Λ0) (p = 1),

0 (p ∈ Z>1)
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(note that the left-hand side is 0 if p3 > p1 − n), (3.4.9) follows from Lemma 3.4.4, as required. The latter 
assertion is proved in a similar manner using Lemma 3.4.5. �

Now we obtain the following estimates for ‖eiEpw⊗�
1 ‖2.

Proposition 3.4.7. Let � ∈ Z>0 and p = (p1, . . . , p5) ∈ Z5
≥0.

(1) We have

‖e2E
pw⊗�

1 ‖2 ∈ q2 min(0,−p4+p5)A.

(2) If i ∈ I0 \ {1, 2}, we have

‖eiEpw⊗�
1 ‖2 ∈ q

2 min(0,−〈hi,wt(p)〉)−1
i A.

Proof. By (2.4.1), Lemma 2.4.2, [18, Theorem 1 (2)] and the definition of L(W 1), we have

p⊗� ◦ Φ ◦ Ψ
(
v�Λ2 ⊗ L(−3�Λ0)

)
⊆ L(W 1)⊗�,

where Ψ: V (�Λ2) ⊗V (−3�Λ0) → V (��2) is the homomorphism given in the lemma, Φ: V (��2) ↪→ V (�2)⊗�

is the one satisfying Φ(v��2) = v⊗�
�2

, and p : V (�2) � W 1 is the canonical projection. The assertions follow 
from this and Lemma 3.4.6. �

Let M1, . . . , Mn and uk ∈ (Mk)λk
(1 ≤ k ≤ n) be as in Lemma 3.3.7. We see that the vector eiEp(u1 ⊗

· · · ⊗ un) for i ∈ I and p ∈ Z5
≥0 can be written in the form

eiE
p(u1 ⊗ · · · ⊗ up)

=
n∑

k=1

∑
p1,...,pn∈Z5

≥0;
p1+···+pn=p

qm(p1,...,pn:λ,i,k)Ep1u1 ⊗ · · · ⊗ eiE
pkuk ⊗ · · · ⊗ Epnun

(3.4.10)

with some m(p1, . . . , pn : λ, i, k) ∈ D−1Z. Now the following lemma, together with Proposition 3.4.7 (2), 
completes the proof of (C3) for i ∈ I0 \ {1, 2}.

Lemma 3.4.8. Let i ∈ I0 \ {1, 2}.

(1) If p, p′ ∈ Z5
≥0 satisfy (eiEpw1, Ep′

w1) 
= 0, then we have wtP (eiEp) = wtP (Ep′).
(2) For any p ∈ Z5

≥0 and � ∈ Z>0, we have

‖eiEpw⊗�
1 ‖2

(W 1)⊗� = ‖eiEpw�‖2
W � .

Proof. Since (eiEpw1, Ep′
w1) 
= 0 implies wtP (eiEp) ∈ wtP (Ep′) +Zδ, in order to prove (1) it is enough to 

show that (eiEpw1, Ep′
w1) = 0 if p5 
= p5. Since ej , fj (j = 0, 1) commute with ei, this follows from the same 

argument as in the proof of Lemma 3.3.1. Then we see from Lemma 3.3.1 and (3.4.10) that X = Y = eiE
p

satisfy the assumptions of Lemma 3.3.10, and hence the assertion (2) is proved. �
It remains to prove (C3) for i = 2 and p ∈ S�, which is more involved. We will prove the following 

stronger statement, and the proof will occupy the rest of this paper.
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Proposition 3.4.9. Let � ∈ Z>0. For any p = (p1, p2, p3, p4, p5) ∈ Z5
≥0, we have

‖e2E
pw�‖2 ∈ q2 min(0,−p4+p5,p1−p4−�)−1A. (3.4.11)

Lemma 3.4.10. Let � ∈ Z>0. If p ∈ Z5
≥0 satisfies (W 1)⊗� � Epw⊗�

1 
= 0, then p1 ≤ 3� and pj ≤ min(2�, p1)
for j ∈ {2, 3, 4}.

Proof. By Lemma 3.3.7, it is enough to show the assertion for � = 1. In this case, since 〈h0, �2〉 = −3 and 
f0w1 = 0, p1 ≤ 3 follows. Moreover, since

〈h2,wt(e(p1)
10 w1)〉 = −p1 + 1 and f

(2)
2 e

(p1)
10 w1 = 0,

we have e(p1+1)
2 e

(p1)
10 w1 = 0, which implies p2 ≤ p1. We easily see using Lemma 3.3.4 (2) that

V (�Λ2) ⊗ V (−3�Λ0) � f
(2)
2 E

(p2)
i e

(p1)
10 (vΛ2 ⊗ v−3Λ0) = 0,

and then the existence of the map p ◦Ψ: V (Λ2) ⊗V (−3Λ0) → W 1 implies that f (2)
2 E

(p2)
i e

(p1)
10 w1 = 0. Hence 

p3 ≤ p1 is proved by the weight consideration. Similarly p4 ≤ p1 is proved from Lemma 3.3.4 (4). Finally 
we have to show that pj ≤ 2 for j ∈ {2, 3, 4} even if p1 = 3. Similarly as above, these are deduced from the 
fact that f2e

(3)
10 w1 = 0, and this fact follows since w1 is an extremal weight vector (see [11, Theorem 5.17]). 

The proof is complete. �
In the sequel, we use the symbol

a = (1, 1, 1, 0, 1) ∈ Z5
≥0.

The difficulty in the case i = 2 is that the statements of Lemma 3.4.8 for i = 2 do not hold in general. 
Instead, we have the following.

Lemma 3.4.11. Let � ∈ Z>0, and assume that either w = w⊗�
1 ∈ (W 1)⊗� or w = w� ∈ W �. For any 

p, p′ ∈ Z5
≥0, we have

(e2E
pw,Ep′

w) = 0 unless p′ = p− a or p′ = p + ε4.

Proof. By the weight consideration, it is enough to show that (e2E
pw, Ep′

w) = 0 holds if p5 < p′5 or 
p5 − 1 > p′5. If p5 < p′5, the proof is similar to that of Lemma 3.3.1.

Assume that p5 − 1 > p′5. It follows from (2.1.2) that

(e2E
pw,Ep′

w) =
(
(e(p5−1)

1 e2e1 − [p5 − 1]e(p5)
1 e2)Ep−p5ε5w,Ep′

w). (3.4.12)

As in Lemma 3.3.1, it can be proved using p5 − 1 > p′5 that

(e(p5−1)
1 e2e1E

p−p5ε5w,Ep′
w) = 0 = (e(p5)

1 e2E
p−p5ε5w,Ep′

w),

and hence the right-hand side of (3.4.12) is zero. The proof is complete. �
We shall prove Proposition 3.4.9 by the induction on �. By Proposition 3.4.7 (1) with � = 1, we have

‖e2E
pw1‖2 ∈ q2 min(0,−p4+p5)A ⊆ q2 min(0,−p4+p5,p1−p4−1)−1A
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for any p ∈ Z5
≥0, and hence the induction begins. Throughout the rest of this section, fix � ∈ Z>0 and 

assume that (3.4.11) holds for this �. Our goal is to prove (3.4.11) with � replaced by � + 1, that is,

‖e2E
pw�+1‖2 ∈ q2 min(0,−p4+p5,p1−p4−�−1)−1A for any p ∈ Z5

≥0. (3.4.13)

From now on, we write

m(p1,p2) = m(p1,p2;�2, ��2) for p1,p2 ∈ Z5
≥0

for short (the right-hand side is defined in Lemma 3.3.7). For any p ∈ Z5
≥0 we have

Epw
⊗(�+1)
1 =

∑
p1,p2∈Z5

≥0;
p1+p2=p

qm(p1,p2)Ep1w1 ⊗ Ep2w⊗�
1 . (3.4.14)

Lemma 3.4.12. For p1, p2 ∈ Z5
≥0 with pk = (pk1, . . . , pk5), we have

m(p1,p2) = −
5∑

j=1
p1jp2j + (p12 + p13 + p14)p21

+ p15(−p21 + p22 + p23 + p24) + �(3p11 − p12 − p13 − p14).

Proof. Given weight vectors u1, u2 of some U ′
q(g)-modules, it follows for i ∈ I and p ∈ Z≥0 that

e
(p)
i (u1 ⊗ u2) =

∑
p1,p2∈Z≥0;
p1+p2=p

q
−p1(〈hi,wt(u2)〉+p2)
i e

(p1)
i u1 ⊗ e

(p2)
i u2.

In particular, if e(p1+1)
i u1 = 0, e(p2+1)

i u2 = 0 and 〈hi, wt(u2)〉 = −p2, it follows that e(p1+p2)
i (u1 ⊗ u2) =

e
(p1)
i u1 ⊗ e

(p2)
i u2. Using these equalities, the assertion is obtained straightforwardly by calculating the coef-

ficient of Ep1w1 ⊗ Ep2w⊗�
1 in Ep1+p2w

⊗(�+1)
1 . �

Lemma 3.4.13. Let p1, p2 ∈ Z5
≥0, and assume that Ep1w1 
= 0 and Ep2w⊗�

1 
= 0. Then m(p1, p2) ≥ 0 holds.

Proof. Let p = p1 + p2. By (3.4.14) and Lemma 3.3.1, it follows that

‖Epw
⊗(�+1)
1 ‖2 =

∑
p′

1+p′
2=p

q2m(p′
1,p

′
2)‖Ep′

1w1‖2‖Ep′
2w⊗�

1 ‖2.

Then Proposition 3.3.8 (2) implies that, if Ep′
1w1 and Ep′

2w⊗�
1 are both nonzero, then m(p′

1, p
′
2) ≥ 0. Hence 

the assertion is proved. �
For p ∈ Z5

≥0, we have

‖e2E
pw�+1‖2 =

(
e2E

p
(
ι�(w1) ⊗ ι−1(w�)

)
, e2E

p
(
ι−�(w1) ⊗ ι1(w�)

))
1

by Lemma 2.5.3, and
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e2E
p(ι±�(w1)⊗ι∓1(w�))

=
∑

p1,p2∈Z5
≥0;

p1+p2=p

qm(p1,p2)±�p11∓p21
(
ι±�(Ep1w1) ⊗ ι∓1(e2E

p2w�)

+ q−〈h2,wt(Ep2w�)〉ι±�(e2E
p1w1) ⊗ ι∓1(Ep2w�)

)
.

Set

x(p) = −〈h2,wt(Epw�)〉 = p1 − 2p4 + p5 − � for p ∈ Z5
≥0.

It follows from Lemma 3.4.11 that

‖e2E
pw�+1‖2 = Z1 + Z2 + Z3 + Z4,

where

Z1 =
∑

q2m(p1,p2)‖Ep1w1‖2 · ‖e2E
p2w�‖2,

Z2 = [2]q�+1

∑
qm(p1,p2)+m(p1−a,p2+a)+x(p2)(e2E

p1w1, E
p1−aw1)(Ep2w�, e2E

p2+aw�),

Z3 = 2
∑

qm(p1,p2)+m(p1+ε4,p2−ε4)+x(p2)(e2E
p1w1, E

p1+ε4w1)(Ep2w�, e2E
p2−ε4w�),

Z4 =
∑

q2m(p1,p2)+2x(p2)‖e2E
p1w1‖2 · ‖Ep2w�‖2.

Here all the sums are over the set {p1, p2 ∈ Z5
≥0 | p1+p2 = p}. Now it suffices to show that Z1+Z2+Z3+Z4

belongs to the subset of Q(qs) in (3.4.13).
First we shall show that Z2 does. For k ∈ Z, write

[k]+ =
{

[k] (k > 0)
0 (k ≤ 0)

.

Lemma 3.4.14. Let p ∈ Z5
≥0, and set k = p1 − p4 − � + 1.

(1) The vector (f2E
p − [k]+Ep−ε4)v��2 ∈ V (��2) belongs to ±B(��2) ∪ {0}.

(2) We have (f2E
p − [k]+Ep−ε4)w⊗�

1 ∈ L(W 1)⊗�.

Proof. (1) By Lemma 2.4.2, it is enough to show that (f2E
p − [k]+Ep−ε4)(v�Λ2 ⊗ v−3�Λ0) belongs to 

±B(�Λ2, −3�Λ0) ∪ {0}. The bar-invariance is obvious, and it is easily checked that

(f2E
p − [k]+Ep−ε4)(v�Λ2 ⊗ v−3�Λ0)

= f2v�Λ2 ⊗Epv−3�Λ0 + (q�[p1 − p4 + 1] − [k]+)v�Λ2 ⊗Ep−ε4v−3�Λ0 .

We have f2v�Λ2 ∈ B(�Λ2), Epv−3�Λ0 ∈ ±B(−3�Λ0) ∪ {0} by Lemma 3.3.5, and

(q�[p1 − p4 + 1] − [k]+)v�Λ2 ⊗ Ep−ε4v−3�Λ0 ∈ qL(�Λ2) ⊗ L(−3�Λ0)

since p1 − p4 + 1 < 0 implies Ep−ε4v−3�Λ0 = 0 (see the proof of Lemma 3.4.6 (1)). Hence we have (f2E
p −

[k]+Ep−ε4)(v�Λ2 ⊗ v−3�Λ0) ∈ ±B(�Λ2, −3�Λ0) ∪ {0}, as required. The assertion (2) follows from (1) since 
the map p⊗� ◦ Φ: V (��2) → (W 1)⊗� sends L(��2) to L(W 1)⊗�. �
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We need the following relation in W �: there exists a certain element c� ∈ ±1 + qsA such that

e2E
pw� = c�E

p−a+ε4f2w� + [p4 − p5 + 1]Ep+ε4w� (3.4.15)

for p ∈ Z5
≥0. It is a rather straightforward computation, but we will give a proof in Appendix A (Proposi-

tion A.1) as it is somewhat lengthy and technical.

Lemma 3.4.15. Let p ∈ Z5
≥0.

(1) We have

(e2E
pw�, E

p−aw�) ∈ qmin(0,p1−p4−�)A.

(2) When � = 1, the following stronger statement holds:

(e2E
pw1, E

p−aw1) ∈ qmax(0,p1−p4−1)A.

Proof. (1) By (3.4.15) and Lemma 3.3.1, we have

(e2E
pw�, E

p−aw�) = c�(Ep−a+ε4f2w�, E
p−aw�). (3.4.16)

It is easily checked that X = Ep−a+ε4f2 and Y = Ep−a satisfy the assumptions of Lemma 3.3.10, and 
hence we have

(3.4.16) = c�(Ep−a+ε4f2w
⊗�
1 , Ep−aw⊗�

1 )(W 1)⊗� . (3.4.17)

A calculation using Lemma 3.3.4 shows that

Ep−a+ε4f2(v�Λ2 ⊗ v−3�Λ0) = (f2E
p−a+ε4 + [−p1 + p4 + � + 1]Ep−a)(v�Λ2 ⊗ v−3�Λ0),

and then the existence of the map V (�Λ2) ⊗ V (−3�Λ0) → (W 1)⊗� implies that

(3.4.17) = c�(f2E
p−a+ε4w⊗�

1 + [−p1 + p4 + � + 1]Ep−aw⊗�
1 , Ep−aw⊗�

1 )(W 1)⊗� . (3.4.18)

By Lemma 3.4.14 (2), we have

f2E
p−a+ε4w⊗�

1 + [−p1 + p4 + � + 1]Ep−aw⊗�
1

≡ [−p1 + p4 + � + 1]+Ep−aw⊗�
1 mod L(W 1)⊗�,

and hence it follows from Proposition 3.3.8 and (2.5.2) that

(f2E
p−a+ε4w⊗�

1 + [−p1 + p4 + � + 1]Ep−aw⊗�
1 , Ep−aw⊗�

1 ) ∈ qmin(0,p1−p4−�)A.

Now the assertion (1) is proved since c� ∈ ±1 + qsA.
(2) We may assume that Ep−aw1 
= 0, and hence that p4 ≤ p1 − 1 by Lemma 3.4.10. Then by (1), it is 

enough to consider the case p1 − p4 ≥ 2. First assume that p1 − p4 = 2. By (3.4.16) and (3.4.18), it suffices 
to show that

(f2E
p−a+ε4w1, E

p−aw1) ∈ qA, (3.4.19)
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and we may assume that the two vectors are both nonzero. Since the two vectors f2E
p−a+ε4(vΛ2 ⊗ v−3Λ0)

and vΛ2 ⊗ Ep−av−3Λ0 both belong to ±B(Λ2, −3Λ0) and are obviously linearly independent, we see from 
Lemma 2.4.2 that f2E

p−a+ε4v�2 and Ep−av�2 both belong to ±B(�2) and are linearly independent. 
Moreover since their P -weights are the same, (f2E

p−a+ε4v�2 , z
k
2E

p−av�2) = 0 if k 
= 0. Hence (3.4.19)
follows from Proposition 2.4.1 (3) and (2.5.1).

It remains to show the assertion in the case p1 − p4 = 3, that is, p1 = 3 and p4 = 0. By the admissibility, 
we have

(e2E
pw1, E

p−aw1) = qp5+1(Epw1, f2E
p−aw1).

Since Epw1 and f2E
p−aw1 both belong to L(W 1) and Ep−aw1 
= 0 implies p5 ≥ 1, this belongs to q2A. 

The proof is complete. �
Now we show the following proposition, which assures that Z2 belongs to the set in (3.4.13).

Proposition 3.4.16. Let p1, p2 ∈ Z5
≥0, and set p = p1 + p2. Then we have

qm(p1,p2)+m(p1−a,p2+a)+x(p2)(e2E
p1w1, E

p1−aw1)(Ep2w�,e2E
p2+aw�)

∈ qmin(0,p1−p4−�)+p1−p4−1A,

where p = (p1, . . . , p5) and x(p2) = −〈h2, wt(Ep2w�)〉.

Proof. Set pi = (pi1, . . . , pi5) (i = 1, 2). It is directly checked from Lemma 3.4.12 that

m(p1,p2) + x(p2) = m(p1 − a,p2 + a) + p1 − p4 − 1. (3.4.20)

We may assume that Ep1−aw1 
= 0 and Ep2+aw� 
= 0. By the induction hypothesis, it follows from Proposi-
tion 2.6.1 that the prepolarization ( , )W � is positive definite, and hence Ep2+aw� 
= 0 implies Ep2+aw⊗�

1 
= 0
by Proposition 3.3.11. Then it follows from Lemmas 3.4.13 and 3.4.15 that

qm(p1,p2)+m(p1−a,p2+a)+x(p2)(e2E
p1w1, E

p1−aw1)(Ep2w�, e2E
p2+aw�)

∈ q2m(p1−a,p2+a)+p1−p4−1 · qmax(0,p11−p14−1) · qmin(0,p21−p24−�+1)A

⊆ qmin(0,p1−p4−�)+p1−p4−1A.

The assertion is proved. �
Next we shall show that Z1 belongs to the set in (3.4.13).

Lemma 3.4.17. Assume that p ∈ Z5
≥0 satisfies Epw⊗�

1 
= 0.

(1) If p1 > p4 + �, then Ep+ε4w⊗�
1 
= 0.

(2) If p4 > p5, then either Ep−ε4w⊗�
1 
= 0 or Ep+ε5w⊗�

1 
= 0 holds.

Proof. (1) First consider the case � = 1. By (the proof of) Lemma 3.4.14 (1) and Lemma 2.4.2, the vector 
(f2E

p+ε4−[p1−p4−1]Ep)w1 is either 0, or not proportional to Epw1. In both cases we have f2E
p+ε4w1 
= 0, 

and hence the assertion (1) is proved for � = 1.
Assume that � > 1. Obviously, Epw⊗�

1 
= 0 implies Ep1w1 ⊗ · · · ⊗ Ep�w1 
= 0 for some p1, . . . , p� ∈ Z5
≥0

such that p = p1+· · ·+p�. The assumption implies that there exists some k such that pk1−pk4 > 1, and then 
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Epk+ε4w1 
= 0 holds by the argument for � = 1. Since the nonzero vectors of the form Ep′
1w1 ⊗ · · · ⊗Ep′

�w1
are linearly independent by Lemma 3.3.1, this implies that Ep+ε4w⊗�

1 is nonzero. The assertion is proved.
(2) First assume that � = 1. If p5 = 0, Ep−ε4w1 
= 0 obviously holds, and hence we may assume p5 ≥ 1. 

That Epw1 
= 0 implies p4 ≤ 2 by Lemma 3.4.10, which forces p4 = 2 and p5 = 1. If

〈h1,wt(Ep−ε5w1)〉 = p1 − p2 − p3 − 2 ≤ −2,

then Ep+ε5w1 
= 0 follows, and hence we may assume that p1 > p2 + p3. If p3 = 0, since (2.1.2) implies 
e1E

(p2)
i e

(p1)
10 w1 = 0, we have

e2E
p−ε4w1 = Epw1 + e

(2)
2 Ep−2ε4w1 = Epw1 
= 0,

which implies Ep−ε4w1 
= 0. It is also checked similarly that Ep−ε4w1 
= 0 holds if p2 = 0. The remaining 
case is p = (3, 1, 1, 2, 1) only, and in this case E(3,1,1,1,1)w1 
= 0 is proved from (3.3.13) and

f1E
(3,1,1,1,0)w1 = E(0,1,1,1,0)e

(2)
1 e

(3)
0 w1 
= 0.

The proof for � = 1 is complete. Then the same argument used in the proof of (1) also works here, and (2) 
for general � is proved. �
Lemma 3.4.18. Let p1, p2 ∈ Z5

≥0 be such that Ep1w1 
= 0 and Ep2w⊗�
1 
= 0.

(1) If p11 > p14 + 1, then m(p1, p2) ≥ −p21 + p24 + �.
(2) If p24 > p25, then we have m(p1, p2) ≥ −p14 + p15.

Proof. (1) By Lemma 3.4.17 (1), we have Ep1+ε4w1 
= 0, and hence m(p1 + ε4, p2) ≥ 0 follows from 
Lemma 3.4.13. Since we have

m(p1,p2) = m(p1 + ε4,p2) − p21 + p24 + �

by Lemma 3.4.12, the assertion (1) follows.
(2) By Lemma 3.4.17 (2), we have either Ep2−ε4w⊗�

1 
= 0 or Ep2+ε5w⊗�
1 
= 0, and hence either m(p1, p2−

ε4) ≥ 0 or m(p1, p2 + ε5) ≥ 0 holds. Since we have

m(p1,p2) = m(p1,p2 − ε4) − p14 + p15 and m(p1,p2) = m(p1,p2 + ε5) + p15,

in both cases m(p1, p2) ≥ −p14 + p15 holds, and the proof is complete. �
Now the following proposition implies that Z1 belongs to the set in (3.4.13).

Proposition 3.4.19. Assume that p1, p2 ∈ Z5
≥0 satisfy Ep1w1 
= 0 and Ep2w� 
= 0. Setting p = p1 + p2, we 

have

q2m(p1,p2)‖Ep1w1‖2 · ‖e2E
p2w�‖2 ∈ q2 min(0,−p4+p5,p1−p4−�−1)−1A. (3.4.21)

Proof. Set

N = min(0,−p4 + p5, p1 − p4 − �− 1) and N2 = min(0,−p24 + p25, p21 − p24 − �).
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Since ‖Ep1w1‖2 ∈ 1 + qsA by Proposition 3.3.8 and ‖e2E
p2w�‖2 ∈ q2N2−1A by (3.4.11) with p replaced by 

p2 (which we are assuming to hold), it suffices to show that

m(p1,p2) + N2 ≥ N. (3.4.22)

If N2 = 0, this follows from Lemma 3.4.13. Moreover if N2 = −p24 + p25 < 0, this holds since

m(p1,p2) + (−p24 + p25) ≥ (−p14 + p15) + (−p24 + p25) = −p4 + p5

by Lemma 3.4.18 (2). Finally assume that N2 = p21 − p24 − �. If p11 ≤ p14 + 1, then (3.4.22) holds since

N2 ≥ N2 + (p11 − p14 − 1) = p1 − p4 − �− 1.

On the other hand if p11 > p14 + 1, (3.4.22) follows from Lemma 3.4.18 (1). The proof is complete. �
Finally, we shall show that Z3 +Z4 belongs to the set in (3.4.13), which completes the proof of Proposi-

tion 3.4.9. By a similar calculation that we did for ‖e2E
pw�+1‖2, we have

‖e2E
pw

⊗(�+1)
1 ‖2 = W1 + W2 + W3 + W4,

where

W1 =
∑

q2m(p1,p2)‖Ep1w1‖2 · ‖e2E
p2w⊗�

1 ‖2,

W2 = 2
∑

qm(p1,p2)+m(p1−a,p2+a)+x(p2)(e2E
p1w1, E

p1−aw1)(Ep2w⊗�
1 , e2E

p2+aw⊗�
1 ),

W3 = 2
∑

qm(p1,p2)+m(p1+ε4,p2−ε4)+x(p2)(e2E
p1w1, E

p1+ε4w1)(Ep2w⊗�
1 , e2E

p2−ε4w⊗�
1 ),

W4 =
∑

q2m(p1,p2)+2x(p2)‖e2E
p1w1‖2 · ‖Ep2w⊗�

1 ‖2.

We have W4 = Z4 by Proposition 3.3.11. Moreover, the equality

(Ep2w⊗�
1 , e2E

p2−ε4w⊗�
1 )(W 1)⊗� = (Ep2w�, e2E

p2−ε4w�)W �

is proved for any p2 by checking X = Ep2 and Y = e2E
p2−ε4 satisfy the assumptions of Lemma 3.3.10, and 

hence W3 = Z3 follows. On the other hand, the left-hand side ‖e2E
pw

⊗(�+1)
1 ‖2 belongs to q2 min(0,−p4+p5)

by Proposition 3.4.7 (1). Hence in order to show that Z3 + Z4(= W3 + W4) belongs to the set in (3.4.13), 
it is enough to prove that both W1 and W2 do. The assertion for W1 is deduced from the following lemma.

Lemma 3.4.20. For any p1, p2 ∈ Z≥0, we have

q2m(p1,p2)‖Ep1w1‖2 · ‖e2E
p2w⊗�

1 ‖2 ∈ q2 min(0,−p4+p5)A,

where we set p = p1 + p2.

Proof. We may assume that Ep1w1 
= 0 and Ep2w⊗�
1 
= 0. We have ‖Ep1w1‖2 ∈ 1 +qsA by Proposition 3.3.8, 

and ‖e2E
p2w⊗�

1 ‖2 ∈ q2 min(0,−p24+p25)A by Proposition 3.4.7 (1). If −p24+p25 ≥ 0, the assertion follows from 
Lemma 3.4.13. Otherwise we have m(p1, p2) ≥ −p14 + p15 by Lemma 3.4.18 (2), and hence the assertion is 
proved. �

The assertion for W2 is easily proved from the following lemma and (3.4.20).
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Lemma 3.4.21. For any p ∈ Z5
≥0, we have

(e2E
pw⊗�

1 , Ep−aw⊗�
1 ) ∈ A. (3.4.23)

Proof. We proceed by the induction on �. The assertion for the base case of � = 1 follows from Lemma 3.4.15
(2).

Assume (3.4.23) for a fixed � and any p. Our task is to prove this with � replaced by � + 1. We have

(e2E
pw

⊗(�+1)
1 , Ep−aw

⊗(�+1)
1 )

=
∑

p1+p2=p

qm(p1,p2)
(
qm(p1−a,p2)+x(p2)(e2E

p1w1, E
p1−aw1)‖Ep2w⊗�

1 ‖2

+ qm(p1,p2−a)‖Ep1w1‖2(e2E
p2w⊗�

1 , Ep2−aw⊗�
1 )

)
.

By the induction hypothesis and Lemma 3.4.13,

qm(p1,p2)+m(p1,p2−a)‖Ep1w1‖2(e2E
p2w⊗�

1 , Ep2−aw⊗�
1 ) ∈ A

holds. On the other hand, Ep2w⊗�
1 
= 0 implies p21 ≥ p24 by Lemma 3.4.10. Since

m(p1,p2) + x(p2) = m(p1 − a,p2) + p21 − p24

by Lemma 3.4.12, it also follows from the induction hypothesis that

qm(p1,p2)+m(p1−a,p2)+x(p2)(e2E
p1w1, E

p1−aw1)‖Ep2w⊗�
1 ‖2 ∈ A.

The proof is complete. �
Appendix A

The goal of this appendix is to show the following.

Proposition A.1. Let � ∈ Z>0. There exists an element c� ∈ ±1 + qsA such that

e2E
pw� = c�E

p−a+ε4f2w� + [p4 − p5 + 1]Ep+ε4w�

for any p ∈ Z5
≥0.

A fundamental tool for the proof is the braid group action on Uq(g) introduced by Lusztig. For i ∈ I, let 
Ti = T ′′

i,1 be the algebra automorphism of Uq(g) in [16, Chapter 37]. For a sequence ip · · · i1 of elements of 
I, write Tip···i1 = Tip · · ·Ti1 . Here we collect the properties of Ti; for the proofs, see [14,16].

Lemma A.2.

(a) For i ∈ I and α ∈ Q, we have TiUq(g)α = Uq(g)si(α).
(b) For i, j ∈ I and p ∈ Z>0, we have

Ti(e(p)
j ) =

−cijp∑
(−qi)−ke

(−cijp−k)
i e

(p)
j e

(k)
i .
k=0
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(c) For i, j ∈ I, we have TiTj · · ·︸ ︷︷ ︸
cijcji+2

= TjTi · · ·︸ ︷︷ ︸
cijcji+2

.

(d) If ip · · · i1 is a reduced word, then Tip···i2(ei1) ∈ Uq(n+). Moreover, if we further assume that 
sip · · · si2(αi1) = αj for some j ∈ I, then we have Tip···i2(ei1) = ej.

(e) Let i, j ∈ I be such that cij = cji = −1 and p ∈ Z>0. Then we have

eie
(p)
j = e

(p−1)
j Ti(ej) + q−pe

(p)
j ei and Ti(ej)ej = qejTi(ej).

(f) Let M be an integrable Uq(g)-module, and i ∈ I. There is a Q(qs)-linear automorphism T̃i (denoted by 
T ′′
i,1 in [16]) satisfying T̃i(Xm) = Ti(X)T̃i(m) for X ∈ Uq(g) and m ∈ M . Moreover if m ∈ Mλ for 

λ ∈ D−1P and fim = 0, we have

T̃i(e(p)
i m) = (−1)pqp(−λi−p+1)

i e
(−λi−p)
i m

for p ∈ Z≥0, where we set λi = 〈hi, λ〉.

Lemma A.3. The word ji = (jL′ · · · j0iL · · · i0) is reduced.

Proof. For any 0 ≤ k ≤ L, we have

〈sjsi[L,k+1](hik), θ1〉 = 〈hik , si[k,1](α2)〉 > 0,

which implies sjsi[L,k+1](αik) ∈ R+
1 . This, together with Lemma 3.1.1 (4), implies the assertion. �

In the sequel, we write i0 = i[L, 1] and j0 = j[L′, 1] for short.

Lemma A.4. Let M be an integrable Uq(g)-module, v ∈ M \ {0}, and p ∈ Z>0.

(1) If eiv = 0 (i ∈ {1} � J \ {2}) and e1e2v = 0, then Tj(e1)v = 0.
(2) If eiv = 0 (i ∈ {1} � J \ {2}), then Tj01(e

(p)
2 )v = E

(p)
1j v = (−q)pTj(e(p)

1 )v.
(3) If eiv = 0 (i ∈ J \ {2}), then Tj0(e

(p)
2 )v = E

(p)
j v.

(4) We have Ti01(e2) = e1Ti0(e2) − q−1Ti0(e2)e1.
(5) If eiv = 0 (i ∈ I0), then Ti1(e0)v = Ei10v.
(6) We have e1Ti0(e

(p)
2 ) = Ti0(e

(p−1)
2 )Ti01(e2) + q−pTi0(e

(p)
2 )e1.

(7) If e1v = 0, then e1Tj0(e
(p)
2 )v = Tj0(e

(p−1)
2 )Tj01(e2)v.

(8) If eiv = 0 (i ∈ I01), then Ti0(e2)e(p)
1 v = e

(p−1)
1 Ti(e1)v.

(9) If eiv = 0 (i ∈ I0), then Ti(e1)e(p)
0 v = e

(p−1)
0 Ti1(e0)v.

(10) We have Tj(e1)e(p)
0 = e

(p−1)
0 Tj1(e0) + q−pe

(p)
0 Tj(e1).

(11) We have Tj(e1)e(p)
1 = qpe

(p)
1 Tj(e1).

(12) We have e1Tj1(e0)Ti1(e0) = Tj1(e0)Ti1(e0)e1.
(13) If eiv = 0 (i ∈ I0 \ {1, 2}), then Ti0(e

(p)
2 )v = E

(p)
i v = apTji0(e

(p)
2 )v with some nonzero a ∈ Q(qs).

Proof. Let us prepare some notation. For a subset L ⊆ I and Λ ∈ −P+, denote by VL(Λ) the Uq(gL)-
submodule of V (Λ) generated by vΛ, which is isomorphic to the simple lowest weight Uq(gL)-module whose 
lowest weight is the restriction of Λ on 

∑
i∈L D−1hi.

Let us prove the assertion (1). Set J ′ = {1} � J , and � = max{m ∈ Z≥0 | e(m)
2 v 
= 0}. By the well-known 

fact for the defining relations (see the proof of Lemma 3.3.7), there is a Uq(n+,J ′)-module homomorphism 
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from VJ ′(−�Λ2) to M mapping v−�Λ2 to v. Hence we may assume that v = v−�Λ2 , and then the assertion (1) 
is proved as follows: By Lemma A.2 (b) and (f),

Tj(e1)v = Tj0(e2e1 − q−1e1e2)v = T̃j0

(
(e2e1 − q−1e1e2)v

)
= 0.

Next we shall prove the assertion (2). As above, we may assume that v = v−�Λ2 for some � ∈ Z>0. The 
first equality is proved using Lemma A.2 (f) as follows:

Tj01(e
(p)
2 )v = T̃j01(e

(p)
2 v) = E

(p)
1j v.

By Lemma A.2 (b), we have

Tj(e(p)
1 )v =

∑
k

(−q)−kTj0(e
(p−k)
2 e

(p)
1 e

(k)
2 )v =

∑
k

(−q)−kTj0(e
(p−k)
2 )e(p)

1 Tj0(e
(k)
2 )v,

and since f1Tj0(e
(k)
2 )v = 0, e(p)

1 Tj0(e
(k)
2 )v = 0 holds unless k = p. Now the second equality is proved similarly 

as above. The proofs of the assertions (3)–(5) are similar.
The assertion (6) is proved as follows: By Lemma A.2 (b) and (e), we have

e1Ti0(e
(p)
2 ) = Ti0(e1e

(p)
2 ) = Ti0(e

(p−1)
2 T1(e2) + q−pe

(p)
2 e1)

= Ti0(e
(p−1)
2 )Ti01(e2) + q−pTi0(e

(p)
2 )e1.

The assertions (7)–(10) are proved similarly.
The assertion (11) is proved as follows: By Lemma A.2 (e), we have

Tj(e1)e(p)
1 = Tj0

(
T2(e1)e(p)

1

)
= qpTj0

(
e
(p)
1 T2(e1)

)
= qpe

(p)
1 Tj(e1).

The assertion (12) is proved as follows: Since s2s1(α2) = α1, from Lemma A.2 (d), it follows that

e1Tj1(e0)Ti1(e0) = Tj1 (e2e0)Ti1(e0) = Tj1(e0)e1Ti1(e0)

= Tj1(e0)Ti1(e2e0) = Tj1(e0)Ti1(e0)e1.

Finally let us show the assertion (13). As above, setting � = max{m ∈ Z≥0 | e
(m)
2 v 
= 0}, we may 

assume that v = v−�Λ2 , and the first equality is proved similarly. To prove the other one, note first that 
wtP

(
Tji0(e

(p)
2 )

)
= pθ1, and

dimVI01(−�Λ2)−�Λ2+pθ1 =
{

1 (0 ≤ p ≤ �),
0 (p > �),

(A.1)

which is proved by taking the classical limit and applying the Poincaré–Birkhoff–Witt theorem. Moreover, 
since

Tji0(e
(p)
2 )v = T̃ji0(e

(p)
2 T̃−1

ji0
(v)) and 〈h2,wtP T̃−1

ji0
(v)〉 = 〈hθ1 ,−�Λ2〉 = −�,

we have Tji0(e
(p)
2 )v 
= 0 if and only if 0 ≤ p ≤ �. Hence for each 1 ≤ p ≤ � there is some nonzero ap ∈ Q(qs)

such that apTji0(e
(p)
2 )v = E

(p)
i v, and Tji0(e

(p)
2 )v = E

(p)
i v = 0 if p > �. It remains to prove that ap = ap1, 

which we show by the induction on p. The case p = 1 is trivial. Assume that p > 1. By Lemma 3.3.4 and 
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weight considerations, we see that eiE(p−1)
i v = 0 for i ∈ I0 \ {1, 2}, and hence it follows from the induction 

hypothesis that

Tji0(e
(p)
2 )v = a−p+1

1 [p]−1Tji0(e2)E(p−1)
i v = a−p

1 [p]−1E
(1)
i E

(p−1)
i v

(note that E(p)
i 
=

(
E

(1)
i

)(p)
by our convention (3.1.1)). Hence it suffices to show that E(1)

i E
(p−1)
i v =

[p]E(p)
i v. It is proved by a direct calculation that

f
(cgp)
i1

· · · f (cgp)
iL

E
(1)
i E

(p−1)
i v = e2e

(p−1)
2 v = [p]e(p)

2 v = [p]f (cgp)
i1

· · · f (cgp)
iL

E
(p)
i v,

which implies E(1)
i E

(p−1)
i v = [p]E(p)

i v by (A.1). The proof of (13) is complete. �
Lemma A.5. For any � ∈ Z>0 and (p1, p2, p3) ∈ Z3

≥0, we have

e1E
(p3)
j E

(p2)
i e

(p1)
10 w� = E

(p3−1)
j E

(p2−1)
i e

(p1−1)
10 Eaw�.

Proof. If p1 < p2, the left-hand side is 0 by (2.1.1), and so is the right-hand side since

ei1e2E
aw� ∈ W �

��2+αi1
= 0.

Hence we may assume that p1 ≥ p2. Set

w = e
(p1)
10 w�, and w′ = E

(p2)
i e

(p1)
10 w�.

We have

eiw
′ = 0 for i ∈ {1} � J \ {2} and eiE

(1)
j w′ = 0 for i ∈ J

by Lemma 3.3.4 and (2.1.2), and therefore we have the following;

e1E
(p3)
j E

(p2)
i e

(p1)
10 w� = e1E

(p3)
j w′ (3)= e1Tj0(e

(p3)
2 )w′

(7)= Tj0(e
(p3−1)
2 )Tj01(e2)w′ (2) (3)= E

(p3−1)
j e1Ejw

′,

where a number over an equality indicates which assertion of Lemma A.4 is used there. Since eiw = 0 for 
i ∈ I0 \ {2} and e1e2w = 0, we have the following;

e1Ejw
′ (2)= −qTj(e1)E(p2)

i w
(13)= −qap2Tj(e1)Tji0(e

(p2)
2 )w

(6)= −qap2Tj

(
Ti0(e

(p2−1)
2 )Ti01(e2) + q−p2Ti0(e

(p)
2 )e1

)
w

(1) (4)= −qap2Tji0(e
(p2−1)
2 )Tj(e1)Tji0(e2)w

(2) (13)= E
(p2−1)
i e1E

(1)
j E

(1)
i w.

Finally, we have

e1E
(1)

E
(1)

w = e1E
(1)

E
(1)

e
(p1)
10 w�

(2) (13)= −qTj(e1)Ti0(e2)e(p1)
10 w�
j i j i
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(8) (9)= −qTj(e1)e(p1−1)
10 Ti1(e0)w�

(11)= −qp1e
(p1−1)
1 Tj(e1)e(p1−1)

0 Ti1(e0)w�

(10)= −qp1e
(p1−1)
1

(
e
(p1−2)
0 Tj1(e0) + q−p1+1e

(p1−1)
0 Tj(e1)

)
Ti1(e0)w�

(12)= −qe
(p1−1)
10 Tj(e1)Ti1(e0)w�

(2) (5)= e
(p1−1)
10 Eaw�.

The assertion is proved. �
Proof of Proposition A.1. By (2.1.2) and Lemma A.5, we have

e2E
pw� =

(
e
(p5−1)
1 e

(p4+1)
2 e1E

(p3)
j E

(p2)
i e

(p1)
10 + [p4 − p5 + 1]Ep+ε4

)
w�

=
(
Ep−a+ε4Ea + [p4 − p5 + 1]Ep+ε4

)
w�.

Hence it suffices to show that Eaw� = c�f2w� holds for some c� ∈ ±1 + qsA. We see from Proposition 3.1.2
(C1) that dimW �

��2−α2
= 1, and hence we have Eaw� = c�f2w� for some c� ∈ Q(qs). Now c� ∈ ±1 + qsA

follows since both ‖Eaw�‖2 and ‖f2w�‖2 belong to 1 + qsA. The proof is complete. �
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