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A (semi)brick over an algebra A is a module S such that its endomorphism ring 
EndA(S) is a (product of) division algebra. For each Dynkin diagram Δ, there is 
a bijection from the Coxeter group W of type Δ to the set of semibricks over the 
preprojective algebra Π of type Δ, which is restricted to a bijection from the set of 
join-irreducible elements of W to the set of bricks over Π. This paper is devoted to 
giving an explicit description of these bijections in the case Δ = An or Dn. First, 
for each join-irreducible element w ∈ W , we describe the corresponding brick S(w)
in terms of “Young diagram-like” notation. Next, we determine the canonical join 
representation w =

∨m
i=1 wi of an arbitrary element w ∈ W based on Reading’s 

work, and prove that 
⊕m

i=1 S(wi) is the semibrick corresponding to w.
© 2021 Elsevier B.V. All rights reserved.
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0. Introduction

The representation theory of preprojective algebras Π of Dynkin type Δ has been developed by investi-
gating its relationship with the Coxeter groups W = W (Δ) associated to Δ. In particular, the ideal I(w)
of Π associated to each element w ∈ W introduced by [16,10] plays an important role. For example, see 
[2,3,7,14,17,21,22,24].

The Coxeter group W has a partial order ≤ called the right weak order. The partially ordered set (W, ≤)
is a lattice [8] in the sense that W admits the two binary operations called the join x ∨ y and the meet x ∧ y

for any x, y ∈ W . In our study, we shall use join-irreducible elements in a lattice L. We write j-irrL for the 
set of join-irreducible elements in L.

Reading [23] introduced the important notion of canonical join representations. For a given element 
x ∈ L, a subset U = {u1, u2, . . . , um} ⊂ L is called the canonical join representation of x if U satisfies 
x =

∨m
i=1 ui and some additional minimal conditions. In this case, U ⊂ j-irrL holds.

Any element in a Coxeter group of Dynkin type has a unique canonical join representation, since the 
Coxeter group is a semidistributive lattice, see [15] for the detail. One of the aims of this paper is to show 
that the canonical join representations of the elements in the Coxeter group W are strongly related to the 
representation theory of Π. We will explain the details later in this section.

We will show some of our results in a more general setting. Let A be a finite-dimensional algebra over 
a field K. We write torf A for the set of torsion-free classes in the category modA of finite-dimensional A-
modules. The set torf A has a natural partial order ⊂ defined by inclusion relations, and then, the partially 
ordered set (torf A, ⊂) is also a lattice.

In the rest of this paper, we assume that A is τ -tilting finite, that is, torf A is a finite set. There are 
many bijections between torf A and many important objects in modA or in its bounded derived category 
Db(modA) [1,4,9,18,19]. In particular, we have a bijection F from the set sbrickA of semibricks in modA
to the set torf A, where F(S) is defined as the minimum torsion-free class containing a semibrick S. Here, a 
semibrick S is defined as a module in modA which admits a decomposition S =

⊕m
i=1 Si with EndA(Si) a 

division K-algebra (that is, Si is a brick) and with HomA(Si, Sj) = 0 for i �= j. The sets torf A and sbrickA
have bijections from the set sτ–1-tiltA of support τ−1-tilting A-modules satisfying the following commutative 
diagram [1,4]:

sτ–1-tiltA torf A sbrickA
Sub F

M �→socEndA(M) M

.

Moreover, the bijection F is restricted to a bijection from the set brickA of bricks in modA to the set 
j-irr(torf A), and we have the following commutative diagram of bijections:
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iτ–1-rigidA j-irr(torf A) brickA
Sub F

M �→socEndA(M) M

.

Here, iτ–1-rigidA denotes the set of indecomposable τ−1-rigid modules in modA.
As the first step, we will show that the canonical join representation of a torsion-free class is given by 

the decomposition of the corresponding semibrick as a direct sum of bricks. This fact was independently 
obtained also in [6].

Theorem 0.1 (Theorem 1.8). Let F ∈ torf A, take the unique semibrick S ∈ sbrickA satisfying F = F(S), 
and decompose S as 

⊕m
i=1 Si with Si ∈ brickA. Then, the representation F =

∨m
i=1 F(Si) is the canonical 

join representation.

For the preprojective algebra Π, Mizuno [20] proved that the two lattices (W, ≤) and (torf Π, ⊂) are 
isomorphic by the correspondence w �→ Sub(Π/I(w)) and that Π/I(w) is a support τ−1-tilting Π-module. 
Therefore, we obtain a bijection S(?) : W → sbrickΠ given by S(w) := socEndΠ(Π/I(w))(Π/I(w)). The main 
aim of this paper is to describe the semibrick S(w) for each element w ∈ W as a quiver representation in 
the case Δ = An or Dn:

An : 1 2 3 · · · n ,

Dn :
1

−1
2 3 · · · n−1 .

If Δ = An, then W is the symmetric group Sn+1, and if Δ = Dn, then W is the subgroup of the automor-
phism group of the set {±1, ±2, . . . , ±n} consisting of all elements w such that w(−i) = −w(i) holds for 
each i and that the number #{i > 0 | w(i) < 0} is even. In either case, we can express every w ∈ W in the 
form (w(1), w(2), . . . , w(m)), and our description of the semibrick S(w) is constructed from this expression.

Mizuno’s isomorphism W → torf Π of lattices is restricted to a bijection j-irrW → j-irr(torf Π) between 
the join-irreducible elements, so we also obtain a restricted bijection S(?) : j-irrW → brickΠ. By [15] (types 
An and Dn) and [11] (type En, with computer-assisted calculation), the cardinality of each set is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2n+1 − n− 2 (Δ = An)
3n − n · 2n−1 − n− 1 (Δ = Dn)
1272 (Δ = E6)
17635 (Δ = E7)
881752 (Δ = E8)

.

Moreover, we obtain the following property immediately from Theorem 0.1.

Corollary 0.2 (Corollary 2.3). Let w ∈ W , and take w1, w2, . . . , wm ∈ j-irrW such that S(w) =
⊕m

i=1 S(wi). 
Then, w =

∨m
i=1 wi holds, and it is the canonical join representation of w in W .

In this paper, we will give a description of the semibrick S(w) by the following two steps:

(a) we find the canonical join representation 
∨m

i=1 wi of w; and
(b) we explicitly describe the brick S(wi) for each wi ∈ j-irrW .
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There is a combinatorial “Young diagram-like” description by Iyama–Reading–Reiten–Thomas [15] of the 
module J(w) := (Π/I(w))el for w ∈ j-irrW in the case Δ is An or Dn, where l is the unique descent of w ∈
j-irrW and el is the primitive idempotent of Π corresponding to l. The module J(w) is an indecomposable 
direct summand of Π/I(w) ∈ sτ–1-tiltA satisfying SubJ(w) = Sub(Π/I(w)), so S(w) = socEndΠ(J(w)) J(w)
follows.

For example, we consider the two elements w = (2, 5, 8, 1, 3, 4, 6, 7, 9) ∈ W (A8) and w′ =
(6, 9, −7, −4, 1, 2, 3, 5, 8) ∈ W (D9). Then, the modules J(w), J(w′), S(w), and S(w′) are expressed by 
the following figures:

J(w) =

3 2 1
4 3
5 4
6
7

, S(w) =

2 1
3

5 4
6
7

,

J(w′) =

2 −1
1 −2 −3 −4 −5 −6

3 2 1
−1 −2 −3

4 3 2 1
5 4 3 2
6 5 4 3
7 6 5
8

, S(w′) =

(4) (5) −6

−1 (2) (3)
(2) 1

(4) (3) 2
(5) 4 3

7 6 5
8

Here, for each module M above, each square i in the figure for M denotes a one-dimensional subspace 
of eiM if i ≥ −1; and of e|i|M if i ≤ −2. As a K-vector space, M is the direct sum of these one-dimensional 
subspaces. In the figure for S(w′), for each i = 2, 3, 4, 5, the two squares (i) together denote a certain 

one-dimensional subspace of the two-dimensional vector space corresponding to the two squares i and 

−i in the figure for J(w′).
We can check that w ∈ W (An) consists of two strictly increasing sequences, and that the right-most 

entry of each row in the figure for J(w) appears in the latter increasing sequence. Similarly, w′ ∈ W (Dn)
also consists of two strictly increasing sequences. If i is the right-most entry of some row in the figure for 
J(w′), then i appears in the latter increasing sequence if i ≥ −1, and i − 1 appears there if i ≤ −2.

The bricks S(w) and S(w′) can be expressed more simply by using quiver representations as follows, where 
the symbol −i (i = 2, 3, 4, 5) in the quiver representation of S(w′) below corresponds to the one-dimensional 
vector subspace denoted by the two squares (i) in the figure for S(w′) above:

S(w) = 1 ← 2 → 3 → 4 ← 5 → 6 → 7,

S(w′) =
−1 −2 −3 −4 −5 −6

1 2 3 4 5 6 7 8

.

In this paper, we give a combinatorial algorithm to obtain a quiver representation of the brick S(w) for 
each w ∈ j-irrW in the case Δ = An or Dn; then, the step (b) is done.

If Δ = An, then we have obtained the following result. Here, [x, y] denotes {i ∈ Z | x ≤ i ≤ y} for 
x, y ∈ Z.
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Theorem 0.3 (Theorem 3.1, Corollary 3.3). Let w ∈ j-irrW (An) with its unique descent l. Then, the brick 
S(w) is given as follows.

• Set R := w([l + 1, n + 1]), a := w(l), b := w(l + 1), and V := [b, a − 1].
• The brick S(w) has a K-basis (〈i〉)i∈V , where 〈i〉 belongs to eiS(w).
• For each i ∈ V , place a symbol i denoting the K-vector subspace K〈i〉.
• For each i ∈ V \ {max V }, we write exactly one arrow between i and i + 1, where its orientation is 

i → i + 1 if i + 1 ∈ R and i ← i + 1 if i + 1 /∈ R.

If Δ = Dn, then the bricks are obtained from the following procedure.

Theorem 0.4 (Theorem 3.7, Corollary 3.10). Let w ∈ j-irrW (Dn) with its unique descent l. Then, the brick 
S(w) is given as follows.

• Set R := w([|l| + 1, n]), a := w(l), b := w(|l| + 1), and

r := max{k ≥ 0 | [1, k] ⊂ ±R}, c :=
{
w(|w−1(1)|) (r ≥ 1)
1 (r = 0)

,

(V−, V+) :=

⎧⎪⎪⎨
⎪⎪⎩

(∅, [b, a− 1]) (b ≥ 2)
(∅, {c} ∪ [2, a− 1]) (b = ±1)
([b + 1,−2] ∪ {−c}, {c} ∪ [2, a− 1]) (b ≤ −2)

,

V := V+ � V−.

• The brick S(w) has a K-basis (〈i〉)i∈V , where 〈i〉 belongs to eiS(w) if i ≥ −1, and e|i|S(w) if i ≤ −2.
• For each i ∈ V , place a symbol i denoting the K-vector subspace K〈i〉.
• We write the following arrows.

(i) For each i ∈ V+ \ {max V+}, draw an arrow i → |i| + 1 if |i| + 1 ∈ R; and i ← |i| + 1 otherwise.
(ii) For each i ∈ V− \ {minV−}, draw an arrow i ← −(|i| + 1) if −(|i| + 1) ∈ R; and i → −(|i| + 1)

otherwise.
(iii) If r ≥ 1, for each i ∈ V− with |i| ≤ r, draw an arrow −i ← −(|i| + 1) if |i| + 1 ∈ R; and i → |i| + 1

otherwise.
(iv) If r = 0, draw an arrow −c ← 2 if c ← 2 exists in (i), and draw an arrow c → −2 if −c → −2

exists in (ii).

Consequently, we obtain that any brick over the preprojective algebra of type An is a module over 
some path algebra of type An. On the other hand, the preprojective algebra of type Dn does not have the 
corresponding property.

Finally, we consider an arbitrary element w ∈ W . In Propositions 4.4 and 4.8, we will explicitly deter-
mine the canonical join representation 

∨m
i=1 wi of w ∈ W by using the characterization of canonical join 

representations in the Coxeter groups of Dynkin type given by Reading [23]. Then, the step (a) is done, 
and in Theorems 4.6 and 4.10, we explicitly write down the semibrick S(w) =

⊕m
i=1 S(wi) by using the 

description of bricks.
For example, let Δ := A8 and w = (4, 9, 3, 6, 2, 8, 5, 1, 7). Then, its canonical join representation is 

w2 ∨ w4 ∨ w6 ∨ w7, where

w2 := (1, 2, 4, 9, 3, 5, 6, 7, 8), w4 := (1, 3, 4, 6, 2, 5, 7, 8, 9),



6 S. Asai / Journal of Pure and Applied Algebra 226 (2022) 106812
w6 := (1, 2, 3, 4, 6, 8, 5, 7, 9), w7 := (2, 3, 4, 5, 1, 6, 7, 8, 9).

Thus, the semibrick S(w) is the direct sum of the following bricks:

S(w2) = 3 ← 4 → 5 → 6 → 7 → 8,

S(w4) = 2 ← 3 ← 4 → 5 ,

S(w6) = 5 ← 6 → 7 ,

S(w7) = 1 ← 2 ← 3 ← 4 .

0.1. Notation

The composition of two maps f : X → Y and g : Y → Z is denoted by gf .
We define the multiplication on the automorphism group of a finite set X by (στ)(i) := σ(τ(i)) for i ∈ X. 

For a, b ∈ X, the notation (a b) means the transposition which exchanges a and b.
For integers a, b ∈ Z, we define [a, b] := {i ∈ Z | a ≤ i ≤ b}. For a set X ⊂ Z, we set −X := {−i | i ∈ X}

and ±X := X ∪ (−X).
Throughout this paper, K is a field and A is a finite-dimensional K-algebra. Unless otherwise stated, 

A-modules are finite-dimensional left A-modules, and we write modA for the category of finite-dimensional 
left A-modules. Let M ∈ modA, and decompose M as M ∼=

⊕m
i=1 M

⊕li
i with Mi � Mj for i �= j and with 

li ≥ 1 for each i. Then, we define the number |M | := m, and we say that M is basic if li = 1 for any i. 
We set the multiplication on the endomorphism algebra EndA(M) as g · f := gf . Thus, M is also a left 
EndA(M)-module by fx := f(x) for f ∈ EndA(M) and x ∈ M .

For a quiver Q, the composition of the two arrows α : i → j and β : j → k in Q is denoted by αβ, which 
is a path from i to k.

1. General observations of τ -tilting finite algebras

In this section, we observe some general properties holding for τ -tilting finite algebras A over a field K.

1.1. Lattices

First, we recall the notion of lattices.

Definition 1.1. Let (L, ≤) be a partially ordered set.

(1) For x, y, z ∈ L, the element z is called the meet of x and y if z is the maximum element satisfying z ≤ x

and z ≤ y. In this case, z is denoted by x ∧ y.
(2) For x, y, z ∈ L, the element z is called the join of x and y if z is the minimum element satisfying z ≥ x

and z ≥ y. In this case, z is denoted by x ∨ y.
(3) The set L is called a lattice if L admits the meet x ∧ y and the join x ∨ y for any x, y ∈ L.
(4) The set L is called a finite lattice if L is a finite set and a lattice.

The operations join and meet clearly satisfy the associative relations, so we may use the expressions 
x ∧y∧ z and x ∨y∨ z. If L �= ∅ is a finite lattice, there exist the maximum element maxL and the minimum 
element minL. In this case, we define 

∧
x∈∅ x := maxL and 

∨
x∈∅ x := minL.

Later in this paper, we will consider the decomposition of an element in a lattice with respect to the 
operation join, so we recall the notion of join-irreducible elements.
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Definition 1.2. Let L be a lattice. An element x ∈ L is called a join-irreducible element if the following 
conditions hold:

• x is not the minimum element minL; and
• for any y, z ∈ L, if x = y ∨ z, then y = x or z = x.

We write j-irrL for the set of join-irreducible elements in W .

We remark that x ∈ j-irrL is equivalent to that there exists a unique maximal element of the set 
{y ∈ L | y < x} if L is a finite lattice. This fails if we drop the assumption that L is finite [6, Remark 3.1.2].

1.2. Torsion-free classes

Let A be a finite-dimensional algebra.
A full subcategory F of modA is called a torsion-free class in modA if F is closed under submodules and 

extensions, and we write torf A for the set of torsion-free classes in modA. For a full subcategory C ⊂ modA, 
we define

• add C as the subcategory of modA consisting of M ∈ modA which is a direct summand of 
⊕s

i=1 Ci for 
some C1, C2, . . . , Cs ∈ C;

• Filt C as the subcategory of modA consisting of M ∈ modA which has a sequence 0 = M0 ⊂ M1 ⊂ · · · ⊂
Ml = M with Mi/Mi−1 ∈ add C;

• Sub C as the subcategory of modA consisting of M ∈ modA which is a submodule of some object in 
add C; and

• F(C) as Filt(Sub C).

Then, F(C) is the smallest torsion-free class containing C, see [19, Lemma 3.1].
The set torf A has a natural partial order defined by inclusions, and then, the partially ordered set 

(torf A, ⊂) is a lattice with F1 ∧ F2 = F1 ∩ F2 and F1 ∨ F2 = F(F1 ∪ F2). The notion of torsion classes is 
dually defined.

In general, a torsion-free class in modA is not functorially finite in modA. Demonet–Iyama–Jasso [12]
introduced the notion of τ -tilting finiteness, which is equivalent to that torf A is a finite set. In their paper, 
they proved that A is τ -tilting finite if and only if every torsion-free class is functorially finite. In the rest, 
A is assumed to be τ -tilting finite.

Functorially finite torsion-free classes are strongly connected with support τ−1-tilting A-modules, which 
were introduced by Adachi–Iyama–Reiten [1].

Let M ∈ modA and I be an injective A-module in modA. Then, M is called a τ−1-rigid module if 
HomA(τ−1M, M) = 0, and the pair (M, I) is called a τ−1-rigid pair if M is τ−1-rigid and HomA(M, I) = 0. 
If a τ−1-rigid pair (M, I) satisfies |M | + |I| = |A|, the pair (M, I) is called a support τ−1-tilting pair, and an 
A-module M is called a support τ−1-tilting module if there exists some injective module I such that (M, I)
is a support τ -tilting pair. We write sτ–1-tiltA for the set of basic support τ−1-tilting modules in modA. 
The notion of support τ -tilting modules is dually defined.

If M is τ−1-rigid, then the full subcategory SubM is a torsion-free class [5, Theorem 5.10]. Based on 
this, Adachi–Iyama–Reiten obtained the following bijection.

Proposition 1.3. [1, Theorem 2.7] The correspondence sτ–1-tiltA � M �→ SubM ∈ torf A is a bijection.
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Thus, we can induce a partial order ≤ on the set sτ–1-tiltA from inclusion relations on torf A; namely, 
M ≤ N holds if and only if SubM ⊂ SubN . Then, (sτ–1-tiltA, ≤) is clearly a lattice.

1.3. Semibricks

We assume that A is τ -tilting finite as in the previous subsection. We define the notions of bricks and 
semibricks as follows.

Definition 1.4. Let S be an A-module.

(1) The module S is called a brick if the endomorphism ring EndA(S) is a division ring. We write brickA
for the set of bricks.

(2) The module S is called a semibrick if S is decomposed as the direct sum 
⊕m

i=1 Si of bricks 
S1, S2, . . . , Sm ∈ brickA satisfying HomA(Si, Sj) = 0 if i �= j. We write sbrickA for the set of semibricks 
in modA.

The notion of semibricks is originally defined as sets of Hom-orthogonal bricks in [4], but it does not 
matter here, since A is assumed to be τ -tilting finite [4, Corollary 2.10]. Then, [4, Proposition 2.9] tells us 
that there is a bijection F : sbrickA → torf A taking the minimum torsion-free class F(S) containing each 
semibrick S. Moreover, it satisfies the property below.

Proposition 1.5. [4, Proposition 2.9] We have the following commutative diagram of bijections:

sτ–1-tiltA torf A sbrickA
Sub F

M �→socEndA(M) M

.

Now, we set iτ–1-rigidA as the set of indecomposable τ−1-rigid A-modules in modA. Then, we also have 
another commutative diagram.

Proposition 1.6. We have the following commutative diagram of bijections:

iτ–1-rigidA j-irr(torf A) brickA
Sub F

M �→socEndA(M) M

.

Proof. The map Sub : iτ–1-rigidA → j-irr(torf A) is bijective by [15, Theorem 2.7]. On the other hand, it 
follows from [12, Theorem 4.2, Lemma 4.3] that the map iτ–1-rigidA � M �→ socEndA(M) M ∈ brickA
is a bijection satisfying F(socEndA(M) M) = SubM . Thus, we have the desired commutative diagram of 
bijections. �
1.4. Canonical join representations

Now that the bijection F : sbrickA → torf A is restricted to a bijection brickA → j-irr(torf A), the following 
natural question occurs:
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Let F ∈ torf A, take the unique semibrick S ∈ sbrickA satisfying F = F(S), and decompose S as 
⊕m

i=1 Si

with Si ∈ brickA. Then, what is the relationship between F(S) ∈ torf A and F(S1), F(S2), . . . , F(Sm) ∈
j-irr(torf A)?

Clearly, F(S) =
∨m

i=1 F(Si) holds, since F(S) is the minimum torsion-free class containing all F(Si). Actu-
ally, this will turn out to be a canonical join representation. Here, the notion of canonical join representations 
was introduced by Reading [23], and defined as follows.

Definition 1.7. Let L be a finite lattice, x ∈ L, and U ⊂ L. Then, we say that U is a canonical join 
representation if

(a) x =
∨

u∈U u holds;
(b) for any proper subset U ′ � U , the join 

∨
u∈U ′ u never coincides with x; and

(c) if V ⊂ L satisfies the properties (a) and (b), then, for every u ∈ U , there exists v ∈ V such that u ≤ v.

In this case, we also say x =
∨

u∈U u is a canonical join representation.

If x ∈ L has a canonical join representation U , then we can easily check that it is the unique canonical 
join representation for x ∈ L. Namely, let V be another canonical join representation of x. Then, for any 
u ∈ U , we can take v ∈ V satisfying u ≤ v by the property (c) of U , and there exists u′ ∈ U satisfying 
v ≤ u′ by the property (c) of V . Thus u ≤ v ≤ u′, which implies u = u′ by the property (b) of U ; hence 
u = v ∈ V . Therefore, U ⊂ V holds, so U = V by the property (b) of V . It is also easy to see that U is a 
subset of j-irrL.

The existence of a canonical join representation of each element is not guaranteed for a general finite 
lattice. In the case that L = torf A, every F ∈ torf A has a canonical join representation given by the 
indecomposable decomposition of semibricks.

Theorem 1.8. Let F ∈ torf A, take the unique semibrick S ∈ sbrickA satisfying F = F(S), and decompose S
as 

⊕m
i=1 Si with Si ∈ brickA. Then, the representation F =

∨m
i=1 F(Si) is the canonical join representation.

Proof. We have seen the property (a): F = F(S) =
∨m

i=1 F(Si).
We show the property (b). Let I be a proper subset of [1, m]. Take j ∈ [1, m] \ I. Then, the brick Sj

cannot belong to F({Si}i∈I) = F(
⋃

i∈I F(Si)) =
∨

i∈I F(Si), since HomA(Sj , Si) = 0 holds for each i ∈ I. 
This implies that F(S) �=

∨
i∈I F(Si).

It remains to show the property (c). Let F1, . . . , Fm′ ∈ torf A satisfy the properties (a) and (b). For each 
i ∈ [1, m], the brick Si belongs to F(S) = F , which coincides with 

∨m′

j=1 Fj = F(
⋃m′

j=1 Fj). Thus, there 
must exist some j ∈ [1, m′] such that HomA(Si, Fj) �= 0. We take a semibrick S′ such that Fj = F(S′) by 
Proposition 1.5, then there exists a nonzero homomorphism f : Si → S′. By [4, Lemma 2.7], f is injective, 
since Si, S′ ∈ F = F(S) and Si is a direct summand of S. This implies that F(Si) ⊂ F(S′) = Fj . �

In particular, the partially ordered set torf A admits a canonical join representation for any F ∈ torf A.
The notion of canonical join representations is defined in a fully combinatorial way, but decomposing 

semibricks into direct sums of bricks is a purely representation-theoretic problem. These two are related by 
Theorem 1.8.

The relationship between semibricks and torsion classes is independently discussed by Barnard–
Carroll–Zhu [6] and Demonet–Iyama–Reiten–Reading–Thomas [13] in the setting that the algebra A is 
not necessarily τ -tilting finite. In particular, our Theorem 1.8 is generalized in [6, Proposition 3.2.5].
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2. Preliminaries for preprojective algebras

In this section, we recall some properties on Coxeter groups and preprojective algebras of Dynkin type.

2.1. Coxeter groups

Coxeter groups of Dynkin type are strongly related to the corresponding preprojective algebras. In this 
subsection, we state the definition of Coxeter groups of Dynkin type, and prepare some basic terms on the 
combinatorics of Coxeter groups. For more information, see [8].

Let Δ be a Dynkin diagram whose vertices set is Δ0. Then, the Coxeter group W for Δ is the group 
defined by the generators {si | i ∈ Δ0} and the relations

• s2
i = 1 for each i;

• sisj = sjsi if there is no edge between i and j in Δ; and
• sisjsi = sjsisj if there is exactly one edge between i and j in Δ.

It is well-known that the Coxeter group W associated to a Dynkin diagram Δ is a finite group.
Each element w ∈ W has the minimum number l such that w can be written as a product si1si2 · · · sil of 

l generators. Such number is called the length of w, and is denoted by l(w). If l = l(w) and w = si1si2 · · · sil , 
then si1si2 · · · sil is called a reduced expression of w, which is not necessarily unique.

If an element w ∈ W has the maximum length among the elements of W , then w is called a longest 
element of W . Actually, such an element uniquely exists, and it is often denoted by w0.

We can consider several partial orders on the Coxeter group W , but in this paper, we only use the right 
weak order : for w, w′ ∈ W , the inequality w ≤ w′ holds if and only if l(w′) = l(w) + l(w−1w′). Then, the 
poset (W, ≤) is a lattice.

We write j-irrW for the set of join-irreducible elements of the partially ordered set (W, ≤). For w ∈ W , 
the maximal elements of the set {w′ ∈ W | w′ < w} are wsi for all i ∈ Δ0 satisfying l(w) > l(wsi). 
Therefore, w ∈ W is join-irreducible if and only if there uniquely exists i ∈ Δ0 such that l(w) > l(wsi). In 
this case, we say that w is a join-irreducible element of type i.

When we consider the right weak order of the Coxeter group, the notion of inversions is useful. We call 
an element t ∈ W a reflection of W if there exist some w ∈ W and i ∈ Δ0 satisfying t = wsiw

−1. Fix 
w ∈ W , then a reflection t of W is called an inversion of w if l(tw) < l(w), and the set of inversions of w
is denoted by inv(w). It is well-known that, for two elements w, w′ ∈ W , the inequality w ≤ w′ holds if and 
only if inv(w) ⊂ inv(w′).

2.2. Bijections

Now that the preparation on Coxeter groups of Dynkin type is done, let us see how they are related to 
the corresponding preprojective algebras.

We quickly recall the definition of preprojective algebras of Dynkin type. Let Δ be a Dynkin diagram. 
We define the double quiver Q for Δ, that is, the set Q0 of vertices of Q is Δ0, and the set Q1 of arrows 
of Q consists of i → j and j → i for each edge between i and j of Δ. For each arrow α : i → j in Q1, we 
write α∗ for the reversed arrow j → i. There is a subset Q′

1 ⊂ Q1 such that, for each α ∈ Q1, the condition 
α ∈ Q′

1 holds if and only if α∗ /∈ Q′
1. Then, the preprojective algebra Π corresponding to Δ is given by 

KQ/〈
∑

α∈Q′
1
(αα∗ − α∗α)〉. Here, the choice of the subset Q′

1 is not unique in general, but Π is uniquely 
defined up to isomorphisms, since Δ is Dynkin. It is well-known that Π is self-injective. For each vertex 
i ∈ Q0, we write ei for the idempotent of Π corresponding to the vertex i.
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Let Π be the preprojective algebra of Dynkin type Δ, and set Ii := Π(1 − ei)Π, which is a maximal 
ideal of Π. We write 〈Ii | i ∈ Δ0〉 for the set of ideals of the form Ii1Ii2 · · · Iik .

There is an important ideal I(w) of Π associated to each element w of the Coxeter group W for Δ. The 
ideal I(w) is defined as follows: take a reduced expression of w = si1si2 · · · sik and set I(w) := Ii1Ii2 · · · Iik . 
Clearly, I(w) belongs to the set 〈Ii | i ∈ Δ0〉.

By [20, Theorem 2.14], I(w) does not depend on the choice of a reduced expression of w, and the well-
defined correspondence w �→ I(w) gives a bijection W → 〈Ii | i ∈ Δ0〉. We remark that a similar bijection 
exists for a preprojective algebra of non-Dynkin type, see [10, Theorem III.1.9].

Moreover, Mizuno proved the set 〈Ii | i ∈ Δ0〉 coincides with the set sτ -tiltΠ of support τ -tilting 
Π-modules. He also proved that the bijection W � w �→ I(w) ∈ sτ -tiltΠ is an isomorphism (W, ≤) →
(sτ -tiltΠ, ≥) of lattices [20, Theorem 2.30].

In our convention, we need the dual version of this isomorphism. The torsion-free class corresponding to 
the torsion class Fac I(w) is Sub(Π/I(w)), and it follows from Mizuno’s isomorphism and [22, Proposition 
6.4] that the module Π/I(w) is a support τ−1-tilting module. Thus, we obtain the following isomorphism 
of lattices.

Proposition 2.1. There exists an isomorphism (W, ≤) → (sτ–1-tiltΠ, ≤) of lattices given by w �→ Π/I(w).

In this map, the longest element w0 ∈ W corresponds to the injective cogenerator Π, and the identity 
element idW corresponds to 0.

Since the Coxeter group W for the Dynkin diagram Δ is a finite group, Π is τ -tilting finite. Therefore, 
we obtain the following bijections from Propositions 1.5, 1.6, and 2.1.

Proposition 2.2. There exists a bijection S(?) : W → sbrickΠ defined by the formula S(w) :=
socEnd(Π/I(w))(Π/I(w)). As a restriction, we have another bijection S(?) : j-irrW → brickΠ.

The aim of this paper is to describe the semibrick S(w) for each w ∈ W explicitly.
Since the partially ordered sets (W, ≤) and (torf A, ⊂) are isomorphic, we obtain the following property 

immediately from Theorem 1.8.

Corollary 2.3. Let w ∈ W , and take w1, w2, . . . , wm ∈ j-irrW such that S(w) =
⊕m

i=1 S(wi). Then, w =∨m
i=1 wi holds, and it is the canonical join representation of w in W .

We will explicitly determine the canonical join representation for each w ∈ W in Section 4. It is a purely 
combinatorial problem.

Then, the remaining task is to describe the brick S(w) for each join-irreducible element w ∈ j-irrW . For 
this purpose, we use the following bijection by Iyama–Reading–Reiten–Thomas [15].

Proposition 2.4. [15, Theorem 4.1] For each w ∈ j-irrW of type l, we set a module J(w) := (Π/I(w))el, 
which is a direct summand of Π/I(w). Then, SubJ(w) = Sub(Π/I(w)) holds, and this induces a bijection 
J(?) : j-irrW → iτ–1-rigidΠ.

Thus, by Proposition 1.6, we obtain the following formula.

Proposition 2.5. Let w ∈ j-irrW be of type l, and set J(w) := (Π/I(w))el. Then, the brick S(w) is equal to 
socEndΠ(J(w)) J(w).

Moreover, they have already given a combinatorial “Young diagram–like” description of J(w) for Δ =
An, Dn. This will be cited in the following subsections. By using this and Proposition 1.6, we will write 
down the explicit structure of the brick S(w) for each w ∈ j-irrW in Section 3.
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Now, we have recalled some properties holding for any preprojective algebra of Dynkin type. In the next 
two subsections, we will observe the preprojective algebras of type An and Dn in detail.

2.3. Type An

Let Δ = An in this subsection. The preprojective algebra Π of type An is given by the following quiver 
and relations:

1 2 3 · · · n
α1

β2

α2

β3

α3

β4

αn−1

βn

;

α1β2 = 0, αiβi+1 = βiαi−1 (2 ≤ i ≤ n− 1), βnαn−1 = 0.

The Coxeter group W of type An is isomorphic to the symmetric group Sn+1 by sending each si to the 
transposition (i i + 1). We identify the Coxeter group with Sn+1 by this isomorphism, and we express 
w ∈ W as (w(1), w(2), . . . , w(n + 1)).

The reflections of W are precisely the transpositions (a b) with a, b ∈ [1, n + 1] and a > b, and the set 
inv(w) of inversions of w ∈ W is

{(a b) | a, b ∈ [1, n + 1], a > b, w−1(a) < w−1(b)}.

An element w ∈ W is a join-irreducible element of type l if and only if l is the unique element in [1, n]
satisfying w(l) > w(l + 1). In this case, we have w(l) ≥ 2.

We set a basis of each indecomposable projective module Πel as follows. Let i, j, l ∈ Q0 = [1, n] with 
i ≤ j ≥ l. We define a path p(i, j, l) in Q as

p(i, j, l) := (αiαi+1 · · ·αj−1) · (βjβj−1 · · ·βl+1).

This is the shortest path starting from i, going through j, and ending at l. As an element in Π, the path 
p(i, j, l) is not zero in Π if and only if i ≥ j − l + 1, so set

Γ [l] := {(i, j) ∈ Q0 ×Q0 | j − l + 1 ≤ i ≤ j ≥ l}.

We obtain the following assertion from straightforward calculation.

Lemma 2.6. The set {p(i, j, l) | (i, j) ∈ Γ [l]} forms a K-basis of Πel.

This basis allows us to express Πel as

l l − 1 · · · 1

l + 1 l · · · 2

...
...

...

n n− 1 · · · n− l + 1

. (2.1)

Here, each number i in the row starting at j denotes a one-dimensional vector space Kp(i, j, l) with a basis 
p(i, j, l), and each arrow stands for the identity map K → K with respect to these bases.
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In examples later, we sometimes write Πel like a Young diagram by enclosing each entry with a square 
and omitting arrows: for example, if n = 8 and l = 3, then Πel is denoted by

3 2 1
4 3 2
5 4 3
6 5 4
7 6 5
8 7 6

. (2.2)

We use similar notation for subfactor modules of Πel.
Under this preparation, we recall the result of [15] for type An.

Proposition 2.7. [15, Theorem 6.1] Let w ∈ j-irrW be a join-irreducible element of type l. Then, the module 
J(w) ∈ iτ–1-rigidΠ is expressed as follows.

• Consider the diagram (2.1).
• For each j ∈ [l, n], in the row starting at j, keep the entries i satisfying i ≥ w(j + 1) and delete the 

others.

Example 2.8. Let n = 8 and w = (2, 5, 8, 1, 3, 4, 6, 7, 9). Then, w is a join-irreducible element of type l = 3, 
and Proposition 2.7 gives

J(w) =

3 2 1
4 3
5 4
6
7

.

2.4. Type Dn

Let Δ = Dn in this subsection. The preprojective algebra Π of type Dn is given by the following quiver 
and relations:

1

−1

2 3 · · · n− 1

α+
1

β+
2

α−
1

β−
2

α2

β3

α3

β4

αn−2

βn−1

;

α+
1 β

+
2 = 0, α−

1 β
−
2 = 0, α2β3 = β+

2 α+
1 + β−

2 α−
1 ,

αiβi+1 = βiαi−1 (3 ≤ i ≤ n− 2), βn−1αn−2 = 0.

To avoid complicated notation, we set α1 := α+
1 + α−

1 and β2 := β+
2 + β−

2 .
The Coxeter group W of type Dn is isomorphic to the group consisting of all automorphisms w on the 

set ±[1, n] satisfying the following conditions:
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• w(−i) = −w(i) holds for each i ∈ [1, n]; and
• the number of elements in {i ∈ [1, n] | w(i) < 0} is even.

Here, si ∈ W is sent to (−1 2)(−2 1) if i = −1; and (−i −(i + 1))(i i + 1) if i �= −1. We iden-
tify W with the group above by this isomorphism. Since w(−i) = −w(i) holds, we express w ∈ W as 
(w(1), w(2), . . . , w(n)).

The reflections of W are precisely the elements of the form (−a −b)(a b) with a, b ∈ ±[1, n] and a > |b|, 
and the set inv(w) of inversions of w ∈ W is

{(−a −b)(a b) | a, b ∈ ±[1, n], a > |b|, w−1(a) < w−1(b)}.

An element w ∈ W is a join-irreducible element of type l if and only if l is the unique element in 
{−1} ∪ [1, n − 1] = Q0 such that w(l) > w(|l| + 1) holds.

We fix one or two bases of each indecomposable projective module Πel as follows. We divide the argument 
by whether l = ±1 or not.

We consider the case l = ±1 first. Let i, j ∈ Q0 = {−1} ∪ [1, n − 1] with i ≤ j �= −l. We define a path 
p(i, j, l) by

p(i, j,±1) :=

⎧⎪⎪⎨
⎪⎪⎩

(αiαi+1 · · ·αj−1) · (βjβj−1 · · ·β3)β±
2 (i ≥ 2)

α+
1 p(2, j,±1) (i = 1)

α−
1 p(2, j,±1) (i = −1)

.

This is a shortest path starting from i, going through j, and ending at l. As an element in Π, the path 
p(i, j, l) is not zero in Π if and only if i �= (−1)j l, so set

Γ [l] := {(i, j) ∈ Q0 ×Q0 | (−1)j l �= i ≤ j �= −l}.

We obtain the following assertion from straightforward calculation.

Lemma 2.9. The set {p(i, j, l) | (i, j) ∈ Γ [l]} forms a K-basis of Πel.

This basis allows us to express Πel as

l

2 −l

...
...

n− 2 n− 3 · · · (−1)n−3l

n− 1 n− 2 · · · 2 (−1)n−2l

. (2.3)

Here, each number i in the row starting at j denotes a one-dimensional vector space Kp(i, j, l) with a basis 
p(i, j, l), and each arrow stands for the identity map K → K with respect to these bases.

If we use the “Young diagram-like” notation as (2.2) for the case n = 9 and l = 1, then Πel is denoted 
by
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1
2 −1
3 2 1
4 3 2 −1
5 4 3 2 1
6 5 4 3 2 −1
7 6 5 4 3 2 1
8 7 6 5 4 3 2 −1

. (2.4)

The indecomposable τ−1-rigid module J(w) for w ∈ j-irrW of type l = ±1 is given as follows.

Proposition 2.10. [15, Theorem 6.5] Let w ∈ j-irrW be a join-irreducible element of type l = ±1. Then, the 
module J(w) ∈ iτ–1-rigidΠ is expressed as follows.

• Consider the diagram (2.3).
• For each j ∈ {l} ∪ [2, n − 1], in the row starting at j, keep the entries i satisfying i ≥ w(|j| + 1) and 

delete the others.

Example 2.11. Let n = 9 and w = (9, −7, −6, −4, −1, 2, 3, 5, 8) ∈ j-irrW of type l = 1. Then, by Proposi-
tion 2.10, the module J(w) is

J(w) =

1
2 −1
3 2 1
4 3 2 −1
5 4 3 2
6 5 4 3
7 6 5
8

.

Next, we consider the case l ≥ 2. Let i ∈ ±Q0 = ±[1, n −1] and j ∈ Q0 = {−1} ∪ [1, n −1] with i ≤ j ≥ l. 
Set t := (−1)j−l+1. We define two paths p1(i, j, l) and p−1(i, j, l) in Q by

pε(i, j, l) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(αiαi−1 · · ·αj−1) · (βjβj−1 · · ·βl+1) (i ≥ 2)
α+

1 pε(2, j, l) (i = 1)
α−

1 pε(2, j, l) (i = −1)
β2pε(εt, j, l) (i = −2)
(β−iβ−i−1 · · ·β3)pε(−2, j, l) (i ≤ −3)

.

For ε = ±1, the path pε(i, j, l) is a shortest path

• starting from i, going through j, and ending at l if i ≥ −1; and
• starting from |i|, going through εt and then j, and ending at l if i ≤ −2.
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As an element in Π, the path pε(i, j, l) is not zero in Π if and only if i ≥ j − (n − 1) − l, so set

Γ [l] := {(i, j) ∈ ±Q0 ×Q0 | j − (n− 1) − l ≤ i ≤ j ≥ l}.

We obtain the following assertion from straightforward calculation.

Lemma 2.12. Let ε = ±1. Then, the set {pε(i, j, l) | (i, j) ∈ Γ [l]} forms a K-basis of Πel.

Each basis above allows us to express Πel as

l l−1 · · · 2 −ε
ε

−2 · · · −m −m−1 · · · −n+2 −n+1

l+1 l · · · 3 2 ε
−ε

· · · −m+1 −m · · · −n+3 −n+2

...
...

...
...

...
...

...
...

...

n−1 n−2 · · · m+1 m m−1 · · · −εt
εt

−2 · · · −l+1 −l

−1

−1

−1

, (2.5)

where m := n −l, t := (−1)m−1. Here, each number i in the row starting at j denotes a one-dimensional vector 
space Kpε(i, j, l) with a basis pε(i, j, l). Each arrow with the label “−1” stands for the map K � x �→ −x ∈ K, 
and each of the other arrows stands for the identity map K → K, with respect to these bases.

If we use the “Young diagram-like” notation as (2.2) for the case n = 9, l = 2, and ε = 1, then Πel is 
denoted by

2 −1
1 −2 −3 −4 −5 −6 −7 −8

3 2 1
−1 −2 −3 −4 −5 −6 −7

4 3 2 −1
1 −2 −3 −4 −5 −6

5 4 3 2 1
−1 −2 −3 −4 −5

6 5 4 3 2 −1
1 −2 −3 −4

7 6 5 4 3 2 1
−1 −2 −3

8 7 6 5 4 3 2 −1
1 −2

. (2.6)

We use similar notation for subfactor modules of Πel.
The indecomposable τ−1-rigid module J(w) for w ∈ j-irrW of type l �= ±1 is given as follows.

Proposition 2.13. [15, Theorem 6.12] Let w ∈ j-irrW be a join-irreducible element of type l �= ±1. If 
w(l + 1) ≤ 1, then set

m := max{k ∈ [l + 1, n] | w(k) ≤ 1}, ε :=
{

(−1)m−(l+1) (w(m) ≤ −2)
(−1)m−(l+1)w(m) (w(m) = ±1)

;

otherwise, set ε := 1. Then, the module J(w) ∈ iτ–1-rigidΠ is expressed as follows.

• Consider the diagram (2.5).
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• For each j ∈ [l, n − 1], in the row starting at j, keep the entries i satisfying

⎧⎪⎪⎨
⎪⎪⎩
i ≥ w(j + 1) (w(j + 1) ≥ 2)
i ≥ 2 or i = w(j + 1) (w(j + 1) = ±1)
i ≥ w(j + 1) + 1 (w(j + 1) ≤ −2)

and delete the others.

Example 2.14. Let n = 9 and w = (−6, 9, −7, −4, −1, 2, 3, 5, 8) ∈ j-irrW of type l = 2. By Proposition 2.13, 
the module J(w) is described as follows:

J(w) =

2 1
−1 −2 −3 −4 −5 −6

3 2 −1
1 −2 −3

4 3 2 −1
5 4 3 2
6 5 4 3
7 6 5
8

.

3. Description of bricks

In this section, we describe the bricks over the preprojective algebras Π of Dynkin type Δ = An, Dn. For 
w ∈ j-irrW , we have obtained that the brick S(w) is given as socEndΠ(J(w)) J(w) in Proposition 2.5, and the 
module J(w) ∈ iτ–1-rigidΠ is combinatorially determined in Propositions 2.7, 2.10, and 2.13.

We remark that the bricks in modΠ coincide with the layers of Π [15, Theorem 1.2]. Thus, the dimension 
vector of each brick in modΠ is a positive root by [3, Theorem 2.7]. Here, a module L in modΠ is called a 
layer if there exist some w ∈ W and some vertex i in Δ satisfying w < wsi and L ∼= I(w)/I(wsi) [3, Section 
2].

3.1. Type An

We state the result and give an example first.

Theorem 3.1. Let w ∈ j-irrW be a join-irreducible element of type l. Set

R := w([l + 1, n + 1]), a := w(l), b := w(l + 1), V := [b, a− 1].

Then, the brick S(w) is isomorphic to the Π-module S′(w) defined as follows.

(a) The brick S′(w) has a K-basis (〈i〉)i∈V , and if j = i, then ej〈i〉 := 〈i〉; otherwise, ej〈i〉 := 0.
(b) Let i ∈ V . If j �= i − 1, then αj〈i〉 := 0. If j �= i + 1, then βj〈i〉 := 0.
(c) If i ∈ V \ {max V }, then

αi〈i + 1〉 :=
{
〈i〉 (i + 1 /∈ R)
0 (i + 1 ∈ R)

, βi+1〈i〉 :=
{

0 (i + 1 /∈ R)
〈i + 1〉 (i + 1 ∈ R)

.
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Example 3.2. Let n = 8 and w = (2, 5, 8, 1, 3, 4, 6, 7, 9). Then, we have l = 3, R = {1, 3, 4, 6, 7, 9}, a = 8, 
b = 1, and V = [1, 7]. The module S(w) has a K-basis 〈1〉, 〈2〉, . . . , 〈7〉 and its structure as a Π-module can 
be written as

〈1〉 α1←− 〈2〉 β3−→ 〈3〉 β4−→ 〈4〉 α4←− 〈5〉 β6−→ 〈6〉 β7−→ 〈7〉.

In an abbreviated form, the brick S(w) is denoted by

1 ← 2 → 3 → 4 ← 5 → 6 → 7. (3.1)

If we use the notation as (2.2), then by Example 2.8, the module J(w) and the “position” of a submodule 
S(w) in J(w) are described as follows:

J(w) =

3 2 1
4 3
5 4
6
7

, S(w) =

2 1
3

5 4
6
7

.

Compare this expression of the brick S(w) to (3.1). If we use such abbreviated expressions of bricks as 
(3.1), then the theorem can be restated as follows.

Corollary 3.3. Let w ∈ j-irrW be a join-irreducible element of type l, and use the setting of Theorem 3.1. 
We express the brick S(w) in the following abbreviation rules.

• For each i ∈ V , the K-vector subspace K〈i〉 is denoted by the symbol i.
• If the action of some γ ∈ Q1 on S(w) induces a nonzero K-linear map K〈i〉 → K〈j〉, then we draw an 

arrow from the symbol i to the symbol j.

Then, for each i ∈ V \ {max V }, there exists exactly one arrow between i and i + 1, and its orientation is 
i → i + 1 if i + 1 ∈ R and i ← i + 1 if i + 1 /∈ R.

It is easy to see that there exists some path algebra A of type An such that the brick S(w) is an A-
module, and that any 2-cycle in Q annihilates all the bricks in Π. Let I be the ideal of Π generated by all 
the 2-cycles in Q, then [13, Corollary 5.20] implies that torf Π ∼= torf(Π/I) as lattices. Thus, there is an 
isomorphism from W to torf(Π/I) as lattices by Propositions 1.5 and 2.1. The relationship between W and 
Π/I is investigated from another point of view in [6, Section 4].

Now we start the proof of Theorem 3.1. For this purpose, we restate Proposition 2.7 as follows.

Lemma 3.4. Let w ∈ j-irrW be a join-irreducible element of type l.

(1) Assume (i, j) ∈ Γ [l]. Then, p(i, j, l) /∈ I(w) holds if and only if i ≥ w(j + 1).
(2) Define Γ (w) ⊂ Γ [l] as the subset consisting of the elements (i, j) ∈ Γ [l] with p(i, j, l) /∈ I(w). Then, the 

set {p(i, j, l) | (i, j) ∈ Γ (w)} induces a K-basis of J(w).

To express S(w), we define the following set for k ≥ 1:

Γk(w) := {(i, j) ∈ Γ (w) | min{x ≥ 1 | (i, j + x) /∈ Γ (w)} = k}.
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It is easy to see that Γ (w) is the disjoint union of the Γk(w)’s. Moreover, we extend the definition of the 
path p(i, j, l) to Γ̃ [l] := {(i, j) ∈ Q0 × Z | i ≤ j ≥ l} by setting p(i, j, l) := 0 if j ≥ n + 1.

Lemma 3.5. Let w ∈ j-irrW be a join-irreducible element of type l. Consider the endomorphism f :=
(·p(l, l + 1, l)) : J(w) → J(w).

(1) We have S(w) = Ker f .
(2) Let (i, j) ∈ Γ (w). Then, p(i, j, l) ∈ Ker f holds if and only if (i, j) ∈ Γ1(w).
(3) The set {p(i, j, l) | (i, j) ∈ Γ1(w)} induces a K-basis of Ker f .

Proof. (1) Since J(w) = (Π/I(w))el, we can regard EndΠ(J(w)) as a factor algebra of EndΠ(Πel) ∼= elΠel. 
It is easy to check that f̃ := (·p(l, l + 1, l)) : Πel → Πel satisfies rad EndΠ(Πel) = EndΠ(Πel)f̃ . Under the 
quotient map EndΠ(Πel) → EndΠ(J(w)), the image of rad EndΠ(Πel) is rad EndΠ(J(w)) and f̃ is sent to 
f , so rad EndΠ(J(w)) = EndΠ(J(w))f . Thus, for any g ∈ rad EndΠ(J(w)), we have Ker g ⊃ Ker f , so

S(w) = socEndΠ(J(w)) J(w) =
⋂

g∈rad EndΠ(J(w))

Ker g = Ker f.

(2) As an element in Π, we have f(p(i, j, l)) = p(i, j, l)p(l, l + 1, l) = p(i, j + 1, l). Then, Lemma 3.4
implies the assertion.

(3) From Lemma 3.4, recall that the set {p(i, j, l) | (i, j) ∈ Γ (w)} induces a basis of J(w), so this set is 
linearly independent in J(w).

Thus, the subset {p(i, j, l) | (i, j) ∈ Γ1(w)} is linearly independent in J(w), and is contained in Ker f by 
(2).

On the other hand, in the proof of (2), we got f(p(i, j, l)) = p(i, j + 1, l). If (i, j) ∈ Γ (w) \ Γ1(w), then 
(i, j +1) ∈ Γ (w). The set {p(i, j +1, l) | (i, j) ∈ Γ (w) \Γ1(w)} is linearly independent in J(w). This implies 
dimK Im f ≥ #(Γ (w) \ Γ1(w)); hence,

dimK Ker f = dimK J(w) − dimK Im f ≤ #Γ (w) − #(Γ (w) \ Γ1(w)) = #Γ1(w).

Since {p(i, j, l) | (i, j) ∈ Γ1(w)} is linearly independent in J(w) and has #Γ1(w) elements, the set 
{p(i, j, l) | (i, j) ∈ Γ1(w)} induces a K-basis of Ker f . �
Lemma 3.6. Let w ∈ j-irrW be a join-irreducible element of type l, and define V as in Theorem 3.1. Then, 
there exists a bijection Γ1(w) → V given by (i, j) �→ i.

Proof. In the proof, we fully use the notation in Theorem 3.1.
We first show the well-definedness of the map Γ1(w) → V .
We remark that, for k ∈ [l + 1, n + 1], the condition w(k) = k holds if and only if k > a, and that 

this condition is also equivalent to w(k) > a. Lemma 3.4 and (i, j) ∈ Γ (w) give j ≥ i ≥ w(j + 1). Thus, 
w(j + 1) ≤ j holds, so we get j + 1 ≤ a, or equivalently, j < a. Therefore, we obtain i ≤ j < a.

On the other hand, Lemma 3.4 and (i, j) ∈ Γ (w) also imply j ≥ i ≥ w(j + 1) ≥ w(l + 1) = b.
These imply that the map Γ1(w) → V is well-defined. It is clearly injective by Lemma 3.4.
We next prove that the map Γ1(w) → V is also surjective. Let i ∈ V . Then, i < a holds, so there exists 

some j ∈ [l, n] such that (i, j) ∈ Γ (w) by Lemma 3.4. Take the maximum j, then it is easy to obtain 
(i, j) ∈ Γ1(w) from Lemma 3.4.

Hence, the map Γ1(w) → V is also surjective, and thus, bijective. �
Now, we show Theorem 3.1.
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Proof of Theorem 3.1. By Lemma 3.6, we can define a map ρ : V → Q0 as follows: ρ(i) is the unique element 
j ∈ Q0 such that (i, j) ∈ Γ1(w). Set 〈i〉 := p(i, ρ(i), l) for each i ∈ V . It suffices to show that (〈i〉)i∈V satisfies 
the properties (a), (b), and (c), since the three properties are enough to define an isomorphic class of Π-
modules.

First, (〈i〉)i∈V is a K-basis of S(w) by Lemmas 3.5 and 3.6, and K〈i〉 is clearly a subspace of eiS(w). 
Thus, the property (a) holds, and (b) follows from (a).

We begin the proof of (c).
Let i ∈ V \ {max V } and set j := ρ(i + 1). Then,

αi〈i + 1〉 = αip(i + 1, j, l) = p(i, j, l) =
{
〈i〉 (if i + 1 /∈ R, since (i, j) ∈ Γ1(w))
0 (if i + 1 ∈ R, since (i, j) /∈ Γ (w))

.

Next, let i ∈ V \ {max V } and set j := ρ(i). Then,

βi+1〈i〉 = βi+1p(i, j, l) = p(i + 1, j + 1, l)

=
{

0 (if i + 1 /∈ R, since (i + 1, j + 1) /∈ Γ (w))
〈i + 1〉 (if i + 1 ∈ R, since (i + 1, j + 1) ∈ Γ1(w))

.

From these, we have the property (c). �
3.2. Type Dn

We state the result and give some examples first. Recall α1 = α+
1 + α−

1 and β2 = β+
2 + β−

2 .

Theorem 3.7. Let w ∈ j-irrW be a join-irreducible element of type l. Set

R := w([|l| + 1, n]), a := w(l), b := w(|l| + 1),

r := max{k ≥ 0 | [1, k] ⊂ ±R}, c :=
{
w(|w−1(1)|) (r ≥ 1)
1 (r = 0)

,

(V−, V+) :=

⎧⎪⎪⎨
⎪⎪⎩

(∅, [b, a− 1]) (b ≥ 2)
(∅, {c} ∪ [2, a− 1]) (b = ±1)
([b + 1,−2] ∪ {−c}, {c} ∪ [2, a− 1]) (b ≤ −2)

, V := V+ � V−.

Then, the brick S(w) is isomorphic to the Π-module S′(w) defined as follows.

(a) The brick S′(w) has a K-basis (〈i〉)i∈V , and if j = |i| ≥ 2 or j = i ∈ {±1}, then ej〈i〉 := 〈i〉; otherwise 
ej〈i〉 := 0.

(b) Let i ∈ V . If j �= |i| − 1, then αj〈i〉 := 0. If j �= |i| + 1, then βj〈i〉 := 0.
(c) The remaining actions of arrows are given as follows, where we set 〈j〉 := 0 if j /∈ V (in this case, the 

coefficient ξ+
i , ξ−i , η+

i , or η−i of 〈j〉 is set as zero below).
(i) For i ∈ V+ \ {max V+}, we have α|i|〈|i| + 1〉 := ξ+

i 〈i〉 + ξ−i 〈−i〉, where

ξ+
i :=

{
1 (|i| + 1 /∈ R)
0 (|i| + 1 ∈ R)

, ξ−i :=
{

1 (|i| = 1, r = 0, 2 /∈ R)
0 (otherwise)

.
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(ii) For i ∈ V+ \ {max V+}, we have β|i|+1〈i〉 := η+
i 〈|i| + 1〉 + η−i 〈−(|i| + 1)〉, where

η+
i :=

{
1 (|i| + 1 ∈ R)
0 (|i| + 1 /∈ R)

, η−i :=
{
−1 (|i| = 1, r = 0, −2 /∈ R)
0 (otherwise)

.

(iii) For i ∈ V− \ {minV−}, we have α|i|〈−(|i| + 1)〉 := ξ+
i 〈−i〉 + ξ−i 〈i〉, where

ξ+
i :=

{
1 (|i| ≤ r, |i| + 1 ∈ R)
0 (otherwise)

, ξ−i :=
{

1 (−(|i| + 1) ∈ R)
0 (−(|i| + 1) /∈ R)

.

(iv) For i ∈ V−, we have β|i|+1〈i〉 := η+
i 〈|i| + 1〉 + η−i 〈−(|i| + 1)〉, where

η+
i :=

{
1 (|i| ≤ r, |i| + 1 /∈ R)
0 (otherwise)

, η−i :=

⎧⎪⎪⎨
⎪⎪⎩

1 (|i| �= r, −(|i| + 1) /∈ R)
−1 (|i| = r)
0 (otherwise)

.

The proof of the theorem given in later depends on whether the type l of the join-irreducible element 
w ∈ j-irrW is ±1 or not, because the description of the indecomposable τ−1-rigid module J(w) does so. 
The following examples show the difference of the calculation of the brick S(w) in these two cases.

Example 3.8. Let n = 9, w = (9, −7, −6, −4, −1, 2, 3, 5, 8). Then, we have l = 1, R = {−7, −6, −4, −1,
2, 3, 5, 8}, a = 9, b = −7, r = 8, and c = −1. Thus, (V−, V+) = ([−6, −2] ∪{1}, {−1} ∪ [2, 8]), and the desired 
brick S(w) is written as

〈1〉 〈−2〉 〈−3〉 〈−4〉 〈−5〉 〈−6〉

〈−1〉 〈2〉 〈3〉 〈4〉 〈5〉 〈6〉 〈7〉 〈8〉
β−
2 β3 α3 β5 α5 α6 β8

β+
2

α−
1

β3

α2

α3

β4

β5

α4

α5

β6 β7
.

By omitting the labels of the arrows, the brick S(w) can be written in the following abbreviated way, 
which is enough to determine S(w) up to isomorphisms:

1 −2 −3 −4 −5 −6

−1 2 3 4 5 6 7 8

. (3.2)

If we use the notation as (2.4), then by Example 2.11, the module J(w) and the “position” of a submodule 
S(w) in J(w) are described as follows:
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J(w) =

1
2 −1
3 2 1
4 3 2 −1
5 4 3 2
6 5 4 3
7 6 5
8

, S(w) =

1
2 −1

4 3 2
6 5 4 3
7 6 5
8

.

In the figure for S(w), every square i with a red letter denotes K〈−i〉, which is a subspace of eiS(w). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
There are five such squares 2 , 3 , 4 , 5 , 6 . Every other square i denotes K〈i〉, and it is a subspace 
of eiS(w). Compare this expression of the brick S(w) to (3.2).

Example 3.9. Let n = 9, w = (−6, 9, −7, −4, −1, 2, 3, 5, 8). Then, we have l = 2, R = {−7, −4, −1, 2, 3, 5, 8}, 
a = 9, b = −7, r = 5, and c = −1. Thus, (V−, V+) = ([−6, −2] ∪ {1}, {−1} ∪ [2, 8]), and the desired brick 
S(w) is written as

〈1〉 〈−2〉 〈−3〉 〈−4〉 〈−5〉 〈−6〉

〈−1〉 〈2〉 〈3〉 〈4〉 〈5〉 〈6〉 〈7〉 〈8〉
β−
2 β3 α3 β5 α5 α6 β8

β+
2

α−
1

β3

α2

α3

β4

β5

α4

−β6

β6
.

The brick S(w) can be written in the following abbreviated way:

1 −2 −3 −4 −5 −6

−1 2 3 4 5 6 7 8

. (3.3)

Now we use the notation as (2.6), then by Example 2.14, the module J(w) and the “position” of a 
submodule S(w) in J(w) are described as follows:

J(w) =

2 1
−1 −2 −3 −4 −5 −6

3 2 −1
1 −2 −3

4 3 2 −1
5 4 3 2
6 5 4 3
7 6 5
8

, S(w) =

(4) (5) −6

1 (2) (3)
(2) −1

(4) (3) 2
(5) 4 3

7 6 5
8

.

In the figure for S(w), for each i = 2, 3, 4, 5, the two squares (i) together denote a certain one-dimensional 
subspace of the two-dimensional vector space corresponding to the two squares i and −i in the figure 
for J(w). This one-dimensional vector space is actually K〈−i〉, which is a subspace of eiS(w). Every other 
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square i in the figure for S(w) denotes K〈i〉, which is a subspace of e|i|S(w) if i ≤ −2, and of eiS(w) if 
i ≥ −1. We can check that this expression of the brick S(w) can be rewritten as (3.3).

We mainly use such abbreviated expressions of bricks as (3.2) and (3.3) in the rest. Theorem 3.7 can be 
restated as follows by using the abbreviated expressions.

Corollary 3.10. Let w ∈ j-irrW be a join-irreducible element of type l, and use the setting of Theorem 3.7. 
We express the brick S(w) in the same abbreviation rules as Corollary 3.3. Then, there exist the following 
arrows, and no other arrows exist.

(i) For each i ∈ V+ \ {max V+}, there exists an arrow i → |i| + 1 if |i| + 1 ∈ R; and i ← |i| + 1 otherwise.
(ii) For each i ∈ V− \ {minV−}, there exists an arrow i ← −(|i| + 1) if −(|i| + 1) ∈ R; and i → −(|i| + 1)

otherwise.
(iii) If r ≥ 1, then for each i ∈ V− with |i| ≤ r, there exists an arrow −i ← −(|i| + 1) if |i| + 1 ∈ R; and 

i → |i| + 1 otherwise.
(iv) If r = 0, then there exists an arrow −c ← 2 if c ← 2 exists in (i), and an arrow c → −2 if −c → −2

exists in (ii).

Proof. We remark that, for i ∈ [1, r], the condition −i ∈ R is equivalent to i /∈ R. Then, Theorem 3.7 yields 
the assertion. �

Unlike the case of type An, for w ∈ j-irrW , there may not exist a path algebra A of type Dn such that the 
brick S(w) is an A-module. For example, the bricks obtained in Examples 3.8 and 3.9 cannot be modules 
over any path algebra of type Dn, since the 2-cycle α2β3 annihilates none of the two bricks. Our results 
imply that, if an element in Π is the product of some two 2-cycles, then it annihilates all the bricks in 
brickΠ.

We give more examples.

Example 3.11. In these examples, assume n = 9.

(1) Let w = (3, 5, 8, −7, −4, 1, 2, 6, 9). Then, we have l = 3, a = 8, b = −7, r = 2, and c = 1. Thus, 
(V−, V+) = ([−6, −1], [1, 7]), and the desired brick S(w) is written as

−1 −2 −3 −4 −5 −6

1 2 3 4 5 6 7

.

(2) Let w = (1, 3, 5, 8, −7, −4, 2, 6, 9). Then, we have l = 4, a = 8, b = −7, r = 0, and c = 1. Thus, 
(V−, V+) = ([−6, −1], [1, 7]), and the desired brick S(w) is written as

−1 −2 −3 −4 −5 −6

1 2 3 4 5 6 7

.

(3) Let w = (1, 2, 3, 5, 8, −7, −4, 6, 9). Then, we have l = 5, a = 8, b = −7, r = 0, and c = 1. Thus, 
(V−, V+) = ([−6, −1], [1, 7]), and the desired brick S(w) is written as
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−1 −2 −3 −4 −5 −6

1 2 3 4 5 6 7

.

We also have the list of bricks in the case Δ = D5 in Appendix A.
Now, we start the proof of Theorem 3.7. We divide the argument by whether the type l of w ∈ j-irrW is 

±1 or not.
We first assume that l = ±1. We can restate Proposition 2.10 as follows.

Lemma 3.12. Let w ∈ j-irrW be a join-irreducible element of type l = ±1.

(1) Assume (i, j) ∈ Γ [l]. Then, p(i, j, l) /∈ I(w) holds if and only if i ≥ w(|j| + 1).
(2) Consider the subset Γ (w) ⊂ Γ [l] consisting of the elements (i, j) ∈ Γ [l] with p(i, j, l) /∈ I(w). Then, the 

set {p(i, j, l) | (i, j) ∈ Γ (w)} induces a K-basis of J(w).

In this lemma, we can replace the condition i ≥ w(|j| +1) by |i| ≥ w(|j| +1) in (1), since w(m) = (−1)m−1l

holds for the number m := |w−1(1)|.
To express S(w), we define the following set for k ≥ 1:

Γk(w) :=
{
{(i, j) ∈ Γ (w) | min{x ≥ 1 | (i, |j| + x) /∈ Γ (w)} = k} (i ≥ 2)
{(i, j) ∈ Γ (w) | min{x ≥ 1 | ((−1)xi, |j| + x) /∈ Γ (w)} = k} (i = ±1)

.

It is easy to see that Γ (w) is the disjoint union of the Γk(w)’s. Moreover, we extend the definition of the 
path p(i, j, l) to Γ̃ [l] := {(i, j) ∈ Q0 × Z | i ≤ j ≥ l} by setting p(i, j, l) := 0 if j ≥ n, and also define 
w(k) := k if k ≥ n + 1. In Example 3.8, the squares with black letters denote Γ1(w), and the squares with 
red letters denote Γ2(w).

Lemma 3.13. Let w ∈ j-irrW be a join-irreducible element of type l = ±1. Consider the endomorphism 
f := (·p(l, 3, l)) : J(w) → J(w).

(1) We have S(w) = Ker f .
(2) Let (i, j) ∈ Γ (w). Then, p(i, j, l) ∈ Ker f holds if and only if (i, j) ∈ Γ1(w) � Γ2(w).
(3) The set {p(i, j, l) | (i, j) ∈ Γ1(w) � Γ2(w)} induces a K-basis of Ker f .

Proof. Similar argument to Lemma 3.5 works. We remark that

f(p(i, j, l)) = p(i, j, l)p(l, 3, l) = p(i, |j| + 2, l)

hold in Π. �
Lemma 3.14. Let w ∈ j-irrW be a join-irreducible element of type l = ±1. Define V+ and V− as in Theo-
rem 3.1.

(1) There exists a bijection Γ1(w) → V+ given by (i, j) �→ i.
(2) There exists a bijection Γ2(w) → V− given by (i, j) �→ −i if i ≥ 2; and (i, j) �→ i if i = ±1.

Proof. We use the notation in Theorem 3.7 in the proof.
(1) We see the well-definedness of the map Γ1(w) → V+.
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We first show that every (i, j) ∈ Γ1(w) satisfies that i < a. We remark that, for k ∈ [2, n], the condition 
w(k) = k holds if and only if k > a, and that this condition is also equivalent to w(k) > a. Lemma 3.12
and (i, j) ∈ Γ (w) give j ≥ i ≥ w(|j| + 1). Thus, w(|j| + 1) ≤ j holds, so we get |j| + 1 ≤ a, or equivalently, 
|j| < a. Therefore, we obtain i ≤ |j| < a.

We also prove that, if (i, j) ∈ Γ1(w) and |i| = 1, then i = c (*). Since (i, j) ∈ Γ (w), we get i = (−1)|j|−1l. 
In this case, Lemma 3.12 and (i, j) ∈ Γ1(w) yield w(|j| + 2) ≥ 2 and i ≥ w(|j| + 1). If w(|j| + 1) ≤ −2, then 
|w−1(1)| = 1, which contradicts l = ±1. We have w(|j| +1) = ±1. Thus, |j| + 1 = |w−1(1)| holds; hence, we 
have (−1)|j|−1l = (−1)|w−1(1)|l = c. Therefore, i = c.

Moreover, Lemma 3.12 and (i, j) ∈ Γ (w) imply j ≥ i ≥ w(|j| + 1) ≥ w(2) = b.
These imply that the map Γ1(w) → V+ is well-defined. By Lemma 3.12, it is clearly injective.
We next prove that the map Γ1(w) → V+ is also surjective. Let i ∈ V+, then |i| < a holds. Thus, the first 

remark yields w(|i| + 1) < |i| + 1, so there exists some j ∈ {l} ∪ [2, n − 1] such that (i, j) ∈ Γ (w). Take the 
maximum j among such j’s.

If i ≥ 2, then (i, j) belongs to Γ1(w) by Lemma 3.12.
If i = c, then (i, j) ∈ Γ (w) and (i, |j| +2) /∈ Γ (w) hold. On the other hand, we obtain (−i, |j| +1) /∈ Γ1(w)

from (*). From these, (i, j) must be in Γ1(w).
Therefore, (i, j) ∈ Γ1(w) holds, so the map Γ1(w) → V+ is also surjective, and thus, bijective.
(2) First, for each (i, j) ∈ Γ2(w), we have (i, |j| + 1) ∈ Γ1(w) if i ≥ 2 and (−i, |j| + 1) ∈ Γ1(w) if i = ±1. 

This correspondence gives a bijection

Γ2(w) → {(i, j) ∈ Γ1(w) | |j| > |i|}.

Next, we show that, for any (i, j) ∈ Γ1(w), the conditions |j| > |i| and |i| < |b| are equivalent. Let 
(i, j) ∈ Γ1(w).

If |j| > |i|, then |j| > w(|j| + 1) must hold (otherwise, there exists no (i, j) ∈ Γ (w) such that |j| > |i|) 
by Lemma 3.12, a contradiction), which implies that |j| ≤ |b| since l = ±1. Thus, |i| < |b|.

Conversely, if |j| > |i| does not hold, then |j| = |i|. In this case, w(|i| + 2) = w(|j| + 2) > |i|, where the 
latter inequality comes from (i, j) ∈ Γ1(w). This means w(|i| + 2) ≥ |i| + 1, which yields |i| + 1 > |b|. Thus, 
|i| ≥ |b|.

Therefore,

{(i, j) ∈ Γ1(w) | |j| > |i|} = {(i, j) ∈ Γ1(w) | |i| < |b|}.

By (1), we have a bijection

{(i, j) ∈ Γ1(w) | |i| < |b|} → {i ∈ V+ | |i| < |b|},

and by definition, i → −i yields a bijection

{i ∈ V+ | |i| < |b|} → V−.

The composite of these bijections is nothing but the map in the statement. �
Now, we show Theorem 3.7 in the case l = ±1.

Proof of Theorem 3.7 in the case l = ±1. By Lemma 3.14, we can define a map ρ : V → Q0 as follows.

• If i ∈ V+, then ρ(i) is the unique element j ∈ Q0 such that (i, j) ∈ Γ1(w).
• If i ∈ V− and i = ±1, then ρ(i) is the unique element j ∈ Q0 such that (i, j) ∈ Γ2(w).
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• If i ∈ V− and i ≤ −2, then ρ(i) is the unique element j ∈ Q0 such that (|i|, j) ∈ Γ2(w).

Set 〈i〉 := p(i, ρ(i), l) for each i ∈ V . It suffices to show that (〈i〉)i∈V satisfies the properties (a), (b), and 
(c), since the three properties are enough to define an isomorphic class of Π-modules.

First, (〈i〉)i∈V is a K-basis of S(w) by Lemmas 3.13 and 3.14, and K〈i〉 is clearly a subspace of eiS(w)
if i ≥ −1; and of e|i|S(w) if i ≤ −2. Thus, the property (a) has been proved, and the property (b) follows 
from (a).

In the following observation, we fully use Lemma 3.12.
We begin the proof of (c)(i). First, we assume 2 ∈ V+, and set j := ρ(2).

• If 2 /∈ R, then w(j + 1) = c and w(j + 2) ≥ 3 hold, so we have (c, j) ∈ Γ1(w) and (−c, j) /∈ Γ (w).
• If 2 ∈ R, then w(j + 1) = 2 holds, so we have (c, j), (−c, j) /∈ Γ (w).

These imply

α1〈2〉 = α1p(2, j, l) = p(c, j, l) + p(−c, j, l) =
{
〈c〉 (2 /∈ R)
0 (2 ∈ R)

.

Second, let i ∈ V+ \ {max V+} and i ≥ 2, and set j := ρ(i + 1). Then,

αi〈i + 1〉 = αip(i + 1, j, l) = p(i, j, l) =
{
〈i〉 (if i + 1 /∈ R, since (i, j) ∈ Γ1(w))
0 (if i + 1 ∈ R, since (i, j) /∈ Γ (w))

.

Since l = ±1, we have r ≥ 1. Thus, we have proved (c)(i).
Next, we begin the proof of (c)(ii). Let i ∈ V+ \ {max V+}, and set j := ρ(i). Then,

β|i|+1〈i〉 = β|i|+1p(i, j, l) = p(|i| + 1, j + 1, l)

=
{

0 (if i + 1 /∈ R, since (|i| + 1, j + 1) /∈ Γ (w))
〈|i| + 1〉 (if i + 1 ∈ R, since (|i| + 1, j + 1) ∈ Γ1(w))

.

Since r ≥ 1, this implies (c)(ii).
Before continuing the proof, we remark the following: every i ∈ V− satisfies |i| < r, since l = ±1. Thus, 

if i ∈ V−, then |i| + 1 /∈ R is equivalent to −(|i| + 1) ∈ R.
We proceed to the proof of (c)(iii). First, assume −c ∈ V− \ {minV−}, and set j := ρ(−2).

• If −2 /∈ R, then w(j + 1) = c and w(j + 2) = 2 hold, so we have (c, j) ∈ Γ1(w) and (−c, j) /∈ Γ (w).
• If −2 ∈ R, then w(j + 1) = −2 and w(j + 2) = c hold, so we have (−c, j) ∈ Γ1(w) and (c, j) /∈ Γ (w).

Thus,

α1〈−2〉 = α1p(2, j, l) = p(c, j, l) + p(−c, j, l) =
{
〈c〉 (−2 /∈ R)
〈−c〉 (−2 ∈ R)

.

Second, let i ∈ V− \ {minV−} and |i| ≥ 2, and set j := ρ(−(|i| + 1)). Then,

α|i|〈−(|i| + 1)〉 = α|i|p(|i| + 1, j, l) = p(|i|, j, l)
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=
{
〈|i|〉 = 〈−i〉 (if |i| + 1 ∈ R, since (|i|, j) ∈ Γ1(w))
〈−|i|〉 = 〈i〉 (if |i| + 1 /∈ R, since (|i|, j) ∈ Γ2(w))

.

These observations yield (c)(iii).
The remaining task is to check (c)(iv). Assume i ∈ V−, and set j := ρ(i). Then,

β|i|+1〈i〉 = β|i|+1p(i, j, l) = p(|i| + 1, j + 1, l)

=
{
〈−(|i| + 1)〉 (if |i| + 1 ∈ R, since (|i| + 1, j + 1) ∈ Γ2(w))
〈|i| + 1〉 (if |i| + 1 /∈ R, since (|i| + 1, j + 1) ∈ Γ1(w))

.

Thus, we have obtained (c)(iv).
Now, all the desired properties have been proved. �
We next assume that the type l is not ±1. We can restate Proposition 2.13 as follows.

Lemma 3.15. Let w ∈ j-irrW be a join-irreducible element of type l �= ±1, and set c as in Theorem 3.7. If 
w(l + 1) ≤ 1, then set m := max{k ∈ [l + 1, n] | w(k) ≤ 1} and ε := (−1)m−(l+1)c; otherwise, set ε := 1.

(1) Assume (i, j) ∈ Γ [l]. Then, pε(i, j, l) /∈ I(w) holds if and only if
⎧⎪⎪⎨
⎪⎪⎩
i ≥ w(j + 1) (w(j + 1) ≥ 2)
i ≥ 2 or i = w(j + 1) (w(j + 1) = ±1)
i ≥ w(j + 1) + 1 (w(j + 1) ≤ −2)

.

(2) Consider the subset Γ (w) ⊂ Γ [l] consisting of the elements (i, j) ∈ Γ [l] with pε(i, j, l) /∈ I(w). Then, the 
set {pε(i, j, l) | (i, j) ∈ Γ (w)} induces a K-basis of J(w).

To express S(w), we define the following set for k ≥ 1:

Γk(w) := {(i, j) ∈ Γ (w) | min{x ≥ 1 | (i, j + x) /∈ Γ (w)} = k}.

Moreover, we extend the definition of the path pε(i, j, l) to Γ̃ [l] := {(i, j) ∈ ±Q0 ×Z | i ≤ j ≥ l} by setting 
pε(i, j, l) := 0 if j ≥ n, and define w(k) := k if k ≥ n + 1.

Then, straightforward calculation yields the relation

p−ε(i, j, l) = −pε(i, j, l) + pε(|i|, j + |i| − 1, l) (3.4)

for (i, j) ∈ Γ̃ [l] with i ≤ −2.

Lemma 3.16. Let w ∈ j-irrW be a join-irreducible element of type l �= ±1. Set R, a, b, r, c as in Theorem 3.7, 
and ε as in Lemma 3.15.

(1) Consider the endomorphisms

f1 := (·pε(l, l + 1, l)) : J(w) → J(w) and f2 := (·pε(−l, l, l)) : J(w) → J(w).

Then, S(w) = Ker f1 ∩ Ker f2 holds.
(2) Let (i, j) ∈ Γ (w). Then, p−ε(i, j, l) ∈ Ker f1 holds if and only if (i, j) ∈ Γ1(w).
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(3) The set {p−ε(i, j, l) | (i, j) ∈ Γ1(w)} induces a K-basis of Ker f1.
(4) Set Λ1(w) := {(i, j) ∈ Γ1(w) | a − 1 ≥ i}. Then, the set {p−ε(i, j, l) | (i, j) ∈ Λ1(w)} induces a K-basis 

of S(w).
(5) Assume b ≤ −2 and r ≥ 1, and let (i, j) ∈ Γ1(w) with −2 ≥ i ≥ b +1. Then, p−ε(|i|, j+|i| −1, l) /∈ Ker f1

holds if and only if |i| ≤ r. In this case, (|i|, j + |i| − 1) belongs to Γ2(w).
(6) The submodule Ker f1 ∩ Ker f2 has a basis formed by

– pε(i, j, l) for each (i, j) ∈ Λ1(w) with i ≥ −1 or −r − 1 ≥ i; and
– p−ε(i, j, l) for each (i, j) ∈ Λ1(w) with −2 ≥ i ≥ −r.

Proof. The proofs of (1), (2) and (3) are similar to Lemma 3.5. We remark that f1(p−ε(i, j, l)) = pε(i, j+1, l)
holds in Π.

(4) Let (i, j) ∈ Γ1(w). We show that p−ε(i, j, l) ∈ Ker f2 holds if and only if i ≤ w(l) − 1.
We first assume that i ≥ 2. In this case, f2(p−ε(i, j, l)) = p−ε(i, j, l)pε(−l, l, l) = pε(−i, l + j − i, l) hold. 

Thus, f2(p−ε(i, j, l)) = 0 in J(w) holds if and only if pε(−i, l+j−i, l) ∈ Π belongs to I(w). This is equivalent 
to w(l + j − i + 1) + 1 > −i by Lemma 3.15, and also to #(R ∩ [−n, −i − 1]) < j − i + 1.

On the other hand, (i, j) ∈ Γ1(w) gives w(j + 2) − 1 ≥ i ≥ w(j + 1), because i ≥ 2. This implies that 
#(R ∩ [−n, i]) = j + 1 − l.

Therefore, f2(p−ε(i, j, l)) = 0 in J(w) holds if and only if #(R∩[−i, i]) > i −l. This condition is equivalent 
to that #(w([1, l]) ∩ [−i, i]) < l. This exactly means that there exists some k ∈ [1, l] such that |w(k)| > i, 
and it is equivalent to a > i.

Now, the proof for i ≥ 2 is complete.
Next, we assume that i = ±1. We must show p−ε(i, j, l) ∈ Ker f2. In this case,

f2(p−ε(i, j, l)) = p−ε(i, j, l)pε(−l, l, l) = αipε(2, j, l)pε(−l, l, l) = αipε(−2, l + j − 2, l)

=
{
pε(i, l + j − 1, l) (i = ε(−1)j)
0 (i = −ε(−1)j)

,

since pε(−2, l + j − 2, l) factors through ε(−1)j−1.
Thus, we may assume i = ε(−1)j . First, pε(i, l + j − 1, l) ∈ I(w) is equivalent to that (w(l + j) ≥ 2 or 

w(l+j) = −i) by Lemma 3.15. On the other hand, (i, j) ∈ Γ1(w) implies that w(j+2) ≥ 2 or w(j+2) = −i. 
Since l ≥ 2, we have (w(l + j) ≥ 2 or w(l + j) = −i). Therefore, pε(i, l + j − 1, l) ∈ I(w).

Consequently, i = ±1 implies that p−ε(i, j, l) ∈ Ker f2.
Finally, we assume that i ≤ −2. Then, p−ε(i, j, l) ∈ Ker f2 holds, because the path p−ε(i, j, l) has 

p−ε(1, j, l) or p−ε(−1, j, l) in its ending.
Now, we have proved that p−ε(i, j, l) ∈ Ker f2 holds if and only if i ≤ a − 1, and obtained that 

f2(p−ε(i, j, l)) = pε(−i, l + j − i, l) �= 0 in J(w) if (i, j) ∈ Γ1(w) and i ≥ a.
Thus, the set {f2(p−ε(i, j, l)) | (i, j) ∈ Γ1(w) \ Λ1(w)} is linearly independent in J(w), so {p−ε(i, j, l) |

(i, j) ∈ Λ1(w)} generates Ker f1 ∩ Ker f2. This set is clearly linearly independent in J(w). Therefore, we 
obtain the assertion from (1).

(5) Let (i, j) ∈ Γ1(w) with −2 ≥ i ≥ b + 1.
For the first statement, it is easy to see that f1(p−ε(|i|, j+ |i| −1, l)) = pε(|i|, j+ |i|, l) in Π, so p−ε(|i|, j+

|i| − 1, l) /∈ Ker f1 precisely means pε(|i|, j + |i|, l) /∈ I(w) in Π. Lemma 3.15 yields that this holds if and 
only if w(j + |i| + 1) ≤ |i|, because |i| ≥ 2. It is equivalent to #(R ∩ [−n, |i|]) ≥ j + |i| + 1 − l.

On the other hand, (i, j) ∈ Γ1(w) gives w(j + 2) ≥ i = −|i| ≥ w(j + 1) + 1, because i ≤ −2. This implies 
that #(R ∩ [−n, −|i| − 1]) = j + 1 − l.

Therefore, f1(p−ε(|i|, j+|i| −1, l)) �= 0 in J(w) holds if and only if #(R∩[−|i|, |i|]) ≥ |i|. This exactly means 
[1, |i|] ⊂ ±R. By the definition of the number r, it is equivalent to |i| ≤ r. In this case, #(R∩ [−|i|, |i|]) = |i|.
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The first statement has been proved.
Next, we show the second statement, so we assume |i| ≤ r. It suffices to prove (|i|, j + |i|) ∈ Γ (w) and 

(|i|, j + |i| + 1) /∈ Γ (w). We already have #(R ∩ [−|i|, |i|]) = |i|, and by the argument above, this yields 
#(R ∩ [−n, |i|]) = j + |i| + 1 − l. Thus, we have w(j + |i| + 1) ≤ |i| and w(j + |i| + 2) > |i|. Since |i| ≥ 2, 
Lemma 3.15 implies that (|i|, j + |i|) ∈ Γ (w) and (|i|, j + |i| + 1) /∈ Γ (w). Thus, (|i|, j + |i| − 1) belongs to 
Γ2(w).

(6) In (4), p−ε(i, j, l) = pε(i, j, l) holds for each (i, j) ∈ Λ1(w) with i ≥ −1.
On the other hand, let (i, j) ∈ Λ1(w) with i < −r and i ≤ −2. By (3), p−ε(i, j, l) ∈ Ker f1. By (5), we 

have p−ε(|i|, j + |i| − 1, l) ∈ Ker f1.
If p−ε(|i|, j + |i| − 1, l) �= 0 in J(w), then #(R ∩ [−|i|, |i|]) ≥ |i| − 1 follows from similar argument to the 

proof of the first statement of (5). This implies |i| < a, since l ≥ 2. We have (|i|, j + |i| − 1, l) ∈ Λ1(w). 
Thus, in the K-basis of Ker f1 ∩Ker f2 given in (4), we can replace p−ε(i, j, l) to pε(i, j, l) to obtain another 
K-basis of S(w) by (3.4).

If p−ε(|i|, j + |i| − 1, l) = 0 in J(w), then p−ε(i, j, l) = pε(i, j, l) holds.
We apply this procedure to all (i, j) ∈ Λ1(w) with i < −r and i ≤ −2, and get that the elements in the 

statement form a K-basis of Ker f1 ∩ Ker f2. �
The next assertion follows from the definition of Λ1(w).

Lemma 3.17. Let w ∈ j-irrW be a join-irreducible element of type l �= ±1. Then, there exists a bijection 
Λ1(w) → V given by (i, j) �→ i.

Proof. The well-definedness can be checked by Lemma 3.16.
We clearly have max{k ∈ [l + 1, n] | w(k) < k} − 1 ≥ a − 1. Then, Lemma 3.15 and the definition of V

yield that, for any i ∈ V , there exists some j such that (i, j) ∈ Γ (w). Thus, the definition of Λ1(w) and 
i ≤ a − 1 imply that there uniquely exists j such that (i, j) ∈ Λ1(w). This means that the map Λ1(w) → V

is bijective. �
Now, we show Theorem 3.7 in the case l �= ±1.

Proof of Theorem 3.7 in the case l �= ±1. By Lemma 3.17, we can define a map ρ : V → Q0 as follows: ρ(i)
is the unique element j ∈ Q0 such that (i, j) ∈ Λ1(w). Set ε as in Lemma 3.15, and define 〈i〉 as

{
pε(i, ρ(i), l) (i ≥ −1 or −r − 1 ≥ i)
p−ε(i, ρ(i), l) (−2 ≥ i ≥ −r)

for each i ∈ V . It suffices to show that (〈i〉)i∈V satisfies the properties (a), (b), and (c), since the three 
properties are enough to define an isomorphic class of Π-modules.

First, (〈i〉)i∈V is a K-basis of S(w) by Lemmas 3.16 and 3.17, and K〈i〉 is clearly a subspace of eiS(w)
if i ≥ −1; and of e|i|S(w) if i ≤ −2. Thus, the property (a) has been obtained, and the property (b) follows 
from (a).

In the rest, we fully use Lemma 3.15.
We begin the proof of (c)(i). First, we assume 2 ∈ V+, and set j := ρ(2).

• If 2 /∈ R and r ≥ 1, then w(j + 1) = c. Thus, (c, j) ∈ Λ1(w) and (−c, j) /∈ Γ (w) follow.
• If 2 /∈ R and r = 0, then w(j + 1) ≤ −2. Thus, (c, j), (−c, j) ∈ Λ1(w) follows.
• If 2 ∈ R, then w(j + 1) = 2. Thus, (c, j), (−c, j) /∈ Γ (w) follows.
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Therefore,

α1〈2〉 = α1pε(2, j, l) = pε(c, j, l) + pε(−c, j, l) =

⎧⎪⎪⎨
⎪⎪⎩
〈c〉 (2 /∈ R, r ≥ 1)
〈c〉 + 〈−c〉 (2 /∈ R, r = 0)
0 (2 ∈ R)

.

Second, we assume i ∈ V+ \ {max V+} and i ≥ 2, and set j := ρ(i + 1). Then,

αi〈i + 1〉 = αipε(i + 1, j, l) = pε(i, j, l) =
{
〈i〉 (if i + 1 /∈ R, since (i, j) ∈ Γ1(w))
0 (if i + 1 ∈ R, since (i, j) /∈ Γ (w))

.

Thus, we have the property (c)(i).
We begin the proof of (c)(ii). First, let c ∈ V+ \ {max V+}, and set j := ρ(c). In this case, w(j + 1) ≤ 1, 

w(j + 2) ≥ 2, and ε = (−1)j−lc hold, so the path pε(−2, j, l) factors through −c. We observe the following 
properties.

• If −2 /∈ R and r = 0, then (−2, j) ∈ Λ1(w); otherwise (−2, j) /∈ Γ (w).
• If 2 ∈ R, then (2, j + 1) ∈ Λ1(w); otherwise (2, j + 1) /∈ Γ (w).

Thus, we have

β2〈c〉 = β2pε(c, j, l) = p−ε(−2, j, l)

= −pε(−2, j, l) + pε(2, j + 1, l) = η−c 〈−2〉 + η+
c 〈2〉.

Second, let i ∈ V+ \ {max V+} and i ≥ 2, and set j := ρ(i). Then,

β|i|+1〈i〉 = β|i|+1pε(i, j, l) = pε(|i| + 1, j + 1, l)

=
{

0 (if i + 1 /∈ R, since (|i| + 1, j + 1) /∈ Γ (w))
〈|i| + 1〉 (if i + 1 ∈ R, since (|i| + 1, j + 1) ∈ Γ1(w))

.

These observations imply the property (c)(ii).
We next consider the elements in V−. In order to observe the actions of the arrows to 〈−i〉 (i ∈ [2, r]), 

we define sets Ω(w) and Λ2(w) as

Ω(w) := {(i, j) ∈ Λ1(w) | i ∈ [−r,−2]}, Λ2(w) := {(i, j) ∈ Γ2(w) | i ∈ [2, r]}.

The element 〈−i〉 is equal to the path p−ε(i, j, l) with (i, j) ∈ Ω(w), but we want to deal with the paths of the 
form pε(i′, j′, l). In the formula (3.4), p−ε(i, j, l) is a linear combination of pε(i, j, l) and pε(|i|, j + |i| − 1, l). 
By Lemma 3.16 (5), (|i|, j + |i| − 1) belongs to Λ2(w). Moreover, φ : Ω(w) � (i, j) �→ (|i|, j + |i| − 1) ∈ Λ2(w)
is a bijection.

In the figure for J(w) in Example 3.9, the squares with positive blue numbers are the elements of Λ2(w), 
and that the squares with negative blue numbers are the elements of Ω(w).

Now, we begin the proof of (c)(iii). We first assume −c ∈ V− \ {minV−}, and set j := ρ(−2).

• If −2 ∈ R and r ≥ 2, then w(j+1) ≤ −3, w(j+2) = −2, w(j+3) = c, w(j+4) ≥ 3, and ε = (−1)j+2−lc

hold, so the path pε(−2, j, l) factors through −c, and (−c, j + 1) ∈ Λ1(w) follows. Thus,
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α1〈−2〉 = α1p−ε(−2, j, l) = −α1pε(−2, j, l) + α1pε(2, j + 1, l)

= −pε(c, j + 1, l) + (pε(c, j + 1, l) + pε(−c, j + 1, l))

= pε(−c, j + 1, l) = 〈−c〉.

• If −2 ∈ R and r = 0, then w(j + 1) ≤ −3, w(j + 2) = −2, w(j + 3) ≥ 3, and ε = (−1)j+1−lc hold, so 
the path pε(−2, j, l) factors through c, and (−c, j + 1) ∈ Λ1(w) follows. Thus,

α1〈−2〉 = α1pε(−2, j, l) = pε(−c, j + 1, l) = 〈−c〉.

• If −2 /∈ R and r ≥ 2, then w(j + 1) ≤ −3, w(j + 2) = c, w(j + 3) = 2, and ε = (−1)j+1−lc hold, so the 
path pε(−2, j, l) factors through c, and (c, j + 1) ∈ Λ1(w) follows. Thus,

α1〈−2〉 = α1p−ε(−2, j, l) = −α1pε(−2, j, l) + α1pε(2, j + 1, l)

= −pε(−c, j + 1, l) + (pε(c, j + 1, l) + pε(−c, j + 1, l))

= pε(c, j + 1, l) = 〈c〉.

• If −2 /∈ R and r = 1, then w(j + 1) ≤ −3, w(j + 2) = c, w(j + 3) ≥ 3, and ε = (−1)j+1−lc hold, so the 
path pε(−2, j, l) factors through c, and (−c, j + 1) /∈ Γ (w) follows. Thus,

α1〈−2〉 = α1pε(−2, j, l) = pε(−c, j + 1, l) = 0.

• If −2 /∈ R and r = 0, then w(j + 1) ≤ −3, w(j + 2) ≥ 2, and ε = (−1)j−lc hold, so the path pε(−2, j, l)
factors through −c, and (c, j + 1) /∈ Γ (w) follows. Thus,

α1〈−2〉 = α1pε(−2, j, l) = pε(c, j + 1, l) = 0.

Second, we assume i ∈ V− \ {minV−} and |i| ≥ 2, and set j := ρ(−(|i| + 1)).

• If |i| < r, then (−(|i| + 1), j) ∈ Ω(w) and φ(−(|i| + 1), j) = (|i| + 1, j + |i|) ∈ Λ2(w) hold, and

α|i|〈−(|i| + 1)〉 = α|i|p−ε(−(|i| + 1), j, l)

= −α|i|pε(−(|i| + 1), j, l) + α|i|pε(|i| + 1, j + |i|, l)

= −pε(−|i|, j + 1, l) + pε(|i|, j + |i|, l)

=
{
〈−|i|〉 (if −(|i| + 1) ∈ R, since (−|i|, j + 1) ∈ Ω(w))
pε(|i|, j + |i|, l) (if −(|i| + 1) /∈ R, since (−|i|, j + 1) /∈ Γ (w))

=
{
〈i〉 (if −(|i| + 1) ∈ R)
〈−i〉 (if −(|i| + 1) /∈ R, since |i| + 1 ∈ R and (|i|, j + |i|) ∈ Λ1(w))

.

• If |i| ≥ r, then

αi〈−(|i| + 1)〉 = αipε(−(|i| + 1), j, l) = pε(−|i|, j + 1, l)

=
{
〈−|i|〉 = 〈i〉 (if −(|i| + 1) ∈ R, since (−|i|, j + 1) ∈ Λ1(w))
0 (if −(|i| + 1) /∈ R, since (−|i|, j + 1) /∈ Γ (w))

.
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These observations and the definition of r tell us that (c)(iii) holds.
Finally, we would like to show the property (c)(iv). First, we assume −c ∈ V−, and set j := ρ(−c).

• If r ≥ 2, then w(j + 1) ≤ −2, w(j + 2) = c, w(j + 3) ≥ 2, and ε = (−1)j+1−lc hold, so the path 
pε(−2, j, l) factors through c. Thus,

β2〈−c〉 = β2pε(−c, j, l) = −pε(−2, j, l) + pε(2, j + 1, l)

=
{
pε(2, j + 1, l) (if −2 ∈ R, since (−2, j) /∈ Γ (w))
p−ε(−2, j, l) (if −2 /∈ R)

=
{
〈2〉 (if −2 ∈ R, since 2 /∈ R and (2, j + 1) ∈ Λ1(w))
〈−2〉 (if −2 /∈ R, since (−2, j) ∈ Ω(w))

.

• If r = 1, the path pε(−2, j, l) factors through c by the same reason as above. Since r = 1, we have 
−2, 2 /∈ R, so (−2, j), (2, j + 1) ∈ Λ1(w). Thus,

β2〈−c〉 = β2pε(−c, j, l) = −pε(−2, j, l) + pε(2, j + 1, l) = −〈−2〉 + 〈2〉.

• If r = 0, then w(j + 1) ≤ −2, w(j + 2) ≥ 2, and ε = (−1)j−lc hold, so the path pε(−2, j, l) factors 
through −c. Thus,

β2〈−c〉 = β2pε(−c, j, l) = pε(−2, j, l)

=
{

0 (if −2 ∈ R, since (−2, j) /∈ Γ (w))
〈−2〉 (if −2 /∈ R, since (−2, j) ∈ Λ1(w))

.

Second, we assume i ∈ V−, |i| ≥ 2, and set j := ρ(i).

• If |i| < r, then (i, j) ∈ Ω(w) and φ(i, j) = (|i|, j + |i| − 1) ∈ Λ2(w) hold, so

β|i|+1〈i〉 = β|i|+1p−ε(i, j, l) = −β|i|+1pε(i, j, l) + β|i|+1pε(|i|, j + |i| − 1, l)

= −pε(−(|i| + 1), j, l) + pε(|i| + 1, j + |i|, l)

=
{
pε(|i| + 1, j + |i|, l) (if −(|i| + 1) ∈ R, since (−(|i| + 1), j) /∈ Γ (w))
p−ε(−(|i| + 1), j, l) (if −(|i| + 1) /∈ R)

=

⎧⎪⎪⎨
⎪⎪⎩
〈|i| + 1〉

(
if −(|i| + 1) ∈ R,
since |i| + 1 /∈ R and (|i| + 1, j + |i|) ∈ Λ1(w)

)

〈−(|i| + 1)〉 (if −(|i| + 1) /∈ R, since (−(|i| + 1), j) ∈ Ω(w))
.

• If |i| = r, then (i, j) ∈ Ω(w) and φ(i, j) = (|i|, j + |i| − 1) ∈ Λ2(w) hold. Since |i| = r, we have 
−(|i| + 1), |i| + 1 /∈ R, so (|i| + 1, j + |i|), (−(|i| + 1), j) ∈ Λ1(w) hold. Thus,

β|i|+1〈i〉 = β|i|+1p−ε(i, j, l) = −β|i|+1pε(i, j, l) + β|i|+1pε(|i|, j + |i| − 1, l)

= −pε(−(|i| + 1), j, l) + pε(|i| + 1, j + |i|, l) = −〈−(|i| + 1)〉 + 〈|i| + 1〉.
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• If |i| > r, then

β|i|+1〈i〉 = β|i|+1pε(i, j, l) = pε(−(|i| + 1), j, l)

=
{

0 (if −(|i| + 1) ∈ R, since (−(|i| + 1), j) /∈ Γ (w))
〈−(|i| + 1)〉 (if −(|i| + 1) /∈ R, since (−(|i| + 1), j) ∈ Λ1(w))

.

The property (c)(iv) follows from these observations and the definition of r.
Now, all the proof is complete. �

4. Description of semibricks

4.1. Canonical join representations in Coxeter groups

Let Δ be a Dynkin diagram An or Dn, and Π and W be the corresponding preprojective algebra and 
the Coxeter group, respectively. We obtained a canonical bijection S(?) : W → sbrickΠ in Proposition 2.2. 
The aim of this section is to give the explicit description of this map. In the previous section, this aim has 
been achieved for the restricted bijection S(?) : j-irrW → brickΠ. To extend this to all elements in W , it is 
enough to determine the canonical join representations in W for Δ = An, Dn by Corollary 2.3.

It would be difficult to prove that a set of join-irreducible elements gives a canonical join representation 
of a given element in W by directly checking the conditions in Definition 1.7. Fortunately, Reading [23] has 
obtained a nice property characterizing canonical join representations in finite Coxeter groups. To explain 
this, we prepare some notation.

Let Δ0 be the vertices set of Δ. Then, W has the canonical generators {si | i ∈ Δ0}. For each w ∈ W , 
set des(w) and cov(w) as the set of descents and the set of cover reflections of w, respectively: that is,

des(w) := {i ∈ Δ0 | wsi < w}, cov(w) := {wsiw−1 | i ∈ des(w)}.

There exists a natural bijection des(w) → cov(w) defined by i �→ wsiw
−1. By using the set cov(w), we can 

write the canonical join representation of w as follows.

Proposition 4.1. [23, Theorem 10-3.9] Let w ∈ W . For each t ∈ cov(w), the set {v ∈ W | v ≤ w, t ∈ inv(v)}
has a unique minimal element wt. Moreover, 

∨
t∈cov(w) wt is the canonical join representation of w.

Hence, we have the following way to find canonical join representations.

Proposition 4.2. Let w ∈ W . Assume that, for each d ∈ des(w), there exists a join-irreducible element wd ∈
j-irrW satisfying wd ≤ w and cov(wd) = {wsdw−1}. Then, 

∨
d∈des(w) wd is the canonical join representation 

of w.

Proof. Let d ∈ des(w) and set t := wsdw
−1 ∈ cov(w). By Proposition 4.1, it suffices to show that wd is a 

minimal element of V := {v ∈ W | v ≤ w, t ∈ inv(v)}. We assume that v ∈ V satisfies v < wd and deduce 
a contradiction. Take the unique descent d′ of wd ∈ j-irrW , then t = wdsd′w−1

d holds.
Since wdsd′ = twd and d′ ∈ des(wd), we get l(t ·wdsd′) = l(t ·twd) = l(wd) > l(wdsd′). Thus, t /∈ inv(wdsd′).
On the other hand, the inequality v ≤ wdsd′ holds, since wd is a join-irreducible element with its unique 

descent d′. Thus, we have inv(v) ⊂ inv(wdsd′). By assumption, t belongs to inv(v), so t must be in inv(wdsd′).
These two results contradict to each other. Thus, there exists no v ∈ V such that v < wd. This exactly 

means that wd is a minimal element of V . �
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We remark that wd �= w′
d for any d �= d′ ∈ des(w), because wsdw−1 �= wsd′w−1. The proposition above 

also implies that the uniqueness of wd, since the canonical join representation of w is unique.
Before proceeding to the next subsection, we give an example of canonical join representations. We recall 

that the Hasse quiver of W is defined as follows.

• The vertices are the elements of W .
• For any w, w′ ∈ W , we write an arrow w → w′ if and only if w > w′ holds and there exists no v ∈ W

such that w > v > w′.

Example 4.3. Let Δ = A3. Then, the Hasse quiver of W is

(1, 2, 3, 4)

(2, 1, 3, 4)(1, 3, 2, 4)(1, 2, 4, 3)∗

(2, 3, 1, 4)(3, 1, 2, 4)∗(2, 1, 4, 3)(1, 3, 4, 2)(1, 4, 2, 3)∗

(2, 3, 4, 1)(3, 2, 1, 4)(3, 1, 4, 2)∗(2, 4, 1, 3)(1, 4, 3, 2)∗(4, 1, 2, 3)∗

(3, 2, 4, 1)(2, 4, 3, 1)(3, 4, 1, 2)∗(4, 2, 1, 3)(4, 1, 3, 2)∗

(3, 4, 2, 1)(4, 2, 3, 1)(4, 3, 1, 2)∗∗

(4, 3, 2, 1)

.

We determine the canonical join representation of the element w := (4, 3, 1, 2) from the Hasse quiver. In 
this case, we have des(w) = {1, 2} and cov(w) = {(4 3), (3 1)}. Thus, we consider the following sets:

• {v ∈ W | v ≤ w, (4 3) ∈ inv(v)}, whose elements are indicated by ∗; and
• {v ∈ W | v ≤ w, (3 1) ∈ inv(v)}, whose elements are indicated by ∗.

These sets have (1, 2, 4, 3) and (3, 1, 2, 4) as their unique minimal elements, respectively. By Proposition 4.1, 
the canonical join representation of w is (1, 2, 4, 3) ∨ (3, 1, 2, 4). We also remark that cov((1, 2, 4, 3)) =
{(4 3)} and cov((3, 1, 2, 4)) = {(3 1)} hold.

4.2. Type An

Let Δ = An. For each element w in j-irrW of type l, we set

L(w) := w([1, l]), R(w) := w([l + 1, n + 1]).

It is easy to see that the correspondence w �→ R(w) is injective.
The following procedure gives the canonical join representation of a given element of the Coxeter group 

W . This coincides with [23, Theorem 10-5.6].
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Proposition 4.4. Let w ∈ W , and set ad := w(d), bd := w(d + 1) for each d ∈ des(w). Then, the canonical 
join representation of w is 

∨
d∈des(w) wd, where wd ∈ j-irrW is the unique join-irreducible element such that 

R(wd) coincides with Rd defined as follows:

Xd := w([d + 1, n + 1]), Rd := ([bd, ad − 1] ∩Xd) ∪ [ad + 1, n + 1].

Proof. Let d ∈ des(w). It is easy to see that there uniquely exists wd ∈ j-irrW with R(wd) = Rd. Then, 
L(wd) = [1, bd − 1] ∪ ([bd + 1, ad] \Xd). From this, we can straightforwardly check that inv(wd) ⊂ inv(w), 
which is equivalent to wd ≤ w. Moreover, the unique cover reflection of wd is (ad bd), and it is equal to 
wsdw

−1. Therefore, the assertion follows from Proposition 4.2. �
Example 4.5. Let n = 8 and w = (4, 9, 3, 6, 2, 8, 5, 1, 7). Then, we have des(w) = {2, 4, 6, 7}. The canonical 
join representation of w is 

∨
d∈des(w) wd, where wd is given as follows for each d ∈ des(w).

d ad bd R(wd) wd

2 9 3 {3, 5, 6, 7, 8} (1, 2, 4, 9, 3, 5, 6, 7, 8)
4 6 2 {2, 5, 7, 8, 9} (1, 3, 4, 6, 2, 5, 7, 8, 9)
6 8 5 {5, 7, 9} (1, 2, 3, 4, 6, 8, 5, 7, 9)
7 5 1 {1, 6, 7, 8, 9} (2, 3, 4, 5, 1, 6, 7, 8, 9)

Combining Corollary 3.3 and Proposition 4.4, we can obtain the semibrick S(w) directly.

Theorem 4.6. Let w ∈ W . Then, the semibrick S(w) is 
⊕

d∈des(w) Sd, where Sd is the brick whose abbreviated 
description as in Corollary 3.3 is given as follows.

• Set Rd as in Proposition 4.4, and ad := w(d), bd := w(d + 1), Vd := [bd, ad − 1].
• The brick Sd has a K-basis (〈i〉d)i∈Vd

, where 〈i〉d belongs to eiSd.
• For each i ∈ Vd, place a symbol i denoting the K-vector subspace K〈i〉d.
• For each i ∈ Vd \ {max Vd}, we write exactly one arrow between i and i + 1, and its orientation is 

i → i + 1 if i + 1 ∈ Rd and i ← i + 1 if i + 1 /∈ Rd.

Proof. For each d ∈ des(w), let wd be the join-irreducible element in the canonical join representation given 
in Proposition 4.4. Then, we can check that the abbreviated description of S(wd) in Corollary 3.3 coincides 
with the statement. �

We remark that Rd in Theorem 4.6 can be replaced by Rd ∩ Vd = [bd, ad − 1] ∩Xd.

Example 4.7. Let n = 8 and w = (4, 9, 3, 6, 2, 8, 5, 1, 7) as in Example 4.5. Then, the semibrick S(w) is the 
direct sum of the following bricks:

S2 = 3 ← 4 → 5 → 6 → 7 → 8,

S4 = 2 ← 3 ← 4 → 5 ,

S6 = 5 ← 6 → 7 ,

S7 = 1 ← 2 ← 3 ← 4 .
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4.3. Type Dn

Let Δ = Dn. For each element w in j-irrW of type l, we set

L(w) := {|w(k)| | k ∈ [1, |l|]}, R(w) := w([|l| + 1, n]).

As in the case of type An, it is easy to see that the correspondence w �→ R(w) is injective.
The canonical join representations of the elements of the Coxeter group W are given by the following 

procedure.

Proposition 4.8. Let w ∈ W , and set ad := w(d), bd := w(|d| + 1), Xd := w([|d| + 1, n]) for each d ∈ des(w). 
Then, the canonical join representation of w is 

∨
d∈des(w) wd, where wd ∈ j-irrW is the unique join-irreducible 

element such that R(wd) coincides with Rd defined as follows.

(A) If ad + bd < 0 and w([1, |d|]) ⊂ ±[ad, n], then

Rd :=

⎧⎨
⎩ {−ad} ∪ (±[1, ad − 1] ∩Xd) ∪ ([ad + 1,−bd − 1] \ (−Xd)) ∪ [−bd + 1, n] (ad > 0)

([−ad,−bd − 1] \ (−Xd)) ∪ [−bd + 1, n] (ad < 0)
.

(B) Otherwise,

Rd :=

⎧⎨
⎩ ([bd, ad − 1] ∩Xd) ∪ [ad + 1, n] (ad + bd > 0)

([bd, ad − 1] ∩Xd) ∪ ([ad + 1,−bd − 1] \ (−Xd)) ∪ [−bd + 1, n] (ad + bd < 0)
.

Proof. The proof is similar to the one for type An. In this case, the set L(wd) is given as follows.

(A) If ad + bd < 0 and w([1, |d|]) ⊂ ±[ad, n], then

L(wd) =
{

[ad + 1,−bd] ∩ (−Xd) (ad > 0)
[1,−ad − 1] ∪ ([−ad + 1,−bd] ∩ (−Xd)) (ad < 0)

.

(B) Otherwise,

L(wd) =

⎧⎪⎪⎨
⎪⎪⎩

[1, bd − 1] ∪ ([bd + 1, ad] \Xd) (bd > 0)
([1,−bd − 1] \ (±Xd)) ∪ ([−bd + 1, ad] \Xd) (bd < 0, ad + bd > 0)
[1, ad] \ (±Xd) (ad + bd < 0)

.

By using these, we can check wd ≤ w and cov(wd) = {wsdw−1}. �
In the rest, the symbols (A) and (B) mean the conditions (A) and (B) in Proposition 4.8, respectively.

Example 4.9. Let n = 9 and w = (5, 3, −7, 4, −6, −8, 9, −1, 2). Then, we have des(w) = {1, 2, 4, 5, 7}. The 
canonical join representation of w is 

∨
wd, where wd is given as follows for each d ∈ des(w).
d∈des(w)
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d ad bd (A) or (B) R(wd) wd

1 5 3 (B) {3, 4, 6, 7, 8, 9} ( 1, 2, 5, 3, 4, 6, 7, 8, 9)
2 3 −7 (A) {−3,−1, 2, 4, 5, 8, 9} ( 6, 7,−3,−1, 2, 4, 5, 8, 9)
4 4 −6 (B) {−6,−1, 2, 5, 7, 8, 9} ( 3, 4,−6,−1, 2, 5, 7, 8, 9)
5 −6 −8 (A) {6, 7, 9} ( 1, 2, 3, 4, 5, 8, 6, 7, 9)
7 9 −1 (B) {−1, 2} (−3, 4, 5, 6, 7, 8, 9,−1, 2)

Now, by combining Corollary 3.10 and Proposition 4.8, we can obtain the semibrick S(w) from w ∈ W

directly. We need to define a few notations: for integers a > b and c = ±1, we set

(V−(a, b, c), V+(a, b, c)) :=

⎧⎪⎪⎨
⎪⎪⎩

(∅, [b, a− 1]) (b ≥ 2)
(∅, {c} ∪ [2, a− 1]) (b = ±1)
([b + 1,−2] ∪ {−c}, {c} ∪ [2, a− 1]) (b ≤ −2)

.

Theorem 4.10. Let w ∈ W . Then, the semibrick S(w) is 
⊕

d∈des(w) Sd, where Sd is the brick whose abbrevi-
ated description as in Corollary 3.3 is given as follows.

• Set Rd as in Proposition 4.8, and ad := w(d), bd := w(d + 1),

rd := max{k ≥ 0 | [1, k] ⊂ ±Rd}, cd :=
{
w(|w−1(1)|) (rd ≥ 1)
1 (rd = 0)

,

((V−)d, (V+)d) :=
{

(V−(−bd,−ad, cd), V+(−bd,−ad, cd)) ((A))
(V−(ad, bd, cd), V+(ad, bd, cd)) ((B))

,

Vd := (V+)d � (V−)d.

• The brick Sd has a K-basis (〈i〉d)i∈Vd
, where 〈i〉d belongs to eiSd if i ≥ −1, and e|i|Sd if i ≤ −2.

• For each i ∈ Vd, place a symbol i denoting the K-vector subspace K〈i〉d.
• We write the following arrows.

(i) For each i ∈ (V+)d\{max(V+)d}, draw an arrow i → |i| +1 if |i| +1 ∈ Rd; and i ← |i| +1 otherwise.
(ii) For each i ∈ (V−)d\{min(V−)d}, draw an arrow i ← −(|i| +1) if −(|i| +1) ∈ Rd; and i → −(|i| +1)

otherwise.
(iii) If rd ≥ 1, then for each i ∈ (V−)d with |i| ≤ rd, draw an arrow −i ← −(|i| + 1) if |i| + 1 ∈ Rd; and 

i → |i| + 1 otherwise.
(iv) If rd = 0, then draw an arrow −c ← 2 if c ← 2 exists in (i), and an arrow c → −2 if −c → −2

exists in (ii).

Proof. Apply Corollary 3.10 to the element wd ∈ j-irrW defined in Proposition 4.8 for each d ∈ des(w). �
Example 4.11. Let n = 9 and w = (5, 3, −7, 4, −6, 8, 9, −1, 2) as in Example 4.9. Then, the semibrick S(w)
is the direct sum of the following bricks:

S1 = 3 4 ,

S2 =
1 −2

−1 2 3 4 5 6
,
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S4 =
1 −2 −3 −4 −5

−1 2 3

,

S5 = 6 7 ,

S7 = −1 2 3 4 5 6 7 8 .
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Appendix A. Example: the bricks over the preprojective algebra of type D5

In this section, we give the list of bricks over the preprojective algebra of type D5.
For the preparation, we first define two notions denoted by σ(w) and χ(w) associated to each join-

irreducible element w ∈ j-irrW in the Coxeter group W = W (Dn) of type Dn (it is not needed to assume 
n = 5 here), and then list all the join-irreducible elements and the corresponding bricks by using these 
notions in the case n = 5.

First, we define σ(w). Recall that we have defined the integers a, b, r in Subsection 3.2 for w. By using 
these integers, we define σ(w) of w as the triple (a, b, r′) ∈ Z3, where

r′ :=
{

0 (b ≥ −1)
min{r, |b| − 1} (b ≤ −2)

,

and call σ(w) the shape of w. For any σ ∈ Z3, we write (j-irrW )σ ⊂ j-irrW for the subset of elements in 
j-irrW whose shapes are σ. It is easy to see that (j-irrW )σ �= ∅ if and only if σ is a triple (a, b, r′) satisfying 
one of the following conditions (a), (b), (c):

(a) 2 ≤ a ≤ n, −1 ≤ b < a, b �= 0, r′ = 0; or
(b) 2 ≤ a ≤ n, −a < b ≤ −2, 0 ≤ r′ ≤ |b| − 1; or
(c) 2 ≤ a ≤ n, −n ≤ b < −a, 0 ≤ r′ ≤ |a| − 2.

Next, we define the other notion χ(w) by using R defined in Subsection 3.2 for w. We set χ(w) as the 
sequence (x(1), x(2), . . . , x(n)) ∈ {0, 1, 2}n whose terms are given by

x(i) :=

⎧⎪⎪⎨
⎪⎪⎩

0 (−j, j /∈ R)
1 (−j ∈ R)
2 (j ∈ R)

.

We have a map χ : j-irrW → {0, 1, 2}n, which is clearly injective. For σ = (a, b, r′) satisfying the condition 
above, we can straightforwardly check χ((j-irrW )σ) =

∏n
i=1 Xi, where Xi is defined as follows in each of 

the three cases (a), (b), and (c):
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(a) i i< |b| i= |b| |b|<i<a i=a i>a

Xi {0} {1} if b=−1; {2} otherwise {0, 2} {0} {2} ,

(b) i i≤r′ i=r′+1 �= |b| r′+1<i< |b| i= |b| |b|<i<a i=a i>a

Xi {1, 2} {0} {0, 1, 2} {1} {0, 2} {0} {2} ,

(c) i i≤r′ i=r′+1 r′+1<i<a i=a a<i< |b| i= |b| i>a

Xi {1, 2} {0} {0, 1, 2} {0} {1, 2} {1} {2} .

Therefore, by setting x := max{a, |b|} and y := min{a, |b|}, we have

#(j-irrW )σ =
{

2x−y−1 (b ≥ −1)
2r′ · 3max{y−r′−2,0} · 2x−y−1 (b ≤ −2)

.

From now on, we consider D5, so let n = 5. For σ satisfying the condition above, the following lists show 
all the elements w in (j-irrW )σ and the corresponding bricks S(w) over the preprojective algebra Π of type 
D5. The elements in (j-irrW )σ are arranged so that w comes before w′ if and only if χ(w) < χ(w′) in the 
lexicographical order of {0, 1, 2}n, and each w is shortly denoted by a string j1j2 · · · jn, where ji := w(i) if 
w(i) > 0; ji := w(i) if w(i) < 0. For example, 12534 means (−1, 2, −5, 3, 4). The join-irreducible elements 
and the bricks are explicitly described as follows by Corollary 3.10:

• σ = (2, −5, 0) (4 elements):

S(12543) =
1

−1 −2 −3 −4
, S(12534) =

1

−1 −2 −3 −4
,

S(12543) =
1

−1 −2 −3 −4
, S(12534) =

1

−1 −2 −3 −4
;

• σ = (2, −4, 0) (2 elements):

S(12435) =
1

−1 −2 −3
, S(12435) =

1

−1 −2 −3
;

• σ = (2, −3, 0) (1 element):

S(12345) =
1

−1 −2
;

• σ = (2, −1, 0) (1 element):

S(21345) = −1 ;

• σ = (2, 1, 0) (1 element):

S(21345) = 1 ;

• σ = (3, −5, 0) (6 elements):

S(12354) =
1 2

−1 −2 −3 −4
, S(12354) =

1 2

−1 −2 −3 −4
,
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S(13542) =
1 2

−1 −2 −3 −4
, S(13524) =

1 2

−1 −2 −3 −4
,

S(13542) =
1 2

−1 −2 −3 −4
, S(13524) =

1 2

−1 −2 −3 −4
;

• σ = (3, −5, 1) (4 elements):

S(23541) =
−1 2
1 −2 −3 −4

, S(23514) =
−1 2
1 −2 −3 −4

,

S(23541) =
1 2

−1 −2 −3 −4
, S(23514) =

1 2

−1 −2 −3 −4
;

• σ = (3, −4, 0) (3 elements):

S(12345) =
1 2

−1 −2 −3
, S(13425) =

1 2

−1 −2 −3
,

S(13425) =
1 2

−1 −2 −3
;

• σ = (3, −4, 1) (2 elements):

S(23415) =
−1 2
1 −2 −3

, S(23415) =
1 2

−1 −2 −3
;

• σ = (3, −2, 0) (1 element):

S(13245) =
1 2

−1
;

• σ = (3, −2, 1) (2 elements):

S(32145) =
−1 2
1

, S(32145) =
1 2

−1
;

• σ = (3, −1, 0) (2 elements):

S(23145) = −1 2 , S(31245) = −1 2 ;

• σ = (3, 1, 0) (2 elements):

S(23145) = 1 2 , S(31245) = 1 2 ;

• σ = (3, 2, 0) (1 element):

S(13245) = 2 ;
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• σ = (4, −5, 0) (9 elements):

S(12345) =
1 2 3

−1 −2 −3 −4
, S(12453) =

1 2 3

−1 −2 −3 −4
,

S(12453) =
1 2 3

−1 −2 −3 −4
, S(13452) =

1 2 3

−1 −2 −3 −4
,

S(14532) =
1 2 3

−1 −2 −3 −4
, S(14523) =

1 2 3

−1 −2 −3 −4
,

S(13452) =
1 2 3

−1 −2 −3 −4
, S(14532) =

1 2 3

−1 −2 −3 −4
,

S(14523) =
1 2 3

−1 −2 −3 −4
;

• σ = (4, −5, 1) (6 elements):

S(23451) =
−1 2 3
1 −2 −3 −4

, S(24531) =
−1 2 3
1 −2 −3 −4

,

S(24513) =
−1 2 3
1 −2 −3 −4

, S(23451) =
1 2 3

−1 −2 −3 −4
,

S(24531) =
1 2 3

−1 −2 −3 −4
, S(24513) =

1 2 3

−1 −2 −3 −4
;

• σ = (4, −5, 2) (4 elements):

S(34521) =
−1 2 3
1 −2 −3 −4

, S(34512) =
−1 2 3
1 −2 −3 −4

,

S(34521) =
1 2 3

−1 −2 −3 −4
, S(34512) =

1 2 3

−1 −2 −3 −4
;

• σ = (4, −3, 0) (3 elements):

S(12435) =
1 2 3

−1 −2
, S(14325) =

1 2 3

−1 −2
,

S(14325) =
1 2 3

−1 −2
;

• σ = (4, −3, 1) (2 elements):

S(24315) =
−1 2 3
1 −2

, S(24315) =
1 2 3

−1 −2
;
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• σ = (4, −3, 2) (4 elements):

S(43215) =
−1 2 3
1 −2

, S(43125) =
−1 2 3
1 −2

,

S(43215) =
1 2 3

−1 −2
, S(43125) =

1 2 3

−1 −2
;

• σ = (4, −2, 0) (2 elements):

S(13425) =
1 2 3

−1
, S(14235) =

1 2 3

−1
;

• σ = (4, −2, 1) (4 elements):

S(34215) =
−1 2 3
1

, S(42135) =
−1 2 3
1

,

S(34215) =
1 2 3

−1
, S(42135) =

1 2 3

−1
;

• σ = (4, −1, 0) (4 elements):

S(23415) = −1 2 3 , S(24135) = −1 2 3 ,

S(34125) = −1 2 3 , S(41235) = −1 2 3 ;

• σ = (4, 1, 0) (4 elements):

S(23415) = 1 2 3 , S(24135) = 1 2 3 ,

S(34125) = 1 2 3 , S(41235) = 1 2 3 ;

• σ = (4, 2, 0) (2 elements):

S(13425) = 2 3 , S(14235) = 2 3 ;

• σ = (4, 3, 0) (1 element):

S(12435) = 3 ;

• σ = (5, −4, 0) (9 elements):

S(12354) =
1 2 3 4

−1 −2 −3
, S(12543) =

1 2 3 4

−1 −2 −3
,

S(12543) =
1 2 3 4

−1 −2 −3
, S(13542) =

1 2 3 4

−1 −2 −3
,

S(15432) =
1 2 3 4

−1 −2 −3
, S(15423) =

1 2 3 4

−1 −2 −3
,
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S(13542) =
1 2 3 4

−1 −2 −3
, S(15432) =

1 2 3 4

−1 −2 −3
,

S(15423) =
1 2 3 4

−1 −2 −3
;

• σ = (5, −4, 1) (6 elements):

S(23541) =
−1 2 3 4
1 −2 −3

, S(25431) =
−1 2 3 4
1 −2 −3

,

S(25413) =
−1 2 3 4
1 −2 −3

, S(23541) =
1 2 3 4

−1 −2 −3
,

S(25431) =
1 2 3 4

−1 −2 −3
, S(25413) =

1 2 3 4

−1 −2 −3
;

• σ = (5, −4, 2) (4 elements):

S(35421) =
−1 2 3 4
1 −2 −3

, S(35412) =
−1 2 3 4
1 −2 −3

,

S(35421) =
1 2 3 4

−1 −2 −3
, S(35412) =

1 2 3 4

−1 −2 −3
;

• σ = (5, −4, 3) (8 elements):

S(54321) =
−1 2 3 4
1 −2 −3

, S(54213) =
−1 2 3 4
1 −2 −3

,

S(54312) =
−1 2 3 4
1 −2 −3

, S(54123) =
−1 2 3 4
1 −2 −3

,

S(54321) =
1 2 3 4

−1 −2 −3
, S(54213) =

1 2 3 4

−1 −2 −3
,

S(54312) =
1 2 3 4

−1 −2 −3
, S(54123) =

1 2 3 4

−1 −2 −3
;

• σ = (5, −3, 0) (6 elements):

S(12453) =
1 2 3 4

−1 −2
, S(12534) =

1 2 3 4

−1 −2
,

S(14532) =
1 2 3 4

−1 −2
, S(15324) =

1 2 3 4

−1 −2
,

S(14532) =
1 2 3 4

−1 −2
, S(15324) =

1 2 3 4

−1 −2
;
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• σ = (5, −3, 1) (4 elements):

S(24531) =
−1 2 3 4
1 −2

, S(25314) =
−1 2 3 4
1 −2

,

S(24531) =
1 2 3 4

−1 −2
, S(25314) =

1 2 3 4

−1 −2
;

• σ = (5, −3, 2) (8 elements):

S(45321) =
−1 2 3 4
1 −2

, S(53214) =
−1 2 3 4
1 −2

,

S(45312) =
−1 2 3 4
1 −2

, S(53124) =
−1 2 3 4
1 −2

,

S(45321) =
1 2 3 4

−1 −2
, S(53214) =

1 2 3 4

−1 −2
,

S(45312) =
1 2 3 4

−1 −2
, S(53124) =

1 2 3 4

−1 −2
;

• σ = (5, −2, 0) (4 elements):

S(13452) =
1 2 3 4

−1
, S(13524) =

1 2 3 4

−1
,

S(14523) =
1 2 3 4

−1
, S(15234) =

1 2 3 4

−1
;

• σ = (5, −2, 1) (8 elements):

S(34521) =
−1 2 3 4
1

, S(35214) =
−1 2 3 4
1

,

S(45213) =
−1 2 3 4
1

, S(52134) =
−1 2 3 4
1

,

S(34521) =
1 2 3 4

−1
, S(35214) =

1 2 3 4

−1
,

S(45213) =
1 2 3 4

−1
, S(52134) =

1 2 3 4

−1
;

• σ = (5, −1, 0) (8 elements):

S(23451) = −1 2 3 4 , S(23514) = −1 2 3 4 ,

S(24513) = −1 2 3 4 , S(25134) = −1 2 3 4 ,
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S(34512) = −1 2 3 4 , S(35124) = −1 2 3 4 ,

S(45123) = −1 2 3 4 , S(51234) = −1 2 3 4 ;

• σ = (5, 1, 0) (8 elements):

S(23451) = 1 2 3 4 , S(23514) = 1 2 3 4 ,

S(24513) = 1 2 3 4 , S(25134) = 1 2 3 4 ,

S(34512) = 1 2 3 4 , S(35124) = 1 2 3 4 ,

S(45123) = 1 2 3 4 , S(51234) = 1 2 3 4 ;

• σ = (5, 2, 0) (4 elements):

S(13452) = 2 3 4 , S(13524) = 2 3 4 ,

S(14523) = 2 3 4 , S(15234) = 2 3 4 ;

• σ = (5, 3, 0) (2 elements):

S(12453) = 3 4 , S(12534) = 3 4 ;

• σ = (5, 4, 0) (1 element):

S(12354) = 4 .
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