
Journal of Pure and Applied Algebra 224 (2020) 1124–1131
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

A Kunz-type characterization of regular rings via alterations

Linquan Ma a,∗,1, Karl Schwede b,2

a Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States of America
b Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 October 2018
Received in revised form 30 May 
2019
Available online 25 July 2019
Communicated by S. Iyengar

MSC:
14F18; 13A35; 14F17; 13D05; 13D45; 
14B05

Keywords:
Multiplier ideals
Projective dimension
Regular rings
Rational singularities

We prove that a local domain R, essentially of finite type over a field, is regular if 
and only if for every regular alteration π : X −→ SpecR, we have that Rπ∗OX has 
finite (equivalently zero in characteristic zero) projective dimension.

Published by Elsevier B.V.

1. Introduction

In [10] Kunz proved that a Noetherian ring of characteristic p > 0 is regular if and only if the e-th iterated 
Frobenius map

R R

x xpe

is flat for some, or equivalently every, e > 0. This is generalized in [17]: the condition fdR R(e) < ∞ (for 
some, or equivalently every, e > 0) implies R is regular, where R(e) denotes the target of the e-th Frobenius 
map. Moreover, the direct limit of R(e) is the perfection R∞ of R. Kunz’s theorem can also be generalized 
using perfection: R is regular if and only if fdR R∞ < ∞ [1,3].
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However, in all these characterizations, the Frobenius map plays a prominent role and hence they do not 
extend to characteristic zero. In this paper, motivated by the connections between multiplier ideals and test 
ideals [4], we prove the following characterization of regularity using alterations.

Main Theorem. Suppose (R, m) is a local domain essentially of finite type over a field. Then the following 
conditions are equivalent.

(a) R is regular.
(b) For every regular alteration π : X −→ SpecR, pdR Rπ∗OX < ∞ (i.e., the derived image of the structure 

sheaf has finite projective dimension).

Moreover, when R has characteristic 0, the above are also equivalent to

(c) For every regular alteration π : X −→ SpecR, pdR Rπ∗OX = 0.

This result is also motivated by the fact that there is close connection between big Cohen-Macaulay 
algebras and Rπ∗OX (recall that the latter is a Cohen-Macaulay complex, [15]).

In fact, this theorem in characteristic p > 0 essentially follows from a result of Bhatt on killing cohomology 
using finite covers [2] and the characterization of regularity using R+, see [1,3]. Our main contribution is the 
characteristic zero case. Meanwhile, it is quite natural to ask whether the same characterization of regularity 
holds in mixed characteristic:

Question 1.1. Suppose (R, m) is an excellent local domain essentially of finite type over the integers. If for 
every regular alteration π : X −→ SpecR, we have that pdR Rπ∗OX < ∞, then is R regular?

See Remark 3.7 for some additional discussion. Finally, one should also compare with the classical result 
that if R ⊆ S is a flat local extension and S is regular, then so is R, see [13, Theorem 23.7].
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2. Preliminaries

Suppose R is a Noetherian ring. For a bounded above cochain complex of R-modules C (. . . −→ C−1 −→
C0 −→ C1 −→ . . . ), we define the projective dimension of C, denoted pdR C to be

inf{sup{i | P−i �= 0} | P • is a projective resolution of C}.

Here a projective resolution is a cochain complex of projective modules quasi-isomorphic to C. If (R, m) is 
additionally local, we also define

depthC = inf{i | Hi
m(C) �= 0}.

These are natural extensions of the projective dimension and the depth of a finitely generated R-module.
We will need the following result of Foxby and Iyengar, which is a vast generalization of the classical 

Auslander-Buchsbaum formula.
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Theorem 2.1 ([6]). Let (R, m) be a local ring and let M and P be complexes of R-modules. If pdR P is finite 
and H(P ) is nonzero and finitely generated, then

depthR M = depthR(M ⊗L
R P ) + pdR P.

We can now prove our main result in positive characteristic.

Proof of Main Theorem in characteristic p > 0. First of all by Theorem 2.1,

pdR Rπ∗OX + depthRπ∗OX = depthR.

Since depthRπ∗OX � 0 (as Rπ∗OX lives in positive degree), we know that for all regular alteration, 
pdR Rπ∗OX � depthR.

By [2, Theorem 1.5], for every regular alteration π: X −→ SpecR, there exists another regular alteration 

π′: Y f−→ X −→ SpecR such that the map τ�1Rπ∗OX −→ τ�1Rπ′
∗OY , induced by the diagram of triangles 

below, is 0.

π∗OX Rπ∗OX τ�1Rπ∗OX

0

+1

π′
∗OY Rπ′

∗OY τ�1Rπ′
∗OY+1

Tensoring with k = R/m and taking cohomology, for all i > depthR we get:

0 = H−i−1(Rπ∗OX ⊗L k) H−i−1(τ�1Rπ∗OX ⊗L k)

0

H−i(π∗OX ⊗L k) 0 = H−i(Rπ∗OX ⊗L k)

0 = H−i−1(Rπ′
∗OY ⊗L k) H−i−1(τ�1Rπ∗OX ⊗L k) H−i(π′

∗OY ⊗L k) 0 = H−i(Rπ∗OX ⊗L k)

An easy diagram chasing shows that for all regular alteration X, we can find another regular alteration 
Y such that H−i(π∗OX ⊗L k) −→ H−i(π′

∗OY ⊗L k) is 0. By writing R+ as the colimit over finite domain 
extensions of R, R+ = limS⊇R S, we see that H−i(R+ ⊗L k) = TorRi (R+, k) = 0 for all i > depthR. Now 
by [1, Corollary 3.5] or [3, Theorem 4.13], R is regular. �

We recall the following very useful result of Corso-Huneke-Katz-Vasconcelos.

Theorem 2.2 ([5, Corollary 3.3]). Suppose that (R, m) is a Noetherian local ring and that I is integrally 
closed and m-primary. Then M has projective dimension less than t if and only if TorRt (R/I, M) = 0.

We specialize it in the following corollary that we will use in the next section.

Corollary 2.3. Suppose that (R, m) is a Noetherian local ring and that I is an integrally closed m-primary 
ideal of finite projective dimension. Then R is regular.

Proof. Since I has finite projective dimension, we see that TorRi (R/I, k) = 0 for i � 0. But now taking 
M = k = R/m in the statement of Theorem 2.2 we see that k has finite projective dimension since I is 
integrally closed and m-primary. The result follows. �
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2.1. Multiplier ideals and multiplier submodules

For references in this section, see [4,11,19].

Definition 2.4 (Multiplier submodules). Suppose that π : X −→ SpecR is a resolution of singularities. Then 
the multiplier submodule of R, denoted J (ωR) is just π∗ωX ⊆ ωR. Here ωR (respectively ωX) is the first 
nonzero cohomology of the dualizing complex.

We now generalize this a bit. Suppose R is a normal domain, Γ � 0 is a Q-Cartier divisor, and π is a log 
resolution of (X, Γ). Then we define J (ωR, Γ) = π∗OX(�KX − π∗Γ	). If we choose 0 �= f ∈ R and t ∈ Q�0, 
then we set J (ωR, Γ, f t) = J (ωR, Γ + t div(f)). Finally, if a ⊆ R is an ideal and π is a log resolution of 
(R, Γ, at) with a · OX = OX(−G), then we define

J (ωR,Γ, at) = π∗OX(�KX − π∗Γ − tG	) ⊆ ωR.

All of this is independent of the choice of resolution.

In the above, if Γ is ever left out, it is treated as zero.

Definition 2.5 (Multiplier ideals). Suppose that R is a normal domain, Δ � 0 is a Q-divisor such that 
KR + Δ is Q-Cartier, a ⊆ R is an ideal and t ∈ Q�0, then we define the multiplier ideal

J (R,Δ, at) = π∗OX(�KX − π∗(KR + Δ) − tG	)

where π : X −→ SpecR is a log resolution of (R, Δ, at) and a · OX = OX(−G). Again, this is independent 
of the choice of resolution.

If Δ is left off, then it is treated as zero and if a is left off, it is treated as R.

3. The main result in characteristic zero

We begin with the “easy” direction.

Theorem 3.1. Suppose that (R, m) is a regular local ring essentially of finite type over a field of characteristic 
zero. If π : X −→ SpecR is a regular alteration, then pdR Rπ∗OX = 0.

Proof. Since R is regular, the bounded complex Rπ∗OX has finite projective dimension. By Theorem 2.1, 
taking M = R and P = Rπ∗OX we have that

pdR Rπ∗OX + depthR(Rπ∗OX) = dimR.

By the Matlis-dual version of Grauert-Riemenschneider vanishing [7], Hi
m(Rπ∗OX) = 0 for all i < dimR and 

hence depthR(Rπ∗OX) � dimR. Thus pdR Rπ∗OX � 0. But clearly pdR Rπ∗OX � 0 since H0(Rπ∗OX) �=
0. The result follows. �
Lemma 3.2. Suppose (R, m) is a local domain essentially of finite type over a field of characteristic zero and 
that π : X −→ SpecR is a resolution of singularities. If pdR Rπ∗OX < ∞, then R is Cohen-Macaulay.

Proof. Since pdR Rπ∗OX < ∞, we see that the injective dimension of the Grothendieck dual, Rπ∗ω•
X

∼=
π∗ωX [dimR] (by Grauert-Riemenschneider vanishing), is finite. But then π∗ωX is a finitely generated 
R-module of finite injective dimension and so R is Cohen-Macaulay by Bass’ question [8,14,16]. �
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Alternate proof. By the Matlis-dual version of the Grauert-Riemenschneider vanishing, we see that 
Hi

m(Rπ∗OX) = 0 for all i < dimR. Hence depthRπ∗OX = dimR. Note also that pdR Rπ∗OX � 0
since H0(Rπ∗OX) �= 0. Thus we have

depthR = depth(Rπ∗OX) + pdR(Rπ∗OX) � dimR

by Theorem 2.1 and hence R is Cohen-Macaulay. �
We are ready to prove the following characterization of rational singularities, this result is an important 

step towards proving the main theorem and is interesting in its own right.

Theorem 3.3. Suppose (R, m) is a local domain essentially of finite type over a field of characteristic zero. 
Let π : X −→ SpecR be a resolution of singularities. Then R has rational singularities if and only if 
pdR Rπ∗OX < ∞.

Proof. If R has rational singularities then obviously pdR Rπ∗OX < ∞ since Rπ∗OX
∼= R. We now assume 

that pdR Rπ∗OX < ∞. We already see that R is Cohen-Macaulay by Lemma 3.2. Hence, it is sufficient to 
show that π∗ωX = ωR.

So we suppose π∗ωX �= ωR. By choosing a minimal prime P of Supp(ωR/π∗ωX) and replacing R by RP , we 
may assume R has rational singularities on the punctured spectrum (i.e., ωR/π∗ωX has finite length). Since 
π∗ωX has finite injective dimension (see the proof of Lemma 3.2), by [18, Theorem 2.9], HomR(ωR, π∗ωX)
has finite projective dimension. But

HomR(ωR, π∗ωX) = π∗ H omOX
(π∗ωR, ωX).

Now H omOX
(π∗ωR, ωX) is a rank 1 reflexive sheaf on X. Since X is regular, H omOX

(π∗ωR, ωX) is locally 
free and so its pushforward, which is isomorphic to

HomR(ωR, π∗ωX) ⊆ HomR(ωR, ωR) ⊆ R,

is an integrally closed ideal. Since our assumption is 0 �= ωR/π∗ωX has finite length, it follows 
that HomR(ωR, π∗ωX) �= R is an m-primary integrally closed ideal. But then by Corollary 2.3, 
pdR HomR(ωR, π∗ωX) < ∞ already implies R is regular and thus π∗ωX = ωR which is a contradiction. �
Remark 3.4. Bhargav Bhatt communicated to us an alternate proof of Theorem 3.3, which we now sketch. 
Since Rπ∗OX is a perfect complex, there exists a trace map

R HomR(Rπ∗OX ,Rπ∗OX) −→ R.

On the other hand, we have the map Rπ∗OX −→ HomR(Rπ∗OX , Rπ∗OX) coming from OX ’s left multi-
plication action on itself. We have the composition

R −→ Rπ∗OX −→ R HomR(Rπ∗OX ,Rπ∗OX) −→ R

which is an isomorphism generically (on the open set where π is an isomorphism), hence an isomorphism. 
But then R has rational singularities by [9] (note that that result still utilizes Grauert-Riemenschneider 
vanishing).
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3.1. An aside on multiplier ideals

We assume the following is essentially well known to experts, but we do not know a reference.

Proposition 3.5. Suppose (R, m) is a normal local domain essentially of finite type over a field of character-
istic zero. Suppose 0 �= f ∈ R such that divR(f) is reduced. Fix N � 0 and let S = R[f

1
N+1 ] be the normal 

cyclic cover. Then J (ωS) has an R-summand isomorphic to J (ωR, f
N

N+1 ).

Proof. Since divR(f) is reduced, S is regular in codimension 1 and hence S is normal. Choose −KR effective. 
By [11, Theorem 9.5.42] (see also [4, Theorem 8.1]) we see that

J (R,−KR + N

N + 1 divR f) = R ∩ J (S,−RamS/R − ρ∗KR + N

N + 1 divS f).

Again since divR f is reduced, we see that RamS/R = N
N+1 divS f and hence

J (R,−KR + N

N + 1 divR f) ⊆ J (S,−ρ∗KR).

On the other hand, by [4, Theorem 8.1], we have a splitting (up to scalars)

Tr(J (S,−ρ∗KR))
= Tr(J (S,−ρ∗KR − RamS/R + N

N+1 divS f))
= J (R,−KR + N

N+1 divR f)
= J (ωR, f

N
N+1 ).

But we have

J (S,−ρ∗KR)
= J (S,−ρ∗KR − RamS/R + N

N+1 divS f)
= J (S,−KS + N

N+1 divS f)
= J (ωS , f

N
N+1 ).

We have just shown that J (ωS , f
N

N+1 ) has an R-summand isomorphic to J (ωR, f
N

N+1 ). But even as an 
S-module J (ωS , f

N
N+1 ) = f

N
N+1J (ωS) ∼= J (ωS), and hence J (ωS) has an R-summand isomorphic to 

J (ωR, f
N

N+1 ). �
3.2. Proof of Main Theorem in characteristic zero

We now complete the proof of our main result in characteristic zero.

Theorem 3.6. Suppose (R, m) is a local domain essentially of finite type over a field of characteristic zero. 
Suppose that for every regular alteration π : X −→ SpecR, pdR Rπ∗OX < ∞. Then R is regular.

Proof. By Theorem 3.3, we already know that R has rational singularities. Choose N > 0 so that 
J (ωR, mN ) �= ωR. Then choose a general f ∈ mN+1 and by [11, Proposition 9.2.28] we know that 
J (R, −KR + N

N+1 divR f) = J (R, −KR, mN ) = J (ωR, mN ).
Consider the normal cyclic cover S = R[f

1
N+1 ]. Since f is general, divR(f) is reduced and by Proposi-

tion 3.5, we know that J (ωS) has an R-summand isomorphic to J (ωR, f
N

N+1 ).
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Next consider a resolution of singularities π: X −→ SpecS, then the composition X −→ SpecS −→ SpecR
is a regular alteration. Moreover, π∗ωX = J (ωS) has finite injective dimension over R (because π∗ωX [dimR]
is the Grothendieck dual of Rπ∗OX), so does its direct summand J (ωR, f

N
N+1 ). Therefore by [18, Theorem 

2.9],

HomR(ωR,J (ωR, f
N

N+1 )) ⊆ HomR(ωR, ωR) ∼= R

has finite projective dimension. Since J (ωR, f
N

N+1 ) = J (ωR, mN ) agrees with ωR except at the origin (where 
it does not agree). Thus HomR(ωR, J (ωR, f

N
N+1 )) lacks the identity map ωR −→ ωR and hence it is identified 

with an m-primary ideal of R.
Next we show that HomR(ωR, J (ωR, f

N
N+1 )) ⊆ R is an integrally closed ideal. Take a log resolution 

of singularities π : X −→ SpecR of (R, divR(f)). By definition we have J (ωR, f
N

N+1 ) = π∗OX(�KX −
N

N+1 divX(f)	). Thus

HomR(ωR,J (ωR, f
N

N+1 ))
= HomR(ωR, π∗OX(�KX − N

N+1 divX(f)	))
= π∗ H omOX

(π∗ωR,OX(�KX − N
N+1 divX(f)	)).

As in the proof of Theorem 3.3, since L := H omOX
(π∗ωR, OX(�KX − N

N+1 divX(f)	)) is a rank 1 reflexive 
sheaf and X is regular, L is invertible. Thus HomR(ωR, π∗OX(�KX− N

N+1 divX(f)	)) is an integrally closed 
m-primary ideal of finite projective dimension. Therefore R is regular by Corollary 2.3. �
Remark 3.7. We believe that the above proof can be run (essentially without change) for excellent surfaces 
even in mixed characteristic. The key facts we need are that Grauert-Riemenschneider still holds for excellent 
surfaces [12, Corollary 2.10] and that we can choose a general element f in mN+1 so that J (R, fN/N+1) is 
m-primary [20,21] (using that R is regular outside of the origin since we may reduce to the case that R is 
normal).
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