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We show that the category of internal groupoids in an exact Mal’tsev category 
is reflective, and, moreover, a Birkhoff subcategory of the category of simplicial 
objects. We then characterize the central extensions of the corresponding Galois 
structure, and show that regular epimorphisms admit a relative monotone-light 
factorization system in the sense of Chikhladze. We also draw some comparison 
with Kan complexes. By comparing the reflections of simplicial objects and reflexive 
graphs into groupoids, we exhibit a connection with weighted commutators (as 
defined by Gran, Janelidze and Ursini).
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0. Introduction

Categorical Galois theory, as developed by G. Janelidze ([27,32,3,30]), is a general framework that allows 
the study of central extensions or coverings of the objects of a category. A large collection of examples 
has been given, ranging from the Galois theory of commutative rings of Magid ([35,10]) and the theory of 
coverings of locally connected spaces to the central extensions of groups, Lie algebras, or, more generally, 
central extensions in exact Mal’tsev categories [31].

The main ingredient of this theory is the notion of Galois structure, which is defined as an adjunction, 
with the right adjoint often taken to be fully faithful, and a class of morphisms in the codomain of the right 
adjoint, satisfying suitable conditions, in particular admissibility, which amounts to the preservation by the 

E-mail address: duvieusart@math.cas.cz.
https://doi.org/10.1016/j.jpaa.2020.106620
0022-4049/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2020.106620
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2020.106620&domain=pdf
mailto:duvieusart@math.cas.cz
https://doi.org/10.1016/j.jpaa.2020.106620


2 A. Duvieusart / Journal of Pure and Applied Algebra 225 (2021) 106620
left adjoint of certain pullbacks. For example, the inclusion of any Birkhoff subcategory of an exact Mal’tsev 
together with the class of regular epimorphisms always forms an admissible Galois structure ([31]).

In [8], Brown and Janelidze used this theory to describe what they called second order coverings for 
simplicial sets, using the adjunction given by the nerve functor and the fundamental groupoid, and the class 
of Kan fibrations. In fact, they restricted their analysis to Kan complexes, as this condition implies the 
admissibility of these objects for the corresponding Galois structure. Later Chikhladze introduced relative 
factorization systems, and showed that the induced relative factorization system for Kan fibrations is locally 
stable, so that the Galois structure induces a relative monotone-light factorization ([15]).

On the other hand, regular Mal’tsev categories were characterized in [11] as the categories in which 
the Kan condition holds for every simplicial object, thus extending a theorem of Moore stating that the 
underlying simplicial set of a simplicial group is always a Kan complex. Moreover, regular epimorphisms 
in the category of simplicial objects then coincide with Kan fibrations. This suggests that the inclusion of 
groupoids into simplicial objects in any exact Mal’tsev category might induce an admissible Galois structure.

The main objective of this paper is to show that this is indeed the case, and, more precisely, that the 
category of groupoids in an exact Mal’tsev category is always a Birkhoff subcategory of the category of 
simplicial objects. The paper is organized as follows: we begin with some preliminaries, to fix notation and 
provide the background notions. We then construct the reflection of the category of simplicial objects into 
the subcategory of internal groupoids. Next, we characterize the central extensions for the induced Galois 
structure. In the next section we compare our construction with the homotopy relations for the simplices in 
a Kan complex, which are used to define its homotopy groupoid. Then we prove that the Galois structure 
admits a relative monotone-light factorization system. We end the paper with a discussion of reflexive 
graphs, seen as truncated simplicial objects.

1. Preliminaries

1.1. Simplicial objects

Let Δ denote the category of finite nonzero ordinals, with monotone functions as morphisms. For a 
given category C, the category Simp(C) of simplicial objects in C is the category of functors Δop → C. 
Equivalently, an object X of Simp(C) is a collection of objects (Xn)n∈N together with face morphisms 
di : Xn → Xn−1 for all n > 0 and 0 ≤ i ≤ n, and degeneracy morphisms si : Xn → Xn+1 for n ≥ 0 and 
0 ≤ i ≤ n, satisfying the following simplicial identities, whenever they make sense:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

didj = dj−1di 0 ≤ i < j ≤ n + 1
sisj = sj+1si 0 ≤ i ≤ j ≤ n

disj = sj−1di 0 ≤ i < j ≤ n− 1
disj = 1 i ∈ {j, j + 1}
disj = sjdi−1 0 ≤ j < i− 1 ≤ n− 1.

(1)

When necessary, we will write dXi or sXi to distinguish the face or degeneracy morphisms of different simplicial 
objects. A morphism f : X → Y in Simp(C) is then a collection of morphisms fn : Xn → Yn that commute 
with face and degeneracy morphisms, in the sense that dYi fn+1 = fnd

X
i and sYi fn = fn+1s

X
i for all i, n.

If X is a simplicial object, we will denote Dec(X) the décalage of X [26], which is the simplicial object 
(Xn+1)n≥0, whose face and degeneracies are the same as those of X, without the last faces dn+1 : Xn+1 → Xn

and last degeneracies sn : Xn → Xn+1 for all n ≥ 1. The simplicial identities imply that the morphisms 
dn+1 : Xn+1 → Xn form a morphism of simplicial objects εX : Dec(X) → X. Since all these morphisms 
are split (and thus regular) epimorphisms, ε is a regular epimorphism in Simp(C), although it does not 
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need to be a split epimorphism. Notice that Dec defines an endofunctor of Simp(C), and ε is a natural 
transformation from Dec to the identity endofunctor.

Δ is a skeleton of the category of non-empty finite totally ordered sets, and there exists exactly one 
functor from the latter category to Δ. In particular, since the poset Pf,n.e.(N) of non-empty finite subsets 
of N (ordered by inclusion) can be seen as a subcategory of non-empty finite totally ordered sets, there is 
a unique functor Φ: Pf,n.e.(N) → Δ that maps any set with n + 1 elements to {0, . . . , n} and any inclusion 
map to an injective morphism in Δ.

For a given simplicial object X, and for every n ≥ 2, one can consider the restriction of Φ to the poset of 
proper subsets of {0, 1, . . . , n}; taking the opposite functor and composing with X : Δop → C gives a diagram 
in C. The limit of this diagram is the n-th simplicial kernel of X, and denoted Kn(X). In particular, we 
have morphisms μi : Kn(X) → Xn−1 for i = 0, . . . , n, satisfying diμj = dj−1μi for all 0 ≤ i < j ≤ n, and the 
morphisms μi are universal with this property. Thus the face morphisms d0, . . . , dn : Xn → Xn−1 induce a 
canonical morphism κn : Xn → Kn(X). Following [19], we say that X is exact at Xn−1 if κn is a regular 
epimorphism, and exact if it is exact at Xn for all n ≥ 1.

Moreover, for every n ≥ 2 and 0 ≤ k ≤ n, we can also restrict Φ to the poset of proper subsets of 
{0, . . . , n} that contain k, and then compose the opposite functor with X. The limit of this diagram is the 
object of (n, k)-horns Λn

k (X), and it is equipped with morphisms νi : Λn
k (X) → Xn−1 for 0 ≤ i ≤ n and 

i �= k that satisfy the identities diνj = dj−1νi for all 0 ≤ i < j ≤ n and i �= k �= j, and are universal 
with this property. There is then also a canonical arrow λn

k : Xn → Λn
k (X) induced by the face morphisms 

di : Xn → Xn−1 for i �= k, and X is said to satisfy the Kan property if all these morphisms are regular 
epimorphisms. Moreover, a morphism f : X → Y between simplicial objects is called a Kan fibration if for 
all n and k the canonical arrow θnk in the diagram

Xn

Λn
k (X) ×Λn

k (Y) Y Yn

Λn
k (X) Λn

k (Y )

fn

λn
k

θn
k

�
λn
k

Λn
k (f)

(2)

(where the inner square is a pullback) is a regular epimorphism.
For every n ≥ 1, we denote Δn the full subcategory of Δ consisting of the ordinals with n +1 elements or 

less, and Simpn(C) the category of functors Δop
n → C, whose objects we called n-truncated simplicial objects. 

The inclusion Δn ↪→ Δ then induces by precomposition the truncation functor Simp(C) → Simpn(C).
An internal reflexive graph in C is simply a 1-truncated simplicial object. A multiplicative graph is then 

a reflexive graph endowed with a partial multiplication m : X1 ×X0 X1 → X1 that is unital and compatible 
with the domain and codomain morphisms ([13]), and an internal category is a multiplicative graph whose 
multiplication is associative. All these conditions can be summarized by saying that an internal multiplicative 
graph is an object of Simp2(C), such that the square

X2 X1

X1 X0

d2

d0 d0

d1

is a pullback, and an internal category is an object of Simp3(C) such that the square above and the square
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X3 X2

X2 X1

d3

d0 d0

d2

are pullbacks. Moreover, an internal category is an internal groupoid if and only if any of the squares

X2 X1

X1 X0

d1

d0 d0

d0

and
X2 X1

X1 X0

d2

d1 d1

d1

is a pullback. Internal functors are also the same thing as (restricted) simplicial morphisms. Moreover, any 
internal category can be extended to a simplicial object by simply taking its nerve. From now on we will 
thus consider Cat(C) and Grpd(C) as full subcategories of Simp(C); more precisely, a simplicial object X
is an internal category if and only if the commutative square

Xn Xn−1

Xn−1 Xn−2

d0

dn dn−1

d0

is a pullback for all n ≥ 2.

1.2. Mal’tsev categories and higher extensions

A finitely complete category C is called a Mal’tsev category if every internal reflexive relation in C is an 
equivalence relation [11–13,2]; when C is a regular category, this condition holds if and only if the composition 
R ◦ S of two equivalence relations R, S on the same object X is an equivalence relation. When this is the 
case, R ◦ S is in fact the join of R and S in the poset of equivalence relations of X. Accordingly this poset 
is a lattice. In fact this is a modular lattice ([12]), i.e. we have the identity

R ∨ (S ∧ T ) = (R ∨ S) ∧ T

for all equivalence relations R, S, T on X such that R ≤ T .
An important property of Mal’tsev categories is that the inclusion of the category Grpd(C) of internal 

groupoids into the category MRG(C) of multiplicative reflexive graphs is an isomorphism, and that the 
truncation functor MRG(C) → RG(C) is fully faithful ([13]).

For a variety, this is also equivalent to the existence of a ternary operation p satisfying the equations 
p(x, y, y) = x and p(x, x, y) = y. In particular, the categories of groups, R-modules, rings, Lie algebras 
and C∗-algebras are all examples of Mal’tsev categories; other examples include the category of Heyting 
algebras, any additive category, or the dual of any topos [5].

In any regular category, a commutative square

X Z

Y W

g

f h
j
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of regular epimorphisms is called a regular pushout or double extension if the canonical morphism 
〈f, g〉 : X → Y ×W Z is a regular epimorphism ([29]). These double extensions are stable under pullback 
along a commutative square in any regular category.

Proposition 1 ([6]). If C is a regular Mal’tsev category, then

• any square of the form

X Z

Y W

g

f j

h

s t

where hf = jg, gs = th, fs = 1Y , jt = 1W and g, h are regular epimorphisms is a double extension;
• a square of regular epimorphisms

X Z

Y W

g

f j

h

is a double extension if and only if f(Eq[g]) = Eq[h], i.e. if and only if the morphism Eq[g] → Eq[h]
(where Eq[g] and Eq[h] denote the kernel pairs of g and h respectively) induced by f and j is a regular 
epimorphism.

We can also define a triple extension as a commutative cube

X Z

X ′ Z ′

Y W

Y ′ W ′

α

f

g

γ

h

g′

h′
p

β

δ

f ′

p′

for which all faces, as well as the induced commutative square

X Y ×W Z

X ′ Y ′ ×W ′ Z ′,

〈f,g〉

α β×δγ

〈f ′,g′〉

are double extensions. Triple extensions satisfy the same properties as in Proposition 1: in particular, a split 
cube between double extensions is always a triple extension.

1.3. Categorical Galois theory and monotone-light factorization systems

We recall some definitions from [31,32].
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A Galois structure Γ = (C, X , I, U, F) consists of a category C, a full reflective subcategory X of C, with 
reflector I : C → X and inclusion U : X → C, and a class F of morphisms of C containing all isomorphisms, 
stable under pullbacks, closed under composition, and preserved by I. We will call the morphisms in F
extensions. Let us write, for any object B of C (resp. of X ), C ↓ B (resp. X ↓ B) for the full subcategory of 
the slice category C/B (resp. X/B) consisting of extensions f : X → B. Then any arrow p : E → B induces 
a functor p∗ : C ↓ B → C ↓ E defined by pulling back. If p is an extension, this functor has a left adjoint 
p! defined by composition with p; the extension p is said to be of effective F-descent, or simply a monadic 
extension, if the functor p∗ is monadic.

Moreover, the reflector I induces, for every B, a functor IB : C ↓ B → X ↓ I(B) which maps f : X → B

to I(f) : I(X) → I(B); and every such functor has a right adjoint UB : X ↓ I(B) → C ↓ B, defined for any 
g : Y → I(B) by the pullback

B ×I(B) Y Y

B I(B).

�
UB(g) g

ηB

The object B is then said to be admissible if UB is fully faithful, which is equivalent to the reflector I
preserving all pullback squares of the form above. A Galois structure Γ is said to be admissible if every 
object is admissible.

Given an admissible Galois structure, an extension f : X → B in C ↓ B is said to be

• trivial if it lies in the replete image of UB , or equivalently if the square

X I(X)

B I(B)

ηX

f I(f)

ηB

is a pullback;
• central, or alternatively a covering, if there exists a monadic extension p : E → B such that p∗(f) is 

trivial;
• normal, if it is a monadic extension and if f∗(f) is a trivial extension (that is, if the projections of the 

kernel pair of f are trivial).

Example 1. If C is an exact Mal’tsev category, X is any Birkhoff (i.e. full reflective and closed under quotients 
and subobjects) subcategory of C, and F is the class of regular epimorphisms, then the Galois structure Γ
is admissible, and moreover, every extension is monadic and every central extension is also normal ([31]).

When C is the category of groups and X the subcategory of abelian groups, the central extensions in this 
sense are exactly the surjective group homomorphisms whose kernel is included in the center of the domain 
([31]). More generally, in any exact Mal’tsev category with coequalizers, the central extensions of the Galois 
structure defined by the subcategory of abelian objects are the extensions such that the Smith-Pedicchio 
commutator [Eq[f ], ∇X ] is trivial ([23]).

If Γ is a Galois structure where F is the class of all morphisms in C, admissibility is equivalent to the 
reflector I being semi-left-exact in the sense of [14]. Any morphism f : X → B in C induces a commutative 
diagram
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X

B ×I(B) I(X) I(X)

B I(B);

ηX

f

f ′

�
f ′′ I(f)

ηB

when the reflector I is semi-left-exact, it preserves the pullback in this diagram, I(f ′) is an isomorphism, 
and f ′′ is a trivial extension by definition. Moreover, in that case the classes E of morphisms inverted by 
I and the class M of trivial extensions are orthogonal to one another, and thus the two classes form a 
factorization system (E , M) in C ([14]). The trivial extensions are then stable under pullbacks, but the class 
E does not have this property in general. In order to obtain a stable factorization system, one can localize 
M and stabilize E , as in [9]; this means that we replace E by the class E ′ of morphisms for which every 
pullback is in E , and M by the class M∗ of morphisms f that are locally in M, in the sense that there exists 
a monadic extension p such that p∗(f) ∈ M. In the context of Galois Theory these are precisely the central 
extensions. The two classes E ′ and M∗ are orthogonal, but in general they do not form a factorization 
system. When this is the case, the resulting factorization system is called the monotone-light factorization 
system (E ′, M∗) associated with Γ.

In the case where F is no longer the class of all morphisms in C, it may not be true that every morphism 
admits a (E , M)-factorization. Nevertheless, this is still true for extensions; it is then natural to extend the 
notion of factorization system to the case where only some morphisms have a factorization. This was done 
by Chikhladze in [15]:

Definition 1. If C is a category and F a class of morphisms of C containing the identities, closed under 
composition, and stable under pullbacks, a relative factorization system for F consists of two classes E and 
M of morphisms such that

(1) E and M contain identities and are closed under composition with isomorphisms;
(2) E and M are orthogonal to one another;
(3) M ⊂ F ;
(4) every arrow f in F can be written as me for some m ∈ M and e ∈ E.

Then any admissible Galois structure Γ = (C, X , I, F) yields a relative factorization system for F with E
and M consisting of the morphisms inverted by I and the trivial extensions, respectively. When moreover 
this factorization system can be stabilized, then the stable factorization system (E ′, M∗) (where E ′ is the 
class of all morphisms for which any pullback along an arrow in F is in E) is called a relative monotone-light 
factorization system for F .

Example 2. If C is the category of simplicial sets, X the category of groupoids, I the fundamental groupoid 
functor, and F the class of Kan fibrations, then every Kan complex is an admissible object, and the central 
extensions were called second order coverings in [8].

This Galois structure admits a relative monotone-light factorization system, as shown in [15].

Example 3. In a finitely complete category, any object X has a corresponding discrete internal groupoid. 
This defines a fully faithful functor D : C → Grpd(C). If C is exact, then this functor admits a semi-left-
exact left adjoint Π0 : Grpd(C) → C ([4]). When C is moreover Mal’tsev, C is in fact a Birkhoff subcategory 
of Grpd(C), and the central extensions of the Galois structure (Grpd(C), C, Π0, F) (where F is the class of 
regular epimorphisms) are precisely the regular epimorphic discrete fibrations ([22]). This Galois structure 
admits a relative monotone-light factorization system ([16]).
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2. The reflection of simplicial objects into groupoids

Convention. For the remainder of this article, C will denote a regular Mal’tsev category. For a given simplicial 
object (Xn)n≥0 with face morphisms di : Xn → Xn−1 for n ≥ 1 and 0 ≤ i ≤ n, we will denote by Di the 
kernel pair of di. When necessary, we will write DX

i for the kernel pair of dXi .

Note that Simp(C), being a functor category, is also regular Mal’tsev.

Lemma 2. If X is a simplicial object in C, all the commutative squares given by didj = dj−1di for i < j

are double extensions. Moreover, if f : X → Y is a regular epimorphism of simplicial objects, then the 
corresponding commutative cubes are triple extensions.

Proof. If i < j − 1, then we have a diagram

Xn+2 Xn+1

Xn+1 Xn,

dj

di

sj−1

di

dj−1

sj−2

where the two squares obtained by taking the horizontal arrows pointing to the right and to the left both 
commute (i.e. didj = dj−1di and disj−1 = sj−2di). On the other hand, if j = i + 1, then at least one of the 
inequalities 1 ≤ j ≤ n + 2 is strict, hence at least one of the diagrams

Xn+2 Xn+1

Xn+1 Xn

dj

di

sj

di

dj−1

sj−1

Xn+2 Xn+1

Xn+1 Xn

dj

di disi−1

dj−1

si−1

will similarly yield two commutative squares; in any case, the commutative square didj = dj−1di is a double 
extension by Proposition 1.

Moreover, any morphism f : X → Y of simplicial objects has to commute with the face and degeneracies; 
hence, when f is a regular epimorphism, every square

Xn+1 Yn+1

Xn Yn

fn+1

di di

fn

is a double extension. The resulting cube will then always be a split epimorphism between double extensions, 
hence a triple extension. �
Remark. The pullback X1×X0X1 of d0 along d1 coincides with the object of (2, 1)-horns Λ2

1(X), and similarly 
the other two pullbacks X1 ×X0 X1, which define the kernel pairs of d0 and d1, coincide with the objects of 
(2, 2) and (2, 0)-horns, respectively. In particular, Lemma 2 shows that every simplicial object satisfies the 
Kan property and that every regular epimorphism is a Kan fibration for 2-horns. The proof for the higher 
order horns can be done in the same way, using n-fold extensions for n ≥ 3, as in [19].

As a consequence we have
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Corollary 3. If f : X → Y is a regular epimorphism in Simp(C), then f(DX
i ∧DX

j ) = DY
i ∧DY

j . Moreover, 
for any i < j < k, we have

dk(Di ∧Dj) = Di ∧Dj

dj(Di ∧Dk) = Di ∧Dk−1

di(Dj ∧Dk) = Dj−1 ∧Dk−1.

Proof. By Lemma 2 f : X → Y induces a triple extension. In particular the square

Xn Xn−1 ×Xn−2 Xn−1

Yn Yn−1 ×Yn−2 Yn−1

〈dX
i ,dX

j 〉

fn

〈dY
i ,dY

j 〉

is a double extension, so that

f(DX
i ∧DX

j ) = f(Eq[〈dXi , dXj 〉]) = 〈dYi , dYj 〉 = DY
i ∧DY

j .

Moreover, dk is a component of the regular epimorphism εX : Dec(X) → X, and thus the cube

Xn+3 Xn+2

Xn+2 Xn+1

Xn+2 Xn+1

Xn+1 Xn

dk

di

dj

dk−1

di

dj

di

dj−1

dk−1

dk−2

di

dj−1

is a triple extension; in particular the squares

Xn+3 Xn+2 ×Xn+1 Xn+2

Xn+2 Xn+1 ×Xn
Xn+1

〈di,dj〉

dk

〈di,dj〉

,

Xn+3 Xn+2 ×Xn+1 Xn+2

Xn+2 Xn+1 ×Xn
Xn+1

〈di,dk〉

dj

〈di,dk−1〉

and

Xn+3 Xn+2 ×Xn+1 Xn+2

Xn+2 Xn+1 ×Xn
Xn+1

〈dj ,dk〉

di

〈dj−1,dk−1〉

are all double extensions, which implies the desired equalities. �
Lemma 4. For any simplicial object X, the following equivalence relations in X1 are all equal:

d0(D1 ∧D2) = d1(D0 ∧D2) = d2(D0 ∧D1).
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Proof. We prove the first identity; the other one is obtained in a similar way. Since D1 ∧D2 = d2(D1 ∧D3)
and d0(D1 ∧D3) = D0 ∧D2, we have

d0(D1 ∧D2) = d0(d2(D1 ∧D3)) = d1(d0(D1 ∧D3)) = d1(D0 ∧D2). �
Definition 2. We will call H1(X) the equivalence relation dX1 (DX

0 ∧DX
2 ).

Proposition 5. Let X be a simplicial object in C. Then for all n ≥ 2 the following conditions are equivalent:

(1) Di ∧Dj = ΔXn
for all 0 ≤ i < j ≤ n;

(2) D0 ∧Dn = ΔXn
;

(3) there exist 0 ≤ i < j ≤ n such that Di ∧Dj = ΔXn
.

Moreover, X is an internal groupoid if and only if it satisfies these conditions for all n ≥ 2.

Proof. It is clear that (1) implies (2) and that (2) implies (3); we prove that the third implies the first by 
induction. We first consider the case where n = 2; if Di ∧Dj = ΔX2 , and k is such that {0, 1, 2} = {i, j, k}, 
we need to prove that Di ∧Dk = ΔX2 . We have di(Di ∧Dk) = ΔX1 and

dj(Di ∧Dk) = dk(Di ∧Dj) = ΔX1

by Lemma 4, and thus Di ∧Dk ≤ Di ∧Dj = ΔX2 .
Assuming now that the condition holds for n, we prove that it holds for n + 1. Assume that Di ∧Dj =

ΔXn+1 ; then taking images by dk (for k /∈ {i, j}) on both sides shows that Di′ ∧Dj′ = ΔXn
for some i′, j′, 

and thus, by the induction hypothesis, for all i′, j′. In particular, for any 0 ≤ r < s ≤ n + 1, we have for 
some r′, s′

di(Dr ∧Ds) ≤ Dr′ ∧Ds′ = ΔXn
,

so that Dr ∧Ds ≤ Di; and similarly Dr ∧Ds ≤ Dj , so that Dr ∧Ds = ΔXn+1 .
Now X is an internal groupoid if and only if the squares

Xn Xn−1

Xn−1 Xn−2

d0

dn dn−1

d0

are all pullbacks. Since we know already that they are all double extensions, this is equivalent to the fact 
that the pair d0, dn is jointly monic, and this is equivalent to (2). Thus any internal category always satisfies 
the second condition, and conversely any simplicial object satisfying the first one is an internal category 
where the square

X2 X1

X1 X0

d0

d1 d0

d0

is a pullback. This condition is equivalent to the internal category being a groupoid. �
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Note that in the above proof we only needed to know that X was an internal category to prove that 
it satisfied the conditions; so this gives us a new proof of the fact that any internal category in a regular 
Mal’tsev category is an internal groupoid.

Corollary 6. The subcategory Grpd(C) of Simp(C) is closed under quotients and subobjects.

Proof. All the intersections that characterize internal groupoids in Proposition 5 are preserved by regular 
epimorphisms of simplicial objects, which shows that groupoids are closed under quotients. Furthermore, 
they are also closed under subobjects; indeed, if m : X → Y is a monomorphism in Simp(C) with Y a 
groupoid, then for any 0 ≤ i < j ≤ n, the cube induced by the identity didj = dj−1di and m yields a 
commutative square

Xn Yn

Xn−1 ×Xn−2 Xn−1 Yn−1 ×Yn−2 Yn−1

mn

〈di,dj〉 〈di,dj〉

m̃

where the horizontal arrows are monomorphisms and the right-hand vertical side is an isomorphism, and 
thus the left-hand vertical side is a monomorphism. Since it is also a regular epimorphism (by Lemma 2), 
this means 〈di, dj〉 is an isomorphism; hence X is an internal groupoid. �
Remark. In fact Corollary 6 also characterizes Mal’tsev categories among the regular (or even finitely 
complete) ones: indeed a reflexive relation R ↪→ X × X is just a subobject of the reflexive graph (X ×
X, X, π1, π2, δX), and by taking iterated simplicial kernels, one can extend this to a monomorphism in 
Simp(C), whose codomain is just the nerve of the indiscrete equivalence relation/groupoid on X. Thus 
every reflexive relation is a subobject of a groupoid, and a relation is a groupoid if and only if it is an 
equivalence relation. Accordingly:

Corollary 7. A regular category C is a Mal’tsev category if and only if Grpd(C) is closed under subobjects 
in Simp(C).

Convention. For the remainder of this article, we assume that the category C is exact.

In this setting, we have

Theorem 8. If X is a simplicial object in C, then the quotient X1
H1(X) and the object X0 admit a groupoid 

structure

X1
H1(X) X0;

d0

d1

s0 (3)

and taking the nerve of this groupoid defines a functor Π1 : Simp(C) → Grpd(C), which is left adjoint to 
the inclusion Grpd(C) → Simp(C).

In particular, Grpd(C) is a Birkhoff subcategory of Simp(C).

Proof. Note first that since by definition H1(X) ≤ D0 ∧ D1, d0 and d1 : X1 → X0 factor through the 
coequalizer η1 of H1(X) as d0η1 and d1η1 respectively, and d0 and d1 have a common section η1s0, which 
we will also denote s0, so that we get a morphism of reflexive graphs
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X1
X1

H1(X)

X0.

η1

d1

d0 d1

d0

Let us then form the pullback

X1
H1(X) ×X0

X1
H1(X)

X1
H1(X)

X1
H1(X) X0;

�
d0

d2

d0

d1

to prove that the reflexive graph (3) is a groupoid, it suffices to prove that there exists a morphism 
d1 : X1

H1(X) ×X0
X1

H1(X) that satisfies the relevant identities.
By Proposition 4.1 in [6], η1×η1 : X1×X0X1 → X1

H1
×X0

X1
H1

is a regular epimorphism, and as a consequence 
so is

〈η1d0, η1d2〉 = (η1 × η1) ◦ 〈d0, d2〉 : X2 → X1

H1(X) ×X0

X1

H1(X) ,

which we will denote η2. We also define H2(X) = Eq[η2]. Now to prove the existence of d1, we need to show 
that η1d1 : X2 → X1

H1(X) factorizes through η2; for this it is enough to show that η1d1(H2(X)) = ΔX2 , which 

is equivalent to d1(H2(X)) ≤ H1(X). Since d0 and d2 are jointly monic by construction, we find that

H2(X) = d−1
0 (H1(X)) ∧ d−1

2 (H1(X))

= d−1
0 (d0(D1 ∧D2)) ∧ d−1

2 (d2(D0 ∧D1))

= (D0 ∨ (D1 ∧D2)) ∧ (D2 ∨ (D0 ∧D1)).

Using the modularity of the lattice of equivalence relations on X2, one sees that this is equal to

((D0 ∨ (D1 ∧D2)) ∧D2) ∨ (D0 ∧D1) = (D0 ∧D2) ∨ (D1 ∧D2) ∨ (D0 ∧D1).

From this last expression, we get that d1(H2(X)) = d1(D0 ∧ D2) = H1(X). This proves the existence of 
d1 such that d1η2 = η1d1. Let us also denote s0 the unique morphism X1

H1(X) → X1
H1(X) ×X0

X1
H1(X) such 

that d0s0 = 1 X1
H1(X)

and d2s0 = s0d1, and s1 the unique morphism X1
H1(X) → X1

H1(X) ×X0
X1

H1(X) such that 

d2s1 = 1 X1
H1(X)

and d0s1 = s0d0. Using the fact that η1 and η2 are regular epimorphisms, one can now easily 

prove that all the simplicial identities are satisfied. This endows the quotient graph with the structure of 
a multiplicative graph, which is then automatically a groupoid, which we denote Π1(X). We also denote 
ηX : X → Π1(X) the morphism of simplicial objects induced by 1X0 , η1 and η2. We can show that ηn is a 
regular epimorphism for all n, by iterating the argument showing that η2 is a regular epimorphism.

It remains to prove that Π1 is indeed a left adjoint for the inclusion Grpd(C) → Simp(C). For this we 
must prove that for every morphism f : X → Y to a groupoid Y , there exists a factorization of fn through 
ηn : Xn → Π1(X)n for all n (note that such a factorization is unique, as every ηn is a regular epimorphism). 
The case n = 0 is trivial as η0 is the identity. For n = 1, it is enough to prove that Eq[f1] ≥ H1(X), or 
equivalently f1(H1(X)) = ΔY1 . Now

f1(H1(X)) = f1d
X
1 (DX

0 ∧DX
2 ) = dY1 f2(DX

0 ∧DX
2 ) ≤ dY1 (DY

0 ∧DY
2 ) = ΔY1 .
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This shows that the truncation of f to a morphism (f1, f0) of reflexive graph factors through the groupoid 
X1/H1(X), with a factorization (g1, g0 = f0); applying the nerve functor allows us to extend this factor-
ization to higher levels, resulting in morphisms gn : Π1(X)n → Yn. Then the factorizations fn = gnηn, for 
n ≥ 2, can be obtained from the universal property of the pullbacks defining each Xn and Yn. Then since 
each ηn is a regular epimorphism, the morphisms gn define a morphism of simplicial objects. �

Let us denote Hn(X) the kernel pair of ηn. We have proved already that H2(X) = (D0 ∧ D1) ∨ (D0 ∧
D2) ∨ (D1 ∧D2). For the next section, it will be useful to prove a similar formula for Hn(X), for n ≥ 3:

Proposition 9. For all n ≥ 2, we have

Hn(X) =
∨

0≤i<j≤n

(Di ∧Dj).

Proof. We prove the result by induction on n. The case n = 2 was done in the proof of Theorem 8. Now 
let us assume that it holds for n; since by construction the square

Π1(X)n+1 Π1(X)n

Π1(X)n Π1(X)n−1

�
d0

dn+1 dn

d0

is a pullback, so that the two morphisms d0, dn+1 are jointly monic, we have for n + 1

Hn+1(X) = Eq[ηn+1] = Eq[d0ηn+1] ∧ Eq[dn+1ηn+1]

= Eq[ηnd0] ∧ Eq[ηndn+1] = d−1
0 (Hn(X)) ∧ d−1

n+1(Hn(X))

Moreover, by the induction hypothesis we have the identities

Hn(X) =
∨

0≤i<j≤n

(Di ∧Dj) = d0

⎛
⎝ ∨

0<i<j≤n+1

(Di ∧Dj)

⎞
⎠

and

Hn(X) =
∨

0≤i<j≤n

(Di ∧Dj) = dn+1

⎛
⎝ ∨

0≤i<j<n+1

(Di ∧Dj)

⎞
⎠ .

Combining all these, we get the identity

Hn+1(X) =

⎛
⎝D0 ∨

∨
0<i<j≤n+1

(Di ∧Dj)

⎞
⎠ ∧

⎛
⎝Dn+1 ∨

∨
0≤i<j<n+1

(Di ∧Dj)

⎞
⎠ .

From there we already see that

Hn+1(X) ≥
∨

(Di ∧Dj).

0≤i<j≤n+1
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For the converse inequality, first note that

∨
0<i<j≤n+1

(Di ∧Dj) ≤

⎛
⎝Dn+1 ∨

⎛
⎝ ∨

0≤i<j<n+1

(Di ∧Dj)

⎞
⎠
⎞
⎠ ,

and thus, since the lattice of equivalence relations of Xn+1 is modular, we have

Hn+1(X) =
∨

0<i<j≤n+1

(Di ∧Dj) ∨

⎛
⎝D0 ∧

⎛
⎝Dn+1 ∨

∨
0≤i<j<n+1

(Di ∧Dj)

⎞
⎠
⎞
⎠ .

Now to conclude the proof it is enough to prove that

D0 ∧

⎛
⎝Dm ∨

∨
0≤i<j<m

(Di ∧Dj)

⎞
⎠ =

∨
0<j≤m

(D0 ∧Dj) (4)

for all m ≥ 1, which we will do by induction. The case where m = 1 is trivial, so let us now assume that 
(4) holds for some m. Then we have

dm

⎛
⎝D0 ∧

⎛
⎝Dm+1 ∨

∨
0≤i<j<m+1

(Di ∧Dj)

⎞
⎠
⎞
⎠

≤ dm(D0) ∧

⎛
⎝dm(Dm+1) ∨

∨
0≤i<j<m+1

dm(Di ∧Dj)

⎞
⎠

= D0 ∧

⎛
⎝Dm ∨

∨
0≤i<j<m

(Di ∧Dj)

⎞
⎠

=
∨

0<j≤m

(D0 ∧Dj)

= dm

⎛
⎝ ∨

0<j≤m+1

(D0 ∧Dj)

⎞
⎠ ,

and as a consequence we have

D0 ∧

⎛
⎝Dm+1 ∨

∨
0≤i<j<m+1

(Di ∧Dj)

⎞
⎠ ≤ Dm ∨

∨
0<j≤m+1

(D0 ∧Dj).

It follows that the left-hand side must be equal to

D0 ∧

⎛
⎝Dm+1 ∨

∨
0≤i<j<m+1

(Di ∧Dj)

⎞
⎠ ∧

⎛
⎝Dm ∨

∨
0<j≤m+1

(D0 ∧Dj)

⎞
⎠ .

Now since 
∨

0<j≤m+1(D0 ∧Dj) ≤ D0, using again the modularity law, we find that

D0 ∧

⎛
⎝Dm ∨

∨
(D0 ∧Dj)

⎞
⎠ =

∨
(D0 ∧Dj),
0<j≤m+1 0<j≤m+1
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and this is smaller than 
(
Dm+1 ∨

∨
0≤i<j<m+1(Di ∧Dj)

)
, which concludes the proof. �

Remark. If the category C is not only exact Mal’tsev but also arithmetical ([39]), then the category Grpd(C)
coincides with the category of equivalence relations, which is thus a Birkhoff subcategory of Simp(C). Note 
that in that case, H1(X) = d0(D1∧D2) = D0∧D1, since direct images preserve intersections of equivalence 
relations (by Theorem 5.2 of [7]). Accordingly our reflection becomes a reflection of Simp(C) into Eq(C).

Since every groupoid is a quotient of an equivalence relation, Eq(C) is closed under quotients in Simp(C)
if and only if Eq(C) = Grpd(C).

Corollary 10. An exact Mal’tsev category is arithmetical if and only if Eq(C) is a Birkhoff subcategory of 
Simp(C).

Remark. Note that, in contrast with the Smith-Pedicchio commutator, which yields a left adjoint of the 
forgetful/inclusion functor Grpd(C) → RG(C) ([38]), we don’t need to assume the existence of any colimits 
to define H1(X).

3. Characterization of central extensions

Being a Birkhoff subcategory of the exact Mal’tsev category Simp(C), Grpd(C) is admissible in the 
sense of categorical Galois theory, when F is the class of all regular epimorphisms. In this section we will 
characterize the central extensions with respect to this reflection.

Convention. If f : X → Y is a morphism in Simp(C), we will denote Fn the kernel pair of the corresponding 
morphism fn : Xn → Yn, for all n ≥ 0. Similarly, for morphisms g : Z → W and f ′ : X′ → Y ′ in Simp(C), 
we will denote the corresponding kernel pairs Gn and F ′

n (for n ≥ 0), respectively.

First, we note that Proposition 4.2 of [31] implies, in our case, that trivial extensions f : X → Y are 
characterized by the property that Fn ∧Hn(X) = ΔXn

for all n ≥ 0, that is:

Fn ∧

⎛
⎝ ∨

0≤i<j≤n

Di ∧Dj

⎞
⎠ = ΔXn

for n ≥ 2 and

F1 ∧ d0(D1 ∧D2) = ΔX1 .

Our characterization of central extensions is then obtained simply by “distributing” the intersection with 
Fn appearing in these equations with the join or image. In other words we have

Theorem 11. A regular epimorphism f : X → Y is a central extension with respect to the Galois structure 
induced by the reflection of Simp(C) into Grpd(C) if and only if

d1(F1 ∧D0 ∧D2) = ΔX1 (5)

and, for all n ≥ 2 and i, j such that 0 ≤ i < j ≤ n,

Fn ∧Di ∧Dj = ΔXn
. (6)

To prove this we will need a couple of lemmas.
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Lemma 12. Let

P X

Z Y

�
g′

f ′ f

g

be a pullback square of regular epimorphisms in Simp(C), and let n ≥ 2 and 0 ≤ i < j ≤ n. Let us denote 
d′i the face morphisms of the simplicial object P , and D′

i their kernel pairs. Then

Fn ∧Di ∧Dj = ΔXn
⇔ F ′

n ∧D′
i ∧D′

j = ΔPn
.

Proof. Since pullbacks in Simp(C) are computed “levelwise” in C, for all n the square

Pn Xn

Zn Yn

�
g′
n

f ′
n fn

gn

is a pullback. Therefore, in the cube

Pn Xn

Zn F

Pn−1 ×Pn−2 Pn−1 Xn−1 ×Xn−2 Xn−1

Zn−1 ×Zn−2 Zn−1 Yn−1 ×Yn−2 Yn−1

f ′
n

(d′
i,d

′
j)

g′
n

fn

(di,dj)

gn

the top and bottom faces are pullbacks; one can then show that the square

Pn (Pn−1 ×Pn−2 Pn−1) ×Zn−1×Zn−2Zn−1 Zn

Xn (Xn−1 ×Xn−2 Xn−1) ×Yn−1×Yn−2Yn−1 Yn

g′
n

is a pullback, which implies that

g′n(F ′
n ∧D′

i ∧D′
j) = Fn ∧Di ∧Dj . (7)

In particular, F ′
n ∧D′

i ∧D′
j = ΔPn

implies that Fn ∧Di ∧Dj = ΔXn
.

For the converse, the equation (7) shows already that if Fn ∧Di ∧Dj = ΔXn
, then F ′

n ∧D′
i ∧D′

j ≤ G′
n. 

Since it is also smaller than F ′
n, and since f ′

n and g′n are jointly monic by construction, we have F ′
n∧D′

i∧D′
j =

ΔPn
. �

Lemma 13. Let f : X → Y be a split epimorphism, with section s : Y → X, and let A, B be two equivalence 
relations on X, with respective coequalizers qA, qB. Assume that we have a diagram
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X/A X X/B

Y/A′ Y Y/B′

qA

f

qB

qB′qA′

s (8)

where the vertical downward arrows are split epimorphisms, and the upward and downward squares commute. 
Then the following conditions are equivalent:

(1) Eq[f ] ∧ (A ∨B) = ΔX

(2) Eq[f ] ∧A = ΔX = Eq[f ] ∧B.

Proof. First of all, we have the inequality

(Eq[f ] ∧A) ∨ (Eq[f ] ∧B) ≤ Eq[f ] ∧ (A ∨B),

which immediately proves that the first condition implies the second.
For the converse, we can complete the diagram (8) by taking the pushouts of the top and bottom spans. 

This yields a cube

X X/B

Y Y/B′

X/A X/(A ∨B)

Y/A′ Y/(A′ ∨B′)

f

qA

qB

qB′
s

qA′

which is a split epimorphism between double extensions, hence a triple extension. In particular, the square

X X/B

X/A×Y/A′ Y X/(A ∨B) ×Y/(A′∨B′) Y/B
′

qB

〈qA,f〉 γ

is a double extension. Assume now that Eq[f ] ∧A = ΔX = Eq[f ] ∧B. The first equality implies that 〈qA, f〉
is a monomorphism, hence an isomorphism; then so is γ in the diagram above, and thus the left and right 
faces of the cube are pullbacks. Similarly, the second equality implies that the top face is a pullback as well, 
and then so is the square

X X/(A ∨B)

Y Y/(A′ ∨B′),

f

qA∨B

since it is the composite of the top and right faces. This implies that Eq[f ] ∧ (A ∨B) = ΔX . �
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Proof of Theorem 11. Let us consider the diagram

Π1(X×Y X) X×Y X X

Π1(X) X Y .

Π1(π1)

ηX×YX

π1

π2

f

ηX f

Now assume first that f is a central extension, so that the left-hand square is a pullback. Since by construc-
tion Π1(X ×Y X) is an internal groupoid, (6) holds for Π1(π1), and then by Lemma 12 it also holds for π1
and thus for f .

Assuming now that (6) holds, then again by Lemma 12 it also holds with π1 : X ×Y X → X, so that for 
all i, j such that 0 ≤ i < j ≤ n,

Eq[(π1)n] ∧D′
i ∧D′

j = ΔXn×YnXn
.

But π1 is a split epimorphism in the category of simplicial objects of C. Thus in particular, for all 0 ≤ i <
j ≤ n, (π1)n and D′

i ∧D′
j satisfy the assumptions of Lemma 13, and thus we have

Eq[(π1)n] ∧Hn(X×Y X) = Eq[(π1)n] ∧

⎛
⎝ ∨

0≤i<j≤n

D′
i ∧D′

j

⎞
⎠ = ΔXn×YnXn

.

This implies that the left-hand square is a pullback; thus π1 is a trivial extension, and f is a central 
extension. �

The equivalence relation F2 ∧D0 ∧D1 is the kernel pair of the arrow θ2
2 : X2 → Λ2

2(X) ×Λ2
2(Y) Y2 defined 

as in (2). Since θ2
2 is a regular epimorphism in C whenever f is in F , F2 ∧D0 ∧D1 is trivial if and only if 

the square

X2 Y2

Λ2
2(X) Λ2

2(Y )

f2

λ2
2 λ2

2

Λ2
2(f)

is a pullback. The triviality of F2 ∧D0 ∧D2 and F2 ∧D1 ∧D2 can be interpreted in the same way with the 
horn objects Λ2

1 and Λ2
0.

Moreover, the higher order conditions Fn ∧Di ∧Dj = ΔXn
imply that all the morphisms θnk , for n ≥ 2, 

are isomorphisms, and thus that all squares

Xn Yn

Λn
k (X) Λn

k (Y )

fn

λn
k λn

k

Λn
k (f)

are pullbacks. One can prove that the converse is true as well.

Corollary 14. An extension f : X → Y in Simp(C) is central with respect to the reflection of Simp(C) into 
Grpd(C) if and only if f is an exact fibration at all dimensions n ≥ 2 in the sense of Glenn ([21]).
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4. Comparison with simplicial sets

As noted before, the left adjoint to the nerve functor between groupoids and simplicial sets is the fun-
damental groupoid functor [20]. For a simplicial set X which satisfies the Kan condition, also called a 
quasigroupoid, this left adjoint can alternatively be described as the homotopy groupoid (see [1,34]). One 
defines the homotopy relation on X1 by saying that two elements (or 1-simplices) f, g ∈ X1 are homotopic 
if and only if there exists α ∈ X2 such that d0(α) = f , d1(α) = g and d2(α) = s0d1f = s0d1g. This is 
always a reflexive relation (since for a given f one can take α = s0f), and using the Kan condition one can 
then prove that this is actually an equivalence relation. The homotopy groupoid is then the groupoid whose 
objects are just the elements of X0, arrows are homotopy classes of 1-simplices, identities defined by the 
classes of degenerate 1-simplices, and composition defined by the existence of fillers for (2, 1)-horns (with 
two sided inverses defined by the existence of fillers for the outer horns).

This relation can be interpreted in any regular category as follows: first take the pullback

X2 ×X1 X0 X0

X2 X1,

�
π1

π2

s0

d2

(9)

and then factorize the morphism (d0, d1)π1 : X0 ×X1 X2 → X1 × X1 as a regular epimorphism q : P → R

followed by a monomorphism r = (ρ1, ρ2) : R → X1 ×X1, so that R is a relation on X1. As in the case of 
sets, this is a reflexive relation; indeed, the simplicial identities imply that

(ρ1, ρ2)(q〈d1, s0〉) = (d0, d1)π2〈d1, s0〉 = (d0, d1)s0 = (1X1 , 1X1).

This relation coincides with d0(D1 ∧ D2) whenever X satisfies the Kan condition, as we shall now see. In 
fact it will be helpful to prove a slightly more general result:

Lemma 15. Given any regular epimorphism f : X → Y between two simplicial objects, let us consider the 
pullback

X1 ×Y1 Y0 Y0

X1 Y1.

�
π1

π2

sY0

f1

Then dX0 (DX
1 ∧ F1) is equal to the regular image of (d0, d1)π1 : X1 ×Y1 Y0 → X0 ×X0.

Proof. Consider the diagram

Y1 ×Y2 X2 X2 X1 ×X1

Y1 Y2

Y0 ×Y1 X1 X1 X0 ×X0

Y0 Y1

π′
2

dY
0 ×dX

0

π′
1

f2

dX
0

(dX
1 ,dX

2 )

dX
0 ×dX

0
sY1

π1

π2

f1

(dX
0 ,dX

1 )dY
0

sY

dY
0

(10)
0
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where the top and bottom faces of the cube are pullbacks. Since all the vertical solid arrows are split by 
some degeneracy morphism, and the horizontal morphisms commute with these sections, the dotted arrow 
is a split epimorphism as well. In particular, the image factorization of (dX0 , dX1 )π1 is the same as that of 
(dX0 , dX1 )π1(d0 × d0) = (dX0 × dX0 )(dX1 , dX2 )π′

1. If we prove that the image of (dX1 , dX2 )π′
2 in X1 × X1 is the 

equivalence relation D1 ∧ F1, then it would follow that the image of (dX0 × dX0 )(dX1 , dX2 )π′
1 is d0(D1 ∧ F1), 

which would conclude the proof.
Since we have a decomposition of f2 given by the diagram

X2

Λ2
0(X) ×Λ2

0(Y) Y2 Y2

Λ2
0(X) Λ2

0(Y ),

f2

λ2
0

θ2
0

�
ϕ2

ϕ1 λ2
0

Λ2
0(f)

we can rewrite the top pullback in (10) as the upper rectangle in the following diagram:

X2 ×Y2 Y1 P Y1

X2 Λ2
0(X) ×Λ2

0(Y) Y2 Y2

Λ2
0(X) Λ2

0(X) Λ2
0(Y )

�
q

π′
1

�
m sY1

θ2
0

λ2
0

�
ϕ1

ϕ2

λ2
0

Λ2
0(f)

Now since ΔY1 = (dY1 , dY2 )sY1 : Y1 → Y1 ×Y1, the composition λ2
0s1 is a monomorphism, and thus so is ϕ1m. 

Since λ2
0 is the regular epimorphism in the factorization of (dX1 , dX2 ) : X2 → X1 × X1, P is the image of 

the morphism (dX1 , dX2 )π′
1. On the other hand, the right-hand rectangle above coincides with the left-hand 

square in the rectangle

P Y1 Y1

Λ2
0(X) Λ2

0(Y ) Y1 × Y1.

�
ϕ1m

�
Δ

Λ2
0(f)

Since the two squares are pullbacks, the whole rectangle is one as well. But this is the same as the outer 
rectangle in

P F1 Y1

Λ2
0(X) X1 ×X1 Y1 × Y1,

�
ϕ1m

�
Δ

f1×f1

where the two squares are again pullbacks. Thus P coincides with the intersection D1∧F1, which concludes 
the proof. �

As a consequence we have
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Proposition 16. If X is a Kan complex in a regular category C, the relation H1(X) coincides with the image 
of the morphism (dX0 , dX1 )π1 : X0 ×X1 X2 → X1 ×X1, where π1 is determined by the pullback (9).

Proof. It suffices to apply Lemma 15 to the case where f1 = εX : Dec(X) → X. �
Remark. If one sees a Kan complex as a quasigroupoid or ∞-groupoid, then the left adjoint to the nerve 
or inclusion functor Grpd → Kan is in a sense a “strictification”, which turns quasigroupoids into actual 
groupoids.

The equivalence relation d0(D1 ∧ D2 ∧ F2) which appears in our characterization of central extensions 
admits an alternative construction, similar to that of H1(X).

More precisely, if we take now L to be the limit of the lower part of the diagram

L

X0 X2 Y1

X1 Y2

ρ1 ρ2
ρ3

s0 d2 f2 s0

(11)

(where the dotted arrows form the limit cone), then we have

Proposition 17. If X, Y are Kan complexes and f : X → Y is a Kan fibrations in a regular category C, the 
relation d1(F2 ∧D0 ∧D2) coincides with the image of the morphism (dX0 , dX1 )ρ2 : X0 ×X1 X2 → X1 ×X1.

Proof. First, note that the limit in diagram (11) can also be obtained as the pullback

L X0 × Y1

X2 X1 × Y2.

�(ρ1,ρ3)

ρ2 s0×s0

(d2,f2)

Now the image of the morphism (d2, f2) is the pullback X1 ×Y1 Y2 of f1 along d2. Moreover, we have

f0ρ1 = d0s0f0ρ1 = d0f1s0ρ1 = d0f1d2ρ2 = d0d2f2ρ2

= d0d2s0ρ3 = d1d0s0ρ3 = d1ρ3,

so that (ρ1, ρ3) factors through X0 ×Y0 X1. Thus the pullback square above factorizes as a rectangle

L X0 ×Y0 X1 X0 ×X1

X2 X1 ×Y1 Y2 X1 × Y2,

〈ρ1,ρ3〉

ρ2 s0×s0s0 s0×s0

〈d2,f2〉

and one can easily show that the right-hand square is a pullback, and as a consequence so is the left-hand side 
square. But this square is exactly the pullback that appears if we apply Lemma 15 to the induced morphism 
〈εX, Dec(f)〉 : Dec(X) → X ×Y Dec(Y ), which is a regular epimorphism between simplicial objects because 
the square
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Dec(X) Dec(Y )

X Y

Dec(f)

εX εY

f

is a double extension in C for all n. �
5. The relative monotone-light factorization system

In this section we assume
In order to prove that our Galois structure admits a relative monotone-light factorization system, we use 

the following criterion, due to Carboni, Janelidze, Kelly and Paré in the absolute case and to Chikhladze 
in the relative case:

Proposition 18 ([9,15]). Let (C, X , I, F) be an admissible Galois structure. The class F admits monotone-
light factorization if for each object B of C there is an effective F-descent morphism p : C → B where C is a 
stabilizing object, i.e. an object such that if h = me is the (E , M)-factorization of any morphism h : X → C, 
then any pullback of e along a morphism in F is still in E.

We will prove that, in our case, the shifting Dec(X) of a simplicial object X is always stabilizing. For this 
it suffices to prove that exact objects are stabilizing since we have:

Proposition 19 ([19], Proposition 3.9). Any simplicial object that is contractible and also satisfies the Kan 
condition is exact.

As a consequence, if X satisfies the Kan condition, then its shifting Dec(X) is exact.
We will need the following characterization of images in regular categories:

Proposition 20 ([11]). Let f : X → Z and g : Y → Z be two morphisms in a regular category C. Then g
factors through the regular image of f if and only if there exist an object W of C with a morphism h : W → X

and a regular epimorphism q : W → Y such that fh = gq.

Lemma 21. If Y is exact at Y2, and f : X → Y is a regular epimorphism in Simp(C), then

d0(D1 ∧D2) ∧ F1 = d0(D1 ∧D2 ∧ F2).

Proof. The inequality

d0(D1 ∧D2 ∧ F2) ≤ d0(D1 ∧D2) ∧ F1

always holds. To prove the converse, we consider the monomorphism ϕ = (ϕ1, ϕ2) into X1×X1 corresponding 
to the equivalence relation d0(D1 ∧ D2) ∧ F1. This relation is smaller than d0(D1 ∧ D2), so that, by the 
characterization given in Proposition 20 and the alternative construction of d0(D1 ∧D2) given in section 4, 
there must exist a regular epimorphism p : Z → d0(D1∧D2) ∧F1 and a morphism α = 〈α1, α2〉 : Z → X2×X1

X0 such that d0α1 = ϕ1p and d1α1 = ϕ2p. Since, moreover, it is smaller than F1, we have f1d0α1 = f1d1α1, 
which can be rewritten d0f2α1 = d1f2α1.

Now consider the morphisms

y0 = y1 = s1d0f2α1 = s1d1f2α1
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y2 = s0d1f2α1

y3 = f2α1.

One can check that the identity diyj = dj−1yi holds for all 0 ≤ i < j ≤ 3, so that these morphisms 
determine a morphism y from Z to the third simplicial kernel K3(Y ), and we can consider the pullback

Z ′ Z

Y3 K3(Y ).

�
α′

p′

y

κ3

Y being exact at Y2 means that κ3 is a regular epimorphism, and, as a consequence, so is p′. Consider now 
the morphisms

x0 = s1d0α1p
′

x1 = s1d1α1p
′

x3 = α1p
′,

from Z ′ to X2. One can check that the identity dixj = dj−1xi holds for all i < j and i �= 2 �= j, thus they 
determine a morphism x : Z ′ → Λ3

2(X); and, moreover, we have

diα
′ = μiκ3α

′ = μiyp
′ = yip

′ = f2xi

for i = 0, 1, 3, which implies that λ3
2α

′ = Λ3
2(f)x. Thus x and α′ induce a morphism Z ′ → Λ3

2(X) ×Λ3
2(Y) Y3. 

Consider then the pullback

Z ′′ Z ′

X3 Λ3
2(X) ×Λ3

2(Y) Y3.

α′′

p′′

〈x,α′〉

θ3
2

Since θ3
2 is a regular epimorphism, so is p′′, and by construction we have diα′′ = xip

′′ for i = 0, 1, 3 and 
f3α

′′ = α′p′′. Now the morphism d2α
′′ : Z ′′ → X2 is such that

f2d2α
′′ = d2f3α

′′ = d2α
′p′′ = y2p

′p′′ = s0d1f2α1p
′p′′

and

d2d2α
′′ = d2d3α

′′ = d2x3p
′′ = d2α1p

′p′′ = s0α2p
′p′′;

hence there exists a unique morphism β : Z ′′ → L (where L is defined by (11)) such that ρ1β = α2p
′p′′, 

ρ2β = d2α
′′ and ρ3β = f1d1α1p

′p′′. Now we can check that

(d0, d1)ρ2β = (d0, d1)d2α
′′ = (d1d0, d1d1)α′′ = (d1x0, d1x1)p′′

= (d1s1d0, d1s1d1)α1p
′p′′ = (d0, d1)α1p

′p′′

= (ϕ1, ϕ2)pp′p′′.

This proves that d0(D1 ∧D2) ∧ F1 ≤ d0(D1 ∧D2 ∧ F2). �
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Lemma 22. If Y is exact, then Y is stabilizing: given any morphism f : X → Y , the induced morphism 
〈f, ηX〉 : X → Y ×Π1(Y) Π1(X) is stably in E.

Proof. To simplify the diagrams, we denote P = Y ×Π1(Y) Π1(X). Let us consider a pullback square

Q X

Z P

�
h

g′

〈f,ηX〉

g

(12)

with g a regular epimorphism in Simp(C).
We need to prove that Π1(h) : Π1(Q) → Π1(Z) is invertible. Since it is a morphism between internal 

groupoids, it is enough to prove that Π1(h)0 and Π1(h)1 are invertible. Note that the functor Π1 leaves the 
objects X0 unchanged, and thus 〈f0, η0〉 is an isomorphism, and thus so are h0 and Π1(h)0. So we only need 
to prove is that Π1(h)1 is an isomorphism.

Since Grpd(C) is a Birkhoff subcategory of Simp(C) and h is a regular epimorphism, the square

Q Π1(Q)

Z Π1(Z)

h

ηQ

Π1(h)

ηQ

is a double extension in Simp(C), and thus the square

Q1
Q1

H1(Q)

Z1
Z1

H1(Z)

h1

(ηQ)1

h1

(ηZ)1

(13)

is a (regular) pushout in C. This already proves that h1 = Π1(h)1 is a regular epi. Now if there exists a 
morphism t : Z1 → Q1/H1(Q) such that th1 = (ηQ)1, then using the universal property of the pushout (13)
we can construct a retraction for h1, which proves that it is an isomorphism. So we are left to prove that 
such a morphism t exists; since h1 is a regular epimorphism, it is enough to prove that Eq[h1] ≤ H1(Q).

To prove this, we denote ψ1, ψ2 : Eq[h1] → Q1 the two projections of the kernel pair. Then the commu-
tativity of (12) (or rather, the corresponding commutative square involving h1 in C) implies that

g′1(Eq[h1]) ≤ Eq[〈f1, (ηX)1] = F1 ∧H1(X) = d0(D1 ∧D2 ∧ F2)

where the last equality is given by Lemma 21. As a consequence, we know that there must exist a morphism 
α : A → L and a regular epimorphism p : A → Eq[h1] such that (d0, d1)ρ2α = (g′1 × g′1)(ψ1, ψ2)p.

We now prove that 〈f2, η2〉ρ2α factors through a degeneracy of P . More precisely, we prove that

〈f2, η2〉ρ2α = sP0 d
P
0 〈f2, η2〉ρ2α. (14)

Since the degeneracy morphism sP0 is induced by those of Π1(X) and Y , it is enough to prove that f2ρ2α

and η2ρ2α factorize in the same manner through sY0 and sΠ1(X)
0 respectively.

By construction we must have

sY0 d
Y
0 f2ρ2α = sY0 d

Y
0 s

Y
0 ρ3α = sY0 ρ3α = f2ρ2α.
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On the other hand we have

d
Π1(X)
0 η2ρ2α = d

Π1(X)
0 s

Π1(X)
0 d

Π1(X)
0 η2ρ2α

by the simplicial identities, and

d
Π1(X)
1 η2ρ2α = η1d

X
1 ρ2α = η1g

′
1ψ2p = g1h1ψ2p = g1h1ψ1p

= η1g
′
1ψ1p = η1d

X
0 ρ2α = d

Π1(X)
0 η2ρ2α

= d
Π1(X)
1 s

Π1(X)
0 d

Π1(X)
0 η2ρ2α.

By construction, the two morphisms dΠ1(X)
0 , dΠ1(X)

1 : X2
H2(X) → X1

H1(X) are jointly monic, and thus these 
equalities imply that

η2ρ2α = s
Π1(X)
0 d

Π1(X)
0 η1ρ2α,

and this in turn implies that (14) hold. From this we find that

〈f2, η2〉ρ2α = sP0 d
P
0 〈f2, η2〉ρ2α

= sP0 〈f1, η1〉dX0 ρ2α

= sP0 〈f1, η1〉g′1ψ1p

= sP0 g1h1ψ1p

= g2s
Z
0 h1ψ1p.

Since Q2 is the pullback of g2 along 〈f2, η2〉, there is a unique morphism α′ : A → Q2 such that h2α
′ =

sZ0 h1ψ1p and g′2α
′ = ρ2α. From this, we find that

g′1d
Q
0 α′ = dX0 g

′
2α

′ = dX0 ρ2α = g′1ψ1p

and

h1d
Q
0 α′ = dZ0 h2α

′ = dZ0 s
Z
0 h1ψ1p = h1ψ1p,

and since g′1 and h1 are jointly monic, we have dQ0 α′ = ψ1p, and similarly dQ1 α′ = ψ2p.
Now we prove that dQ2 α′ = sQ0 dQ0 dQ2 α′; from the definition of Q1 it suffices to check that the identity 

holds after composing both sides with each of the morphisms h1 and g′1. We have

h1s
Q
0 dQ0 dQ2 α′ = dQ2 h2s

Q
0 dQ0 α′ = dZ2 s

Z
0 d

Z
0 h2α

′ = sZ0 d
Z
1 d

Z
0 s

Z
0 h1ψ1p

= sZ0 d
Z
1 h1ψ1p = dZ2 s

Z
0 h1ψp = dZ2 h2α

′ = h1α
′

and

g′1s
Q
0 dQ0 dQ2 α′ = sX0 d

X
0 d

X
2 g

′
2α

′ = sX0 d
X
0 d

X
2 ρ2α = sX0 d

X
0 s

X
0 ρ1α

= sX0 ρ1α = dX2 ρ2α = dX2 g
′
2α

′ = g′1d
Q
2 α′

Thus α′ factorizes through the pullback of sQ0 along dQ2 , and thus (ψ1, ψ2)p = (dQ0 , dQ1 )α′ factorizes 
through the inclusion of H1(Q) in Q1 ×Q1, which concludes the proof. �
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As a consequence, we then have

Theorem 23. If C is an exact Mal’tsev category, the Galois structure induced by the reflection of simplicial 
objects into internal groupoids admits a relative monotone-light factorization system for regular epimor-
phisms (E ′, M∗), where E ′ is the class of morphisms stably inverted by Π1 and M∗ is the class of central 
extensions of this Galois structure.

6. Truncated simplicial objects and weighted commutators

For all n ≥ 2, we can define a nerve functor Grpd(C) ↪→ Simpn(C); this amounts to compose the usual 
nerver functor Grpd(C) → Simp(C) with the truncation functor Simp(C) → Simpn(C). The characteri-
zation of groupoids in truncated simplicial objects is then identical.

Moreover, the construction of the equivalence relations Hn(X) does not depend on the objects Xm for 
m > n. Thus Grpd(C) can also be seen as a Birkhoff subcategory of Simpn(C), with the reflection defined 
in the same way, in the sense that the reflectors commute with the truncation functor. The characterization 
of central extensions also extends in the same way. Note that for n = 2, truncated simplicial sets coincide 
with internal precategories in the sense of [28].

The forgetful functor Grpd(C) ↪→ Simp1(C) = RG(C) also coincides with the composition of the 
nerve functor with the truncation functor Simp(C) → RG(C), and it is also fully faithful [13]. On the 
other hand, this time the reflection does not commute with the truncation, as the construction of H1(X)
depends on X2 and the face morphisms X2 → X1. In fact, the reflection RG(C) → Grpd(C) is obtained by 
taking the quotient of X1 by the Smith-Pedicchio commutator [D0, D1]SP ([38]). The central extensions of 
reflexive graphs in exact Mal’tsev categories (with coequalizers) with respect to this adjunction have been 
characterized in [18]. Note that this commutator is preserved by regular images, and is always smaller than 
the intersection; as a consequence, we always have the inequalities

[D0, D1]SP ≤ H1(X) = d2(D0 ∧D1) ≤ D0 ∧D1. (15)

It turns out that this reflection can also be obtained by applying our results, at least when the category C
is finitely cocomplete.

Indeed, in that case the truncation functor Simp(C) → RG(C) is right adjoint to the 1-skeleton functor 
Sk1 [17], which can be defined by taking left Kan extensions along the inclusion Δop

2 → Δop. Now since the 
inclusion Grpd(C) → RG(C) is the composition of the nerve functor and the truncation Tr1, the functor 
Π1Sk1 must be a left adjoint to this inclusion. Thus our results can be used to give an alternative description 
of the Smith-Pedicchio commutator as the equivalence relation H1(Sk1(X1, X0, d0, d1, s0)).

Let us make this construction explicit. The object X2 = (Sk1(X1, X0, d0, d1, s0))2 is the pushout X1 +X0

X1 of s0 : X0 → X1 along itself, with s0 and s1 the two canonical morphisms X1 → X1 +X0 X1. In order 
to satisfy the simplicial identities we must then define d0 to be the unique morphism for which d0s0 = 1
and d0s1 = s0d0, which we denote [1, s0d0] : X1 +X0 X1 → X1; similarly, we must have d1 = [1, 1] and 
d2 = [s0d1, 1].

In the case where C is not only exact Mal’tsev but also semi-abelian ([33,2]), there is, for every object X
of C, an order-preserving bijection between equivalence relations on X and normal subobjects of X, which 
is also compatible with regular images. Accordingly, our results can be easily translated in terms of normal 
subobjects, by replacing every kernel pair by the kernel of the corresponding morphism.

In the case where X0 = 0 is the zero object in C, X2 is simply the coproduct X1 + X1, and the face 
morphisms are just the morphisms [1, 0], [1, 1], [0, 1]. Then our construction of d1(D0 ∧D2) is nothing but 
the Higgins commutator [X1, X1]H (which coincides with the Smith-Pedicchio commutator [∇X1 , ∇X1 ]SP ), 
as defined in [25,37]. In general, d1(D0 ∧D2) coincides with a weighted commutator ([24]):
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Theorem 24. When C is a semi-abelian category, the subobject d1(Ker(d0) ∧ Ker(d2)) coincides with the 
weighted commutator [Ker(d0), Ker(d1)]s0 : X0→X1 .

Proof. Let us denote Ki ≤ X1 the kernel of di : X1 → X0 (for i = 0, 1). We recall from [24] the construction 
of the weighted commutator [K0, K1]X0 : we first define the morphism ψ as the morphism making the 
diagram

X0 + K0 + K1

(X0 + K0) ×X0 (X0 + K1) X0 + K1

X0 + K0 X0

[ι1,0,ι2]

[ι1,ι2,0]

ψ

�
[1,0]

[1,0]

commute. Then [K0, K1]X0 is the image of the kernel of ψ under the morphism [s0, k0, k1] : X0 +K0 +K1 →
X1.

To prove the equivalence, consider the following commutative diagram:

X0 + K0 X0 X0 + K1

X1 X0 X1.

[s0,k0]
[1,0]

ι1ι1

[1,0]
[s0,k1]

d0

s0s0

d1

Since all the vertical morphisms are regular epimorphisms, the induced morphism between the pushouts of 
the upper and lower spans (i.e. the cokernel pairs of ι1 and s0), which we will denote by γ, is also a regular 
epimorphism. This gives a commutative cube

X0 + K0 + K1 X0 + K1

X0 + K0 X0

X1 +X0 X1 X1

X1 X0

[ι1,ι2,0]

γ

[ι1,0,ι2]

[1,0]

[s0,k1]

[1,0]

[1,s0d0]

[s0d1,1]
d1

[s0,k0]

d0

where every edge is a regular epimorphism. In fact this cube is a triple extension, as it can be seen as a 
split epimorphism between (vertical) double extensions. As a consequence the induced square

X0 + K0 + K1 (X0 + K0) ×X0 (X0 + K1)

X1 +X0 X1 X1 ×X0 X1

ψ

γ

〈d0,d2〉

is a double extension; in particular, we have

γ(Ker(ψ)) = Ker(〈d0, d2〉) = Ker(d0) ∧Ker(d2).
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Now we also have

d1γ = [1, 1]([s0, k0] + [s0, k1]) = [s0, k0, k1],

and thus the image of Ker(ψ) under [s0, k0, k1] is d1(Ker(d0) ∧Ker(d2)), which completes the proof. �
Corollary 25. For any reflexive graph in a semi-abelian category C, the weighted commutator [Ker(d0),
Ker(d1)]s0 : X0→X1 of the kernels of d0 and d1 coincides with their Ursini commutator [Ker(d0), Ker(d1)]Urs

as defined by Mantovani in [36].

Proof. This just follows from the fact that the Ursini commutator is the normalization of the Smith-
Pedicchio commutator of the corresponding equivalence relations. �

We have shown that using the left adjoint of the truncation functor produced a simplicial object for 
which the first inequality of (15) is an equality, so that H1(X) is as small as possible. We can also define 
a right adjoint R to the truncation functor T , using right Kan extensions along the inclusion Δop

1 → Δop. 
Such a right extension amounts to iteratively define Xn as the simplicial kernel of the truncated simplicial 

object Xn−1 Xn−2 . . .
d0

dn−1
, and the face morphisms di : Xn → Xn−1 as the canonical projections. If we 

apply this construction, then the induced equivalence relation H1(X) turns out to be equal to D0 ∧D1, so 
that this time H1(X) is as big as possible. In fact we can prove something a bit more general:

Proposition 26. If X is a simplicial object exact at X1, i.e. if κ2 : X2 → K2(X) is a regular epimorphism, 
then d0(D1 ∧D2) = D0 ∧D1.

Proof. Consider the following diagram, where all the squares are pullbacks:

X2 ×X1 X0 K2(X) ×X1 X0 X0

X2] K2(X) X1

D0 X0 ×X0.

�
π1

q

�
s0

〈d0,d1〉

κ2

(ν0,ν1)
�

ν2

(d0,d1)

d1×d1

By definition, ν2κ2 = d2, and thus the upper rectangle is the pullback of d2 along s0, i.e. it is the same 
pullback as in (9); thus d0(D1∧D2) is the image of the composition 〈d0, d1〉π1. Since the upper left square is 
a pullback and κ2 is a regular epimorphism by hypothesis, q is a regular epimorphism, and thus the image of 
this morphism 〈d0, d1〉π1 is the image of the middle vertical morphism. Moreover, the right-hand rectangle 
is the pullback of d1 × d1 along ΔX0 , and thus this middle vertical morphism is a monomorphism, and the 
corresponding subobject of D0 coincides with D0 ∧D1, which concludes the proof. �
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