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1. Introduction

A smooth projective variety X of dimension n is called a Calabi–Yau n-fold if it satisfies ωX := ∧nΩX
∼=

OX and H1(OX) = 0. Such manifolds are fundamental objects in birational geometry and theoretical 
physics.

To understand the geometry of a variety, one considers linear systems of different divisors. Modulo 
numerical equivalence, this leads to the study of convex geometry of various cones of divisors in the Néron–
Severi space. For example, being the dual of the Mori cone of curves, the nef cone of divisors plays essential 
roles in the cone theorem [23, Theorem 3.7]. Another crucial example is the movable cone of divisors, which 
encodes the birational geometry of a given variety [19].

Inspired by mirror symmetry of Calabi–Yau manifolds, Morrison [33] and Kawamata [20] proposed the 
conjectures which would give a clear picture of relevant cones for Calabi–Yau manifolds. To be more precise, 
let N1(X) be the Néron–Severi group, generated by the classes of the divisors on X modulo numerical 
equivalence. Inside the Néron–Severi space N1(X)R = N1(X) ⊗Z R we have the effective cone Eff(X), the 
nef cone Nef(X), and the movable cone Mov(X) (that is, the closure of the convex hull of movable divisor 
classes). Recall that a divisor D is movable if the linear system |mD| has no fixed component for some 
positive integer m. As usual, Bir(X) denotes the group of birational automorphisms of X. Notice that every 
g ∈ Bir(X) of the Calabi–Yau manifold X is an isomorphism in codimension 1 by negativity lemma [23, 
Lemma 3.39]. Thus, there is an induced homomorphism

r : Bir(X) → GL(N1(X)), g �→ g∗.

Moreover, if D is movable (resp. effective), then g∗D is again movable (resp. effective).
For our purpose, we state the movable cone conjecture as follows (and a similar statement can be made 

for the action of Aut(X) on Nef(X) ∩ Eff(X)):

Conjecture 1.1. Let X be a Calabi–Yau manifold. The action of Bir(X) on the movable effective cone 
Mov(X) ∩ Eff(X) has a rational polyhedral cone1 Π as a fundamental domain, in the sense that

Mov(X) ∩ Eff(X) =
⋃

g∈Bir(X)

g∗Π (�)

and the interiors of Π and g∗Π are disjoint unless g∗ = id.

In this article, we restrict our attention to the case that X is a Calabi–Yau threefold of Picard number 
ρ(X) = 2.

By the work [41] and [28], if Bir(X) is infinite, or if one of the boundary rays of Mov(X) is rational, then 
the movable cone conjecture holds on X, cf. [28, Proposition 4.1 and Theorem 4.5]. The hypothesis that 
ρ(X) = 2 is essentially used.

1 It is a closed convex cone in N1(X)R spanned by finitely many equivalence classes of Cartier divisors on X.
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When Bir(X) is finite, Conjecture 1.1 implies that effective movable cone (�) is closed and therefore it 
equals Mov(X). Moreover, if the answer to Question 1.2 (1) below is positive, then Conjecture 1.1 holds for 
Calabi–Yau manifolds of Picard number two as discussed before.

Question 1.2. Let X be a Calabi–Yau manifold. Assume that Bir(X) is finite.

(1) Is Mov(X) always a rational polyhedral cone?
(2) Is the number of minimal models of X finite up to isomorphism?

A more detailed discussion of movable cone conjecture and (2) in Question 1.2 could be found in [5, 
Theorem 2.14].

Conjecture 1.1 has been verified for several special cases, see [3,4,6,11,20,28,41] and references therein, 
but the full cone conjecture remains open.

Our main result here is to construct a class of smooth complete intersection Calabi–Yau (CICY) threefolds 
and compute explicitly their birational models. We verify that Conjecture 1.1 holds for these Calabi–Yau 
threefolds, where most of them have finite birational automorphism groups. One of the main interesting 
examples is the following, see Theorem 5.12 for the notations.

Example 1.3. Consider on P 4 the vector bundle F = O(2)2⊕O(1). Then P (F) is Fano with OP(F)(−KP(F))
∼= OP(F)(3). A complete intersection XF in P (F) defined by three general sections in H0(OP(F)(1)) is a 
smooth Calabi–Yau threefold. It has only two flops, denoted by X+

F and XE , where X+
F possesses a K3 

fibration and XE possesses an elliptic fibration. Let H (resp. L) denote the restriction of the pullback of the 
hyperplane class on P 4 (resp. the corresponding divisor class of OP(F)(1)) to XF . The slice of the movable 
cone Mov(XF ) is a subdivision of a closed interval, which comes from the chamber structure of the cone:

5H − L H L−H L− 2H

P 2 XE XF X+
F P 1

We remark that XE is a smooth CICY threefold of bidegrees (2, 1), (2, 1) and (1, 1) in P 4 × P 2.

We say that a Fano manifold P is Pn-ruled over M if P = P (F) for some vector bundle F of rank n + 1
over a projective manifold M . Such F is also called a Fano bundle, see Definition 2.2.

We will consider smooth Calabi–Yau threefolds contained in certain Pn-ruled Fano manifold with Picard 
number 2. The following theorem is the prototype of the result we aim to establish.

Theorem 1.4. Let P = P (F) be a Pn-ruled Fano manifold over P 4 of Fano index n + 1 � 2. We assume 
that P is normalized, that is, F is ample and O(KP ) ∼= OP (n + 1). Then a complete intersection

XF = Z1 ∩ · · · ∩ Zn+1 ⊆ P

of general hypersurfaces Zi ∈ |OP (1)| is a smooth Calabi–Yau threefold. Moreover, all the birational models 
of XF are constructed and the movable cone conjecture holds on XF .

Our proof depends on the classification of Fano bundles, where for most cases the vector bundle F splits, 
see Theorem 2.4 and Theorem 2.5. As a generalization, we establish the following theorem, see Theorems 5.2, 
5.7, 5.12, 5.20, 6.1 and 6.5 for the details.

Theorem 1.5. Let M be a smooth Fano fourfold with Pic (M) = Z[OM (1)] and Fano index rM � 2, i.e., 
OM (−KM ) ∼= OM (rM ). Let F = ⊕n+1

i=1 OM (ai) and E = ⊕n+1
i=1 OM (bi) be direct sums of line bundles, where 
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(ai)i and (bi)i are sequences of nonnegative integers. Suppose that the Calabi–Yau condition holds for the 
pair (F , E), i.e., 

∑n+1
i=1 (ai + bi) = rM , and M is not del Pezzo of degree 1. Then for a general section

s ∈ H0(P (F), E � OP(F)(1)), (1)

the zero scheme XF = Z(s) is a smooth Calabi–Yau threefold of Picard number 2. Moreover, all the birational 
models of XF are constructed and the movable cone conjecture holds for XF .

Notice that replacing F with its tensor product with OM (c) has the effect of replacing the line bundle 
OP(F)(1) by OM (−c) �OP(F)(1), but does not change P (F). In particular, it does not affect the Calabi–Yau 
condition. We will give the complete list of such pairs (F , E) up to a twist by OM (c), see Proposition 2.8.

Our theorem unifies several known examples in the literature and provides evidence to the movable cone 
conjecture. In general, it is very hard to find explicit birational models of a given Calabi–Yau threefold. In 
our case, this is overcome by two key ingredients. First of all, any CICY threefold we consider is naturally 
equipped with a small contraction together with its flop, see Section 3.2. The flop is over a determinantal 
hypersurface D in a smooth Fano fourfold M . For a general s in (1), D is a nodal hypersurface, that is, it 
has only ordinary double points (ODPs). This part is established in [48].

Second of all, by using the geometric construction of Eagon–Northcott complexes, see Proposition 4.4
and Remark 4.5, it gives rise to a special surface SF in our Calabi–Yau XF . This enables us to find all 
birational models and hence the full movable cone with its chamber structure, except in two cases. The 
remaining cases are when (M, F) = (P 4, O(1)5) or (Gr(2, 4), O(1)4). We will treat these cases in Section 6. 
In contrast to Section 5, the birational automorphism groups of smooth Calabi–Yau threefolds associated 
with these two exceptional cases have infinite order.

Finally, we make two remarks. Firstly, the non-split case (Gr(2, 4), S(2) ⊕ O(1)) and the del Pezzo of 
degree 1 (cf. Proposition 2.7) involve more complicated computations and will be discussed in a forthcoming 
paper. Secondly, the construction in this paper applies to higher dimensional Pn-ruled Fano manifolds. It 
is interesting to know what kind of higher dimensional Calabi–Yau manifolds appear and investigate their 
birational geometry.

The paper is organized as follows. In Section 2, we have included some basic facts and results about Fano 
bundles and extremal contractions from smooth Calabi–Yau threefolds. The list of Fano bundles we consider 
is given in Proposition 2.8. In Section 3, we recall some general results about degeneracy loci, including 
Bertini-type and Lefschetz-type Theorems. We also provide the construction and results for determinantal 
contractions. Section 4 contains the geometric construction of Eagon–Northcott complexes. Section 5 and 
6 are devoted to the proof of the main results, Theorem 1.5. To streamline our exposition, we recall the 
definition of Chern classes of virtual quotient bundles and collect the computation of the Hodge numbers 
of our Calabi–Yau threefolds only in the Appendices A and B.

Notation 1.6. Throughout this paper we work over the complex field C. All varieties are reduced and 
irreducible, and we do not distinguish a vector bundle and its associated locally free sheaf. For a vector 
bundle F , we write P (F) = Proj(Sym•F) for the projective bundle of 1-dimensional quotients of F as in 
[14] and OF (1) := OP(F)(1) for the tautological line bundle. For a morphism σ : E∨ → F of vector bundles, 
we say that a property holds for a general σ if it holds for each σ in a Zariski open subset of H0(E ⊗F). The 
Grassmannian Gr(k, n) stands for the variety of k-dimensional subspaces in a fixed n-dimensional vector 
space, and S and Q are the universal sub- and quotient bundles of the Grassmannian. For a Fano manifold 
M , OM (1) is the line bundle corresponding to a fundamental divisor of M . If O(a) is a line bundle, then 
O(a)t stands for O(a)⊕t. The self-intersection cycle of a Cartier divisor D is also denoted by Dt. There 
should be no confusion from the context for the use of these two similar notations.
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2. Preliminaries

We prepare some preliminary results on Fano bundles and contractions of Calabi–Yau threefolds to be 
used in later sections.

2.1. Fano manifolds

A smooth projective variety M is called Fano if its anticanonical divisor −KM is ample. It is known that 
the Picard group of a Fano variety is a finitely generated torsion-free Z-module. Therefore the greatest integer 
rM which divides O(−KM ) in Pic (M) is called the index of M , i.e., −KM ∼ rMHM for some O(HM ) ∈
Pic (M). The corresponding divisor HM defined up to the linear equivalence is called a fundamental divisor
of M . We denote by OM (1) ∼= OM (HM ) the corresponding invertible sheaf.

It is well-known also that the index of M is at most dimM + 1. Furthermore, rM = dimM + 1 if and 
only if M ∼= Pn, and rM = dimM if and only if M ∼= Qn ⊆ Pn+1 is a smooth quadric [25]. Note that every 
4-dimensional smooth quadric Q4 is isomorphic to the Grassmannian Gr(2, 4).

A Fano variety M is del Pezzo or Mukai if rM = dimM − 1 or dimM − 2 respectively. For a modern 
survey on the classification of such varieties, we refer the reader to [16] and references therein, see also 
Appendix B.

The following lemma will be used in the proof of Theorem 5.2.

Lemma 2.1. Let M be a smooth Fano fourfold of index rM . Let HM be a fundamental divisor on M and 
dM = H4

M be the degree of M . Then

∫
M

c2(TM ) ·H2
M =

{
2dM + 12 if M is del Pezzo,
dM + 24 if M is Mukai.

Proof. To shorten notation, we let r = rM , d = dM , and H = HM . By Kodaira vanishing, Riemann–Roch 
and −KM ∼ rH, we find that

h0(O(H)) = (r + 1)2

24 H4 + r + 1
24 c2(TM ) ·H2 + 1.

Now from standard arguments using the Riemann–Roch, Serre duality, and Kodaira vanishing [16, Corollary 
2.1.14], we see that

h0(O(H)) =
{

1
2d(r − 1) + 3 if r > 2,
1
2d + 4 if r = 2.

The lemma follows by comparing the two expressions of h0(O(H)). �
2.2. Fano bundles

Definition 2.2. A vector bundle F of rank r � 2 on a projective manifold M is called a Fano bundle if the 
projective bundle P (F) is a Fano manifold. We will call such P (F) a P r−1-ruled Fano manifold.

On P (F), we denote its canonical divisor by KF = KP(F) and the natural projection morphism by 
pF : P (F) → M . We say that F is ample if OF (1) is an ample line bundle on P (F). From the relative Euler 
sequence [14, Ex.III.8.4], we have
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O(KF ) ∼= p∗F (O(KM ) ⊗ detF) ⊗OF (−r). (2)

Lemma 2.3 ([36]). Suppose that F is a vector bundle of rank r on a projective manifold M . Then P (F) is 
a P r−1-ruled Fano manifold of index r if and only if there exists L ∈ Pic (M) such that F ⊗L is ample and 
c1(F ⊗ L) = c1(TM ). Moreover, in this case M is Fano.

Proof. Let F ′ = F ⊗ L. By c1(F ′) = c1(TM ) and (2),

c1(O(KF )) = p∗F ′(−c1(TM ) + c1(F ′)) + c1(OF ′(−r)) = c1(OF ′(−r)).

Hence the first assertion that P (F) is Fano follows as ampleness is a numerical condition. Since OF(1) can 
not be expressed as a multiple of other line bundles, it follows that the Fano index of P (F) is r.

Conversely, by [36, Proposition 3.3], there is a ample twist F ′ of F such that O(KM ) ⊗ detF ′ is trivial, 
and hence c1(F ′) = c1(TM ). As M is the base of a smooth morphism from a Fano manifold, M is Fano by 
[24, Corollary 2.9]. �

We now turn to the case of P r−1-ruled Fano manifolds P (F) of index r, normalized so that F is ample and 
c1(F) = c1(TM ). As a generalization of Mori’s proof on Hartshorne’s conjecture [31], the classification of such 
pairs (M, F) has attracted intense attention. For our construction of Calabi–Yau threefolds, we focus on the 
cases when dimM = 4. A complete list has been established in a series of works [17,36,38,39,44–46,50–52]. 
The list is shorter when r � 3, see [46, Proposition 7.4] and [39].

Theorem 2.4 ([46], [39]). Let M be a projective manifold of dimension d and F a Fano bundle of rank r � 3
with c1(F) = c1(TM ). Then r � d + 1. When d = 4, the pair (M, F) is exactly one of the following:

(i) M = P 4 and F is given by

(a) r = 5: O(1)⊕5;
(b) r = 4: TP4 or O(1)⊕3 ⊕O(2);
(c) r = 3: O(1) ⊕O(2)⊕2 or O(1)⊕2 ⊕O(3).

(ii) M = Gr(2, 4) ∼= Q4 ⊆ P 5 via Plücker embedding and F is given by

(a) r = 4: O(1)⊕4;
(b) r = 3: O(1)⊕2 ⊕O(2) or E(2) ⊕O(1), where E is a spinor bundle with c1 = −1 and c2 = (1, 0)

or (0, 1).

(iii) M is del Pezzo with Pic (M) = Z[O(1)] and F = O(1)⊕3.
(iv) M = P 2 × P 2 and F = O(1, 1)⊕3.

We remark that a spinor bundle E on Q4 ∼= Gr(2, 4) is either the universal subbundle S or the dual of 
the universal quotient bundle Q∨.

When r = 2, the Picard number ρ(M) can be bigger than 2 and the list is much longer. For simplicity, 
we only list the classification of (M, F) over a Fano manifold M which appears in Theorem 2.4 or is Mukai 
with ρ(M) = 1, cf. [36, Theorem 1.1 (3), (4) and Theorem 1.3] and [17].

Theorem 2.5 ([17,36]). Let F be a Fano bundle of rank two on M with c1(F) = c1(TM ) and ρ(M) = 1. 
When M is P 4, Gr(2, 4), del Pezzo, or Mukai, the pair (M, F) is exactly one of the following:
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(i) M = P 4 and F is O(1) ⊕O(4) or O(2) ⊕O(3);
(ii) M = Gr(2, 4) and F is O(1) ⊕O(3) or O(2) ⊕O(2);
(iii) M is del Pezzo with Pic (M) = Z[O(1)] and F = O(1) ⊕O(2);
(iv) M is Mukai with Pic (M) = Z[O(1)] and F = O(1) ⊕O(1).

When M = P 2 × P 2, we have that F is O(1, 2) ⊕O(2, 1) or O(1, 1) ⊕O(2, 2):

(a) O(1, 2) ⊕O(2, 1): P (F) = BlP1∪P2P
5 where Pi’s are two non-meeting planes.

(b) O(1, 1) ⊕ O(2, 2): P (F) is the blow up of a cone in P 9 over the Segre embedding P 2 × P 2 ⊆ P 8 along 
its vertex.

Lemma 2.6. Let F be a vector bundle on a variety M . Fix � � 1. Then OF (�) is globally generated if and 
only if Sym�F is globally generated.

Proof. Denote by p� : P (Sym�F) → M and p = p1 : P (F) → M the natural projections. There is a Segre 
embedding

ι� : P (F) ↪→ P (Sym�F)

such that ι∗�OP(Sym�F)(1) = OP(F)(�) with the universal quotient q� : p∗Sym�F � OP(F)(�) given by 
symmetrizing q = q1 : p∗F � OP(F)(1).

The lemma follows from the following set theoretic identity

p�(Bs(OP(F)(�))) = Bs(Sym�F),

which we now prove: If ev� : H0(M, Sym�F) ⊗ OM → Sym�F is surjective at m ∈ M , then we can pull it 
back by pl, compose it with the universal quotient and use the fact that

H0(M,Sym�F) ∼= H0(P (F),O(�)),

to conclude that m /∈ p�(Bs(O(�))). Conversely, if m ∈ Bs(Sym�F), then the image of ev�(m) is contained 
in a hyperplane H(m) ⊆ Sym�F(m). By the construction of the universal quotient, the evaluation map

H0(P (F),O(�)) ⊗OP(F) → O(�),

which factors through q� ◦ p∗� ◦ ev�, is then zero at any point x ∈ p−1
l (m). �

Proposition 2.7. The tautological bundle OF(1) associated to any Fano bundle in Theorems 2.4 and 2.5 is 
globally generated, except when M is a del Pezzo fourfold2 of degree 1, which is a degree 6 hypersurface 
X6 ⊆ P (14, 2, 3).

Proof. From Lemma 2.6, it is enough to show that each Fano bundle F on M is generated. Moreover, we 
only have to check this on each direct summand.

From the Euler sequence there is a surjection O(1)5 � TP4 and thus

H0(P (TP4),O(1)) ⊗O → O(1)

is the restriction of the corresponding sequence on P (O(1)⊕5) ∼= P 4 × P 4. Hence TP4 is generated.

2 A complete list of classification of del Pezzo fourfold can be found in Theorem B.4 in the Appendix B.
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It is shown in [43, Theorem 2.8.(ii)] that if E = S, then E(1) ∼= S(1) ∼= S∨ is a quotient of the universal 
trivial bundle and hence generated. The same holds in case E(1) = Q∨(1) ∼= Q. Hence E(2), as a twist of 
E(1) by the very ample line bundle O(1), is generated.

For del Pezzo varieties in Theorem 2.4 and 2.5, it follows from Fujita’s results that |O(1)| is generated 
except the degree 1 case, see [16, Proposition 3.2.4]. For the degree 1 case, M = X6 ⊆ P (14, 2, 3) is a 
hypersurface of degree 6. If x0, . . . , x3, y, z with deg(x0) = · · · = deg(x3) = 1, deg(y) = 2, and deg(z) = 3
are homogeneous coordinates of P (14, 2, 3), then the defining equation of X6 is of the form

f6(x0, . . . , x3, y, z) = z2 + zh3(x0, . . . , x3, y) + h6(x0, . . . , x3, y),

where h3 and h6 are homogeneous polynomials of degree 3 and 6 respectively. The base locus of |O(1)|
consists of points of the form [0 : · · · : 0 : ∗ : ∗], which is clearly non-empty.

For Mukai varieties, it follows from [34, Proposition 1] and [29]. �
2.3. Calabi–Yau condition

Suppose that M is a smooth Fano fourfold and n � 1. Let F = ⊕n+1
i=1 O(ai) and E = ⊕n+1

i=1 O(bi), where 
(ai)i and (bi)i are nondecreasing sequences of nonnegative integers. Up to a twist by a line bundle, we are 
going to find all pairs (F , E) such that F is ample and the Calabi–Yau condition

c1(F − E∨) = c1(TM ) (3)

holds, that is, 
∑n+1

i=1 (ai+bi) = rM and ai > 0 for all i. Here the virtual bundle F−E∨ is in the Grothendieck 
group of vector bundles on M . The formulas for Chern classes of such bundles are given in Appendix A.

Proposition 2.8. Under the above assumptions, the triples (M, F , E) are the following (up to a twist with a 
line bundle):

(i) If E is a trivial bundle, then we have

(a) M = P 4 and the sequence (ai)i is one of the following:

(4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

(b) M = Gr(2, 4) and (ai)i = (3, 1), (2, 2), (2, 1, 1), or (1, 1, 1, 1).
(c) M is a smooth del Pezzo fourfold and (ai)i = (2, 1) or (1, 1, 1).
(d) M is a smooth Mukai fourfold and (ai)i = (1, 1).

(ii) If E is not trivial, then E = (O(1) ⊕On) and (M, F) is given by

(a) n = 2: (P 4, O(2) ⊕O(1)2)
(b) n = 1: (P 4, O(3) ⊕O(1)) or (Gr(2, 4), O(2) ⊕O(1))

Proof. First, we adopt the convention that if all ai’s are the same, say equal to a, then we replace (ai, bi)
by (0, bi + a) for all i and interchange F and E , and similarly for bi’s. Note that the replacements preserve 
the Calabi–Yau condition.

Notice that 2 � rM � 5. Indeed, it is known that the Fano index rM of M is less than or equal to 
dimM + 1 = 5. By assumption, rM is greater than or equal to 

∑
ai � 2.
i
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With our convention and ai > 0 for all i, the cases when rM = 2 or 3 are easy, which correspond to items 
(i) (c) and (d). We only need to consider rM = 5 or 4. In the latter cases, we have M = P 4 or Gr(2, 4) and 
there are six and four nontrivial partitions of 5 and 4 respectively. Then the proposition follows from an easy 
calculation. Remark that on P 4 we identify the case (O(2) ⊕O(1), O(2) ⊕O) with (O(3) ⊕O(1), O(1) ⊕O)
by tensoring O(−1) and interchanging F and E . �
Remark 2.9. The list (i) in Proposition 2.8 is a special case of Theorem 2.4 and 2.5.

2.4. Primitive contractions

We first recall some terminology from [49, p. 566].

Definition 2.10. Let X be a smooth Calabi–Yau threefold. We say that a birational morphism π : X → Y

is a primitive contraction if Y is normal and the relative Picard number of π is 1.

This is equivalent to the condition that π cannot be factored in the algebraic category.

Definition 2.11. We say that a birational morphism is small if it contracts only finitely many curves, and a 
primitive contraction is

(i) of type I if it is small;
(ii) of type II if it contracts an irreducible surface down to a point;
(iii) of type III if it contracts an irreducible surface down to a curve.

We conclude this section with the following three simple results, which will be used in Section 5. For the 
convenience of the reader, we supply proofs here.

Lemma 2.12. Let π : X → Y be a small resolution of a normal threefold Y and C an irreducible exceptional 
curve. Suppose that KX is π-trivial and there is a smooth surface S in X such that C ⊆ S is a (−1)-curve 
in S. Then the normal bundle of C in X is isomorphic to OP1(−1) ⊕OP1(−1).

Proof. Consider the normal bundle sequence

0 → NC/S → NC/X → NS/X |C → 0. (4)

Since C ∼= P 1 is a (−1)-curve in S, this implies that the normal bundle NC/S is OP1(−1). By (4), KX ·C = 0, 
and adjunction formula, we get

degNS/X |C = S · C = KS · C −KX · C = −1.

Then NS/X |C is also OP1(−1) and thus the exact sequence (4) splits. �
Proposition 2.13. Let X be a smooth Calabi–Yau threefold and D ⊆ X an irreducible smooth surface.

(i) If D is a K3 surface, then |D| is a base point free linear pencil that induces a fibration X → P 1 whose 
a general fiber is a K3 surface.

(ii) If D ∼= P 2, then there is a primitive contraction X → Y which contracts the divisor D ⊆ X to a 
1 (1, 1, 1)-point p ∈ Y .
3
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Proof. In case (i), the exact sequence

0 → OX → OX(D) → OD(D) → 0

and H1(OX) = 0 imply that |D| is base point free and h0(OX(D)) = 2 as OD(D) ∼= OD(KD) ∼= OD. It 
follows that X → P (|D|) has connected fibers. Notice that by upper semicontinuity [14, III Theorem 12.8]
we have h1(OF ) � h1(OD) = 0 for a general fiber F . Therefore KF = (KX + F )|F = 0 and h1(OF ) = 0, 
that is, a general fiber F is a K3 surface.3

In case (ii), we have the following more general fact (cf. [22, Lemma 2.5]): Let D be a del Pezzo surface. If 
there is an ample divisor A on X such that λA|D ∼ −KD for some λ > 0, then L := D+λA is obviously nef 
and big on X. By the base-point-free theorem, some multiple of it gives a divisorial contraction ϕL : X → Y

contracting the divisor D. When ρ(D) = 1, any ample divisor on X works and ϕL contract D to a point. 
If D = P 2, then the argument of [32, (3.3.5)] proves that ÔY,p 
 C�x, y, z�G, where G := Z/3Z acts on 
C�x, y, z� via the weight (1, 1, 1). Notice that in our case, OD(D) ∼= OP2(−3) because X is Calabi–Yau. �
Lemma 2.14. Let Y be a nodal threefold with isolated ODPs, denoted by Σ. Suppose further that there exists 
a smooth surface T ⊇ Σ. Then:

(i) The blow-up π : X := BlTY → Y is a small resolution, and the restriction π−1(T ) → T is the blow-up 
of T at the smooth points of T located at ODPs of Y .

(ii) Let π+ : X+ → Y be the Atiyah flop obtained by taking p : W := BlΣY → X and then a blow down 
q : W → X+ along its exceptional divisors E in the other direction.

W

X X+

p q

Then the proper transform T+ of T in X+ is isomorphic to T via π+.
(iii) If any two of X, X+ and Y are projective, then so is the third.

Proof. The proof of (i) can be found in [3, Lemma 7.1] and (iii) in [10, Lemma 7.3]. To prove (ii), we let 
TW be the proper transforms of T in W . Note that q(TW ) is the proper transform T+ of T . According to 
that T ⊇ Σ and W = BlΣY , it follows that TW is the blow-up of T along Σ and thus p : TW

∼−→ π−1(T ) is 
an isomorphism by (i).

For simplicity, we now assume that Σ = {p} and then the exceptional divisor E ∼= P 1 × P 1. Let C be 
the rational curve p(E). By the construction of X, the curve C is the (−1)-curve π−1(p) on π−1(T ) ∼= TW . 
Abusing notation slightly, we use the same letter C for the curve p−1(C) in TW . On the other hand, by the 
construction of X+, the induced morphism q : TW → T+ for proper transforms contracts the (−1)-curve 
C on TW . We claim that T+ is normal. It follows that T+ is smooth (cf. [14, p. 415, Step 5]) and hence 
the morphism π+ : T+ → T of smooth surfaces is an isomorphism because they are (set-theoretically) a 
bijection. For the claim, observe that T+ is smooth outside the point q(C). Since the threefold X+ is smooth, 
the surface T+ is an effective Cartier divisor and hence is Cohen–Macaulay [14, Proposition 8.23]. Therefore 
it follows from Serre’s criterion for normality that T+ is normal. �

Note that the above proof only uses the local structure of the Atiyah flop, hence the lemma also applies 
to a singular surface as long as the ODPs on Y are smooth points on T .

3 In fact, since we are work over C, all smooth fibers are diffeomorphic to the K3 surface D by Ehresmann’s theorem, and hence 
are K3 surfaces (see [9, VII Corollary 3.5]).
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3. Degeneracy loci

3.1. Bertini-type and Lefschetz-type theorems

Let M be a variety of dimension d, and let σ : E∨ → F be a morphism of vector bundles on M of rank 
e and f respectively. For each k � min{e, f} one can associate to σ its kth degeneracy locus

Dk(σ) = {x ∈ M | rank(σ(x)) � k},

with the convention D−1(σ) = ∅. Its ideal is locally generated by (k + 1)-minors of a matrix for σ. Notice 
that the 0th degeneracy locus of σ is the zero scheme Z(σ) of the corresponding section of E ⊗ F . The 
expected codimension of Dk(σ) in M is (e − k)(f − k), though the degeneracy locus may be empty or have 
strictly smaller codimension.

The following Bertini-type theorem is well known and relies on generic smoothness.

Theorem 3.1 ([1]). Let E and F be vector bundles of ranks e and f on a smooth variety M such that E ⊗F
is globally generated. If σ : E∨ → F is a general morphism, then one of the following holds:

(i) Dk(σ) is empty;
(ii) Dk(σ) has expected codimension (e − k)(f − k) and the singular locus of Dk(σ) is Dk−1(σ).

Here “general” means that there is a Zariski open set in the vector space H0(E ⊗ F) such that either (i) or 
(ii) holds for all σ belonging to the open set.

We make the following notion of the generality of morphisms used in [48].

Definition 3.2. For a given integer r � 0, a morphism σ : E∨ → F is said to be r-general if the subset 
Di(σ) \ Di−1(σ) is smooth of (expected) codimension (e − i)(f − i) in the smooth variety M for all i =
0, 1, · · · , r.

The following is from [27, Theorem 7.1.1, 7.2.1, Example 7.1.5].

Theorem 3.3 ([27]). Let σ : E∨ → F be a morphism between vector bundles of rank e and f on a projective 
variety M of dimension d, and assume that the bundle E ⊗ F is ample.

(i) The kth degeneracy locus Dk(σ) of σ is non-empty (resp., connected) if d � (e − k)(f − k) (resp., 
d > (e − k)(f − k)).

(ii) Assume that M is smooth, and let X = D0(σ). Then

Hi(M,X;Z) = 0 for i � d− ef,

the restriction map Hi(M, Z) → Hi(X, Z) is an isomorphism for i < d − ef and injective when 
i = d − ef . In particular, if X is also smooth, then

(a) the restriction maps Hq(M, Ωp
M ) → Hq(X, Ωp

X) are isomorphisms for p + q < d − ef ;
(b) the restriction map Pic (M) → Pic (X) on Picard groups is an isomorphism if 2 < d − ef .

Note that Theorem 3.3 does not require Dk(σ) to have the expected codimension.
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Remark 3.4. Suppose E ⊗ F is ample and globally generated. For a given integer r � 0, by applying 
Theorem 3.1 repeatedly, we find that there is a Zariski open set U in H0(E ⊗ F) such that all σ belonging 
to U are r-general. Note that if dimM � (e − k)(f − k) then Dk(σ) �= ∅ by Theorem 3.3 (i).

3.2. Determinantal contractions

Let F be a coherent sheaf and E a vector bundle on a variety M . Recall that pF : P (F) → M is the 
projection. For a morphism σ : E∨ → F of OM -modules, we can view the composite of p∗FE∨ → p∗FF and 
the canonical map p∗FF → OF (1) as a global section sσ of the bundle

H om(p∗FE∨,OF (1)) ∼= p∗FE ⊗ OF (1). (5)

Write C for the cokernel sheaf of σ and consider the zero locus Z(sσ).

Lemma 3.5. There is an isomorphism Z(sσ) ∼= P (C) as subschemes of P (F).

Proof. If we can prove that the functors of points induced by Z(sσ) and P (C) are isomorphic, then the 
lemma follows from Yoneda’s lemma.

Recall that the M -scheme P (C) represents the functor that attaches to every M -scheme f : T → M the 
set of equivalence classes of quotients λ : f∗C → L where L is a line bundle on T . The surjection F � C
induces a closed embedding P (C) ↪→ P (F), which sends a T -valued point [λ] to the class [μ] of

μ : f∗F → f∗C λ−→ L.

Observe that a quotient μ of f∗F factors through f∗C if and only if the composition of μ with f∗σ : f∗E∨ →
f∗F is zero.

Let g : T → P (F) be the morphism of M -scheme associated to a T -valued point [μ] of μ : f∗F → L, 
which satisfies L = g∗OF (1) and f = pF ◦ g. Then the morphism g : T → P (F) factors through Z(sσ) if 
and only if the morphism of bundles g∗p∗FE∨ → g∗OF (1) induced by g∗sσ is zero, which is equivalent to 
μ : f∗F → L factoring through f∗C. �

Now assume that F is a vector bundle and σ : E∨ → F is a morphism of bundles of ranks e � f on 
M . If we write everything in local coordinates, then we see that P (C) ∼= Z(sσ) maps onto Df−1(σ), cf. [13, 
Example 14.4.10]:

Z(sσ) P (F)

Df−1(σ) M.

pF (6)

We can compute the canonical bundle of Z(sσ) from (2), (5), and the adjunction formula:

O(KZ(sσ)) ∼= (O(KF ) ⊗ det(p∗FE ⊗ OF (1))) |Z(sσ) (7)
∼= (OF (e− f) ⊗ p∗F (O(KM ) ⊗ detF ⊗ det E))|Z(sσ).

Note that the expected codimension of Z(sσ) is e, and given x ∈ Df−1(σ) the fiber of Z(sσ) over x is 
P (cokerσ(x)).

Lemma 3.6. If Df−2(σ) = ∅, then Z(sσ) → Df−1(σ) is an isomorphism.
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Proof. Since Z(sσ) is the projectivization P (C) of the cokernel sheaf C of σ, it suffices to show that the 
restriction of C to Df−1(σ) is a line bundle. By assumption, for any point x ∈ Df−1(σ) the linear map σ(x)
has constant rank f − 1, so the cokernel C is a vector bundle of rank 1, which completes the proof. �
Definition 3.7. If E and F are vector bundles of the same rank n +1, then we denote by XF the zero scheme 
of the section sσ. The restriction of pF to XF is called the determinantal contraction of XF , denoted by 
πF : XF → Dn(σ).

We state the main results of [48, Proposition 3.6 and Theorem 4.4], which will be used in Sections 5
and 6.

Theorem 3.8 ([48]). With notation as in Definition 3.7, we assume that M is a smooth projective fourfold. If 
σ is n-general and XF is connected, then Dn(σ) is a nodal hypersurface and the determinantal contraction 
πF is a small resolution.

The number of singularities of the nodal determinantal hypersurface is determined by Chern classes of 
F and E (cf. [48, Remark 3.3]).

Proposition 3.9. For an n-general σ, the number of ODPs of Dn(σ) is∫
M

c2(F − E∨)2 − c1(F − E∨) · c3(F − E∨).

Proof. Since Sing(Dn(σ)) = Dn−1(σ) and the (expected) codimension of Dn−1(σ) in the smooth fourfold 
M is 4, the result follows from Giambelli–Thom–Porteous formula [13, Theorem 14.4]. �

To study the birational geometry of XF , we first compute the intersection numbers on it in terms of 
Chern classes of E and F (see Appendix A). The following is from [48, Proposition 4.5].

Proposition 3.10 ([48]). With the assumptions as in Theorem 3.8, let HM be a Cartier divisor on M , 
HF = (π∗

FHM )|XF and LF = c1(OF (1)|XF ).

(i) For k = 0, 1, 2, 3, ∫
XF

Hk
F · L3−k

F =
∫
M

Hk
M · c4−k(E − F∨).

(ii) Under the Calabi–Yau condition c1(F − E∨) = c1(TM ), we have∫
XF

c2(TXF ) ·HF =
∫
M

c2(TM ) · c1(E − F∨) ·HM

∫
XF

c2(TXF ) · LF =
∫
M

c2(TM ) · c2(E − F∨) − |Sing(Dn(σ))|.

4. Birational maps via matrix transpositions

From now on, we let E and F be vector bundles of rank n +1 on a smooth projective fourfold M . Assume 
that F is an ample Fano bundle. Then we see that M is Fano (cf. Lemma 2.3). Denote by HM a fundamental 
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divisor on M , rM the Fano index of M , and dM = H4
M the degree of M . We further assume that HM is 

base point free (cf. Proposition 2.7).
To set up our construction, we assume that E and F are globally generated. Suppose that there are an 

integer a > 0 and a vector bundle F− of rank n such that we have an exact sequence of vector bundles

0 → OM (a) → F → F− → 0 (8)

with OM (rM + a) ⊗ det E∨ being ample.
Note that E⊗F and E⊗F− are also ample and globally generated (cf. [27, Proposition 6.1.12 (i), Theorem 

6.2.12 (iv)]). Thus we can apply Bertini-type theorem to these bundles (see Remark 3.4). By Theorem 3.1, 
we can pick a general morphism σ : E∨ → F , and it induces a general morphism σ− : E∨ → F−. Indeed, 
we set L = OM (rM + a) ⊗ det E∨. By Griffths vanishing theorem ([27, 7.3.2]) and the assumption that L is 
ample, we get

Ext1(E∨,OM (a)) ∼= H1(M,OM (KM ) ⊗ E ⊗ det E ⊗ L) = 0,

and thus Hom(E∨, F) → Hom(E∨, F−) is surjective.

Remark 4.1. In Sections 5 and 6, vector bundles E and F are direct sum of line bundles OM (ai). We will 
take a = max{ai}, and the above assumptions are easily achieved.

Notation 4.2. Let HF = p∗FHM and LF = c1(OF (1)) on P (F), and similarly for HE and LE on P (E). Fix a 
bundle V on M . By abuse of notation, we write V � OF (1) for (p∗FV ⊗OF (1)) and use the same notations 
LF and HF for their restrictions to XF , and similarly for bundles E and F−.

Recall from Definition 3.7 that σ induces the zero scheme XF in P (F). The zero scheme induced by σ−
is defined similarly:

Definition 4.3. We denote SF ⊆ P (F−) by the zero locus of the global section of E � OF−(1) induced by 
σ−.

Using the existence of (8), we can construct the basic diagram (10) in the following proposition, which 
will play an important role in Section 5.

Proposition 4.4. Under the above assumptions, we have

(i) XF is a smooth (irreducible) threefold with

O(KXF ) ∼= (p∗F (O(KM ) ⊗ detF ⊗ det E))|XF , (9)

the Picard number ρ(XF ) = ρ(P (F)) and Hi(OXF ) = 0 for i = 1, 2.
(ii) SF is a smooth (irreducible) surface and belongs to the linear system |LF − aHF | on XF .
(iii) There is a commutative diagram

P (F−)

P (F) SF

XF

M Dn(σ) Dn−1(σ−),

⊇⊇

⊇
pF ∼

⊇

πF

⊇ ⊇

(10)
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where the natural contraction SF → Dn−1(σ−) is an isomorphism.

Note that Dn−1(σ−) contains Dn−1(σ), the singular locus of Dn(σ).

Proof. Recall that E ⊗ F and E ⊗ F− are ample. By Theorem 3.3, we have isomorphisms Pic (P (F)) ∼−→
Pic (XF ), Hi(P (F), Z) ∼−→ Hi(XF , Z) for i < 3, and Hj(P (F−), Z) ∼−→ Hj(SF , Z) for j < 2. Hence XF
and SF are connected. According to Theorem 3.8, it follows that XF is smooth. Since F and E are of 
the same rank, the formula (9) is given by (7). From the assumption that F is Fano, it implies that 
Hi(OXF ) = Hi(OP(F)) = 0 for i = 1, 2.

Let C be the cokernel sheaf of σ, and similarly for C−. By (8) and diagram chasing, we get the exact 
sequence

OM (a) → C → C− → 0. (11)

The commutative diagram (10) follows from the isomorphism XF ∼= P (C) and SF ∼= P (C−) by applying 
Lemma 3.5. According to (11) and that the tautological line bundle of P (C) is the restriction OF (1)|P(C), 
it follows that SF is defined by a global section of the line bundle (OM (−a) � OF (1))|XF and hence 
SF ∈ |LF − aHF |.

Notice that Dn−2(σ−) = ∅ for a general σ− because the expected codimension of Dn−2(σ−) in the smooth 
fourfold M is 6. By Lemma 3.6 and Theorem 3.1, the epimorphism SF → Dn−1(σ−) is an isomorphism and 
Sing(Dn−1(σ−)) = ∅. �
Remark 4.5. The commutative diagram (10) is the geometric picture that arises if we compare the Eagon–
Northcott complex induced by σ with that induced by σ−. See p. 321 and (EN0) in [26, Appendix B.2].

There is the other determinantal contraction πE : XE → Dn(σ∨) via the dual morphism σ∨ : F∨ → E , 
and observe that Dn(σ) = Dn(σ∨). We can certainly assume that Dn(σ) is singular, since otherwise πF and 
πE are isomorphisms. Therefore the determinantal contraction πE gives rise to a diagram

XF XE

Dn(σ) .

πF

χ

πE (12)

Proposition 4.6. Let χ = π−1
E ◦ πF . Then the rational map χ is not an isomorphism.

Proof. Let T denote the smooth surface Dn−1(σ−) = Dn−1(σ∨
−), and let IT be its ideal sheaf in M . Apply 

the Eagon–Northcott complex (see (EN0) in [26, p. 322]) to the morphism σ∨
−, we get

0 → F∨
−

σ∨
−−−→ E → IT ⊗ detF∨

− ⊗ det E → 0.

Since M and T are smooth, the Rees algebra 
⊕

k�0 Ik
T is isomorphic to the symmetric algebra Sym•IT . 

Thus the projectivization of the cokernel of σ∨
− is isomorphic to BlTM ∼= P (Sym•IT ).

On the other hand, the projectivization of the cokernel of σ∨ is contained in that of σ∨
− and is isomorphic 

to XE by Lemma 3.5. Since Dn(σ∨) is a nodal hypersurface and T contains the singular locus of Dn(σ∨), 
we find that XE ∼= BlTDn(σ∨) and thus π−1

E (T ) is isomorphic to the blow-up of T at its smooth points 
located at ODPs of Dn(σ∨) by Lemma 2.14. Then proposition follows from that χ∗SF = π−1

E (T ) → T is 
not an isomorphism while SF is isomorphic to T by Proposition 4.4 �
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Remark 4.7. The morphism σ is defined locally by a matrix of elements in a coordinate ring of an affine 
open set. The transpose of the matrix is then the corresponding matrix of σ∨. Hence the birational map χ
is locally induced by the matrix transposition and Dn(σ) = Dn(σ∨).

The remainder of this section will be devoted to compute χ∗LF under certain assumptions, which is 
extremely useful in Section 5. To simplify the notations, we let H := HF and L := LF . We recall that χ is 
an isomorphism in codimension one, and clearly the proper transform χ∗H is HE .

Lemma 4.8. Under the assumptions as in Proposition 4.4, if we write χ∗L = αLE +βHE in Pic (XE)Q, then 
αβ < 0 and {

L ·H2 = αLE ·H2
E + βH3

E

L2 ·H = α2L2
E ·HE + 2αβLE ·H2

E + β2H3
E

.

Proof. By assumption, the bundle F is globally generated, and so is L by Lemma 2.6. Since H and L are 
base point free on XF , we may assume H2 and L2 are represented by 1-cycles avoiding the indeterminacy 
loci of χ. By the geometric interpretation of intersection numbers, the lemma follows from

L ·H2 = χ∗L ·H2
E and L2 ·H = (χ∗L)2 ·HE .

Recall that L is ample. Observe that α �= 0 or otherwise χ∗L ≡Q bHE and hence L ∼Q bH can not be 
ample. On the other hand, χ∗L cannot be ample or otherwise χ is an isomorphism by [20, Lemma 1.5]. 
Hence β �= 0 and the only possibility is αβ < 0, as χ∗L is big but not ample. �
Proposition 4.9. Under the assumptions as in Lemma 4.8, we assume furthermore that E and F are direct 
sums of line bundles OM (ai) satisfying the Calabi–Yau condition c1(F − E∨) = c1(TM ). If∫

M

c2(F − E∨) ·H2
M > 0 >

∫
M

(
c1(E − F∨)2 − 2c2(E − F∨)

)
·H2

M , (13)

then

χ∗L = −LE + rMHE ,

where rM is the Fano index of M .

Proof. We begin by proving the equality

H3
Eβ

2 − 2(L ·H2)β + L2 ·H − L2
E ·HE = 0. (14)

To deduce (14) from Lemma 4.8, we write α = (LE ·H2
E)−1(L ·H2−H3

Eβ). Substituting this into the equation 
of L2 ·H in Lemma 4.8 and denoting the constant (L2

E ·HE)(LE ·H2
E)−2 by C, we get[

H3
E − C(H3

E)2
]
β2 − 2

[
L ·H2 − C(H3

E)(L ·H2)
]
β + L2 ·H − C(L ·H2)2 = 0. (15)

To apply Proposition 3.10, we need some recurrence relations of Chern classes of virtual quotient bundles. 
Write

c1 := c1(F − E∨) = c1(E − F∨).
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By the total Chern classes c(F − E∨) · c(E∨ − F) = 1 and ck(F − E∨) = (−1)kck(F∨ − E), we have the 
following recurrence relations

c2(F − E∨) + c2(E − F∨) = c21, (16)

c3(F − E∨) − c3(E − F∨) = c1 · (c2(F − E∨) − c2(E − F∨)). (17)

From the assumption that E and F are direct sums of line bundles OM (ai), the Chern class c4−k(E −F∨) is 
a multiple of the class H4−k

M . For example, the class c1 is the multiple rMHM by the Calabi–Yau condition. 
We denote the constant by c4−k(E − F∨), and similarly for c4−k(F − E∨).

Multiplying (14) by (LE ·H2
E)2 gives[

(LE ·H2
E)2 − (L2

E ·HE)(H3
E)
] [

H3
Eβ

2 − 2(L ·H2)β
]

+ (LE ·H2
E)2(L2 ·H) − (L2

E ·HE)(L ·H2)2 = 0. (18)

By Proposition 3.9 and 3.10, we see that

(LE ·H2
E)2 − (L2

E ·HE)(H3
E) = (c2(F − E∨)2 − c3(F − E∨)c1)d2

M

and it equals |Dn−1(σ)|dM . Also, we rewrite the term with no β in (18) as

(LE ·H2
E)2(L2 ·H) − (L2

E ·HE)(L ·H2)2

=
(
c2(F − E∨)2c3(E − F∨) − c3(F − E∨)c2(E − F∨)2

)
d3
M

=
{
c2(F − E∨)2[c3(E − F∨) − c3(F − E∨)]

+ c3(F − E∨)[c2(F − E∨)2 − c2(E − F∨)2]
}
d3
M

= {[c3(E − F∨) − c3(F − E∨)][c2(F − E∨)2 − c3(F − E∨)c1]}d3
M by (16), (17)

= (L2 ·H − L2
E ·HE)|Dn−1(σ)|dM

Therefore equation (18) becomes

(|Dn−1(σ)|dM )(H3
Eβ

2 − 2(L ·H2)β + L2 ·H − L2
E ·HE) = 0,

and the equation (14) follows from |Dn−1(σ)|dM �= 0.
We are going to compute the discriminant of the quadratic equation (14). From Proposition 3.10, we find 

that

4(L ·H2)2 − 4(H3
E)(L2 ·H − L2

E ·HE)

= 4d2
M

(
c2(E − F∨)2 − c1(c3(E − F∨) − c3(F − E∨))

)
= 4d2

M

(
c2(E − F∨)2 + c21(c2(F − E∨) − c2(E − F∨))

)
by (17)

= 4d2
M

(
c2(E − F∨)2 − 2c21c2(E − F∨) + c41

)
by (16)

=
(
2dM

(
c21 − c2(E − F∨)

))2
= (2dM c2(F − E∨))2 by (16),

and H3
E = c1dM = rMdM by the Calabi–Yau condition.

By the above equalities, assumption (13), and quadratic formula, the solutions of quadratic equation (14)
are β+ = (rM )−1(2c2(E − F∨) − r2

M ) and β− = rM where β± are positive numbers. According to



18 C.-J. Lai, S.-S. Wang / Journal of Pure and Applied Algebra 226 (2022) 106841
L ·H2 −H3
Eβ± = c2(E − F∨)dM − rMdMβ±

= ±(c21 − c2(E − F∨))dM
= ±c2(F − E∨)dM = ±LE ·H2

E ,

it follows that

α± = (LE ·H2
E)−1(L ·H2 −H3

Eβ±) = ±1.

Hence the only possibility is (α−, β−) = (−1, rM ), by α+β+ > 0 and Lemma 4.8. �
5. Birational models and Movable Cones I

Throughout this section, we will use the same notation as in Section 4. We assume that M is a smooth 
Fano fourfold with ρ(M) = 1 and is not a del Pezzo fourfold of degree 1. Hence a fundamental divisor O(1)
of M is globally generated, cf. Proposition 2.7.

We shall apply Proposition 4.4 to a general morphism σ : E∨ → F , which gives rise to a smooth Calabi–
Yau threefold XF with Picard number 2 and a smooth surface SF in XF . For simplicity of notation, we 
continue to write S, L and H for SF , LF |XF and HF |XF respectively.

5.1. Rank two cases

Suppose that E and F are vector bundles of rank two, and F− ∼= O(b). Let G = L − bH on XF .

Lemma 5.1. Assume that G is base point free and big and ρ(XF ) = 2. There is a morphism ϕG : XF → YF
which contracts the exceptional divisor S to a point, where YF is a normal variety.

Proof. Let ϕG : XF → YF be the Stein factorization of the morphism given by |G|. By assumption, ϕG

is birational. Observe that F− is a line bundle and thus the natural projection q : P (F−) ∼−→ M is an 
isomorphism. From F− ∼= O(b) and the formula (2), we see that

q∗KM ∼ KF− ∼ (q∗KM + bHF−) − LF− ,

where KF− = KP(F−) and LF− = OF−(1). Hence LF− ∼ bHF− , G|S = (LF − bHF )|P(F−)|S ∼ 0, and the 
birational morphism ϕG contracts S to a point. �

Our result in the case of rank two is following:

Theorem 5.2. Let F = O(a) ⊕O(b) and E = O(c) ⊕O(d) with a � b > 0 and c � d � 0. Assume in addition 
that (F , E) satisfies the Calabi–Yau condition (3). Then, for a general morphism σ : E∨ → F , XF is a 
smooth Calabi–Yau threefold with Picard number 2,

Nef(XF ) = R�0[L− bH] + R�0[H]

and the determinantal contraction πF is induced by |H|.
The movable cone Mov(XF ) is the convex cone generated by the divisors L − bH and rMH − L and 

covered by the nef cones of XF and XE . There are no more minimal models of XF . Furthermore,

(i) if E is a trivial bundle and a > b, then |L − bH| induces a primitive contraction XF → YF of type II 
and the flop XE → D1(σ) of πF admits a K3 fibration induced by |rMH − L|;
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(ii) if a = b, then M is Gr(2, 4) or Mukai, and XF , XE admit K3 fibrations induced by |L −bH|, |rMH−L|
respectively;

(iii) if E is not trivial, then M = P 4 or Gr(2, 4) and XF , XE admit primitive contractions of type II induced 
by |L − bH|, |rMH − L| respectively.

The following picture is Mov(XF ) in N1(XF )R. We depict XF and XE inside their nef cones. Note that 
YE = P 1 if E is trivial.

H L − bHrMH − L

D1(σ) YFYE

XE XF

Proof. By Proposition 2.7, the line bundle O(1) of M is globally generated and so are F and E . Since 
P (F(−b)) ∼= P (F) and a � b, we see that OF(−b)(1) is globally generated by Proposition 2.6 and thus 
G = L − bH is base point free.

Choosing F− = O(b), there is a short exact sequence (8). It is easy to check that the assumptions of 
Proposition 4.4 are satisfied. Therefore, by the Calabi–Yau condition, XF is a smooth Calabi–Yau threefold 
with Picard number ρ(P (F)) = 2 and contains the smooth surface S ∈ |L −aH| induced by σ− : E∨ → F−.

Assume that E is trivial. Note that a + b = rM by the Calabi–Yau condition. From P (E) = M × P 1, we 
have a diagram

XF XE

D1(σ) P 1
πF

χ

πE

where XE → P 1 is the restriction of XE to the second projection of P (E).
If we can prove that the intersection number of c2(TXE ) with the general fiber F of XE → P 1 is 24, 

then F is a K3 surface (see [40, Lemma 3.3]). Notice that F ∈ |LE | on XE . By Proposition 3.9, 3.10 and 
Lemma 2.1, we find that∫

XE

c2(TXE ) · LE =
∫
M

c2(TM ) · c2(F − E∨) − c2(F)2

= (ab)
∫
M

c2(TM ) ·H2
M − (ab)2dM (19)

= a(rM − a)
(
dM (a− 1)(a− rM + 1) + 24

rM − 1

)
= 24,

for (rM , a) = (2, 1) or (3, 2). Hence XE → P 1 is a K3 fibration, and similarly for (rM , a) = (4, 2), (4, 3), (5, 3)
or (5, 4), where dM = 2 if rM = 4 (resp. dM = 1 if rM = 5).

In case a = b, we see that M is Gr(2, 4) or Mukai and a = 2 or 1 by Proposition 2.8. Then the restriction 
XF → P 1 of XF to

P (F) ∼= P (F(−b)) = M × P 1 → P 1 (20)

is also a K3 fibration. This can be proved in the same way as shown before.
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On the other hand, by Proposition 3.10, we have

G3 =
3∑

k=0

(−b)k
(

3
k

)∫
M

Hk
M · s4−k(F∨) = a2(a− b)2dM . (21)

In case a > b (i.e., G3 > 0), G is big and there is a primitive contraction ϕG : XF → YF of type II with 
exceptional set S by Lemma 5.1.

To apply Lemma 4.9, we need to verify the inequality (13). In case E is trivial, it follows from the fact 
that F is ample and∫

M

(
c1(E − F∨)2 − 2c2(E − F∨)

)
·H2

M =
∫
M

(
s1(F∨)2 − 2s2(F∨)

)
·H2

M

= −
(
(a + b)2 − 2ab

)
dM < 0.

Hence the matrix of χ∗ : N1(XF ) → N1(XE) with respect to {L, H} and {LE , HE} is given by

[χ∗] =
[
−1 0
rM 1

]
= [(χ−1)∗],

where the last equality is straight forward now. Therefore (i) is established by (19), (21) and the above 
geometric argument, and similar for (ii) with the geometry in (20).

We now turn to the case E � O⊕2, that is, rM = 4 or 5 and

(a, b, c, d) = (rM − 2, 1, 1, 0).

The inequality (13) follows from a direct computation4:

–
∫
M

c2(F − E∨) ·H2
M = 2(rM − 1)dM ,

–
∫
M

(
c1(E − F∨)2 − 2c2(E − F∨)

)
·H2

M = −(rM − 2)2dM .

We can see that the base point free divisor G ∼ L −H on XF is big, which follows from

G3 =
3∑

k=0

(−1)k
(

3
k

)∫
M

Hk
M · (s4−k(F∨) + s3−k(F∨)c1(E)) (22)

= (rM − 2)2(rM − 3)2dM + (rM − 2)(rM − 3)2dM
= (rM − 1)(rM − 2)(rM − 3)2dM > 0

for rM = 4 or 5. By Lemma 5.1, there is a primitive contraction ϕG : XF → YF of type II with exceptional 
set S.

Replacing the pair (F , E) by (E(1), F(−1)), we can use the same argument as shown before to show that 
the linear system |LE | also induces a primitive contraction XE → YE of type II. Hecne (iii) is established 
and the proof is completed. �
Remark 5.3. For a primitive contraction XF → YF of type II, it is known that the exceptional set S ⊆ XF
is a del Pezzo surface. We have a formula for the self-intersection of KS:

4 Notice that ci(E) = 0 for i > 1 in this case.
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Table 1
The intersection numbers on XF .

M E L3 L2 · H L · H2 H3 G3

P4 O(1) ⊕ O2 83 37 15 5 12
O3 179 58 18 5 54

Gr(2, 4) O3 114 52 22 8 16

K2
S = (a− b)2 ((a + b)(a + b + c) − a(b + rM )) dM ,

where F = O(a) ⊕ O(b) and E = O(c) ⊕ O. Indeed, we first observe that L|S ∼ bH|S as in the proof 
of Lemma 5.1. By adjunction and Proposition 4.4, we get KS ∼ −(a − b)H|S . Then the formula follows 
from K2

S = (a − b)2
(
H2 · (L− aH)

)
XF

and Proposition 3.10. On the other hand, we see that KS ·H|S =
−(a − b)−1K2

S . Note the Hirzebruch surface F1 and P 1 × P 1 are distinguished by KS ·H|S being −5 or −4
(or by the Fano index a − b of the surface being 1 or 2). Therefore the del Pezzo surface S is determined by 
K2

S in our case.

Remark 5.4. In case M = P 4, F = O(3) ⊕O(1) and E = O(1) ⊕O, we see that SE is isomorphic to a cubic 
surface in P 3 and the Calabi–Yau XE was studied in [22, Theorem 5.5]. On the other hand, S = SF ∼= P 1×P 1

and XF was studied in [18, Section 2.3]. In that paper, XF is the case of deg(X ′) = 5 in Table 5 and our 
divisor L is 2H∗ +D. Theorem 5.2 tells us that these two Calabi–Yau threefolds XF and XE are connected 
by the flop χ.

In case M = P 4 and F = O(3) ⊕ O(2), XF was studied in [22, Theorem 5.3], and we note that the 
flop χ connects XF and the complete intersection XE of two hypersurfaces of bidegrees (3, 1) and (2, 1) in 
P (E) = P 4 × P 1.

Remark 5.5. In case that M is del Pezzo and F = O(2) ⊕ O(1), we see that the del Pezzo surface S has 
degree 2 � K2

S = dM � 5 by Remark 5.3. The Calabi–Yau XF in the cases dM = 2, 4 and 5 were studied in 
[18] (see the cases of Number 19, 6, and 11 in Table 1 of that paper) and the remaining case in [22, Remark 
5.9].

5.2. Rank three cases

Assume that F is of the form

O(a) ⊕O(1) ⊕O(1) (23)

and E , F satisfy the Calabi–Yau condition. From Section 2.3, there are four examples of such bundles. For 
a = 1, M is a smooth del Pezzo fourfold and E = O3. For a = 2, we have (M, E) = (P 4, O(1) ⊕ O2) or 
(Gr(2, 4), O3). And for a = 3, (M, E) = (P 4, O3). We see that F− = O(1)2 and c1(E) = 0 or 1 in these 
cases.

Set G = L −H on XF . As in the proof of Theorem 5.2, we see that G is base point free and hence nef.
We start with the cases a = 2, 3. Applying Proposition 3.10, we get Table 1. In these cases, the top 

self-intersection number of G is positive, and thus the nef divisor G is big.
Let ϕG : XF → YF be the Stein factorization of the morphism given by |G|, which is birational. Let 

qS : S → P 1 be the restriction to S of the second projection q : P (F−) ∼= M × P 1 → P 1. Note that the 
corresponding divisor of q∗OP1(1) is the divisor LF− −HF− on P (F−).

Lemma 5.6. The birational morphism ϕG : XF → YF determined by |G| is primitive of type III. Moreover, 
S is the exceptional divisor and ϕG|S = qS.
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Proof. We first show that (qS)∗OS
∼= OP1 and hence qS : S → P 1 has connected fibers. Consider the case 

E = O3. According to the definition of sσ− , it follows that S is the complete intersection of three smooth 
hypersurfaces D1, D2 and D3 in P (F−), where Di ∈ |LF− | for all i. Since q : D1 → P 1 is surjective, we see 
that OP1 → q∗OD1 is injective. Hence OP1

∼−→ q∗OD1 follows from the commutative diagram

OP1 OP1

q∗OP(F−) q∗OD1 R1q∗O(−D1) = 0
∼

where the lower right corner is the relative Kodaira vanishing theorem. Consequently, D1 → P 1 has con-
nected fibers. The same computation applies inductively to D2, D3 and hence the claim follows, and similarly 
for the case5 E = O2 ⊕O(1).

By definition, qS is defined by |G|S |, i.e., G|S is the divisor corresponding to q∗SOP1(1). Since G − S ∼
(a − 1)H is nef and big (for a = 2 or 3), we get

H1(XF ,OXF (G− S)) = 0

by Kawamata–Viehweg vanishing. Then |G|S, the trace of |G| on S, is the complete linear system |G|S|. 
Hence every (connected) fiber of qS is contracted by ϕG and ϕG|S = qS (cf. [8, Proposition 1.14]).

By Proposition 4.4, the Picard number of XF is ρ(P (F)) = 2. Then the relative Picard number of ϕG is 
1 and thus Exc(ϕG) = S [23, Proposition 2.5]. �

Our result in this case (23) is the following:

Theorem 5.7. Let F = O(a) ⊕O(1)2 and E = O(c) ⊕O(d) ⊕O(e) with a > 0 and c � d � e � 0. Assume in 
addition that (F , E) satisfies the Calabi–Yau condition (3). Then for a general morphism σ : E∨ → F , XF
is a smooth Calabi–Yau threefold with Picard number 2,

Nef(XF ) = R�0[L−H] + R�0[H]

and the determinantal contraction πF is induced by |H|.
The movable cone Mov(XF ) is the convex cone generated by the divisors L −H and rMH−L and covered 

by the nef cones of XF and XE such that there are no more minimal models of XF . Furthermore,

(i) if a > 1, then |L −H| induces a primitive contraction XF → YF of type III and the flop XE → D1(σ)
of πF admits an elliptic fibration induced by |rMH −L| unless (M, E) = (P 4, O(1) ⊕O2), for which it 
has a primitive contraction XE → YE of type III;

(ii) if a = 1, then M is del Pezzo, and XF , XE admit elliptic fibrations over P 2 induced by |L − H|, 
|rMH − L| respectively.

The following picture is Mov(XF ) in N1(XF )R. We depict XF and XE inside their nef cones.

5 In this case, S = D1 ∩ D2 ∩ D3 where D1 ∈ |LF− − HF− | and D2, D3 ∈ |LF− |. We remark that O(D1) ∼= q∗OP1 (1).
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H L−HrMH − L

D2(σ) YFYE

XE XF

Proof. As in the proof of Theorem 5.2, we can verify that the inequality (13) in Proposition 4.9 holds. For 
example, in the case (M, E) = (P 4, O(1) ⊕O2),

c2(F − E∨) = c2(F) + c1(F)c1(E) + c1(E)2 = 10H2
M .

From Lemma 4.9, we see that the image of LE in N1(XF ) is rMH − L.
For a = 1, M is del Pezzo and E is trivial by Proposition 2.8. Then |LE | induces an elliptic fibration on XE

which is the restriction of the natural projection P (E) = M×P 2 → P 2 to XE . Similarly, P (F(−1)) = M×P 2

and |L −H| induces an elliptic fibration on XF .
For a > 1, (i) follows from Lemma 5.6. Notice that if (M, E) = (P 4, O(1) ⊕O2), then E ∼= F(1). �
Note that we could also characterize the exceptional surface S. For abbreviation, we let P̃ 2(r) stand for 

the blow-up of P 2 in the points x1, · · · , xr, which can be infinitely near.

Proposition 5.8. Let S be the smooth surface as in Lemma 5.6. Then

S ∼=
{
P̃ 2(9 − dM ) if a = 2,
P̃ 2(1) if a = 3.

Proof. As we have seen in the proof of Lemma 5.6, qS : S → P 1 has connected fibers. Let � be the fiber 
class of qS . Recall that KS ∼ S|S and S ∼ L − aH. Since �2 = 0 on S and

(KS · �)S =
(
(L− aH)2 · (L−H)

)
XF

= (1 + c1(E))(1 − a)dM = −2,

it implies that a general fiber of qS is a smooth rational curve and hence S is rational. On the other hand, 
we have

K2
S =

(
(L− aH)3

)
XF

= ((3a− 5)(a− 1) + 2c1(E)(a− 1)(a− 2)) dM

=
{
dM if a = 2,
8 if a = 3.

To prove the proposition, it remains to show that if a = 3, then S ∼= F1.
By running a relative minimal model program of qS : S → P 1 over P 1, there is an n ∈ Z�0 and a birational 

morphism S → Fn over P 1 consisting of m finitely many smooth blow-downs with K2
S = K2

Fn
−m = 8 −m. 

Hence for a = 3, we get m = 0 and KS = KFn
= −2Cn − (n + 2)l, where Cn satisfying C2

n = −n is the 
unique negative section over P 1. As

(H|S · �)S = (H · (L−H) · (L− 3H)) = 1,
XF
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Table 2
The intersection numbers on XF .

L3 L2 · H L · H2 H3 L · c2(TZ) H · c2(TZ) # of ODPs
129 49 17 5 126 50 44

and

(KS ·H|S)S =
(
(L− 3H)2 ·H

)
XF

= −5,

we have

Cn ·H|S = n− 3
−2 ∈ Z>0,

and n = 1 is the unique possibility. Hence S = P̃ 2(1) ∼= Dn−1(σ−) ↪→ P 4, via the very ample linear system 
|H|S | (see the diagram (10) in Proposition 4.4), is a rational scroll of degree (H|S)2 = 3 and H|S ∼ C1 +2�, 
i.e., |H|S | is the linear system of quadrics on P 2 passing through a fixed point x1. �

We now deal with the remaining case M = P 4 and F = O(2)2 ⊕O(1). In this case, we see that E = O3, 
F− = O(1) ⊕O(2) and

q : P (F−) ∼= P (O ⊕O(1)) = BloP 5 → P 5

is the blow-up of P 5 at a point o (cf. [14, Example V.2.11.4]). Applying Proposition 3.9 and 3.10, we get 
Table 2.

Set S = SF . Let us denote by qS : S → P 5 the restriction of q to S and by S0 its image. Observe that 
the pullback divisor of the hyperplane class q∗HP5 is the divisor LF− −HF− on P (F−).

Lemma 5.9. S0 ⊆ P 5 is a K3 surface of degree 8. Moreover, qS is the blow-up of S0 at a point o.

Proof. Let E ⊆ P (F−) be the exceptional divisor of q. From relative Euler sequence, detF− ∼= O(3) and 
P (F−) ∼= BloP 5, we see that

−2HF− − 2LF− ∼ KF− ∼ −6(LF− −HF−) + 4E

and thus E ∼ LF− − 2HF− .
Let HS and C denote the restrictions of HF− and E to S respectively. Notice that HS is very ample, 

because it is the pullback of the hyperplane class HP4 on P 4 via S ∼−→ D1(σ−) (see the commutative diagram 
(10)). Since (C · HS)S =

(
(L− 2H)2 ·H

)
XF

= 1, C is a straight line. Moreover, it is a (−1)-curve on S

because 
(
C2)

S
=

(
(L− 2H)3

)
XF

= −1.
We first observe that the irregularity of S is zero. Indeed, KS ∼ C by KXF ∼ 0, S ∼ L − 2H and the 

adjunction formula. From OC(C) ∼= OP1(−1) and

0 → OS → OS(C) → OC(C) → 0,

it implies that pg(S) = h0(OS) = 1. By the double point formula [14, p. 434] and (H2
S)S = (H2 · (L −

2H))XF = 7, we see that χ(OS) = 2 and hence h1(OS) = 0.
We claim that S0 is smooth and qS is the blow-up of S0 at o. Observe that

HS + C ∼ (LF− −HF−)|S ∼ q∗SHP5 .



C.-J. Lai, S.-S. Wang / Journal of Pure and Applied Algebra 226 (2022) 106841 25
From (HS+C) ·C = 0, we see that qS must map C to a point o and H0(OS(HS+C)) → H0(OC(HS+C)) ∼= C

is surjective. On the other hand, since HS is very ample, the linear system |HS + C| separates points and 
tangent vectors away from C, and also separates points of C from points not on C, so qS : S \C ∼−→ S0 \{o}.

If we prove that H1(OS(HS−C)) = 0, then the claim follows from the step 7 in the proof of [14, Theorem 
V.5.5]. Consider the exact sequences

0 → OS(HS + �C) → OS(HS + (� + 1)C) → OC(HS + (� + 1)C) → 0 (24)

for � = −1, 0. By the long exact sequence in cohomology for (24) with � = 0 and Kodaira vanishing, we see 
that H1(OS(HS)) = 0. Note that

H0(OS(HS)) → H0(OC(HS))

is surjective. In fact, we already know OC(HS) ∼= OP1(1). Given any D belonging to the very ample linear 
system |HS | that is either tangent to the straight line C or contains two points of C, then C ⊆ D. Therefore 
h0(OS(HS − C)) = h0(OS(HS)) − 2.

From above facts and the long exact sequence (24) with � = −1, we see that H1(OS(HS − C)) = 0. 
Consequently, S0 is a smooth surface of degree (HS+C)2 = 8 in P 5 with KS0 ∼ 0 and h1(OS0) = h1(OS) = 0. 
The proof is complete. �
Remark 5.10. We know that S ∼= D2(σ−) is a smooth surface in P 4 of degree 7. The structure of S was 
studied by Okonek [42, Theorem 6]. The proof given above is to verify that the adjunction map defined by 
|KS + HS | is just the natural projection qS .

Set G = L −H on XF . As in the proof of Theorem 5.2, we see that G is base point free and G3 = 28 > 0. 
Let ϕG : XF → YF be the Stein factorization of the morphism given by |G|, which is birational.

Lemma 5.11. The birational morphism ϕG : XF → YF is a small contraction. Moreover, YF is a nodal 
Calabi–Yau threefold with one ODP and ϕG|S = qS.

Proof. We first observe that the locus Exc(ϕG) is contained in S. Indeed, if C ′ is a curve contracted by ϕG, 
then (L −H) · C ′ = 0 on XF . Therefore,

S · C ′ = (L− 2H) · C ′ = −L · C ′ < 0

which implies that C ′ is contained in S.
Since G − S ∼ H is nef and big, we get H1(OXF (G − S)) = 0 by Kawamata–Viehweg vanishing. Then 

we see as in the proof of Lemma 5.6 that ϕG|S = qS . By Lemma 5.9, qS is the blow-up of the K3 surface S0
at a point o. Combining these with Exc(ϕG) ⊆ S, the exceptional sets of ϕG and qS are the same, which 
consists of one rational curve C. Thus ϕG is small.

It remains to show that YF has only one ODP, i.e., NC/XF
∼= OP1(−1)2. Since C is a (−1)-curve in the 

smooth surface S, this last claim follows from Lemma 2.12 and the proof is completed. �
Theorem 5.12. Let (M, E , F) = (P 4, O3, O(2)2 ⊕O(1)). Then for a general morphism σ : E∨ → F , XF is a 
smooth Calabi–Yau threefold with Picard number 2 and

Nef(XF ) = R�0[L−H] + R�0[H],

such that
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(i) the determinantal contraction πF is induced by |H|;
(ii) |L − H| induces a primitive contraction XF → YF of type I and YF is a Calabi–Yau threefold with 

exactly one ODP singular point;
(iii) the flop X+

F → YF of XF → YF admits a K3 fibration induced by |L − 2H|;
(iv) XE admits an elliptic fibration over P 2 induced by |5H − L|.

Moreover, the movable cone Mov(XF ) is the convex cone generated by the divisors L − 2H and 5H −L and 
covered by nef cones of XF , X+

F , and XE such that there are no more minimal models of XF .

The following picture is Mov(XF ) in N1(XF )R. We depict X+
F , XF , and XE inside their nef cones.

L−HH

L− 2H5H − L

YFD2(σ)

P 1P 2

XF X+
FXE

Proof. The statement (i) is obvious. By Proposition 4.4, XF is a smooth Calabi–Yau threefold with Picard 
number ρ(P (F)) = 2 and the relative Picard number ρ(XF/YF ) is 1. Then XF → YF is primitive and (ii)
follows from Lemma 5.11.

By Lemma 5.9, the surface S in XF is the smooth blow-up at one point o ∈ S0. According to Lemma 5.11
and 2.14, it follows that the Atiyah flop X+

F contains the minimal model of S, which is isomorphic to the K3 
surface S0. By abuse of notation, we continue to write S0 for the K3 surface in X+

F . From Proposition 2.13, 
we see that the linear system |S0| determines a fibration X+

F → P 1 with S0 as a fiber. Then (iii) follows 
from the fact that S ∼ L − 2H.

The restriction of P (E) = P 4 × P 2 → P 2 to XE gives rise to a elliptic fibration on XE over P 2, which is 
induced by |LE |. From the fact that F is ample and∫

M

(
c1(E − F∨)2 − 2c2(E − F∨)

)
·H2

M =
∫
M

(
s1(F)2 − 2s2(F)

)
·H2

M

= −9 < 0,

we see that (iv) holds by Proposition 4.9. �
Remark 5.13. XE is a smooth complete intersection of smooth hypersurfaces of bidegrees (2, 1), (2, 1) and 
(1, 1) in P 4 × P 2.

5.3. A rank four case

We consider M = P 4 and F = O(2) ⊕O(1)3. In this case, we see that E = O4 and F− = O(1)3. Applying 
Proposition 3.10, we have Table 3 (cf. [7, Lemma 3.2]).

Let S = SF and qS : S → P 2 be the restriction to S of the second projection q : P (F−) ∼= M ×P 2 → P 2. 
Note that q∗OP2(1) = O(LF− −HF−) on P (F−).

Lemma 5.14. The surface S is a Bordiga surface, i.e., S ∼= P̃ 2(10). Moreover, qS : S → P 2 is the blow-up 
of P 2 in ten distinct points if XF is chosen in general.
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Table 3
The intersection numbers on XF .

L3 L2 · H L · H2 H3 L · c2(TZ) H · c2(TZ) # of ODPs
99 42 16 5 114 50 46

Proof. From the definition of sσ− , we find that S is the complete intersection of four smooth hypersurfaces 
Di in P (F−), where Di ∈ |LF− | for i = 1, · · · , 4. Using the same argument as in the proof of Lemma 5.6, 
we can show that qS : S → P 2 has connected fibers.

According to the adjunction formula, KXF ∼ 0 and S ∼ L − 2H, it follows that KS ∼ (L − 2H)|S . 
Therefore

K2
S =

(
(L− 2H)3

)
XF

= −1 = K2
P2 − 10,

and qS : S → P 2 consists of ten smooth blow-ups, which might contain infinitely near points.
To finish the proof, simply observe that by construction the subscheme q−1

S (x) of dimension at most one 
is cut out by linear equations in P 4 for each x ∈ P 2. Hence if XF is general enough, then Ex := q−1

S (x) ∼= P 1

and KS · Ex = −1. In particular, S is the blow-up of ten distinct points on P 2. �
Set G = L −H on XF . From F = O(2) ⊕O(1)3, we see that G is base point free and big (G3 = 16 > 0). 

Then |G| determines a birational morphism ϕG : XF → YF , where YF is a normal variety.

Lemma 5.15. The birational morphism ϕG : XF → YF is a small contraction onto a Calabi–Yau threefold 
YF with 10 ODPs and ϕG|S = qS.

Proof. Let C ⊆ XF be an integral curve contracted by ϕG. If C � S, then (L −H) ·C = S ·C +H ·C � 0
and equality holds only if S ·C = H ·C = 0. But then R�[C] is the extremal ray of XF → D3(σ), which is 
absurd as (L −H) ·C = L ·C > 0 in this case. If C ⊆ S, then (L −H) ·C = q∗SHP2 ·C = 0 only when C is 
qS-exceptional.

Recall that qS : S → P 2 is the blow-up of ten distinct points on P 2. Then by Lemma 2.12, each irreducible 
exceptional curve Ei

∼= P 1 has normal bundle NEi/XF
∼= OP1(−1)2 and is contracted to an ODP on YF . �

Remark 5.16. The nodal Calabi–Yau threefold YF is an intersection of four quadrics in P 7. Indeed, by 
Riemann–Roch and Kawamata–Viehweg vanishing theorem, we have

h0(OXF (kG)) = k3

6 G3 + k

12G · c2(TXF ) = 8k3 + 16k
3 .

From h0(OXF (G)) = 8, we see that the linear system |G| defines a morphism XF → P 7. One can show that 
the image of this morphism is projectively normal. According to h0(OXF (2G)) = 32 and h0(OP7(2)) = 36, 
we find four quadrics Q0, Q1, Q2, Q3 containing YF . Then YF must be equal to the intersection of these 
quadrics, which is a threefold of degree 16.

Consider the natural map φ : XE → P 3, which is the restriction of the second projection P (E) =
P 4 × P 3 → P 3 to XE .

Lemma 5.17 ([7]). Let XE → YE → P 3 be the Stein factorization of φ. Then the morphism φ is generically 
2 : 1 and φ̂ : XE → YE is a small contraction if XE is chosen in general.



28 C.-J. Lai, S.-S. Wang / Journal of Pure and Applied Algebra 226 (2022) 106841
Proof. Applying Proposition 3.10, we have6 that L3
E = 2, L2

E · HE = 7, LE · H2
E = 9, and H3

E = 5 (cf. [7, 
Lemma 4.1]). Then, by L3

E = 2, the surjective morphism XE → P 3 is generically 2 : 1.
To see that XE → YE is small, we recall the description of the discriminant locus of φ in [7,30]. By 

Remark 5.16, YF = Q0 ∩O1 ∩Q2 ∩Q3, where Qi is a quadric in P 7. We define a degree 8 surface in P 3:

S8 :=
{
y ∈ P 3

∣∣∣∣∣ det
( 3∑

i=0
yiqi

)
= 0

}
,

where Qi is given by the symmetric 8 × 8 matrix qi. Note that each Qi contains a fixed plane P 2 by 
Lemma 5.15. Since σ : E∨ → F is chosen in general, S8 has only 94 isolated singular points by [30, 
Theorem 2.7]. From [7, Theorem 4.6], we see that the double cover XE → P 3 is branched along the surface 
S8 and XE → YE is a small resolution. Note that the set of one-dimensional fibers of φ̂ coincides with 
φ̂−1(Sing(YE)). �
Remark 5.18. When the determinantal octic S8 has only 94 isolated singular points, the 94 singular points 
of YE are all ODPs (cf. [7, Corollary 5.7]).

Indeed, by [30, Corollary 2.12] (or Appendix B), we have the Euler number χtop(XE) = −108. Let Ỹ
be a double cover of P 3 branched over a smooth octic surface S̃8. Then the Euler number χtop(Ỹ ) =
2χtop(P 3) − χtop(S̃8) = −296. Therefore we get

χtop(XE) − χtop(Ỹ ) = 188 = 2|Sing(YE)|,

and YE is a nodal Calabi–Yau threefold by Proposition B.1.

Lemma 5.19. Let ι : XE ��� XE be the involution over P 3. Then with respect to {LE , HE}, the matrix 
representation of ι on N1(XE) is

[ι∗] =
[
1 7
0 −1

]
= [(ι−1)∗].

Proof. Note that ι∗LE = LE and write ι∗HE = xLE + yHE . Since ι ∈ Bir(XE) is small, we have

{
LE ·H2

E = LE · (xLE + yHE)2

L2
E ·HE = xL3

E + yL2
E ·HE

or
{

9 = 2x2 + 14xy + 9y2

7 = 2x + 7y
.

Since (x, y) = (0, 1) is impossible, the only solution is (x, y) = (7, −1). �
Theorem 5.20. Let (M, E , F) = (P 4, O4, O(2) ⊕ O(1)3). Then for a general morphism σ : E∨ → F , the 
scheme XF is a smooth Calabi–Yau threefold with Picard number 2 with

Nef(XF ) = R�0[L−H] + R�0[H],

such that

(i) the determinantal contraction πF is induced by |H|;

6 This also can be computed by the fact that XE is a complete intersection of hypersurfaces of degree (2, 1) and 3 × (1, 1) in 
P4 × P3.
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(ii) |L −H| induces a primitive contraction XF → YF of type I and YF is a Calabi–Yau threefold with 10
ODPs;

(iii) |5H − L| induces a primitive contraction XE → YE of type I, YF is a Calabi–Yau threefold with 94
ODPs, and the double cover XE → P 3 factors through YE ;

(iv) for the flop X+
F → YF of XF → YF , X+

F admits a primitive contraction X+
F → ZF of type II induced 

by |4L − 5H|.

Moreover, the movable cone Mov(XF ) is the convex cone generated by the divisors 4L −5H and 490H−101L
which is covered by the nef cones of XF , X+

F and XE , and there are no more minimal models of XF .

The movable cone decomposition of XF is given by the following diagram, where the left hand side is 
given by the mirror of the right hand side:

H L−H 4L− 5H

5H − L

490H − 101L

YED3(σ)

YF

X+
F

ZF

XF

XE

D3(σ)

YF

X+
F

ZF

XF

XE

Proof. The statement (i) is obvious. By Proposition 4.4, XF is a smooth Calabi–Yau threefold with Picard 
number ρ(XF ) = 2 and the relative Picard number ρ(XF/YF ) is 1. Then XF → YF is primitive and (ii)
follows from Lemma 5.15.

To determine the supporting divisor of XF ��� YE , we can verify that the inequality (13) holds as in the 
proof of Theorem 5.2. By Proposition 4.9, we have χ∗L = −LE + 5HE under the map χ : XF ��� XE . In 
particular, a supporting divisor of XF ��� YE is given by 5H − L and (iii) follows from Lemma 5.17 and 
Remark 5.18.

Suppose that qS : S → P 2 is the blow-up of 10 distinct points on P 2 and XF ��� X+
F is the flop of 

XF → YF , then as (L − 2H) · C = S · C = KS · C = −1, it is easy to see that the proper transform 
(L − 2H)+ on X+

F is relatively ample over YF . In particular, XF ��� X+
F is defined by (L − 2H) +λ(L −H)

for λ � 0.
The threefold X+

F contains a surface S+ ∼= P 2 and hence there is an extremal contraction X+
F → ZF

contracting S+ to a 1
3 (1, 1, 1) point in ZF (see Proposition 2.13). Note that the natural projection S → P 2

factors through S+ and the induced contraction map f : S → S+ does not extend to XF ��� X+
F . To find 

the supporting divisor of XF ��� ZF , we need a movable Q-divisor A on XF to be negative over YF so that 
A+ is semiample and A+|S+ ≡ 0. Say

A = x(L−H) + y(L− 2H) ≡ x(L−H) + yS

for some x, y ∈ Q. Since (L −H)|S ≡ f∗OP2(1) and S+|S+ = KS+ = OP2(−3), the condition A+|S+ ≡ 0
implies that x = 3y. If A := 4L − 5H ∼ 3(L −H) + S, then A is mobile as |L −H| is base point free and 
big. Note that L −H is a pull-back of an ample and base point free divisor on YF and hence so is (L −H)+. 
In particular, A+ ∼ 3(L −H)+ + S+ is base point free from the exact sequence,

H0(XF+ , A+) → H0(S+, A+|S+) → H1(XF+ , 3(L−H)+) = 0,
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where the last equality is the Kawamata–Viehweg vanishing as KXF+ = 0. Hence the linear system |4L −5H|
does defines the map XF ��� ZF and fulfills the description in (iv).

Finally, we compute the boundaries of Mov(X). Since with respect to ordered bases {LF , HF} and 
{LE , HE}, we have the matrix

[χ∗] =
[
−1 0
5 1

]
= [(χ−1)∗],

the composition map ψ := χ−1◦ι ◦χ : XF ��� XF has the matrix representation with respect to the ordered 
basis {LF , HF} as

[ψ∗] =
[
−34 −7
165 34

]
= [(ψ−1)∗]

Hence XF ��� XF → D3(σ) is defined by (ψ−1)∗H = 34H−7L. Similarly, XF ��� XF ��� YF is defined by 
(ψ−1)∗(L −H) = 131H − 27L, and XF ��� XF ��� ZF is defined by (ψ−1)∗(4L − 5H) = 490H − 101L. �
6. Birational models and Movable Cones II

In this section, we will treat the remaining cases (P 4, O(1)5), (P 4, TP4), and (Gr(2, 4), O(1)4). We will 
see that both boundary rays of the movable cone Mov(XF ) in these cases are irrational.

As before, we use the same notation as in Section 4 and apply Proposition 4.4 to construct a smooth 
Calabi–Yau threefold XF with Picard number 2. We continue to write L and H for LF |XF and HF |XF

respectively.

6.1. M = P 4

We first remark that the case (E , F) = (O4, TP4) can be regarded as a special case of (E , F) = (O5, O(1)5). 
Indeed, from the Euler sequence there is a natural embedding

P (TM ) ↪→ P 4 × P 4 ∼= P 4 × (P 4)∨, (25)

where (P 4)∨ is the dual projective space. Here we can view P (TM ) as the incidence variety and will only 
consider the case (E , F) = (O5, O(1)5).

Theorem 6.1 ([11]). Let (M, E , F) = (P 4, O5, O(1)5). Then for a general morphism σ : E∨ → F , XF is a 
smooth Calabi–Yau threefold with Picard number 2 with

Nef(XF ) = R�0[L−H] + R�0[H],

such that

(i) the determinantal contraction πF is induced by |H| and D4(σ) is a Calabi–Yau threefold with 50 ODPs;
(ii) |L −H| (resp. |5H −L|) induces a primitive contraction XF → YF (resp. XE → YE) of type I and YF

(resp. YE) is a Calabi–Yau threefold with 50 ODPs;
(iii) the flop X+

F of XF → YF admits a primitive contraction of type I induced by |4L − 5H| and X+
F is 

isomorphic to the flop of XE , which we denote by X+.
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Moreover, the movable cone of XF is given by

Mov(XF ) = R�0[−L + (3 +
√

3)H] + R�0[L + (−3 +
√

3)H] (26)

which is covered by the nef cones of XF , XE and X+, and there are no more minimal models of XF .

The picture of Mov(XF ) is the following. The rays accumulate to the boundary rays of slopes −3 −
√

3
and −3 +

√
3.

L−HH

5H − L 4L− 5H

XF

X+XE

YFD4(σ)

YEYE

. . .. .
.(3 +

√
3)H − L L + (−3 +

√
3)H

Proof. Since the result is known by [11, Lemma 1] and [4], we only give a rough sketch in our notation. 
For a general morphism σ : E∨ → F , we have the commutative diagram (12) and the birational morphism 
χ : XF ��� XE . As in the proof of Theorem 5.2, we can verify that the inequality (13) holds and thus 
χ∗L = −LE + 5HE .

To construct the flops, we observe that the morphism σ corresponds to a 5 × 5 matrix M(z) of linear 
forms

Mij(z) =
∑
k

aijkzk,

and D4(σ) = {z ∈ P 4 | detM(z) = 0}. Since P (F) ∼= P 4 × P 4, we can view XF as the variety

{(z, z′) ∈ P 4 × P 4 | M(z) · [z′]t = 0}.

On the other hand, XE is induced by the dual morphism σ∨, which is defined by the transpose of M(z) in 
P (E) = P 4 × P 4 � (z, z′′).

We construct the other matrices of linear forms

M ′
ij(z′) =

∑
k

aikjz
′
k and M ′′

ij(z′′) =
∑
k

akijz
′′
k

such that

M(z) · [z′]t = M ′(z′) · [z]t and M(z)t · [z′′]t = M ′′(z′′) · [z]t. (27)

Hence the second projection gives rise to a small contraction XF → YF (resp. XE → YE) where YF
(resp. YE) is the zero locus of detM ′(z′) (resp. detM ′′(z′′)) and the supporting divisor is L −H (resp. LE). 
By Proposition 3.9, the number of ODPs in D4(σ) is∫

c2(O(1)5)2 − c1(O(1)5)c3(O(1)5) = 50,

P4



32 C.-J. Lai, S.-S. Wang / Journal of Pure and Applied Algebra 226 (2022) 106841
and similarly for YF and YE .
According to (27), the flop X+

F (resp. X+
E ) of XF → YF (resp. XE → YE) is defined by M ′(z′)t · [z′′]t = 0

(resp. M ′′(z′′)t · [z′]t = 0). More precisely, the matrix M ′(z′)t defines a morphism O5 → O(1)5 over P 4 � z′

such that X+
F is zero locus of the section defined by this morphism (cf. (5)), and similarly for M ′′(z′′)t. In 

particular, X+
F and X+

E are isomorphic, denoted by X+, because M ′(z′)t · [z′′]t = M ′′(z′′)t · [z′]t. Thus we 
have the following diagram:

X+ XF XE X+

YF D4(σ) YE .

ιF χ ιE

Set � = ιF ◦ ι−1
E ◦ χ. Applying Proposition 4.9 to morphisms induced by M(z), M ′(z′)t, and M ′′(z′′)t, 

we infer that the matrix representation with respect to the ordered basis {L, H} is given by

[�∗] =
[
−19 −15
90 71

]
and L + (−3 +

√
3)H (resp. −L + (3 +

√
3)H) is an eigenvector of �∗, corresponding to the eigenvalue 

26 − 15
√

3 (resp. 26 + 15
√

3) of �∗. In particular, the birational map � : XF ��� XF is of infinite order. �
Remark 6.2. By linear duality (cf. (25)), [15, Section 3.2] has also calculated the action of the birational 
map � and the movable cone (if we put X1 = XF , H1 = L −H and H2 = H to adapt our notation with 
the one in [15]).

6.2. M = Gr(2, 4)

We are going to treat the case E = O4 and F = O(1)4. Consider the natural projection XE → P 3, which 
is the restriction of P (E) = Gr(2, 4) × P 3 → P 3 to XE .

Lemma 6.3. Let XE → YE → P 3 be the Stein factorization. Then the natural projection XE → P 3 is 
generically 2 : 1 and XE → YE is a small contraction if XE is chosen in general, and similarly for XF .

Proof. Set Gr = Gr(2, 4). Note that P (E) = Gr × P 3 is defined by a global section of OP5(2) � OP3 under 
the Plücker embedding of Gr. We can view

OE(1) = (OP5 � OP3(1))|P(E)

and XE is defined by four general global sections of OGr(1) � OP3(1). Hence XE is a complete intersection 
of type (2, 0), 4 × (1, 1) in P 5 × P 3.

We are going to show that πE : XE → YE is small. Observe that the fiber of XE → P 3 over a point 
P ∈ P 3 is determined by the system

L1(P ) = · · · = L4(P ) = Q = 0,

where Li =
∑5

j=0 lijzj are of type (1, 1) with coefficients being linear forms lij on P 3 and Q ∈ H0(OP5(2)). 
Note that Gr is the zero locus of Q.

Let V ⊆ P 5 × P 3 be the complete intersection fourfold defined by L1, · · · , L4, i.e., it is defined by a 
general section of H0(OP5(1) � OP3(1)4). The section corresponds to a general morphism
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Table 4
The intersection numbers on XF .

L3 L2 · H L · H2 H3 L · c2(TZ) H · c2(TZ) # of ODPs
70 40 20 8 100 56 40

τ : O4
P3(−1) → O6

P3

defined by the matrix [lij ]t. Let qV be the restriction of the projection P 5 × P 3 → P 3 to V . For each 
P ∈ Dk(τ) \Dk−1(τ), the fiber q−1

V (P ) is P (coker τ(P )) ∼= P 5−k for 0 � k � 4. Note that D3(τ) and D2(τ)
have the expected codimension (4 − 3) × (6 − 3) = 3 and (4 − 2) × (6 − 2) = 8 respectively. If XE is chosen 
in general, then D2(τ) = ∅ and D3(τ) consists of (smooth) finitely many points.

Now we have that a fiber of qV : V → P 3 is P 2 (resp. P 1) if P ∈ D3(τ) (resp. P ∈ P 3 \D3(τ)). By the 
fact that XE = V ∩ (Q = 0), the contracting locus of the double cover XE → P 3 has dimension at most 
one. Since XE

πE−−→ YE → P 3 is the Stein factorization of XE → P 3, we conclude that πE is small.
After tensoring F with O(−1), the same conclusion holds for XF . �
There are two involutions over P 3 induced from the natural projections to P 3 on XF and XE . We denote 

the involutions by ιF : XF ��� XF and ιE : XE ��� XE , which fit into the following diagram.

XF
ιF

XF
χ

XE
ιE

XE

YF

2:1

YF D3(σ) YE YE

2:1
P 3 P 3

Our aim is to compute the proper transforms of divisors under these involutions. Applying Proposi-
tion 3.10, we get Table 4.

Lemma 6.4. For the involutions ιF : XF ��� XF and ιE : XE ��� XE , the matrix representations with 
respect to {L•, H•} (• = F or E) are given by

[(ιF )∗] =
[

9 8
−10 −9

]
= [(ι−1

F )∗] and [(ιE)∗] =
[
1 8
0 −1

]
= [(ι−1

E )∗].

Proof. Let ι = ιF . Note that ι∗(L −H) = L −H and write ι∗H = xL + yH. Since ι ∈ Bir(XF ) is small, we 
have {

(L−H) ·H2 = (L−H) · (xL + yH)2

(L−H)2 ·H = (L−H)2 · (xL + yH)
or

{
12 = 30x2 + 40xy + 12y2

8 = 10x + 8y

Since (x, y) = (0, 1) is impossible, the only solution is (x, y) = (8, −9) and the rest is clear.
Note that L3

E = 2, LE ·H2
E = 12, L2

E ·HE = H3
E = 8 and (ιE)∗LE = LE . The proof for ιE is the same as 

above, and is left to the reader. �
Theorem 6.5. Let (M, E , F) = (Gr(2, 4), O4, O(1)4). Then for a general morphism σ : E∨ → F , XF is a 
smooth Calabi–Yau threefold of Picard number 2 with

Nef(XF ) = R�0[L−H] + R�0[H],

such that
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(i) the determinantal contraction πF is induced by |H|;
(ii) |L −H| induces a primitive contraction XF → YF of type I, and the double cover XF → P 3 factors 

through YF ;
(iii) |4H − L| induces a primitive contraction XE → YE of type I, and the double cover XE → P 3 factors 

through YE .

Moreover, the movable cone of XF is given by

Mov(XF ) = R�0[−4L + (10 +
√

30)H] + R�0[4L + (−10 +
√

30)H] (28)

which is covered by nef cones of XF and XE , and there are no more minimal models of XF .

The picture of Mov(XF ) is the following. The rays accumulate to the boundary rays of slopes (−10 −√
30)/4 and (−10 +

√
30)/4.

H

L−H4H − L
8L− 9H31H − 8L89H − 23L 23L− 26H

D3(σ)

XFXE
XFXE

YFYE

XF XE
YEYF

D3(σ)D3(σ)

. . .. .
.(10 +

√
30)H − 4L 4L + (−10 +

√
30)H

Proof. The statement (i) is obvious. Statements (ii) and (iii) follow from Lemma 6.3.
Under the map χ : XF ��� XE , we have χ∗L = −LE + 4HE . Indeed, we can verify that the inequality 

(13) holds as in the proof of Theorem 5.2. In particular, a supporting divisor of XF ��� YE is given by 
4H − L and with respect to ordered bases {LF , HF} and {LE , HE}, we have the matrix

[χ∗] =
[
−1 0
4 1

]
= [(χ−1)∗].

Now, we are going to find the boundary of the movable cone Mov(XF ). Set θ := χ−1 ◦ ιE ◦χ : XF ��� XF . 
From Lemma 6.4 and above, we see that the set

Nef(XF )
⋃

χ∗Nef(XE)
⋃

(ιEχ)∗Nef(XE)
⋃

θ∗Nef(XF )

is given by the rational polyhedral cone

Π := R�0[89H − 23L] + R�0[L−H].

Write � := ιF ◦ θ. From concrete calculations in 2 × 2 matrices, we get that, with respect to the ordered 
basis {LF , HF},

[�∗] = [(χ−1)∗][(ι−1
E )∗][χ∗][(ι−1

F )∗] =
[
−199 −176
770 681

]
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and −4L +(10 +
√

30)H (resp. 4L +(−10 +
√

30)H) is an eigenvector of �∗, corresponding to the eigenvalue 
241 + 44

√
30 > 1 (resp. 241 − 44

√
30 = 1/(241 + 44

√
30)) of �∗. In particular, �∗ is of infinite order.

From the actions of (�±)∗, we see that (�±)∗Π and Π have non-overlapping interior and (�±)∗Π ∪Π is a 
cone. Let us denote by C the union

C =
⋃
n∈Z

(�n)∗Π,

which is a cone and C ⊆ Mov(XF ). Since Π is contained in the r.h.s. of (28) which is spanned by eigenvectors 
of �∗, we find that the closure C coincides with the r.h.s. of (28). On the other hand, let d be a rational 
point of the interior of Mov(XF ). There is an integer m > 0 and an effective movable divisor D such that 
md = [D]. If D is nef, then d ∈ Nef(XF ) ⊆ Π. If D is not nef, we can run the log minimal model program for 
the klt pair (XF , εD), 0 < ε � 1, to find a birational map f such that f∗D is nef. Note that any birational 
map between minimal models is decomposed into finitely many flops [21]. By the shapes of Nef(XF ) and 
Nef(XE), the birational map f must be either XF ��� XF or XF ��� XE .

If f ∈ Bir(XF ), we claim that f = �n ◦ ιF for some n ∈ Z (up to automorphisms of XF). Recall that 
any flopping contraction of a Calabi–Yau manifold is given by a codimension one face of the nef cone. Then 
the claim follows from the shapes of Nef(XF ) and Nef(XE) and fact that θ = ιF ◦ � and � ◦ ιF = ιF ◦ �−1. 
Hence we get that D ∈ (�n−1)∗Π by f∗D ∈ Nef(XF ) and the fact that (ρ−1)∗Π = (ιF )∗Π. To treat the case 
f : XF ��� XE , we may assume that up to birational automorphisms of XF the birational map f is either 
χ or ιE ◦ χ. By the definition of Π, we find that D ∈ Π. Therefore d ∈ C in any case, and hence we get 
Mov(XF ) ⊆ C, which completes the proof. �
Remark 6.6. By the above argument in the proof of Theorem 6.5, we see that the group of birational maps 
of XF is given by Bir(XF ) = Aut(XF ) · 〈�, ιF 〉.

Appendix A. Chern classes of virtual quotient bundles

For the convenience of the reader, we collect some formulas of Chern and Segre classes that we need 
(cf. [13, Example 3.2.7 (a)]). For bundles A and B, we write B∨ for the dual bundle of B,

c(A− B∨) = c(A)/c(B∨) = c(A)s(B∨),

and let ck(A − B∨) be the kth term in this expansion, that is,

ck(A− B∨) =
k∑

i=0
ci(A)sk−i(B∨).

By the definition of Chern and Segre classes, we get s1(B∨) = c1(B) and

s2(B∨) = c1(B)2 − c2(B),

s3(B∨) = c1(B)3 − 2c1(B)c2(B) + c3(B),

s4(B∨) = c1(B)4 − 3c1(B)2c2(B) + 2c1(B)c3(B) + c2(B)2 − c4(B).

Appendix B. Hodge numbers

The aim of this section is to compute the Hodge numbers of the smooth Calabi–Yau threefolds X
obtained in Sections 5 and 6. This can be done by using Koszul complexes or the following known result for 
χtop(X) = 2(h1,1(X) − h2,1(X)) (see, for example, [47, Proposition 2.3] and [37, Example 3.8]).
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Proposition B.1. Let X → Y be a small resolution of Calabi–Yau threefold Y . If Y is smoothable to a smooth 
Calabi–Yau threefold Ỹ , then Y has only ODPs if and only if

χtop(X) − χtop(Ỹ ) = 2|Sing(Y )|.

Moreover, the Hodge numbers are given by h1,1(X) = ρ(X) and

h2,1(Ỹ ) − h2,1(X) = |Sing(Y )| − ρ(X/Y ).

In our situation, Ỹ ∈ | − KM | is a smooth hypersurface in a smooth Fano fourfold M with ρ(M) = 1
and the relative Picard number ρ(X/Y ) is 1. From the Lefschetz hyperplane theorem, we get h1,1(Ỹ ) = 1. 
Hence to find χtop(X) (or, equivalently, h2,1(X)), it is enough to compute χtop(Ỹ ). Note the numbers of 
ODPs are given in Proposition 3.9.

Lemma B.2. With notation as above, we have

χtop(Ỹ ) =
∫
M

c1(TM )c3(TM ) − c1(TM )2c2(TM ).

Proof. By the fact that NỸ /M
∼= O(−KM ) and

0 → TỸ → TM |Ỹ → NỸ /M → 0,

we have [Ỹ ] = c1(TM ) ∩ [M ] in A3(M) and

c3(TỸ ) = (c3(TM ) − c1(TM ).c2(TM ))|Ỹ .

The lemma follows from the Gauss–Bonnet theorem χtop(Ỹ ) =
∫
Ỹ
c3(TỸ ). �

According to the above lemma, our problem reduces to computing the Chern classes of the tangent 
bundles TM . To shorten notation, we use ck1 · c4−k for 

∫
M

c1(TM )kc4−k(TM ).
When M = P 4 or Gr(2, 4), we find that (c1 · c3, c21 · c2) = (50, 250) and (48, 224) respectively. Therefore 

we infer that (χtop(Ỹ ), h2,1(Ỹ )) = (−200, 101) and (−176, 89) respectively.
For the remaining cases, from Lemmas 2.1 and B.2 it follows that

χtop(Ỹ ) = c1 · c3 −
{

18d + 108 if M is del Pezzo,
4d + 96 if M is Mukai.

To compute c1 · c3, let us recall the classification of smooth del Pezzo and Mukai fourfolds of Picard number 
1 (see [16, Theorem 3.3.1 and Section 5.2] and the references given there).

Notation B.3. We will use the symbol Md1,d2,··· ,dk
to denote a general complete intersection hypersurfaces 

of indicated degrees in a given polarized variety.

We state the classification of smooth del Pezzo fourfolds, classified by Fujita (cf. [12] and [16, Theorem 
3.3.1]).

Theorem B.4 ([12]). Let (M, HM ) be a smooth del Pezzo fourfold of degree d = H4
M . Suppose that ρ(M) = 1. 

Then 1 � d � 5 and M is one of the following:
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(i) If d = 1, then M = M6 ⊆ P (14, 2, 3).
(ii) If d = 2, then M = M4 ⊆ P (15, 2).
(iii) If d = 3, then M = M3 ⊆ P 5.
(iv) If d = 4, then M = M2,2 ⊆ P 6.
(v) If d = 5, then M is a 2-codimensional linear section of the Grassmannian Gr(2, 5) ⊆ P 9 in the Plücker 

embedding.

When the Fano fourfold (M, HM ) is Mukai, there is an integer g � 2, called the genus of M , such that 
h0(HM ) = g + 3 and d = 2g − 2 (see [16, Corollary 2.1.14]).

Theorem B.5 ([34]). Let (M, HM ) be a smooth Mukai fourfold of genus g. Suppose that ρ(M) = 1. Then 
2 � g � 10.

(I) If 2 � g � 5, M is one of the following:
(g = 2) M = M6 ⊆ P (15, 3).
(g = 3) M = M4 ⊆ P 5 or M2,4 ⊆ P (16, 2).
(g = 4) M = M2,3 ⊆ P 6.
(g = 5) M = M2,2,2 ⊆ P 7.

(II) If 6 � g � 10, then M is a (n(g) − 4)-codimensional linear section of an n(g)-dimensional smooth 
variety

Σn(g)
2g−2 ⊆ P g+n(g)−2

of degree 2g − 2, which can be described as follows:
(g = 6) Σ6

10 = Q2 ∩ CG ⊆ P 10 is a quadric section of a cone CG ⊆ P 10 over the Grassmannian 
G = Gr(2, 5) ⊆ P 9 in the Plücker embedding.

(g = 7) Σ10
12 = OG+(5, 10) ⊆ P 15 is a connected component of the orthogonal Grassmannian 

OG(5, 10) in the half-spinor embedding.
(g = 8) Σ8

14 = Gr(2, 6) ⊆ P 14 is the Grassmannian Gr(2, 6) in the Plücker embedding.
(g = 9) Σ6

16 = LG(3, 6) ⊆ P 13 is the Lagrangian Grassmannian LG(3, 6) in the Plücker embedding.
(g = 10) Σ5

18 ⊆ P 13 is the subvariety of Gr(5, 7) parameterizing isotropic 5-spaces of a general 4-form 
in C7 in the Plücker embedding.

Remark B.6 (g = 6). Let v ∈ P 10 be the vertex of the cone CG = CGr(2, 5). One can prove that M =
Gr(2, 5) ∩Q2 ∩Λ (under the projection from v) if v is not in the 2-codimensional linear subspace Λ ⊆ P 10. 
For the case v ∈ Λ, the linear space Λ is a cone over P 7 ∼= L ⊆ P 9. Let W := Gr(2, 5) ∩ L. Then M is the 
intersection of the cone CW over W with a quadric Q2 and M → W is a double cover branched along the 
(smooth) intersection of W with a quadric.

For the normal bundle of Σn(g)
2g−2 in the Grassmannian for g = 7, 9, 10, we make the following remarks.

Remark B.7 (g = 7). Recall that OG(5, 10) ⊆ Gr(5, 10) is the zero locus of a global section of the vector 
bundle Sym2(S∨), and OG(5, 10) is a disjoint union of two isomorphic connected components OG±(5, 10). 
Hence the fundamental cycles satisfy

2[Σ10
12] = [OG+(5, 10)] + [OG−(5, 10)] = c15(Sym2(S∨)) ∩ [Gr(5, 10)].

Notice that a hyperplane section of OG+(5, 10) via the Plücker embedding is linearly equivalent to twice 
the hyperplane section of the half-spinor embedding OG+(5, 10) ↪→ P 15 (see [35, Proposition 1.7]).
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Table 5
M is a smooth dP4 with ρ(M) = 1.

F d χtop(XF ) h2,1(XF ) # of ODPs
O(1)3 2 −132 68 12

3 −108 56 18
4 −96 50 24
5 −90 47 30

O(1) ⊕ O(2) 2 −140 72 8
3 −120 62 12
4 −112 58 16
5 −110 57 20

Table 6
M is a smooth dP4 with ρ(M) = 1 and Ỹ ∈
| − KM | is smooth.

d χtop(Ỹ ) h2,1(Ỹ )
2 −156 79
3 −144 73
4 −144 73
5 −150 76

Table 7
M is a smooth Muaki fourfold with ρ(M) = 1, Ỹ ∈ | − KM | is smooth and 
F = O(1)2.

g χtop(Ỹ ) h2,1(Ỹ ) χtop(XF ) h2,1(XF ) # of ODPs
2 −256 129 −252 128 2
3 −176 89 −168 86 4
4 −144 73 −132 68 6
5 −128 65 −112 58 8
6 −120 61 −100 52 10
7 −116 59 −92 48 12
8 −116 59 −88 46 14
9 −116 59 −84 44 16
10 −120 61 −84 44 18

Remark B.8 (g = 9, 10). The Lagrangian Grassmannian LG(3, 6) ⊆ Gr(3, 6) is the zero locus of a global 
section of the vector bundle ∧2(S∨), and Σ5

18 ⊆ Gr(5, 7) is the zero locus of a global section of the vector 
bundle ∧4(S∨).

By Theorems B.4 and B.5, our task now is to compute Chern classes of the tangent bundle of a weighted 
projective space P (a) = P (a0, · · · , am) and the Grassmannian G = Gr(k, n). This follows from the general-
ized Euler exact sequence (see [2, Theorem 12.1])

0 → ΩP(a) →
m⊕
i=0

OP(a)(−ai) → OP(a) → 0,

and TG
∼= S∨ ⊗Q, where S and Q are the universal sub- and quotient bundles.

We are now in position to give tables of the Hodge numbers of the obtained Calabi–Yau XF in Sections 5
and 6 (see the list in Proposition 2.8). Recall that we know that h1,1(Ỹ ) = 1 and h1,1(XF ) = 2. Therefore 
the Hodge number h2,1(Ỹ ) could be computed by the standard tools of intersection theory, Schubert calculus 
(cf. [13, Section 14.7]), the above classification results, and the Hodge number h2,1(XF ) by Proposition B.1
and 3.9. All obtained results are summarized in Tables 5–9.
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Table 8
M = P4 or Gr(2, 4), E = Ork.

M rk F χ(XF ) h2,1(XF ) # of ODPs
P4 5 O(1)5 −100 52 50

4 O(1)3 ⊕ O(2) −108 56 46
3 O(1) ⊕ O(2)2 −112 58 44
3 O(1)2 ⊕ O(3) −132 68 34
2 O(1) ⊕ O(4) −168 86 16
2 O(2) ⊕ O(3) −128 66 36

Gr(2, 4) 4 O(1)4 −96 50 40
3 O(1)2 ⊕ O(2) −108 56 34
2 O(1) ⊕ O(3) −140 72 18
2 O(2) ⊕ O(2) −112 58 32

Table 9
M = P4 or Gr(2, 4), E 
= Ork.

M rk E F χ(XF ) h2,1(XF ) # of ODPs
P4 3 O2 ⊕ O(1) O(1)2 ⊕ O(2) −120 62 40

2 O ⊕ O(1) O(1) ⊕ O(3) −152 78 24
Gr(2, 4) 2 O ⊕ O(1) O(1) ⊕ O(2) −128 66 24
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