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Local and category-theoretical entropies associated with an endomorphism of finite 
length (i.e., with zero-dimensional closed fiber) of a commutative Noetherian local 
ring are compared. Local entropy is shown to be less than or equal to category-
theoretical entropy. The two entropies are shown to be equal when the ring is 
regular, and also for the Frobenius endomorphism of a complete local ring of positive 
characteristic.
Furthermore, given a flat morphism of Cohen–Macaulay local rings endowed with 
compatible endomorphisms of finite length, it is shown that local entropy is 
“additive”. Finally, over a ring that is a homomorphic image of a regular local ring, 
a formula for local entropy in terms of an asymptotic partial Euler characteristic is 
given.
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0. Introduction

All rings in this paper are assumed to be commutative, Noetherian, and with identity element 1. Over 
a commutative ring R we will denote the category of complexes of R-modules by CpRq and the derived 
category of the category of R-modules by DpRq. All homomorphisms of local rings are assumed to be local 
homomorphisms.

In dynamical systems the complexity of an endomorphism in a given category is usually measured by 
numerical invariants known as entropy. Often more than one type of entropy may be available to measure 
the complexity of an endomorphism in a particular category, giving rise to several invariants for the same 
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endomorphism. It is then natural to ask about possible relationships between these invariants. This question 
has been the focus of many papers. A survey of important results, open problems, and conjectures related 
to this question, in the category of compact connected Riemannian manifolds can be found in [13]. This 
question is also the main impetus for our work in Section 2 of this paper, as sketched below:

Let pR, mq be a commutative Noetherian local ring. Two types of entropies can be associated to an 
endomorphism of finite length φ : R Ñ R (see Definition 1.1). On one hand there is the local entropy of φ, 
denoted hlocpφq, defined in [14, Theorem 1]. On the other hand, there is a category-theoretical entropy 
defined in [5, Definition 2.1] for exact endofunctors of a triangulated category with generator. To associate 
this type of entropy to φ, we work in DpRq and note that the strictly full subcategory of DpRq formed 
by perfect complexes with cohomology of finite length, denoted by PerfmpRq, is a triangulated category 
with generator. Furthermore, the restriction of the total derived inverse image functor Lφ› : DpRq Ñ DpRq

to PerfmpRq gives rise to an exact endofunctor of PerfmpRq. This endofunctor has a category-theoretical 
entropy that is denoted by htpLφ

›q. We should remark that htpLφ
›q is, by definition, a function of a real 

variable t. In cases that are of particular interest to us, however, htpLφ
›q turns out to be a constant function. 

For definitions and details related to above statements, see Section 1.
Section 2 of this work studies the relationship between the two entropies introduced above. We prove 

that hlocpφq ď htpLφ
›q for each t P R, and that equality holds when R is regular, and also when φ is the 

Frobenius endomorphism of a complete local ring of positive characteristic; see Corollaries 2.2, 2.6, and 
Theorem 2.4.

Sections 3 and 4 are primarily concerned with further properties of local entropy. Certain invariants of 
local rings, such as dimension and depth satisfy an “additivity” property under flat extensions. That is, given 
a flat homomorphism f : R Ñ S of commutative Noetherian local rings, the difference between dimensions 
(depths) of S and R is equal to the dimension (depth) of the closed fiber of f . Our main result in Section 3, 
Theorem 3.3, is a similar “additivity” property for local entropy, under flat extensions of Cohen–Macaulay 
local rings. To be more precise, given a flat homomorphism f : R Ñ S of Cohen–Macaulay local rings, and 
two endomorphisms of finite length φ : R Ñ R and ψ : S Ñ S, satisfying f ˝ φ “ ψ ˝ f , we prove

hlocpψq “ hlocpφq ` hlocpψq,

where ψ is the endomorphism induced by ψ on the closed fiber of f .
In Section 4, Theorem 4.1, we prove a formula expressing local entropy in terms of an asymptotic partial 

Euler characteristic, under certain conditions. And in Section 5 we list a couple of open problems.
Acknowledgment. We would like to express our gratitude to the referee for his/her detailed comments 

and suggestions that helped make this work more concise.

1. Preliminaries

In this section we recall a number of definitions and basic facts used in this work about local and 
category-theoretical entropies, as well as perfect complexes.

1.1. Local entropy

Definition 1.1 ([14, Definition 1]). A local homomorphism f : R Ñ S of Noetherian local rings is said to be 
of finite length if its closed fiber is of dimension zero.

One can quickly see that a local homomorphism f : pR, mq Ñ pS, nq of Noetherian local rings is of finite 
length if and only if it satisfies any of the following (equivalent) conditions:

(a) fpmqS is n-primary;
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(b) If p is a prime ideal of S such that f´1ppq “ m, then p “ n;
(c) If q is any m-primary ideal of R, then fpqqS is n-primary.

Definition 1.2 ([14, Definition 5]). A local algebraic dynamical system consists of a Noetherian local ring 
pR, mq and an endomorphism of finite length φ : R Ñ R. We will denote this by pR, m, φq. A morphism 
f : pR, m, φq Ñ pS, n, ψq between two local algebraic dynamical systems is a local homomorphism f : R Ñ S

that satisfies the condition ψ ˝ f “ f ˝ φ.

Definition 1.3. Let pR, m, φq be a local algebraic dynamical system and let q be an m-primary ideal of R. 
The local entropy of φ is the real number defined as follows:

hlocpφq “ lim
nÑ8

1
n

log plengthRpR{φn
pqqRqq .

It is shown in [14, Theorems 1, 18] that hlocpφq is well-defined. That is, the limit defining hlocpφq exists, 
and is independent of the m-primary ideal used. In fact, local entropy can be calculated using any module 
of finite length, and is non-negative.

Example 1.4. Let k be a field and R “ k�X1, . . . Xd�. Suppose ξ1, . . . , ξd are positive integers and φ : R Ñ R

is the endomorphism that maps Xi ÞÑ Xξi
i for 1 ď i ď d. Then hlocpφq “

řd
i“1 logpξiq. Indeed, as a k-vector 

space, R{φnpmqR has a basis consisting of monomials Xi1
1 ¨ ¨ ¨Xid

d , where 0 ď ij ă ξni . This implies that 
lengthR pR{φnpmqRq “

śd
i“1 ξ

n
i , and hence the local entropy of φ is the stated one.

1.2. Category-theoretical entropy

Let T be a triangulated category. Recall that a subcategory of T is called thick if it is triangulated, 
contains every object isomorphic to any of its objects, and contains all direct summands of its objects 
(cf. [17, Definition 2.1.6, p. 74]). An object G of T is called a (classical) generator if the smallest thick 
subcategory of T containing G is equal to T itself (cf. [2, Section 2.1]). To say that G is a generator of T is 
equivalent to saying that for every object E of T there is an object E1 and a tower of distinguished triangles

E0 E1 E2 ¨ ¨ ¨ Ep´1 Ep – E
À

E1

Grn1s Grn2s ¨ ¨ ¨ Grnps

(1.1)

with E0 “ 0, p ě 0 and ni P Z.

Definition 1.5 ([5, Definition 2.1]). Let G and E be objects of a triangulated category T. Let t be a 
real number. To each tower of distinguished triangles of the form (1.1) we associate the exponential sum 
řp

i“1 e
nit. Let St Ă R be the set of all such sums for a given t. The complexity of E with respect to G is 

the function δtpG, Eq : R Ñ r0, 8s of t, given by δtpG, Eq “ inf St.

Note that δtpG, Eq “ `8 if and only if E does not lie in the thick subcategory generated by G. Also if 
F is an exact functor from T to another triangulated category, then since exact functors preserve triangles 
(and hence towers), the following inequality holds:

δt pF pGq, F pEqq ď δtpG,Eq. (1.2)
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Definition 1.6 ([5, Definition 2.5]). Let F : T Ñ T be a triangulated endofunctor of a triangulated category 
T with a generator G. The entropy of F is the function htpF q : R Ñ r´8, ̀ 8q of t, given by

htpF q “ lim
nÑ8

1
n

log δt pG,Fn
pGqq .

It is shown in [5, Lemma 2.5] that htpF q is well-defined, i.e., the limit defining htpF q exists and is 
independent of the choice of generator G.

1.3. Perfect complexes with cohomology of finite length

In this subsection we have collected a number of definitions and facts about the category of perfect 
complexes over a commutative ring, and its strictly full subcategory formed by perfect complexes with 
cohomology of finite length. The main reference for this subsection is [1].

Definition 1.7. Let R be a commutative ring. A strictly perfect complex on R is a bounded complex of 
projective R-modules of finite type.

The statement that follows is well-known and will be used implicitly in this work: if P ‚ and E‚ are 
complexes of R-modules, with P ‚ strictly perfect, then the two conditions below are equivalent:

1) There exists a quasi-isomorphism P ‚ „
Ñ E‚ in CpRq;

2) P ‚ and E‚ are isomorphic in DpRq.

Definition 1.8. Let R be a commutative ring. A complex E‚ of R-modules is perfect if it has a left res-
olution by a strictly perfect complex, that is, if there exists a strictly perfect complex P ‚ on R and a 
quasi-isomorphism P ‚ „

Ñ E‚ in CpRq. Equivalently, E‚ is perfect if in DpRq it is isomorphic to a strictly 
perfect complex. The category of perfect complexes over R, denoted by PerfpRq hereafter, is the strictly 
full subcategory of DpRq formed by perfect complexes.

It is well-known (cf. [1, Exposé I, Propositions 4.10, 4.17]) that PerfpRq is a thick subcategory of DpRq.
Let f : R Ñ S be a homomorphism of commutative rings. The inverse image functor f› : R-Mod Ñ

S-Mod is the functor that sends an R-module E to the S-module S bR E (the notation f› is used in [4, 
II.5.1, p. 82]). This functor gives rise to an exact functor f› : KpRq Ñ KpSq of the homotopy categories of 
complexes that sends a complex E‚ of R-modules to the complex S bR E‚ of S-modules. It is well-known 
(cf. [1, Exposé I, Corollaire 4.19.1]) that the total derived inverse image functor Lf› : DpRq Ñ DpSq, by 
restriction induces a functor PerfpRq Ñ PerfpSq. We should remark here that the total derived inverse 
image functor Lf› was generally only defined as a functor D´pRq Ñ D´pSq in [1,9]. Spaltenstein extended 
the definition of Lf› to an exact functor DpRq Ñ DpSq, using K-flat complexes (see [21, Proposition 6.7]). 
A complex E‚ in KpRq is K-flat if for every acyclic complex B‚ in KpRq, the complex E‚ bR B‚ is acyclic. 
Spaltenstein showed that every complex G‚ in KpRq has a left K-flat resolution, i.e., there exists a K-flat 
complex E‚ and a quasi-isomorphism E‚ „

Ñ G‚. Moreover, Lf›pG‚q can be computed by applying f› to 
any left K-flat resolution of G‚ (see [21, Proposition 5.6]). Since any bounded complex of flat R-modules is 
K-flat (see [3, § 4.3, Lemme 1, p. 66]), if an object G‚ of DpRq has a left resolution E‚ „

Ñ G‚ by a bounded 
flat complex E‚ (perfect complexes, for instance), then Lf›pG‚q can be represented by f›pE‚q.

Definition 1.9 (cf. [6, p. 157]). Let R be a commutative ring and E‚ a complex of R-modules. The co-
homological support of E‚ is the subspace SupphpE‚q Ď SpecR of those prime ideals p P SpecR at 
which the complex E‚

p of Rp-modules is not acyclic. Equivalently, SupphpE‚q “
Ť

nPZ
SuppHnpE‚q, as 

HipE‚ bR Rpq – HipE‚q bR Rp, for all i (see [3, § 4.2, Corollaire 2, p. 66]).
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Over a Noetherian local ring pR, mq we will denote by PerfmpRq the strictly full subcategory of PerfpRq

formed by perfect complexes E‚ with SupphE‚ Ď tmu. That is, a perfect complex E‚ is an object of 
PerfmpRq if and only if HnpE‚q is an R-module of finite length for every n P Z. One can quickly verify 
(and it is well-known) that PerfmpRq is a thick subcategory of PerfpRq. Furthermore, every nonzero object 
in PerfmpRq is a generator, in the sense defined in Section 1.2. This follows from the following result, 
first proved in [10, Proof of Theorem 11] (see also [16, Lemma 1.2]): “Let R be a commutative Noetherian 
ring and let E‚, G‚ P PerfpRq be two perfect complexes. If SupphpE‚q Ď SupphpG‚q, then E‚ is in the 
smallest thick subcategory of PerfpRq containing G‚.” Thus, if G‚ P PerfmpRq is a nonzero object and 
〈G‚〉 is the smallest thick subcategory of PerfpRq containing G‚, then PerfmpRq Ď 〈G‚〉. But we also 
have 〈G‚〉 Ď PerfmpRq, as can be checked either directly or using the fact that PerfmpRq itself is a thick 
subcategory of PerfpRq.

Proposition 1.10. Let f : pR, mq Ñ pS, nq be a homomorphism of finite length of Noetherian local rings. Then 
Lf› : PerfpRq Ñ PerfpSq, by restriction induces an exact functor Lf› : PerfmpRq Ñ PerfnpSq.

Proof. Let E‚ be an object of PerfmpRq. Then Lf›pE‚q is an object of PerfpSq. We need to show that 
SupphpLf›pE‚qq Ď tnu. Let q P SpecpSq be a non maximal prime ideal and let p “ f´1pqq. Then p ‰ m, as 
f is a homomorphism of finite length. We have

pLf›
pE‚

qqq “ pS b
L

R E‚
qq – Sq b

L

Rp
E‚

p.

As the complex E‚
p is an acyclic object of PerfpRpq, it follows quickly from the Künneth Formula (see [3, 

§ 4.7, Corollaire 4, p. 79]) that the complex SqbL

Rp
E‚

p is also acyclic. This shows that Supphpf›pP ‚qq Ď tnu, 
as wanted. l

In the rest of this paper we will refer to the functor Lf› : PerfmpRq Ñ PerfnpSq described in Proposi-
tion 1.10 as the exact functor induced by f .

2. Relationships between local and category-theoretical entropies

Lemma 2.1. Let pR, mq be a Noetherian local ring. Let G‚ P PerfmpRq be a generator. By the definition of 
PerfpRq there exists a smallest non negative integer N such that HjpG‚q “ 0, for | j |ą N . Let

B :“ maxtlengthR

`

Hj
pG‚

q
˘

| ´N ď j ď Nu.

Then for any object E‚ in PerfmpRq, any integer �, and any real number t:

lengthR

`

H�
pE‚

q
˘

ď Be�teN |t|
¨ δtpG

‚, E‚
q.

Proof. As H0p´q is a cohomological functor (see, e.g., [11, Definition 1.5.2, p. 39]), it quickly follows that 
for any distinguished triangle X‚ Ñ Y ‚ Ñ Z‚ Ñ X‚r1s in PerfmpRq and any integer �:

lengthR

`

H�
pY ‚

q
˘

ď lengthR

`

H�
pX‚

q
˘

` lengthR

`

H�
pZ‚

q
˘

.

Using this inequality one can immediately check that in each tower of distinguished triangles of PerfmpRq

for E‚, of the form displayed in (1.1), for any integer �:
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lengthR

`

H�
pE‚

q
˘

ď

p
ÿ

i“1
lengthR

`

H�
pG‚

rnisq
˘

“

p
ÿ

i“1
lengthR

`

H�`nipG‚
q
˘

.

Let S� :“ ti P N | ´N ď � ̀ ni ď Nu. Then

lengthR

`

H�
pE‚

q
˘

ď

p
ÿ

i“1
lengthR

`

H�`nipG‚
q
˘

ď B | S� | . (2.1)

Next, noting that ex ě e´|x| for any real number x, we have

p
ÿ

i“1
ep�`niqt

ě

p
ÿ

i“1
e´|p�`niqt|

ě
ÿ

iPS�

e´|p�`niqt|

ě e´N |t|
| S� | .

Combining this inequality with (2.1), we obtain

length
`

H�
pE‚

q
˘

ď Be�teN |t|
¨

p
ÿ

i“1
enit.

As δtpG‚, E‚q “ inf t
řp

i“1 e
nit | the ni’s appear in a tower of the form (1.1)u, the conclusion follows. l

Corollary 2.2. Let pR, m, φq be a local algebraic dynamical system (see Definition 1.2) and let Lφ› :
PerfmpRq Ñ PerfmpRq be the exact functor induced by φ. Then the inequality hlocpφq ď htpLφ

›q holds 
for any real number t.

Proof. Let tx1, . . . , xdu be a system of parameters of R and let q be the ideal of R that they generate. Let 
G‚pxq be the Koszul complex over R constructed from x1, . . . , xd. (The nonzero modules in this complex 
are situated in degrees ´d to 0.) As G‚pxq is a bounded complex of free modules, for any positive integer 
n the complex Lφn›

pG‚pxqq can be represented by φn› pG‚pxqq, which is the Koszul complex G‚ pφnpxqq

over R, constructed from φnpx1q, . . . , φnpxdq. Thus, H0pLφn›
pG‚pxqqq “ R{φnpqqR. We take G‚pxq as a 

generator for the triangulated category PerfmpRq and apply Lemma 2.1 with � “ 0 and Lφn›
pG‚pxqq as 

E‚, to obtain

lengthR pR{φn
pqqRq ď BeN |t|

¨ δt pG‚
pxq,Lφn›

pG‚
pxqqq , (2.2)

where B and N are constants defined in that lemma. Now the desired inequality hlocpφq ď htpLφ
›q follows 

by taking the logarithm, dividing by n, and passing to the limit as n Ñ 8 on both sides of (2.2). l

Remark 2.3. In a Cohen–Macaulay Noetherian local ring of dimension d, a sequence of d elements in the 
maximal ideal form a system of parameters if and only if they form a (maximal) regular sequence. For a 
proof of this fact see [15, Theorem 17.4]. We will use this fact a few times in this paper, for instance in 
proofs of Theorems 2.4 and 3.3.
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Theorem 2.4. Let pR, m, φq be a local algebraic dynamical system (see Definition 1.2). Assume that R is 
regular of dimension d, and let Lφ› : PerfmpRq Ñ PerfmpRq be the exact functor induced by f . Then 
htpLφ

›q is constant and equal to hlocpφq.

Proof. As R is regular, every R-module of finite type has finite projective dimension and therefore, consid-
ered as a complex concentrated in degree zero, is an object of PerfpRq. Let k “ R{m be the residue field 
of R. We make two claims:

Claim 1: if E is an R-module of finite type, then δtpk, Eq ď lengthRpEq;
Claim 2: if n ě 0, then Lφn›pkq can be represented by R{φnpmqR.

Let us first prove the theorem assuming these claims: we take k as generator for the triangulated category 
PerfmpRq. Using Claims 1 and 2 above, for any integer n ě 0 we can write

δt pk,Lφn›
pkqq “ δtpk,R{φn

pmqRq

ď lengthRpR{φn
pmqRq.

Taking the logarithm, dividing by n, and passing to the limit as n Ñ 8 in the previous inequality, we get 
htpLφ

›q ď hlocpφq. On the other hand, Corollary 2.2 gives us the reverse inequality hlocpφq ď htpLφ
›q. Thus, 

htpLφ
›q “ hlocpφq. We now prove the claims:

Proof of Claim 1: If lengthRpEq “ 8 then the claim holds trivially. Assume lengthRpEq ă 8. We will use 
induction on lengthRpEq. The claim clearly holds if lengthRpEq “ 1, as 0 Ñ k Ñ k Ñ 0 is a distinguished 
triangle in PerfmpRq, showing that δtpk, kq ď 1. Suppose now that lengthRpEq ą 1. Then there is an exact 
sequence of R-modules

0 Ñ E1 Ñ E Ñ k Ñ 0

with lengthRpE1q “ lengthRpEq ´ 1. This exact sequence gives rise to a distinguished triangle E1 Ñ E Ñ

k Ñ E1r1s in PerfmpRq (cf. [11, Proposition 1.7.5, p. 46]). Attaching this distinguished triangle (or its 
direct sum with a distinguished triangle of the form E1 Ñ E1 Ñ 0 Ñ E1r1s, if necessary) to the right end of 
any tower of distinguished triangles for E1 of the form displayed in (1.1), will get us a tower of distinguished 
triangles for E, from which it is clear that δtpk, Eq ď δtpk, E1q ̀ 1. The claim now follows from the induction 
hypothesis.

Proof of Claim 2: let tx1, . . . , xdu be a regular system of parameters of R, that is, a set of d elements that 
generate the maximal ideal m. Let G‚pxq be the Koszul complex over R constructed from x1, . . . , xd (the 
nonzero modules in this complex are situated in degrees ´d to 0). Considering k as a complex concentrated 
in degree zero, there is a quasi-isomorphism G‚pxq „

Ñ k. Hence, for any positive integer n the complex 
Lφn›pkq can be represented by φn›pG‚pxqq, which is the Koszul complex G‚ pφnpxqq over R, constructed 
from φnpx1q, . . . , φnpxdq. As φ (and hence φn) is of finite length, the ideal generated by φnpx1q, . . . , φnpxdq is 
m-primary, i.e., tφnpx1q, . . . , φnpxdqu is a system of parameters of R. By Remark 2.3 then, φnpx1q, . . . , φnpxdq

is a regular sequence. Thus, HipG‚ pφnpxqqq “ 0 for i ‰ 0, and H0pG‚ pφnpxqqq “ R{φnpmqR. Hence, 
considering R{φnpmqR as a complex concentrated in degree zero, there is a quasi-isomorphism

G‚
pφn

pxqq
„
Ñ R{φn

pmqR.

That is, Lφn›pkq can also be represented by R{φnpmqR, as claimed. l
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Proposition 2.5. Suppose f : pR, m, φq Ñ pS, n, ψq is a morphism of local algebraic dynamical systems, with 
f : R Ñ S of finite length. Let Lφ› : PerfmpRq Ñ PerfmpRq and Lψ› : PerfnpSq Ñ PerfnpSq be the exact 
functors induced by φ and ψ, respectively. Then:

a) htpLψ
›q ď htpLφ

›q.
b) If in addition R is regular and hlocpφq “ hlocpψq, then htpLψ

›q is constant and equal to hlocpψq.

Proof. a) Let tx1, . . . , xdu be a system of parameters of R, where d “ dimR, and let yi “ fpxiq for 1 ď i ď d. 
Let G‚

Rpxq and G‚
Spyq be the Koszul complexes over R and S, respectively, constructed from x1, . . . , xd and 

y1, . . . , yd. We take G‚
Rpxq and G‚

Spyq as generators of the triangulated categories PerfmpRq and PerfnpSq, 
respectively. Let Lf› : PerfmpRq Ñ PerfnpSq be the exact functor induced by f . As f›pG‚

Rpxqq “ G‚
Spyq

and Lf›pG‚
Rpxqq can be represented by the complex f›pG‚

Rpxqq, we can write

Lf›
pG‚

Rpxqq “ G‚
Spyq. (2.3)

The condition f ˝ φ “ ψ ˝ f satisfied by f for being a morphism of local algebraic dynamical systems gives 
us

Lf›
˝ Lφ›

“ Lψ›
˝ Lf›. (2.4)

Now for any integer n ě 1 and any real number t, using equalities (2.3) and (2.4) we can write:

δt
`

G‚
Spyq,Lψn›

pG‚
Spyqq

˘

“ δt pLf›
pG‚

Rpxqq ,Lψn›
pLf›

pG‚
Rpxqqqq

“ δt pLf›
pG‚

Rpxqq ,Lf›
pLφn›

pG‚
Rpxqqqq

ď δt pG‚
Rpxq,Lφn›

pG‚
Rpxqqq ,

where the last inequality holds by (1.2). By taking the logarithm, dividing by n, and passing to the limit 
as n Ñ 8 we obtain htpLψ

›q ď htpLφ
›q.

b) Combining part a) with the result of Corollary 2.2 we obtain:

hlocpψq ď htpLψ
›
q ď htpLφ

›
q.

If R is regular, then htpLφ
›q “ hlocpφq by Theorem 2.4. Since hlocpφq “ hlocpψq by assumption, we conclude 

that htpLψ
›q is constant and equal to hlocpψq. l

Corollary 2.6. Let pS, nq be an arbitrary complete Noetherian local ring of positive characteristic p and 
dimension d, let fS : S Ñ S be the Frobenius endomorphism of S, and let Lf›

S : PerfnpSq Ñ PerfnpSq be 
the exact functor induced by fS. Then htpLf

›
Sq is constant and equal to d ̈ logppq.

Proof. Let tx1, . . . , xdu be a system of parameters of S, and k the residue field of S. Recall that S is 
a module-finite extension of the regular ring R :“ k�X1, . . . , Xd� via the injective ring homomorphism 
η : R Ñ S that maps Xi onto xi, for 1 ď i ď d (cf. [15, Theorem 29.4, p. 225]). Let fR be the Frobenius 
endomorphism of R. By [14, Theorem 1] the local entropy of the Frobenius endomorphism of a Noetherian 
local ring of characteristic p ą 0 and of dimension d is equal to d ̈ logppq. Thus, hlocpfRq “ hlocpfSq “ d ̈ log p. 
Since η ˝ fR “ fS ˝ η, the result follows from Proposition 2.5. l
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3. Additivity of local entropy under flat extensions

Certain invariants of local rings, such as dimension and depth, are “additive” under flat extensions. That 
is, if f : pR, mq Ñ S is a flat homomorphism of commutative Noetherian local rings, then

dimS “ dimR ` dimS{fpmqS, (3.1)

and the same equation holds replacing dimension with depth. Craig Huneke asked us whether local entropy 
satisfies a similar “additivity” property under flat extensions. To be more precise, let f : pR, m, φq Ñ pS, n, ψq

be a morphism of local algebraic dynamical systems. Then by definition of such morphisms, the relation 
ψ ˝ f “ f ˝ φ holds, from which it quickly follows that the ideal fpmqS is ψ-stable, that is,

ψ pfpmqSq Ď fpmqS.

Thus, ψ induces an endomorphism of finite length ψ : S{fpmqS Ñ S{fpmqS on the closed fiber of f . Under 
these settings, Huneke’s question can be formulated as follows:

Question 1. If f is flat, does it hold that hlocpψq “ hlocpφq ̀ hlocpψq?

If dimR “ dimS, then Question 1 has an affirmative answer. This is proved in [14, Corollary 16 and 
Proposition 20]. Question 1 has also an affirmative answer when φ and ψ, respectively, are the Frobenius 
endomorphisms of two local rings R and S of characteristic p ą 0. Indeed, as the local entropy of the 
Frobenius endomorphism of a local ring of characteristic p ą 0 and of dimension d is equal to d ¨ log p
(see [14, Theorem 1]), in this case the equality in Question 1 quickly reduces to (3.1), which holds, since f
is flat (see, e.g., [15, Theorem 15.1]).

Our main goal in this section is to give an affirmative answer to Question 1, in Theorem 3.3, in the special 
case when S is Cohen–Macaulay. The question remains open in the general non-Cohen–Macaulay case.

We will use the following Flatness Criterion in the proof of Theorem 3.3, as well as in Example 3.4. 
See [15, Corollary to Theorem 22.5] for a proof of this criterion.

Theorem (Flatness Criterion). Let f : pR, mq Ñ pS, nq be a local homomorphism of Noetherian local rings 
and let M be an S-module of finite type. For y1, . . . , yn P n write yi for the images of yi in S{fpmqS. Then 
the following conditions are equivalent:

a) y1, . . . , yn is an M -regular sequence and M{ 
řn

1 yiM is flat over R;
b) y1, . . . , yn is an pM{fpmqMq-regular sequence and M is flat over R.

We will also need the following elementary statement:

Proposition 3.1. Let f : pR, mq Ñ S be a local homomorphism of finite length of Noetherian local rings. Let 
M be an R-module of finite length. Then

a) M bR S is of finite length as an S-module.
b) lengthSpM bR Sq ď lengthRpMq ̈ lengthSpS{fpmqSq.
c) If f is flat, then lengthSpM bR Sq “ lengthRpMq ̈ lengthSpS{fpmqSq.

Proof. By induction on lengthRpMq. l

We begin with showing that a morphism of local algebraic dynamical systems gives rise to an inequality 
between local entropies:
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Proposition 3.2. Suppose f : pR, m, φq Ñ pS, n, ψq is a morphism of local algebraic dynamical systems and let 
ψ : S{fpmqS Ñ S{fpmqS be the endomorphism induced by ψ (see the paragraph before Question 1). Then 
the following inequality holds:

hlocpψq ď hlocpφq ` hlocpψq.

Proof. The composition of maps R f
Ñ S Ñ S{ψnpnqS gives a local homomorphism of finite length R Ñ

S{ψnpnqS for each integer n ě 0. Applying Proposition 3.1, we can write:

lengthSpS{ψn
pnqSq “ lengthS ppR{φn

pmqRq bR pS{ψn
pnqSq

ď lengthRpR{φn
pmqRq ¨ lengthSpS{pfpmqS ` ψn

pnqSqq.

We obtain the desired inequality by applying logarithm, dividing by n and taking limits as n Ñ 8. l

We now give an affirmative answer to Question 1 in the particular case when S is Cohen–Macaulay:

Theorem 3.3. Suppose f : pR, m, φq Ñ pS, n, ψq is a flat morphism of local algebraic dynamical systems and 
let ψ : S{fpmqS Ñ S{fpmqS be the endomorphism induced by ψ (see the paragraph before Question 1). If S
is Cohen–Macaulay, then

hlocpψq “ hlocpφq ` hlocpψq. (3.2)

Proof. As f is flat, the Cohen–Macaulayness of S implies that the rings R and S{fpmqS are also Cohen–
Macaulay (see, e.g., [15, Corollary to Theorem 23.3]). Since S{fpmqS is Cohen–Macaulay, there exists a 
(non-unique) sequence of elements y1, . . . , yd1 P n of length d1 “ dimpS{fpmqSq, whose images in S{fpmqS

form an pS{fpmqSq-regular sequence. Note that by the Flatness Criterion stated earlier, y1, . . . , yd1 is an 
S-regular sequence. Let q1 Ă S be the ideal generated by y1, . . . , yd1 . We claim that for any integer n ě 0, 
the ring S{ψnpq1qS is flat over R via the composition of maps

R
f

Ñ S Ñ S{ψn
pq1

qS. (3.3)

As R f
Ñ S is flat, the claim will be established by the Flatness Criterion, if we can show that the images of 

ψnpy1q, . . . , ψnpyd1 q in S{fpmqS form an pS{fpmqSq-regular sequence. These images coincide with elements

ψ
n

py1q, . . . , ψ
n

pyd1 q,

where yi is the image of yi in S{fpmqS. That ψn
py1q, . . . , ψ

n
pyd1 q is an pS{fpmqSq-regular sequence is an 

immediate consequence of Remark 2.3, the fact that y1, . . . , yd1 is a maximal pS{fpmqSq-regular sequence, 
and the fact that ψn is an endomorphism of finite length of S{fpmqS (hence, the image under ψn of any 
system of parameters is again a system of parameters in S{fpmqS).

Now let x1, . . . , xd P m be an R-regular sequence of length d “ dimR and let q Ă R be the ideal 
generated by x1, . . . , xd. By Remark 2.3, q is a parameter ideal of R. By the flatness of S{q1 over R via 
the composition of maps shown in (3.3) (taking n “ 0), the images of fpx1q, . . . , fpxdq in S{q1 form an 
pS{q1q-regular sequence. This means y1, . . . , yd1 , fpx1q, . . . , fpxdq is an S-regular sequence. Moreover, since 
f is flat,

d ` d1
“ dimR ` dimpS{fpmqSq “ dimS
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(see, e.g., [15, Theorem 15.1]). Hence, ty1, . . . , yd1 , fpx1q, . . . , fpxdqu is a system of parameters in S, by 
Remark 2.3. Let Q Ă S be the ideal generated by

y1, . . . , yd1 , fpx1q, . . . , fpxdq.

We note that for any integer n ě 0:

R

φnpqqR
bR

S

ψnpq1qS
–

S

fpφnpqqqS ` ψnpq1qS
–

S

ψnpQqS
, (3.4)

where the last isomorphism quickly follows from the fact that ψ ˝ f “ f ˝ φ. Since S{ψnpq1qS is flat over R
and

dimpS{ψn
pq1

qSq “ dimS ´ d1
“ dimS ´ dimpS{fpmqSq “ dimR,

the homomorphism R Ñ S{ψnpq1qS obtained by composing the maps given in (3.3) is in fact, of finite 
length. Hence, Proposition 3.1-c) applies and from (3.4) we obtain

lengthS pS{ψn
pQqSq “ lengthS

´ R

φnpqqR
bR

S

ψnpq1qS

¯

“ lengthR pR{φn
pqqRq ¨ lengthS

`

S{rfpmqS ` ψn
pq1

qSs
˘

.

After applying logarithm to both sides, dividing by n and taking limits as n Ñ 8, we obtain (3.2). l

Example 3.4. In this example we will apply Theorem 3.3 to calculate local entropy of a specific en-
domorphism. The local endomorphism of the ring pZ{2Zq�X, Y, W, U� that maps X, Y, W and U to 
X3 ` U3, Y 3, W 5 ` X2 and XU2, respectively, is of finite length, because if p is a minimal prime ideal 
of pX3 `U3, Y 3, W 5 `X2, XU2q, then as one can quickly see, p “ pX, Y, W, Uq. One can also verify quickly 
that the ideal pU6, Y 3 `X2q is stable under this endomorphism. Thus, we obtain an induced ring endomor-
phism of finite length:

ψ : pZ{2Zq�X,Y,W,U�

pU6, Y 3 ` X2q
Ñ

pZ{2Zq�X,Y,W,U�

pU6, Y 3 ` X2q
.

To abbreviate notation we will write S for the ring pZ{2Zq�X, Y, W, U�{pU6, Y 3 ` X2q. Our goal in this 
example is to calculate hlocpψq, the local entropy of ψ. We will do this by constructing a flat homomorphism 
into the ring S and then using Theorem 3.3. Note that S is Cohen–Macaulay by virtue of being a complete 
intersection.

Let R “ pZ{2Zq�T � and let φ : R Ñ R be the local endomorphism that maps T to T 3. Let f : R Ñ S be 
the local homomorphism such that fpT q “ y, where y is the image of Y in S. It is evident that f ˝φ “ ψ ˝f . 
From the Flatness Criterion that was stated earlier, it quickly follows that f is flat. Hence, by Theorem 3.3

hlocpψq “ hlocpφq ` hlocpψq

“ logp3q ` hlocpψq,

where as usual ψ is the endomorphism induced by ψ on S{yS. (That hlocpφq “ logp3q can be calculated 
quickly, using the definition of local entropy, as seen in Example 1.4.) The ring S{yS is isomorphic to 
S1 :“ pZ{2Zq�X, W, U�{pU6, X2q and ψ : S1 Ñ S1 maps x, w and u to u3, w5 and xu2, respectively, where 
x, w and u are images of X, W and U in S1. In order to calculate hlocpψq, we construct another flat 
homomorphism, this time into S1. Let R1 :“ pZ{2Zq�Z� and let φ1 : R1 Ñ R1 be the local endomorphism 
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that maps Z to Z5. Let f 1 : R1 Ñ S1 be the local homomorphism such that f 1pZq “ W . Again it is evident 
that f ˝ φ “ ψ ˝ f and the flatness of f 1 quickly follows from the Flatness Criterion that was stated earlier. 
By Theorem 3.3, and using the fact that the local entropy of an endomorphism of a zero-dimensional local 
ring is zero ([14, Corollary 16]), we quickly see that hlocpψq “ logp5q. Hence, hlocpψq “ logp3q ̀ logp5q.

4. Local entropy as an asymptotic partial Euler characteristic

When there is a surjective morphism f : pR, m, φq Ñ pS, n, ψq of local algebraic dynamical systems with 
R regular, then hlocpψq, the local entropy of ψ, can be expressed as an asymptotic “partial intersection 
multiplicity”, as stated in the next theorem.

Theorem 4.1. Let f : pR, m, φq Ñ pS, n, ψq be a surjective morphism of local algebraic dynamical systems, 
that is, S is the homomorphic image of R under f . Assume that ker f ‰ p0q and that R is regular of 
dimension d. Then the following equality holds:

hlocpψq “ lim
nÑ8

1
n

log
´

d
ÿ

i“1
p´1q

i´1 lengthR

`

TorRi
`

R{φn
pmqR,S

˘˘

¯

. (4.1)

Proof. The R-module 
`

R{φnpmqR
˘

bR S is of finite length and

dimpR{φn
pmqRq ` dimS “ dimS ă dimR.

By the vanishing part of Serre’s intersection multiplicity [20, Theorem 1, p. 106] proven for arbitrary regular 
local rings in [18], [19] and independently in [7], [8]:

d
ÿ

i“0
p´1q

i lengthR

`

TorRi
`

R{φn
pmqR,S

˘˘

“ 0.

Since f is a surjective morphism of local algebraic dynamical systems, we have

fpφn
pmqRqS “ ψn

pfpmqSqS “ ψn
pnqS.

Hence, there are R-module isomorphisms

TorR0
`

R{φn
pmqR,S

˘

– pR{φn
pmqRq bR S – S{ψn

pnqS.

We then obtain

lengthS

`

S{ψn
pnqS

˘

“

d
ÿ

i“1
p´1q

i´1 lengthR

`

TorRi
`

R{φn
pmqR,S

˘˘

. (4.2)

The result follows by applying logarithm to both sides of (4.2) and letting n Ñ 8. l

We should note that the alternating sum appearing on the right-hand sides of (4.1) and (4.2) is the 
partial Euler characteristic χR

1 pR{φnpmqR,Sq with the notation of [12]).
Theorem 4.1 can be applied to any local algebraic dynamical system, in which the local ring is of equal 

characteristic, as described in the next example.
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Example 4.2. Let pS, n, ψq be a local algebraic dynamical system and assume that S is of equal characteristic 
and not regular. Suppose n can be generated by d elements. Let Ŝ be the n-adic completion of S and 
let ψ̂ : Ŝ Ñ Ŝ be the endomorphism induced by ψ. Then by Cohen’s Structure Theorem there exists a 
surjective homomorphism π : R “ k�X1, . . . , Xd� � Ŝ, where k is the residue field of S. By [14, Theorem 3]
the endomorphism ψ̂ can be lifted to an endomorphism of finite length φ : R Ñ R in such a way that 
π ˝φ “ ψ̂ ˝ π. Since S Ñ Ŝ is flat, by [14, Proposition 20] we have hlocpψq “ hlocpψ̂q. Thus, letting m be the 
maximal ideal of R, by Theorem 4.1 the following equality holds:

hlocpψq “ lim
nÑ8

1
n

log
´

d
ÿ

i“1
p´1q

i´1 lengthR

`

TorRi
`

R{φn
pmqR, Ŝ

˘˘

¯

.

5. Open problems

We list a couple of open problems here that are of particular interest to us.

Problem 1. In the context of Theorem 3.3 (with or without assuming Cohen–Macaulayness of S), is 
htpLψ

›q “ htpLφ
›q ̀ htpLψ

›
q?

Problem 2. Does Theorem 2.4 extend to Cohen–Macaulay rings?
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