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0. Introduction

All rings in this paper are assumed to be commutative, Noetherian, and with identity element 1. Over

a commutative ring R we will denote the category of complexes of R-modules by C(R) and the derived

category of the category of R-modules by D(R). All homomorphisms of local rings are assumed to be local

homomorphisms.

In dynamical systems the complexity of an endomorphism in a given category is usually measured by

numerical invariants known as entropy. Often more than one type of entropy may be available to measure

the complexity of an endomorphism in a particular category, giving rise to several invariants for the same
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endomorphism. It is then natural to ask about possible relationships between these invariants. This question
has been the focus of many papers. A survey of important results, open problems, and conjectures related
to this question, in the category of compact connected Riemannian manifolds can be found in [13]. This
question is also the main impetus for our work in Section 2 of this paper, as sketched below:

Let (R,m) be a commutative Noetherian local ring. Two types of entropies can be associated to an
endomorphism of finite length ¢: R — R (see Definition 1.1). On one hand there is the local entropy of ¢,
denoted hjoc(@), defined in [14, Theorem 1]. On the other hand, there is a category-theoretical entropy
defined in [5, Definition 2.1] for exact endofunctors of a triangulated category with generator. To associate
this type of entropy to ¢, we work in D(R) and note that the strictly full subcategory of D(R) formed
by perfect complexes with cohomology of finite length, denoted by Perf,(R), is a triangulated category
with generator. Furthermore, the restriction of the total derived inverse image functor L¢*: D(R) — D(R)
to Perf, (R) gives rise to an exact endofunctor of Perf,(R). This endofunctor has a category-theoretical
entropy that is denoted by h¢(IL¢*). We should remark that hi(IL¢*) is, by definition, a function of a real
variable ¢. In cases that are of particular interest to us, however, hi(L¢*) turns out to be a constant function.
For definitions and details related to above statements, see Section 1.

Section 2 of this work studies the relationship between the two entropies introduced above. We prove
that hioc(¢) < hi(Lo*) for each t € R, and that equality holds when R is regular, and also when ¢ is the
Frobenius endomorphism of a complete local ring of positive characteristic; see Corollaries 2.2, 2.6, and
Theorem 2.4.

Sections 3 and 4 are primarily concerned with further properties of local entropy. Certain invariants of
local rings, such as dimension and depth satisfy an “additivity” property under flat extensions. That is, given
a flat homomorphism f: R — S of commutative Noetherian local rings, the difference between dimensions
(depths) of S and R is equal to the dimension (depth) of the closed fiber of f. Our main result in Section 3,
Theorem 3.3, is a similar “additivity” property for local entropy, under flat extensions of Cohen—Macaulay
local rings. To be more precise, given a flat homomorphism f: R — S of Cohen—Macaulay local rings, and
two endomorphisms of finite length ¢: R — R and ¢: S — 5, satisfying f o ¢ = 1 o f, we prove

hloc("/}) = hloc((b) + hloc("/}%

where 1) is the endomorphism induced by 1 on the closed fiber of f.
In Section 4, Theorem 4.1, we prove a formula expressing local entropy in terms of an asymptotic partial
Euler characteristic, under certain conditions. And in Section 5 we list a couple of open problems.
Acknowledgment. We would like to express our gratitude to the referee for his/her detailed comments
and suggestions that helped make this work more concise.

1. Preliminaries

In this section we recall a number of definitions and basic facts used in this work about local and
category-theoretical entropies, as well as perfect complexes.

1.1. Local entropy

Definition 1.1 (/14, Definition 1]). A local homomorphism f: R — S of Noetherian local rings is said to be
of finite length if its closed fiber is of dimension zero.

One can quickly see that a local homomorphism f: (R,m) — (S,n) of Noetherian local rings is of finite
length if and only if it satisfies any of the following (equivalent) conditions:

(a) f(m)S is n-primary;
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(b) If p is a prime ideal of S such that f~1(p) = m, then p = n;
(c) If q is any m-primary ideal of R, then f(q)S is n-primary.

Definition 1.2 (/1/, Definition 5]). A local algebraic dynamical system consists of a Noetherian local ring
(R,m) and an endomorphism of finite length ¢: R — R. We will denote this by (R,m,$). A morphism
fi(R,m,9) — (S,n,1) between two local algebraic dynamical systems is a local homomorphism f: R — S
that satisfies the condition o f = f o ¢.

Definition 1.3. Let (R, m, ¢) be a local algebraic dynamical system and let q be an m-primary ideal of R.
The local entropy of ¢ is the real number defined as follows:

Poc() = Tim  log (lenth o (R/6" (@) R)).

It is shown in [14, Theorems 1, 18] that hioc(¢) is well-defined. That is, the limit defining hjoe(¢) exists,
and is independent of the m-primary ideal used. In fact, local entropy can be calculated using any module
of finite length, and is non-negative.

Example 1.4. Let k be a field and R = k[ X1, ... X4]. Suppose &1, ..., &q are positive integers and ¢: R — R
is the endomorphism that maps X; — X5 for 1 <i < d. Then hjoe(¢) = ZLI log(&;). Indeed, as a k-vector
space, R/¢™(m)R has a basis consisting of monomials X{l '~X;"’, where 0 < 4; < &. This implies that
lengthp (R/¢™(m)R) = H?:l &P, and hence the local entropy of ¢ is the stated one.

1.2. Category-theoretical entropy

Let T be a triangulated category. Recall that a subcategory of T is called thick if it is triangulated,
contains every object isomorphic to any of its objects, and contains all direct summands of its objects
(cf. [17, Definition 2.1.6, p. 74]). An object G of T is called a (classical) generator if the smallest thick
subcategory of T containing G is equal to T itself (cf. [2, Section 2.1]). To say that G is a generator of T is
equivalent to saying that for every object E of T there is an object E’ and a tower of distinguished triangles

Eo E1 E2 > s Ep—l _— E;,,;E@E’
K K. X
/ / / (1.1)
Glm] Glna] a Glny)

with Eg =0, p = 0 and n; € Z.

Definition 1.5 (/5, Definition 2.1]). Let G and E be objects of a triangulated category T. Let ¢t be a
real number. To each tower of distinguished triangles of the form (7.7) we associate the exponential sum
>P_emt Let Sy < R be the set of all such sums for a given ¢. The complexity of E with respect to G is
the function &;(G, E): R — [0, 0] of ¢, given by §;(G, E) = inf S;.

Note that 0;(G, E) = +oo if and only if E does not lie in the thick subcategory generated by G. Also if

F is an exact functor from T to another triangulated category, then since exact functors preserve triangles
(and hence towers), the following inequality holds:

5, (F(G), F(E)) < (G, B). (1.2)



2588 M. Majidi-Zolbanin, N. Miasnikov / Journal of Pure and Applied Algebra 223 (2019) 2585-2597

Definition 1.6 (/5, Definition 2.5]). Let F': T — T be a triangulated endofunctor of a triangulated category
T with a generator G. The entropy of F is the function h;(F): R — [—o0, +) of ¢, given by

o1 n
hy(F) = nh_r)rgo - log é; (G, F™"(Q)).

It is shown in [5, Lemma 2.5] that hi(F) is well-defined, i.e., the limit defining h:(F') exists and is
independent of the choice of generator G.

1.8. Perfect complexes with cohomology of finite length

In this subsection we have collected a number of definitions and facts about the category of perfect
complexes over a commutative ring, and its strictly full subcategory formed by perfect complexes with
cohomology of finite length. The main reference for this subsection is [1].

Definition 1.7. Let R be a commutative ring. A strictly perfect complex on R is a bounded complex of
projective R-modules of finite type.

The statement that follows is well-known and will be used implicitly in this work: if P* and E° are
complexes of R-modules, with P*® strictly perfect, then the two conditions below are equivalent:

1) There exists a quasi-isomorphism P* = E* in C(R);
2) P* and E* are isomorphic in D(R).

Definition 1.8. Let R be a commutative ring. A complex E*® of R-modules is perfect if it has a left res-
olution by a strictly perfect complex, that is, if there exists a strictly perfect complex P®* on R and a
quasi-isomorphism P* = E* in C(R). Equivalently, E* is perfect if in D(R) it is isomorphic to a strictly
perfect complex. The category of perfect complexes over R, denoted by Perf(R) hereafter, is the strictly
full subcategory of D(R) formed by perfect complexes.

It is well-known (cf. [1, Exposé I, Propositions 4.10, 4.17]) that Perf(R) is a thick subcategory of D(R).

Let f: R — S be a homomorphism of commutative rings. The inverse image functor f*: R-Mod —
S-Mod is the functor that sends an R-module E to the S-module S ®r E (the notation f* is used in [4,
I1.5.1, p. 82]). This functor gives rise to an exact functor f*: K(R) — K(S) of the homotopy categories of
complexes that sends a complex E* of R-modules to the complex S ®pz E* of S-modules. It is well-known
(cf. [1, Exposé I, Corollaire 4.19.1]) that the total derived inverse image functor Lf*: D(R) — D(S), by
restriction induces a functor Perf(R) — Perf(S). We should remark here that the total derived inverse
image functor Lf* was generally only defined as a functor D~ (R) — D~ (S) in [1,9]. Spaltenstein extended
the definition of Lf* to an exact functor D(R) — D(S), using K-flat complexes (see [21, Proposition 6.7]).
A complex E* in K(R) is K-flat if for every acyclic complex B® in K(R), the complex E* ®g B* is acyclic.
Spaltenstein showed that every complex G* in K(R) has a left K-flat resolution, i.e., there exists a K-flat
complex E*® and a quasi-isomorphism E® = G*. Moreover, Lf*(G*) can be computed by applying f* to
any left K-flat resolution of G* (see [21, Proposition 5.6]). Since any bounded complex of flat R-modules is
K-flat (see [3, § 4.3, Lemme 1, p. 66]), if an object G* of D(R) has a left resolution E* = G* by a bounded
flat complex E* (perfect complexes, for instance), then L f*(G*) can be represented by f*(E*).

Definition 1.9 (cf. [6, p. 157]). Let R be a commutative ring and E* a complex of R-modules. The co-
homological support of E°® is the subspace Supph(E®) < SpecR of those prime ideals p € Spec R at
which the complex Ej of Ry-modules is not acyclic. Equivalently, Supph(E*) = |J,,z Supp H"(E*), as
H'(E*®gr Ry) = H'(E®*) ®r Ry, for all i (see [3, § 4.2, Corollaire 2, p. 66]).
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Over a Noetherian local ring (R, m) we will denote by Perf,(R) the strictly full subcategory of Perf(R)
formed by perfect complexes E*® with Supph E* < {m}. That is, a perfect complex E* is an object of
Perf, (R) if and only if H"(E*®) is an R-module of finite length for every n € Z. One can quickly verify
(and it is well-known) that Perf, (R) is a thick subcategory of Perf(R). Furthermore, every nonzero object
in Perf,,(R) is a generator, in the sense defined in Section 1.2. This follows from the following result,
first proved in [10, Proof of Theorem 11] (see also [16, Lemma 1.2]): “Let R be a commutative Noetherian
ring and let E*,G* € Perf(R) be two perfect complexes. If Supph(E®) < Supph(G*®), then E* is in the
smallest thick subcategory of Perf(R) containing G*.” Thus, if G* € Perf,,(R) is a nonzero object and
(G*) is the smallest thick subcategory of Perf(R) containing G°, then Perfn,(R) < (G*). But we also
have (G*) < Perf,(R), as can be checked either directly or using the fact that Perf, (R) itself is a thick
subcategory of Perf(R).

Proposition 1.10. Let f: (R,m) — (S,n) be a homomorphism of finite length of Noetherian local rings. Then
Lf*: Perf(R) — Perf(S), by restriction induces an exact functor Lf*: Perf,,(R) — Perf,(S).

Proof. Let E* be an object of Perfy(R). Then Lf*(E*) is an object of Perf(S). We need to show that

Supph(Lf*(E®)) < {n}. Let q € Spec(S) be a non maximal prime ideal and let p = f~1(q). Then p # m, as
f is a homomorphism of finite length. We have

(Lf*(E*))q = (S @k B*)q = 84 ®p, Ey.
As the complex Ej is an acyclic object of Perf(Ry), it follows quickly from the Kiinneth Formula (see [3,
§ 4.7, Corollaire 4, p. 79]) that the complex Sy ®Hép E; is also acyclic. This shows that Supph(f*(P*®)) < {n},

as wanted. [

In the rest of this paper we will refer to the functor Lf*: Perfy,(R) — Perf,(S) described in Proposi-
tion 1.10 as the exact functor induced by f.

2. Relationships between local and category-theoretical entropies

Lemma 2.1. Let (R, m) be a Noetherian local ring. Let G* € Perfy, (R) be a generator. By the definition of
Perf(R) there exists a smallest non negative integer N such that H7(G*) =0, for | j |> N. Let

B := max{lengthp (H/(G*)) | -N < j < N}.
Then for any object E* in Perf (R), any integer £, and any real number t:
lengthy, (HY(E®)) < Be"eNI . 6,(G*, E*).

Proof. As H°(—) is a cohomological functor (see, e.g., [11, Definition 1.5.2, p. 39]), it quickly follows that
for any distinguished triangle X* — Y* — Z* — X*[1] in Perf,(R) and any integer ¢:

lengthp (HZ(Y')) < lengthp (H%X')) + length (HK(Z°)) .

Using this inequality one can immediately check that in each tower of distinguished triangles of Perf,(R)
for E*, of the form displayed in (1.1), for any integer £:
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lengthy, (H*(E*®)) < Z lengthp, (H*(G*[ni]))
i=1

p
= > lengthy (H™(G")) .
=1
Let Sp:={ieN| —-N < {+n; < N}. Then
p
lengthy, (HY(E*)) < ). lengthy (H*""(G*)) < B| S, | . (2.1)
1=1

Next, noting that e® > e~*! for any real number z, we have

p p
2 e(ﬂ-‘rni)t > Z e—\(@+n¢)t|

i=1 i=1

Combining this inequality with (2.1), we obtain
P
length (H(E*®)) < BelteNIt . 2 et
i=1

As 6,(G*, E*) = inf {37_, emi!

the n;’s appear in a tower of the form (1.1)}, the conclusion follows. []

Corollary 2.2. Let (R,m,$) be a local algebraic dynamical system (see Definition 1.2) and let Lo*:
Perf,(R) — Perf,(R) be the exact functor induced by ¢. Then the inequality hioc(d) < hi(Ld*) holds
for any real number t.

Proof. Let {z1,...,24} be a system of parameters of R and let q be the ideal of R that they generate. Let
G*(x) be the Koszul complex over R constructed from z1,...,z4. (The nonzero modules in this complex
are situated in degrees —d to 0.) As G*(x) is a bounded complex of free modules, for any positive integer
n the complex L¢™*(G*(x)) can be represented by ¢™* (G*(x)), which is the Koszul complex G* (¢"(x))
over R, constructed from ¢"(z1),...,¢" (zq4). Thus, H(L¢"*(G*(x))) = R/¢"(q)R. We take G*(x) as a
generator for the triangulated category Perfy,(R) and apply Lemma 2.1 with £ = 0 and L¢"*(G*(x)) as
E*, to obtain

lengthp, (R/¢"(q)R) < BeNI' - 5, (G* (x), Lg™* (G* (x))) , (2.2)

where B and N are constants defined in that lemma. Now the desired inequality hioe(¢) < he(ILgp*) follows
by taking the logarithm, dividing by n, and passing to the limit as n — o0 on both sides of (2.2). [

Remark 2.3. In a Cohen—Macaulay Noetherian local ring of dimension d, a sequence of d elements in the
maximal ideal form a system of parameters if and only if they form a (maximal) regular sequence. For a
proof of this fact see [15, Theorem 17.4]. We will use this fact a few times in this paper, for instance in
proofs of Theorems 2.4 and 3.3.
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Theorem 2.4. Let (R, m,¢) be a local algebraic dynamical system (see Definition 1.2). Assume that R is
reqular of dimension d, and let Lo*: Perf,(R) — Perf, (R) be the exact functor induced by f. Then
hi(ILg*) is constant and equal to hioc ().

Proof. As R is regular, every R-module of finite type has finite projective dimension and therefore, consid-
ered as a complex concentrated in degree zero, is an object of Perf(R). Let £k = R/m be the residue field
of R. We make two claims:

Claim 1: if E is an R-module of finite type, then d§:(k, E) < lengthy(E);
Claim 2: if n > 0, then L¢™* (k) can be represented by R/¢™(m)R.

Let us first prove the theorem assuming these claims: we take k as generator for the triangulated category
Perf,,(R). Using Claims 1 and 2 above, for any integer n > 0 we can write

or (k, L™ (k) = o1(k, R/¢" (m)R)
< lengthp(R/¢™ (m)R).

Taking the logarithm, dividing by n, and passing to the limit as n — o0 in the previous inequality, we get
ht(Lé*) < hioe(¢). On the other hand, Corollary 2.2 gives us the reverse inequality hioe(¢) < he(Lg*). Thus,
hi(Lo*) = hioc(¢p). We now prove the claims:

Proof of Claim 1: If length 5 (E) = oo then the claim holds trivially. Assume length,(E) < c0. We will use
induction on lengthy(E). The claim clearly holds if lengthp(E) = 1, as 0 > k — k — 0 is a distinguished
triangle in Perf, (R), showing that d,(k, k) < 1. Suppose now that lengthz(E) > 1. Then there is an exact
sequence of R-modules

0—-FE —-E—->k—0

with lengthp(E;) = lengthz (E) — 1. This exact sequence gives rise to a distinguished triangle Fy — F —
k — Ei[1] in Perf,(R) (cf. [11, Proposition 1.7.5, p. 46]). Attaching this distinguished triangle (or its
direct sum with a distinguished triangle of the form E' — E’ — 0 — E'[1], if necessary) to the right end of
any tower of distinguished triangles for F; of the form displayed in (1.1), will get us a tower of distinguished
triangles for F, from which it is clear that 0,(k, E') < d,(k, E1) + 1. The claim now follows from the induction
hypothesis.

Proof of Claim 2: let {x1,...,24} be a regular system of parameters of R, that is, a set of d elements that
generate the maximal ideal m. Let G*(x) be the Koszul complex over R constructed from z1,...,x4 (the
nonzero modules in this complex are situated in degrees —d to 0). Considering k as a complex concentrated
in degree zero, there is a quasi-isomorphism G*®(x) = k. Hence, for any positive integer n the complex
L¢"™* (k) can be represented by ¢™*(G*(x)), which is the Koszul complex G* (¢ (x)) over R, constructed
from ¢"™(x1),...,0"(xq). As ¢ (and hence ¢™) is of finite length, the ideal generated by ¢™(x1),...,d"(z4) is
m-primary, i.e., {¢"(x1), ..., 0" (z4)} is a system of parameters of R. By Remark 2.3 then, ¢"(x1),...,¢"(zq)
is a regular sequence. Thus, H'(G*® (¢"(x))) = 0 for i # 0, and H°(G* (¢"(x))) = R/¢"(m)R. Hence,
considering R/¢™(m)R as a complex concentrated in degree zero, there is a quasi-isomorphism

G* (¢"(x) = R/¢"™(m)R.

That is, L¢™* (k) can also be represented by R/¢™(m)R, as claimed. []
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Proposition 2.5. Suppose f: (R,m,¢) — (S,n, ) is a morphism of local algebraic dynamical systems, with
f: R— S of finite length. Let Lo*: Perf,(R) — Perf(R) and Ly*: Perf,(S) — Perf,(5) be the exact
functors induced by ¢ and 1, respectively. Then:

a) hi(Ly*) < he(Lo™).
b) If in addition R is reqular and hioc(@) = hioc(v), then hy(Lb*) is constant and equal to hioc ().

Proof. a) Let {x1,..., 24} be a system of parameters of R, where d = dim R, and let y; = f(z;) for 1 <i < d.
Let G%(x) and G§(y) be the Koszul complexes over R and .S, respectively, constructed from zy,...,z4 and
Y1, - - -, Yd- We take G%(x) and G%(y) as generators of the triangulated categories Perf (R) and Perf,(S5),
respectively. Let Lf*: Perf, (R) — Perf,(S) be the exact functor induced by f. As f*(G%(x)) = Gs(y)
and Lf*(G%(x)) can be represented by the complex f*(G%(x)), we can write

Lf*(Gr(x) = G5(y)- (2:3)

The condition f o ¢ = v o f satisfied by f for being a morphism of local algebraic dynamical systems gives
us

Lf* oLg* = Lyp* o Lf*. (2.4)

Now for any integer n > 1 and any real number ¢, using equalities (2.3) and (2.4) we can write:

3¢ (G5 (y), LY™ (Gy(y)) = 0 (Lf™ (GR(x)), Ly"" (Lf* (GR(x))))
=0y (Lf* (GR(x)), Lf" (Lo™" (GR(x))))
< 0t (GR(x),Lo"" (GR(x)))

where the last inequality holds by (1.2). By taking the logarithm, dividing by n, and passing to the limit
as n — o0 we obtain h:(ILyp*) < hy(Lo*).
b) Combining part a) with the result of Corollary 2.2 we obtain:

hloc(w) < ht(Lw*) < ht(qu*)

If R is regular, then h(ILé*) = hioe(¢) by Theorem 2.4. Since hjoe(P) = hioe(?0) by assumption, we conclude
that h;(ILyp*) is constant and equal to hiec(v). [

Corollary 2.6. Let (S,n) be an arbitrary complete Noetherian local ring of positive characteristic p and
dimension d, let fs: S — S be the Frobenius endomorphism of S, and let Lf%: Perf, (S) — Perf,(S) be
the exact functor induced by fs. Then hy(ILf%) is constant and equal to d -log(p).

Proof. Let {x1,...,24} be a system of parameters of S, and k the residue field of S. Recall that S is
a module-finite extension of the regular ring R := k[X7,...,X4] via the injective ring homomorphism
n: R — S that maps X; onto x;, for 1 < i < d (cf. [15, Theorem 29.4, p. 225]). Let fr be the Frobenius
endomorphism of R. By [14, Theorem 1] the local entropy of the Frobenius endomorphism of a Noetherian
local ring of characteristic p > 0 and of dimension d is equal to d-log(p). Thus, hioc(fr) = hioc(fs) = d-log p.
Since no fr = fg on, the result follows from Proposition 2.5. []
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3. Additivity of local entropy under flat extensions

Certain invariants of local rings, such as dimension and depth, are “additive” under flat extensions. That
is, if f: (R,m) — S is a flat homomorphism of commutative Noetherian local rings, then

dim S = dim R + dim S/f(m)S, (3.1)

and the same equation holds replacing dimension with depth. Craig Huneke asked us whether local entropy
satisfies a similar “additivity” property under flat extensions. To be more precise, let f: (R, m, ¢) — (S,n, 1))
be a morphism of local algebraic dynamical systems. Then by definition of such morphisms, the relation
Yo f = fo¢ holds, from which it quickly follows that the ideal f(m)S is ¢-stable, that is,

¢ (f(m)S) < f(m)S.

Thus, v induces an endomorphism of finite length : S/f(m)S — S/f(m)S on the closed fiber of f. Under
these settings, Huneke’s question can be formulated as follows:

Question 1. If f is flat, does it hold that hioc(¥) = hioc(@) + hioc(¥)?

If dim R = dim S, then Question 1 has an affirmative answer. This is proved in [14, Corollary 16 and
Proposition 20]. Question 1 has also an affirmative answer when ¢ and 1, respectively, are the Frobenius
endomorphisms of two local rings R and S of characteristic p > 0. Indeed, as the local entropy of the
Frobenius endomorphism of a local ring of characteristic p > 0 and of dimension d is equal to d - logp
(see [14, Theorem 1]), in this case the equality in Question 1 quickly reduces to (3.1), which holds, since f
is flat (see, e.g., [15, Theorem 15.1]).

Our main goal in this section is to give an affirmative answer to Question 1, in Theorem 3.3, in the special
case when S is Cohen-Macaulay. The question remains open in the general non-Cohen—-Macaulay case.

We will use the following Flatness Criterion in the proof of Theorem 3.3, as well as in Example 3.4.
See [15, Corollary to Theorem 22.5] for a proof of this criterion.

Theorem (Flatness Criterion). Let f: (R,m) — (S,n) be a local homomorphism of Noetherian local rings
and let M be an S-module of finite type. For y1,...,yn € n write Y, for the images of y; in S/f(m)S. Then
the following conditions are equivalent:

a) Yi,...,Yn is an M-reqular sequence and M/ >\ y;M is flat over R;
b) ¥y,...,7, is an (M/f(m)M)-reqular sequence and M is flat over R.

We will also need the following elementary statement:

Proposition 3.1. Let f: (R,m) — S be a local homomorphism of finite length of Noetherian local rings. Let
M be an R-module of finite length. Then

a) M ®g S is of finite length as an S-module.
b) lengthg(M ®g S) < lengthp (M) - lengthg(S/f(m)S).
c) If f is flat, then lengthg(M ®pg S) = lengthz (M) - lengthg(S/f(m)S).

Proof. By induction on lengthy(M). [

We begin with showing that a morphism of local algebraic dynamical systems gives rise to an inequality
between local entropies:
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Proposition 3.2. Suppose f: (R,m,®) — (S,n,v) is a morphism of local algebraic dynamical systems and let
P S/f(m)S — S/f(m)S be the endomorphism induced by 1 (see the paragraph before Question 1). Then
the following inequality holds:

hloc (w) < hloc(¢) + thC (E)

Proof. The composition of maps R Lsos /Y™ (n)S gives a local homomorphism of finite length R —
S/yY™(n)S for each integer n > 0. Applying Proposition 3.1, we can write:

lengthg(S/¢" (n)S) = lengthg ((R/¢" (m)R) ®@r (S/¢"(n)S5)
< lengthp (/6" (m)R) - lengthg (S/(f(m)S + ¢ (n)S5)).

We obtain the desired inequality by applying logarithm, dividing by n and taking limits as n — c0. []
We now give an affirmative answer to Question 1 in the particular case when S is Cohen—Macaulay:

Theorem 3.3. Suppose f: (R,m,$) — (S,n,) is a flat morphism of local algebraic dynamical systems and
let . S/f(m)S — S/f(m)S be the endomorphism induced by 1 (see the paragraph before Question 1). If S
is Cohen—Macaulay, then

hloc('(/J) = hloc(¢) + hloc(w)- (3'2)

Proof. As f is flat, the Cohen—-Macaulayness of S implies that the rings R and S/f(m)S are also Cohen—
Macaulay (see, e.g., [15, Corollary to Theorem 23.3]). Since S/f(m)S is Cohen—Macaulay, there exists a
(non-unique) sequence of elements y1,...,ys € n of length d' = dim(S/f(m)S), whose images in S/f(m)S
form an (S/f(m)S)-regular sequence. Note that by the Flatness Criterion stated earlier, y1,...,yqs is an
S-regular sequence. Let q' = S be the ideal generated by w1, ..., ys. We claim that for any integer n = 0,
the ring S/9™(q')S is flat over R via the composition of maps

R 5 S/m(q)S. (3.3)

AsRL Sis flat, the claim will be established by the Flatness Criterion, if we can show that the images of
V" (Y1), .., " (ye) in S/f(m)S form an (S/f(m)S)-regular sequence. These images coincide with elements

En(yl)7 e 7En(yd/)a

where ; is the image of y; in S/f(m)S. That ¥ (7,),..., ¥ (Fg) is an (S/f(m)S)-regular sequence is an
immediate consequence of Remark 2.3, the fact that 7;,...,7, is a maximal (S/f(m)S)-regular sequence,
and the fact that En is an endomorphism of finite length of S/f(m)S (hence, the image under En of any
system of parameters is again a system of parameters in S/f(m)sS).

Now let z1,...,24 € m be an R-regular sequence of length d = dim R and let ¢ € R be the ideal
generated by x1,...,24. By Remark 2.3, q is a parameter ideal of R. By the flatness of S/q’ over R via
the composition of maps shown in (3.3) (taking n = 0), the images of f(x1),..., f(zq) in S/¢’ form an
(S/q’)-regular sequence. This means yi,...,ya, f(z1),..., f(zq) is an S-regular sequence. Moreover, since
f is flat,

d+d = dim R + dim(S/f(m)S) = dim S
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(see, e.g., [15, Theorem 15.1]). Hence, {y1,...,yar, f(x1),..., f(z4)} is a system of parameters in S, by
Remark 2.3. Let Q < S be the ideal generated by

Yis--- ayd’vf(xl)a .. -af('rd)'
We note that for any integer n > 0:

R S S S
(MR~ (@)S ~ f(¢n(a))S + v (a)S ~ Yn(Q)S

where the last isomorphism quickly follows from the fact that ¢ o f = f o ¢. Since S/¢™(q')S is flat over R
and

lle

(3.4)

dim(S/¥"(¢')S) = dim S — d’ = dim S — dim(S/f(m)S) = dim R,

the homomorphism R — S/¥™(q')S obtained by composing the maps given in (3.3) is in fact, of finite
length. Hence, Proposition 3.1-¢) applies and from (3.4) we obtain

lengthg (S/4"(Q)S) = lengthg (¢n£)R on 1/1"(6;’)5)

= lengthy, (R/¢" (q)R) - lengthg (S/[f(m)S +¢"(¢)S]) -
After applying logarithm to both sides, dividing by n and taking limits as n — oo, we obtain (3.2). [J

Example 3.4. In this example we will apply Theorem 3.3 to calculate local entropy of a specific en-
domorphism. The local endomorphism of the ring (Z/2Z)[X,Y,W,U] that maps X,Y,W and U to
X3 + U, Y3, WP + X? and XU?, respectively, is of finite length, because if p is a minimal prime ideal
of (X2 + U3, Y3 W5+ X2 XU?), then as one can quickly see, p = (X, Y, W,U). One can also verify quickly
that the ideal (U, Y? + X?) is stable under this endomorphism. Thus, we obtain an induced ring endomor-
phism of finite length:

(ZRL)[X,Y,W,U] (Z/20)[X,Y,W,U]
Ve YRy X)) (U5, Y3 4 X7)

To abbreviate notation we will write S for the ring (Z/2Z)[X,Y,W,U]/(US Y3 + X?). Our goal in this
example is to calculate hjoc (1)), the local entropy of ¢. We will do this by constructing a flat homomorphism
into the ring S and then using Theorem 3.3. Note that S is Cohen—Macaulay by virtue of being a complete
intersection.

Let R = (Z/2Z)[T] and let ¢: R — R be the local endomorphism that maps T to T3. Let f: R — S be
the local homomorphism such that f(T') = y, where y is the image of Y in S. It is evident that fo¢ = o f.
From the Flatness Criterion that was stated earlier, it quickly follows that f is flat. Hence, by Theorem 3.3

hloc (¢) = h’lOC(¢) + hloc(@)
=10g(3) + hioc(¥),

where as usual 1 is the endomorphism induced by 1 on S/yS. (That hjo.(¢) = log(3) can be calculated
quickly, using the definition of local entropy, as seen in Example 1.4.) The ring S/yS is isomorphic to
S' = (Z/)22)[X,W,U]/(US, X?) and ¢: " — S’ maps z,w and u to u®,w® and xu?, respectively, where

xz,w and u are images of X,W and U in S’. In order to calculate hj.(¢)), we construct another flat
homomorphism, this time into S’. Let R’ := (Z/2Z)[Z] and let ¢': R" — R’ be the local endomorphism
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that maps Z to Z5. Let f': R' — S’ be the local homomorphism such that f/(Z) = W. Again it is evident
that fo¢ =1 o f and the flatness of f’ quickly follows from the Flatness Criterion that was stated earlier.
By Theorem 3.3, and using the fact that the local entropy of an endomorphism of a zero-dimensional local

ring is zero ([14, Corollary 16]), we quickly see that hioc(¢) = log(5). Hence, hioe(¥) = log(3) + log(5).
4. Local entropy as an asymptotic partial Euler characteristic

When there is a surjective morphism f: (R, m, ¢) — (S,n, 1) of local algebraic dynamical systems with
R regular, then hjo.(¢), the local entropy of ¥, can be expressed as an asymptotic “partial intersection
multiplicity”, as stated in the next theorem.
Theorem 4.1. Let f: (R,m,¢) — (S,n,¢) be a surjective morphism of local algebraic dynamical systems,

that is, S is the homomorphic image of R under f. Assume that ker f # (0) and that R is regular of
dimension d. Then the following equality holds:

d
hnoe(th) — Tim - log (2(71)1'*1 length, (Tor® (R/¢"™(m)R, S))). (4.1)

Proof. The R-module (R/¢™(m)R) ®g S is of finite length and
dim(R/¢"(m)R) + dim S = dim S < dim R.

By the vanishing part of Serre’s intersection multiplicity [20, Theorem 1, p. 106] proven for arbitrary regular
local rings in [18], [19] and independently in [7], [8]:

(—1)"lengthp (TorlR (R/¢™(m)R, S)) = 0.

IR

=0

Since f is a surjective morphism of local algebraic dynamical systems, we have
f(@"(M)R)S = 4" (f(m)S)S = 4" (n)S.
Hence, there are R-module isomorphisms
Torg' (R/¢"(m)R, S) = (R/¢" (m)R) ®r S = 5/¢" (n)5.

‘We then obtain

d
lengthg (S/¢™(n)S) = Z(—nH lengthy, (Torf (R/¢™(m)R, S)). (4.2)

The result follows by applying logarithm to both sides of (4.2) and letting n — o0. []

We should note that the alternating sum appearing on the right-hand sides of (4.1) and (4.2) is the
partial Euler characteristic x1* (R/¢™(m)R, S) with the notation of [12]).

Theorem 4.1 can be applied to any local algebraic dynamical system, in which the local ring is of equal
characteristic, as described in the next example.
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Example 4.2. Let (S, n, ) be a local algebraic dynamical system and assume that S is of equal characteristic
and not regular. Suppose n can be generated by d elements. Let S be the n-adic completion of S and
let Qﬁ: S — S be the endomorphism induced by . Then by Cohen’s Structure Theorem there exists a
surjective homomorphism 7: R = k[X1,..., X4] — S, where k is the residue field of S. By [14, Theorem 3]
the endomorphism ’QZ; can be lifted to an endomorphism of finite length ¢: R — R in such a way that
To¢ =om. Since § — S is flat, by [14, Proposition 20] we have hioe(1)) = hioe(1)). Thus, letting m be the
maximal ideal of R, by Theorem 4.1 the following equality holds:

d
Proc() = Jim ~log ((3(~1)"" length (Torl (R/6"(m)R, 8)) ).

-
Il
—

5. Open problems

We list a couple of open problems here that are of particular interest to us.

Problem 1. In the context of Theorem 3.3 (with or without assuming Cohen—Macaulayness of S), is

ho(Lp*) = he(Lg*) + he(Ly)")?
Problem 2. Does Theorem 2.4 extend to Cohen—Macaulay rings?

References

[1] P. Berthelot, A. Grothendieck, L. Illusie, Théorie des Intersections et Théoréme de Riemann—Roch, Lecture Notes in
Mathematics, vol. 225, Springer-Verlag, 1971.
[2] A. Bondal, M. Van Den Bergh, Generators and representability of functors in commutative and noncommutative geometry,
Mosc. Math. J. 3 (2003) 1-36.
[3] N. Bourbaki, Algebre: Chapitre 10. Eléments de Matématique, Masson, Paris, New York, Barcelona, Milan, 1980.
[4] N. Bourbaki, Algébre: Chapitres 1 & 3. Eléments de Matématique, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New
York, 2007.
[5] G. Dimitrov, F. Haiden, L. Katzarkov, M. Kontsevich, Dynamical systems and categories, Contemp. Math. 621 (2014)
133-170.
[6] H.-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979) 149-172.
[7] H. Gillet, C. Soulé, K-théorie et nullité des multiplicités d’intersection, C. R. Acad. Sci. Paris Sér. I 300 (3) (1985) 71-74.
[8] H. Gillet, C. Soulé, Intersection theory using Adams operations, Invent. Math. 90 (1987) 243-277.
[9] R. Hartshorne, Residues and Duality, Lecture Notes in Mathematics, vol. 20, Springer-Verlag, Berlin, 1966.
[10] M.J. Hopkins, Global methods in homotopy theory, in: Homotopy Theory, Conference at Durham 1985, in: London
Mathematical Society Lecture Notes Series, vol. 117, Cambridge University Press, 1987, pp. 73-96.
[11] M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften, vol. 292, Springer-
Verlag, Berlin, 1990.
[12] S. Lichtenbaum, On the vanishing of tor in regular local rings, Ill. J. Math. 10 (1966) 220-226.
[13] J. Llibre, R. Saghin, Results and open questions on some invariants measuring the dynamical complexity of a map, Fundam.
Math. 206 (2009) 307-327.
[14] M. Majidi-Zolbanin, N. Miasnikov, L. Szpiro, Entropy and flatness in local algebraic dynamics, Publ. Mat. 57 (2013)
509-544.
[15] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University
Press, Cambridge, 1986.
[16] A. Neeman, The chromatic tower for D(R), Topology 31 (1992) 519-532.
[17] A. Neeman, Triangulated Categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton,
2001.
[18] P. Roberts, The vanishing of intersection multiplicities of perfect complexes, Bull. Am. Math. Soc. 13 (2) (1985) 127-130.
[19] P. Roberts, Local Chern characters and intersection multiplicities, in: S.J. Bloch (Ed.), Algebraic Geometry—Bowdoin
1985, Part 2, vol. 46.2, American Mathematical Society, 1987, pp. 389-400.
[20] J.-P. Serre, Local Algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.
[21] N. Spaltenstein, Resolutions of unbounded complexes, Compos. Math. 65 (1988) 121-154.


http://refhub.elsevier.com/S0022-4049(18)30230-5/bib53474136s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib53474136s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib426F6E6456616Es1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib426F6E6456616Es1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib426F75726232s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib426F757262s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib426F757262s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4B6F6E73s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4B6F6E73s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib466F786279s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib47696C6C536F756C31s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib47696C6C536F756C32s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib48617274s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib486F70s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib486F70s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4B61736870697261s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4B61736870697261s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4C69636874s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4C6C6962536167s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4C6C6962536167s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4D616A4D6961537A70s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4D616A4D6961537A70s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4D617473756D75726132s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4D617473756D75726132s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4E65656D30s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4E65656Ds1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib4E65656Ds1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib526F626572747331s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib526F626572747332s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib526F626572747332s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib5365727265s1
http://refhub.elsevier.com/S0022-4049(18)30230-5/bib5370616C74656Es1

	Entropy in the category of perfect complexes with cohomology of ﬁnite length
	0 Introduction
	1 Preliminaries
	1.1 Local entropy
	1.2 Category-theoretical entropy
	1.3 Perfect complexes with cohomology of ﬁnite length

	2 Relationships between local and category-theoretical entropies
	3 Additivity of local entropy under ﬂat extensions
	4 Local entropy as an asymptotic partial Euler characteristic
	5 Open problems
	References


