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In recent years, the interaction between the local positivity of divisors and Okounkov 
bodies has attracted considerable attention, and there have been attempts to find a 
satisfactory theory of positivity of divisors in terms of convex geometry of Okounkov 
bodies. Many interesting results in this direction have been established by Choi–
Hyun–Park–Won [4] and Küronya–Lozovanu [17–19] separately. The first aim of this 
paper is to give uniform proofs of these results. Our approach provides not only a 
simple new outlook on the theory but also proofs for positive characteristic in the 
most important cases. Furthermore, we extend the theorems on Seshadri constants 
to graded linear series setting. Finally, we introduce the integrated volume function 
to investigate the relation between Seshadri constants and filtered Okounkov bodies 
introduced by Boucksom–Chen [3].

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Throughout the paper, we work over an algebraically closed field k of arbitrary characteristic unless 
otherwise stated. Let f : Y → X be a birational morphism between smooth projective varieties of dimension 
n, and V• be a graded linear series associated to a divisor D on X. Fix an admissible flag on Y :

Y• : Y = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {y}

where each Yi is an irreducible subvariety of codimension i in Y and is smooth at the point y. With this 
data, we can associate a convex set in Euclidean space

ΔY•(f∗V•) ⊆ Rn
≥0.

When V• is the complete graded linear series of D, we put ΔY•(f∗D) = ΔY•(f∗V•). Based on ideas of 
Okounkov [29,30], this construction was introduced in all its generality by Kaveh–Khovanskii [16] and 
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Lazarsfeld–Mustaţă [22]. We will focus mainly on two examples. The first one is when f is the identity. In 
this case, we call ΔY•(V•) the Okounkov body of V•. The other one is when f is the blow-up π : X̃ → X of X
at a point x and Y• is an infinitesimal admissible flag, in which the last n − 1 elements are linear subspaces 
of the exceptional divisor E � Pn−1 of π. In this case, we call ΔY•(π∗V•) the infinitesimal Okounkov body
of V• over x.

In recent years, a considerable amount of research has been devoted to the study of the connection 
between local positivity of divisors and Okounkov bodies. This direction of research was first tackled in the 
surface case in [19]. For higher dimensions, [17] deals with the infinitesimal setting, and the local picture is 
completed in [4] with partial results in [18]. We further refer to [5–7], [9], [15], [31] for related results.

It has been clear by the works [4], [17–19] that standard simplices arise naturally in Okounkov bodies. 
Let e1, . . . , en be the standard basis vectors for Rn, and 0 be the origin of Rn. For ξ ≥ 0, set

�n
ξ := closed convex hull

(
0, ξe1, . . . , ξen

)
�̃n

ξ := closed convex hull
(
0, ξe1, ξ(e1 + e2), . . . , ξ(e1 + en)

)
.

We call �n
ξ (resp. �̃n

ξ̃
) the standard simplex (resp. inverted standard simplex) of size ξ.

In this paper, we prove the following ampleness criterion in terms of Okounkov bodies, which may be 
regarded as an analogue result of Seshadri’s ampleness criterion (cf. [21, Theorem 1.4.13]).

Theorem 1.1. Let X be a smooth projective variety of dimension n, and D be a big R-divisor on X. Then 
the following are equivalent:

(1) D is ample.
(2) For every point x ∈ X, there is an admissible flag Y• centered at x such that ΔY•(D) contains a 

nontrivial standard simplex in Rn
≥0.

(3) For every point x ∈ X, there is an infinitesimal admissible flag Ỹ• over x such that Δ̃Ỹ•
(D) contains a 

nontrivial inverted standard simplex in Rn
≥0.

In characteristic zero, the equivalences (1) ⇐⇒ (2) and (1) ⇐⇒ (3) were proved in [4, Corollary D] and 
[17, Theorem B], respectively. See Theorem 3.7 for the more precise version.

Theorem 1.1 follows from the description of Seshadri constants in terms of Okounkov bodies. The Seshadri 
constant ε(V•; x) of a graded linear series V• at a point x is a measure of local positivity. It was first introduced 
by Demailly [8], and there has been a great deal of effort over the decades to study the Seshadri constants. 
See Section 2 for the precise definition. As was shown in [4], [17–19], the Seshadri constant ε(V•; x) is closely 
related to the following constants

ξ(V•;x) := sup
Y•

{
ξ | �n

ξ ⊆ ΔY•(V•)
}

and ξ̃(V•;x) := sup
Ỹ•

{
ξ̃ | �̃n

ξ̃
⊆ ΔỸ•

(π∗V•)
}
,

where Y• runs over admissible flags centered at x on X and Ỹ• runs over infinitesimal admissible flag over 
x. If no (resp. inverted) standard simplex is contained in the (resp. infinitesimal) Okounkov body, then we 
put ξY•(V•; x) = 0 (or ξ̃Ỹ•

(V•; x) = 0).
The following is the main result of the paper, which gives the description of Seshadri constants in terms 

of Okounkov bodies.

Theorem 1.2. Let X be a smooth projective variety, x ∈ X be a point, and V• be a graded linear series 
associated to a divisor D on X. Then we have

ε(V•;x) = ξ̃(V•;x) ≥ ξ(V•;x)
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in the following cases:

(1) (char(k) ≥ 0) V• is complete, and D is nef and big.
(2) (char(k) ≥ 0) V• is complete, and x /∈ B+(D).
(3) (char(k) = 0) V• is complete.
(4) (char(k) = 0) V• is birational, and x ∈ X is very general.

Theorem 1.2 (3) was shown in [4, Theorem E] for the inequality ε(V•; x) ≥ ξ(V•; x) and [17, Theorem C]
for the equality ε(V•; x) = ξ̃(V•; x). These works can be regarded as attempts to find a satisfactory theory 
of positivity of divisors in terms of convex geometry of Okounkov bodies. Another important result in this 
direction is the description of the augmented base locus B+(D) via Okounkov bodies proved in [4, Theorem 
C] and [17, Theorem 4.1] (see also [18,19]).

Even though the main theorems in [4] and [17] have the same nature and both depend on the deep 
results from [11] about the continuity property for restricted volumes, the proofs look very different. The 
main technical ingredient of [17] is the interaction between infinitesimal Okounkov bodies of D and jet 
separation of the adjoint divisor KX +D (see [17, Proposition 4.10]), but the main technical ingredients of 
[4] are the slice theorem of Okounkov bodies [5, Theorem 1.1] and a version of Fujita approximation [23, 
Proposition 3.7]. We point out that the techniques aforementioned are based on Nadel vanishing theorem 
for multiplier ideal sheaves, so the characteristic zero assumption is necessary.

In this paper, we give a new outlook on this theory by proving the main results of [4] and [17] in a uniform 
way. Our proofs are shorter and simpler than those in [4] and [17]. After proving some basic lemmas, 
we first give quick direct proofs of Theorem 1.1 and Theorem 1.2 (1), (2). Our approach is elementary, 
avoiding the use of vanishing theorems. Consequently, these theorems hold in arbitrary characteristic. For 
Theorem 1.2 (3), (4), we need to assume char(k) = 0 because we apply the continuity result about moving 
Seshadri constants [11, Theorem 6.2] and the differentiation result [10, Proposition 2.3], [28, Lemma 1.3]. 
The augmented base locus results [17, Theorem 4.1] and [4, Theorem C] then immediately follow (see 
Corollary 3.9).

Note that the relation between Seshadri constants and Okounkov bodies for a birational graded linear 
series V• was first studied by Ito [15]. The inequality ε(V•; x) ≥ ξ(V•; x) in Theorem 1.2 (4) may fol-
low from [15, Theorem 1.2], but our approach gives an alternative proof. The equality ε(V•; x) = ξ̃(V•; x)
is an original result. We remark that Theorem 1.2 (4) does not hold for a non-general point (see Re-
mark 3.11).

As was observed in [4, Example 7.4], [19, Remark 4.9], the inequality ε(V•; x) ≥ ξ(V•; x) in Theorem 1.2
can be strict in general. Moreover, one can conclude from [7, Remark 3.12] that it is impossible to extract the 
exact value of ε(V•; x) from the set of non-infinitesimal Okounkov bodies. Thus it is necessary to consider 
finer structures on Okounkov bodies in order to read off the exact value of the Seshadri constant. For this 
purpose, we consider the multiplicative filtration Fx determined by the geometric valuation ordx for a point 
x ∈ X as

F t
xVm := {s ∈ Vm | ordx(s) ≥ t}.

This multiplicative filtration was treated in [9], [20]. Now, fix an admissible flag Y• on Y centered at x. 
With this data, we can associate a convex subset in Euclidean space

Δ̂Y•(f∗V•,Fx) ⊆ Rn+1
≥0 ,

called the filtered Okounkov body. This was introduced in [3]. We then define the integrated volume function
as
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ϕ̂x(V•,Fx, t) :=
t∫

u=0

volRn(Δ̂Y•(f∗V•,Fx)xn+1=u)du.

We show that the derivative ϕ̂′
x(V•, Fx, t) always exists (see Proposition 4.4). Note that

volRn+1(Δ̂Y•(f∗V•,Fx)) = ϕ̂x(V•,Fx,∞).

The value ϕ̂x(V•, Fx, ∞) has been used to study diophantine approximation on algebraic varieties in [25]
and the K-stability of Fano varieties (cf. [2], [13], [24]).

The following theorem gives a new characterization of the Seshadri constant in terms of the integrated 
volume function.

Theorem 1.3. Let X be a smooth projective variety of dimension n. Let x ∈ X be a point, and V• be a graded 
linear series associated to a divisor D on X. Then we have

ε(V•;x) = inf
{
t ≥ 0

∣∣∣∣ ϕ̂′
x(V•,Fx, 0) − ϕ̂′

x(V•,Fx, t) <
tn

n!

}

in the four cases considered in Theorem 1.2.

In Section 4, we define the bounded mass function mass+(Vm, Fx, t) for t ≥ 0 as an “appropriate” sum of 
jumping numbers of (Vm, Fx), and we show in Theorem 4.7 that

ϕ̂x(V•,Fx, t) = lim
m→∞

mass+(Vm,Fx,mt)
mn+1 .

This means that the integrated volume function is independent of the choice of the admissible flags to define 
the filtered Okounkov body.

The rest of the paper is organized as follows. We begin in Section 2 with recalling basic definitions. In 
Section 3, we first show some basic lemmas, and then, give proofs of Theorems 1.1 and 1.2. Section 4 is 
devoted to the study of integrated volume functions; in particular, we prove Theorem 1.3.

2. Preliminaries

2.1. Notations

Throughout the paper, we fix the following notations. Let X be a smooth projective variety of dimension 
n defined over an algebraically closed field k of arbitrary characteristic, and D be an R-divisor on X. Let 
x ∈ X be a point, and π : X̃ → X be the blow-up of X at x with the exceptional divisor E. Let V• be a 
graded linear series associated to D so that Vm is a linear subspace of H0(X, OX(�mD�)) for every integer 
m ≥ 0. Recall the following definitions:

(1) V• is called complete if Vm = H0(X, OX(�mD�)) for all m ≥ 0.
(2) V• is called birational if the rational map given by |Vm| is birational onto its image for any m 
 0. It 

is exactly same to Condition (B) in [22, Definition 2.5].

For each integer m ≥ 1, let fm : Xm → X be a birational morphism such that Xm is a normal projective 
variety and f−1

m b(Vm) · OXm
= OXm

(−Fm) for an effective Cartier divisor Fm on Xm. In characteristic 
zero, we may assume that fm is a log resolution of the base ideal b(Vm). In positive characteristic, instead 
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of using the resolution of singularities, we construct fm by taking the normalization of the blow-up along 
b(Vm). We have a decomposition

f∗
m|Vm| = |Wm| + Fm,

where Wm ⊆ H0(Xm, OXm
(f∗

m�mD� − Fm)) is a linear subspace defining a free linear series. We set

Mm := f∗
m�mD� − Fm and M ′

m := 1
m
Mm, F ′

m := 1
m
Fm.

Suppose now that fm is isomorphic over a neighborhood of x and f−1
m (x) � Supp(Fm). Let πm : X̃m →

Xm be the blow-up at the smooth point f−1
m (x) with the exceptional divisor Em. We have the following 

commutative diagram

X̃m

f̃m

πm

Xm

fm

X̃
π

X.

2.2. Okounkov bodies

Let Y be a projective variety, and fix an admissible flag on Y :

Y• : Y = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {y}.

Here every Yi is smooth at the point y for 0 ≤ i ≤ n. We define a valuation-like function

νY• : V• −→ Rn
≥0

as follows: Given a nonzero section s ∈ Vm, let

ν1 = ν1(s) = ordY1(s).

After choosing a local equation for Y1 in Y , we get s̃1 ∈ H0(X, OX(�mD� − ν1Y1)). Let

ν2 = ν2(s) = ordY2(s̃1|Y1).

Continuing the process, we obtain

νY•(s) := (ν1(s), . . . , νn(s)) ∈ Zn
≥0.

Let Γ(V•)m ⊆ Zn
≥0 be the image of νY• : (Vm \ {0}) → Zn

≥0. The Okounkov body of V• with respect to Y• is 
defined as

ΔY•(V•) := closed convex hull

⎛
⎝ ⋃

m≥1

1
m

Γ(V•)m

⎞
⎠ ⊆ Rn

≥0.

For more details and basic properties, we refer to [16], [22].
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In this paper, we consider mainly two cases. The first one is when Y = X and Y• is centered at x. The 
other one is when Y = X̃ is the blow-up of X at a point x and Y• = Ỹ• is an infinitesimal admissible flag, 
in which the last n − 1 elements are linear subspaces of E � Pn−1. In this case, we say that

Δ̃Ỹ•
(V•) := ΔỸ•

(π∗V•) ⊆ Rn
≥0

is the infinitesimal Okounkov body of V• with respect to Ỹ•. When V• is complete, we put ΔY•(D) = ΔY•(D)
and Δ̃Ỹ•

(D) = Δ̃Ỹ•
(V•). The infinitesimal Okounkov body was first introduced in [22] when x is a very 

general point, and a similar construction is also considered in [32]. It was generalized to arbitrary point in 
[17–19]. More general infinitesimal admissible flags for Okounkov bodies have been studied in [31], [7].

Now, we define nonnegative numbers

ξY•(V•;x) := max{ξ | �n
ξ ⊆ ΔY•(V•)} and ξ̃Ỹ•

(V•;x) := max{ξ̃ | �̃n
ξ̃
⊆ Δ̃Ỹ•

(V•)},

ξ(V•;x) := sup
Y•

{ξY•(V•;x)} and ξ̃(V•;x) := sup
Ỹ•

{ξ̃Ỹ•
(V•;x)},

where the supremums run over all admissible flags Y• centered at x and all infinitesimal admissible flags over 
x, respectively. If no (resp. inverted) standard simplex is contained in the (resp. infinitesimal) Okounkov 
body, then we let ξY•(V•; x) = 0 (or ξ̃Ỹ•

(V•; x) = 0). When V• is complete, we simply replace V• by D.
In this paper, Fx is always the multiplicative filtration on V• given by

F t
xVm := {s ∈ Vm | ordx(s) ≥ t}.

Then Fx is pointwise bounded below and linearly bounded above in the sense of [3, Definition 1.3] (see [20, 
Proposition 3.5]). For any t ∈ R, we have a new graded linear series V (t)

• , which is defined as V (t)
m := F tmVm

for all m ∈ Z≥0. Notice that the Okounkov bodies ΔY•(V
(t)
• ) form a nonincreasing family of convex subsets 

of ΔY•(V•). See [3] for more details.

Lemma 2.1. If V• is birational, then so is V (t)
• for any t > 0 such that V (t+ε)

m �= ∅ for any integer m 
 0
and a sufficiently small number ε > 0.

Proof. Let m′ 
 0 be an integer such that Vm′ defines a birational map, and ε > 0 be a sufficiently small 
number such that V (t+ε)

m �= ∅ for m 
 0. For any integer m 
 0 with m(t + ε) > (m + m′)t, we have 
s · Vm′ ⊆ V

(t)
m+m′ for any zero section s ∈ V

(t+ε)
m . Then V (t)

m+m′ defines a birational map. �
Example 2.2. For an admissible flag Y• on X centered at x, we have

ΔY•(V
(t)
• ) ⊆ ΔY•(V•) \ �n

t for any t ≥ 0. (2.1)

For an infinitesimal admissible flag Ỹ• on X̃ over x, we have

Δ̃Ỹ•
(V (t)

• ) = Δ̃Ỹ•
(V•)x1≥t for any t ≥ 0. (2.2)

Now, assume that V• is the complete graded linear series of D. For any t ≥ 0, let W t
• be the graded linear 

series on Ỹ1 = E such that W t
m for any m ≥ 0 is given by the image of the map

H0(X̃,O
X̃

(�m(π∗D − tE)�)) −→ H0(Ỹ1,OỸ1
(�m(π∗D − tE)�)).

Then we will show in Lemma 3.1 (2) that

Δ̃ ˜ (V•)x1=t = Δ ˜ ˜ (W t
•).
Y• Y•|Y1
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Following [3], we define the concave transform of a multiplicative filtration F on V• to be a real-valued 
function on ΔY•(V•) given by

ϕF,Y•(x) := sup{t ∈ R | x ∈ ΔY•(V
(t)
• )},

and the filtered Okounkov body associated to V•, F with respect to Y• to be a compact convex subset of 
Rn

≥0 ×R≥0 = Rn+1
≥0 given by

Δ̂Y•(V•,F) := {(x, t) ∈ ΔY•(V•) ×R | t ∈ [0, ϕF•,Y•(x)]} ⊆ Rn+1
≥0 .

Note that

Δ̂Y•(V•,Fx)xn+1=t = ΔY•(V
(t)
• ).

2.3. Seshadri constants

Let D be an arbitrary R-divisor. The stable base locus of D is defined as

SB(D) :=
⋂

D∼RD′≥0
Supp(D′).

Recall that D ∼R D′ if D −D′ is an R-linear sum of principal divisors. If there is no effective divisor D′

with D′ ∼R D, then SB(D) = X. The restricted base locus of D and the augmented base locus of D are 
defined as

B−(D) :=
⋃

A:ample
SB(D + A) and B+(D) :=

⋂
A:ample

SB(D −A).

Note that D is nef if and only if B−(D) = ∅, and D is ample if and only if B+(D) = ∅. Furthermore, D is 
not big if and only if B+(D) = X. See [11], [27] for further properties.

Now, for a given graded linear series V• and a point x ∈ X, let s(Vm; x) be the supremum of integers 
s ≥ −1 such that the natural map

Vm −→ H0(OX(�mD�) ⊗OX/ms+1
x )

is surjective. The Seshadri constant of V• at x is defined to be

ε(V•;x) := lim sup
m→∞

s(Vm;x)
m

.

If V• is a complete graded linear series of D and D is nef, then ε(V•; x) coincides with the usual Seshadri 
constant

ε(D;x) := sup{k | π∗D − kE is nef} = inf
x∈C

{
D.C

multx C

}
,

where the infimum runs over all irreducible curves C on X passing through x. Next, we define the moving 
Seshadri constant ε(||D||; x) of a divisor D at a point x as follows:

If x ∈ B+(D), then ε(||D||;x) := 0.

If x /∈ B+(D), then ε(||D||;x) := lim sup ε(M ′
m; f−1

m (x)).

m→∞
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By [12, Theorem 6.2 and Propositions 6.4, 6.6] and [26, Propositions 7.1.2, 7.2.3, 7.2.10], we have

ε(||D||;x) = ε(V•;x) when V• is a complete graded linear series of D.

Note that x ∈ B+(D) if and only if ε(||D||; x) = 0.

Lemma 2.3. Suppose that D is nef and big. Then D is ample if and only if ε(D; x) > 0 for all x ∈ X.

Proof. If D is ample, then clearly ε(D; x) > 0 for all x ∈ X. Assume that ε(D; x) > 0 for all x ∈ X. Then 
x /∈ B+(D) for all x ∈ X, so B+(D) = ∅. Thus D is ample. �

When char(k) = 0, the function

ε(|| − ||;x) : N1(X)R −→ R≥0

is continuous (see [12, Proposition 6.3]). When char(k) > 0, the function

ε(|| − ||;x) : Big{x}R (X) → R>0

is continuous, where Big{x}R (X) denotes the open convex subcone of the big cone consisting of big divisors 
classes D such that x /∈ B+(D) (see [26, Proposition 7.1.2]). For further details on Seshadri constants, we 
refer to [12, Section 6], [15], [21, Chapter 5], and [26, Section 7].

The Nakayama constant of V• at x is defined by

μ(V•;x) = sup
{

ordx(s)
m

| s ∈ Vm

}
.

When V• is complete, we put μ(D; x) = μ(V•; x). If D is pseudoeffective, then

μ(D;x) = sup{k | π∗D − kE is pseudoeffective}.

3. Local positivity via Okounkov bodies

In this section, we prove Theorems 1.1 and 1.2.

3.1. Basic Lemmas

First, we show some useful lemmas.

Lemma 3.1. Suppose that D is big and x /∈ B−(D). For 0 < k < μ(D; x), we have the following:

(1) E � B+(π∗D − kE).
(2) Δ̃Ỹ•

(D)x1=k = ΔỸ•|Ỹ1
(W k

• ), where W k
• is defined in Example 2.2.

Proof. Note that E � B−(π∗D). By [14, Theorem A], we have

vol
X̃

(π∗D − kE) �= vol
X̃

(π∗D).

Then (1) follows from [14, Theorem B], and (2) follows from [22, Theorem 4.26]. �
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Lemma 3.2. Suppose that V• is birational. Then we have the following:

(1) Δ̃Ỹ•
(V•) ⊆ �̃n

μ(V•;x) for any infinitesimal admissible flag Ỹ• over x.
(2) If �̃n

ξ̃
⊆ Δ̃Ỹ•

(V•) for some infinitesimal admissible flag Ỹ• over x, then the same is true for every 
infinitesimal admissible flag over x. In particular,

ξ̃(V•;x) = ξ̃Y ′
• (V•;x)

for every infinitesimal admissible flag Y ′
• over x.

Proof. This was proved in [17, Propositions 2.5 and 4.7] (their proof work for any graded linear series), but 
we give a proof for reader’s convenience. Note that

Δ̃Ỹ•
(V•) ⊆ Δ̃Ỹ•

(D)x1≤μ(V•;x).

Consider a graded linear series W k
• on Ỹ1 in Lemma 3.1 (2), which is the restriction of a complete graded 

linear series of D. We have

ΔỸ•|Ỹ1
(W k

• ) ⊆ ΔỸ•|Ỹ1
(kH) = �n−1

k ,

where H is a hyperplane section of Ỹ1 � Pn−1. This implies (1).
For (2), assume that �̃n

ξ̃
⊆ Δ̃Ỹ•

(V•) for some infinitesimal admissible flag Ỹ• over x. By (1) and (2.2) in 
Example 2.2, we have

Δ̃Ỹ•
(V•) = �̃n

k ∪ Δ̃Ỹ•
(V (k)

• ).

By [22, Theorem 2.13], we get

1
n!

(
volX(V•) − volX(V (k)

• )
)

= volRn

(
�̃n

k

)
.

Then volRn

(
Δ̃Ỹ ′

•
(V•)x1≤k

)
= volRn

(
�̃n

k

)
for any infinitesimal admissible flag Ỹ ′

• over x. By (1), we obtain 

Δ̃Ỹ ′
•
(V•)x1≤k = �̃n

k , which proves (2). �
Lemma 3.3. Suppose that D is big. If 0 ∈ ΔY•(D) for some admissible flag Y• on X centered at x, then 
x /∈ B−(D).

Proof. This was shown in [4, Theorem A] or [18, Theorem A] (their proofs work for positive characteristic), 
but we include the proof for reader’s convenience. Suppose that x ∈ B−(D). By [11, Proposition 2.8] and [27, 
Theorem C], ordx(||D||) > 0. Let Y• be an admissible flag on X centered at x. For any (ν1, . . . , νn) ∈ ΔY•(D), 
we have

ν1 + · · · + νn ≥ ordx(||D||). (3.1)

Then ν1 + · · · + νn > 0, so 0 /∈ ΔY•(D). �
Lemma 3.4. Suppose that D is nef and big. For any k with ε(D; x) < k < μ(D; x), there is an irreducible 
curve C on X passing through x such that C ⊆ B−(π∗D− kE), where C is the strict transform of C by π. 
In particular, 0 /∈ Δ ˜ (π∗D − kE) for any infinitesimal admissible flag Ỹ• over x centered at x′ ∈ C ∩ E.
Y•
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Proof. Note that π∗D−kE is not nef. Thus there is an irreducible curve C on X̃ such that (π∗D−kE).C < 0, 
and consequently, C ⊆ B−(π∗D − kE). We know that E.C > 0. Then C ∩ E �= ∅ and C � Supp(E). 
By letting C := π(C), we are done. Now, the ‘in particular’ part follows from Lemma 3.3 because x′ ∈
B−(π∗D − kE). �

The following two lemmas are the main observations of this paper.

Lemma 3.5. Suppose that V• is birational. Then we have

ξ̃(V•;x) ≥ ξ(V•;x).

Proof. It is sufficient to show that

ξ̃ := ξ̃Ỹ•
(V•;x) ≥ ξY•(V•;x) =: ξ

for an infinitesimal admissible flag Ỹ• over x and an admissible flag Y• on X centered at x. Fix a sufficiently 
small number ε > 0. Then �n

ξ−ε ⊆ ΔY•(V•). By (2.1) in Example 2.2 and [22, Theorem 2.13], we have

volX(V (ξ−ε)
• ) ≤ volX(V•) − (ξ − ε)n. (3.2)

On the other hand, by (2.2) in Example 2.2 and Lemma 3.2 (1),

Δ̃Ỹ•
(V•) ⊆ �̃n

ξ−ε ∪ Δ̃Ỹ•
(V (ξ−ε)

• ),

so [22, Theorem 2.13] implies that

volX(V•) ≤ (ξ − ε)n + volX(V (ξ−ε)
• ). (3.3)

By comparing (3.2) and (3.3), we see that the equality holds, and hence, we obtain

Δ̃Ỹ•
(V•) = �̃n

ξ−ε ∪ Δ̃Ỹ•
(V (ξ−ε)

• ).

Since ε > 0 can be arbitrarily small, we get �̃n
ξ ⊆ Δ̃Ỹ•

(V•). This implies that ξ̃ ≥ ξ. �
Lemma 3.6. Suppose that V• is birational. Then we have

ξ̃(V•;x) ≥ ε(V•;x).

Proof. It is enough to prove that

ξ̃ := ξ̃Ỹ•
(V•;x) ≥ ε(V•;x) =: ε

for an infinitesimal admissible flag Ỹ• over x. For any integer m ≥ 1, let sm := s(Vm; x) so that the map

Vm −→ H0(OX(�mD�) ⊗OX/msm+1
x )

is surjective. Recall that Γ(V•)m is the image of νY• : (Vm \{0}) → Zn
≥0. By [22, Lemma 1.4] and Lemma 3.2

(1), we have

h0(OX(�mD�) ⊗OX/msm+1
x ) = #

(
Γ(V•)m ∩

(
mΔ̃ ˜ (V•)

) )
≤ #

(
Zn

≥0 ∩ �̃n
s

)
.
Y• x1<sm+1 m
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However, the both end sides are the same. Thus �̃n
sm ⊆ mΔ̃Ỹ•

(V•), so

�̃n
sm
m

⊆ Δ̃Ỹ•
(V•).

Since ε = lim sup
m→∞

sm
m

, it follows that �̃n
ε ⊆ Δ̃Ỹ•

(V•). This implies that ξ̃ ≥ ε. �
3.2. The case when V• is complete

In this subsection, we prove Theorem 1.1 and Theorem 1.2 (1), (2), (3). Throughout the subsection, we 
assume that V• is a complete graded linear series of D. By Lemma 3.2 (2),

ξ̃ := ξ̃(V•;x) = ξ̃Ỹ•
(V•;x)

for any infinitesimal admissible flag Ỹ• over x. To prove Theorem 1.2, by Lemmas 3.5 and 3.6, we only need 
to show that

ε := ε(V•;x) ≥ ξ̃.

Proof of Theorem 1.2 (1). We assume that D is nef and big. To derive a contradiction, suppose that ε < ξ̃. 
Take any number k with ε < k < ξ̃. By Lemma 3.4,

0 /∈ ΔỸ•
(π∗D − kE)

for some infinitesimal admissible flag Ỹ• over x. However, �̃n
ξ̃
⊆ Δ̃Ỹ•

(D). Thus

0 ∈ Δ̃Ỹ•
(D)x1≥k + (−k, 0, . . . , 0︸ ︷︷ ︸

n−1 times

) = ΔỸ•
(π∗D − kE),

which is a contradiction. Hence ε ≥ ξ̃, so we finish the proof. �
The following is a more comprehensive version of Theorem 1.1.

Theorem 3.7. Let X be a smooth projective variety of dimension n, and D be a big R-divisor on X. Then 
the following are equivalent:

(1) D is ample.
(2) For every admissible flag Y• on X, the Okounkov body ΔY•(D) contains a nontrivial standard simplex 

in Rn
≥0.

(3) For every point x ∈ X, there is an admissible flag Y• centered at x such that ΔY•(D) contains a 
nontrivial standard simplex in Rn

≥0.
(4) For every infinitesimal admissible flag Ỹ• over X, the infinitesimal Okounkov body Δ̃Ỹ•

(D) contains a 
nontrivial inverted standard simplex in Rn

≥0.
(5) For every point x ∈ X, there is an infinitesimal admissible flag Ỹ• over x such that Δ̃Ỹ•

(D) contains a 
nontrivial inverted standard simplex in Rn

≥0.

Proof. (1) ⇒ (2): It can be shown by a standard argument (see e.g., [4, Lemma 6.1]), so we skip the proof.
(2) ⇒ (3): It is trivial.
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(3) ⇒ (4): If (3) holds, then Lemma 3.5 implies that 0 < ξ(D; x) ≤ ξ̃. Thus (4) follows.
(4) ⇒ (5): It is trivial.
(5) ⇒ (1): Assume that (5) holds. For any point x ∈ X, there is an infinitesimal admissible flag Ỹ• over x
centered at x′ ∈ X̃ such that 0 ∈ Δ̃Ỹ•

(D). Lemma 3.3 says that x′ /∈ B−(π∗D), and hence, E � B−(π∗D). 
Thus x /∈ B−(D). Since x is an arbitrary point, it follows that B−(D) = ∅. Thus D is nef and big. Now, by 
Theorem 1.2 (1), ε(D; x) > 0 for all x ∈ X. By Lemma 2.3, D is ample, so (1) holds. �
Lemma 3.8. Let {Ai} be a sequence of ample divisors on X such that lim

i→∞
Ai = 0. If ξ̃(D + Ai; x) =

ε(||D + Ai||; x) for all i, then ξ̃(D; x) = ε(||D||; x) in the following cases:

(1) (char(k) = 0) D is big.
(2) (char(k) > 0) D is big and x /∈ B+(D).

Proof. For an infinitesimal admissible flag Ỹ•, we have

Δ̃Ỹ•
(D) ⊆ Δ̃Ỹ•

(D + Ai) and Δ̃Ỹ•
(D) =

⋂
i≥1

Δ̃Ỹ•
(D + Ai).

This type of statement first appeared in [1, Lemma 8]. We refer to the proof of [1, Lemma 8]. Consequently, 
we obtain

ξ̃(D;x) = lim
i→∞

ξ̃(D + Ai;x).

On the other hand, notice that x /∈ B+(D + Ai) for all i. By the continuity of ε(|| − ||; x) at D ([12, 
Proposition 6.3]) and [26, Proposition 7.1.2]), we get

ε(||D||;x) = lim
i→∞

ε(||D + Ai||;x).

Thus the lemma follows. �
Proof of Theorem 1.2 (2). We assume that D is big and x /∈ B+(D). We can take a sequence {Ai} of 
ample divisors on X such that D + Ai is a Q-divisor and lim

i→∞
Ai = 0. By Lemma 3.8, it is sufficient to 

show that ξ̃(D + Ai; x) = ε(||D + Ai||; x). Hence we may assume that D is a Q-divisor. For a sufficiently 
large and divisible integer m ≥ 1, let fm : Xm → X be a birational morphism with the decomposition 
f∗
m|mD| = Mm + Fm and M ′

m = 1
mMm, F ′

m = 1
mFm as in Subsection 2.1. We may assume that fm is 

isomorphic over a neighborhood of x and f−1
m (x) � Supp(Fm).

Suppose that ε < ξ̃. Take a rational number k with ε < k < ξ̃. By Lemma 3.4, there is a point x′ ∈ E

such that

x′ ∈ B−(π∗
mM ′

m − kE) ⊆ SB(π∗
mM ′

m − kE). (3.4)

We claim that

x′ /∈ SB(π∗D − kE). (�)

Granting the claim for now, we derive a contradiction to conclude that ε = ξ̃. By the claim,

x′ /∈ Bs(m(π∗D − kE)) for a sufficiently large and divisible integer m > 0.
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We have

m(f̃∗
mπ∗D − kE) = π∗

m(Mm + Fm) −mkE = (π∗
mMm −mkE) + π∗

mFm.

Since X̃m is normal and Fm is the fixed part of f∗
m|mD| with f−1

m (x) /∈ Supp(Fm), we may identify

|m(π∗D − kE)| = |π∗
mMm −mkE| + π∗

mFm.

Thus x′ /∈ Bs(π∗
mMm −mkE), which is a contradiction to (3.4).

It only remains to show the claim (�). There is an ample divisor A on X such that F = D − A is an 
effective divisor and x /∈ Supp(F ). Take a sufficiently small number δ > 0 such that A′ := π∗A − δE is 
ample and a sufficiently small number ε > 0 such that

k − εδ

1 − ε
< ξ̃ and B+(π∗D − kE) = B−(π∗D − kE − εA′).

We only have to show x′ /∈ B−(π∗D − kE − εA′). Now, notice that

0 ∈ (1 − ε)ΔỸ•

(
π∗D − k − εδ

1 − ε
E

)
= ΔỸ•

((1 − ε)π∗D − (k − εδ)E)

for an infinitesimal admissible flag Ỹ• over x centered at x′. By Lemma 3.3,

x′ /∈ B−((1 − ε)π∗D − (k − εδ)E),

and hence,

x′ /∈ B−((1 − ε)π∗D − (k − εδ)E + επ∗F ).

But we have

(1 − ε)π∗D − (k − εδ)E + επ∗F = (1 − ε)π∗D − (k − εδ)E + ε(π∗D −A′ − δE) = π∗D − kE − εA′.

This finishes the proof. �
Proof of Theorem 1.2 (3). We assume that char(k) = 0 and D is big. By Theorem 1.2 (2), we only have to 
consider the case that x ∈ B+(D). In this case, we know that

ε = ε(||D||;x) = 0.

Thus it suffices to show that ξ̃ = 0. If x ∈ B−(D), then E ⊆ B−(π∗D) so that ξ̃ = 0 by Lemma 3.3. 
Next, assume that x ∈ B+(D) \ B−(D). Take an ample divisor A on X. For any number ε > 0, we have 
x /∈ B+(D + εA), so Theorem 1.2 (2) implies that

ξ̃(D + εA;x) = ε(||D + εA||;x).

By Lemma 3.8, ξ̃ = ε = 0. We finish the proof. �
As a consequence of Theorem 1.2 (3) and [12, Proposition 6.8], we can obtain [17, Proposition 4.10], 

which describes the jet separation of KX +D. For another application, we recover [4, Theorem C] and [17, 
Theorem 4.1] as follows.
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Corollary 3.9 (char(k) = 0). The following are equivalent:

(1) x /∈ B+(D).
(2) The Okounkov body ΔY•(D) contains a nontrivial standard simplex in Rn

≥0 for every admissible flag Y•
on X centered at x.

(3) The Okounkov body ΔY•(D) contains a nontrivial standard simplex in Rn
≥0 for some admissible flag Y•

on X centered at x.
(4) The infinitesimal Okounkov body Δ̃Ỹ•

(D) contains a nontrivial inverted standard simplex in Rn
≥0 for 

every infinitesimal admissible flag Ỹ• over x.
(5) The infinitesimal Okounkov body Δ̃Ỹ•

(D) contains a nontrivial inverted standard simplex in Rn
≥0 for 

some infinitesimal admissible flag Ỹ• over x.

Proof. (1) ⇒ (2): It can be shown by a standard argument (see e.g., [4, Theorem C]), so we skip the proof.
(2) ⇒ (3) ⇒ (4) ⇒ (5): The proofs are identical to those of Theorem 1.1.
(5) ⇒ (1): Assume that (5) holds. By Theorem 1.2 (3), we have ε(||D||; x) > 0. Thus x /∈ B+(D), i.e., (1)
holds. �
Remark 3.10. The characteristic zero assumption in Theorem 1.2 (3) and Corollary 3.9 is used only when 
[12, Theorem 6.2] is applied. When x ∈ B+(D) \B−(D), Theorem 1.2 (3) is equivalent to that limε→0 ε(||D+
εA||; x) = 0. To remove the characteristic zero assumption, by [26, Proposition 7.1.2 (1)], it is enough to 
extend the following deep result in [12] to positive characteristics:

if V is an irreducible component of B+(D), then lim
ε→0

volX|V (D + εA) = 0.

3.3. The case when V• is birational

In this subsection, we prove Theorem 1.2 (4).

Proof of Theorem 1.2 (4). We assume that V• is birational, x ∈ X is very general, and char(k) = 0. By 
Lemmas 3.2 (2), 3.5, and 3.6, we only need to show that

ε = ε(V•;x) ≥ ξ̃Ỹ•
(V•;x) = ξ̃

for an infinitesimal admissible flag Ỹ• over x. We use the notations in Subsection 2.1. Since x is a very 
general point, we may assume that a birational morphism fm : Xm → X is isomorphic over a neighborhood 
of x and f−1

m (x) � Supp(Fm). We may identify f−1
m (x) with x and Em with E. We can regard Ỹ• as an 

infinitesimal admissible flag over x on X̃m. Let V m
• be the graded linear series such that Vm

i is the image 
of the map SiVm → Vim. Then we have

1
m

Δ̃Ỹ•
(V m

• ) ⊆ 1
m

Δ̃Ỹ•
(Mm) = Δ̃Ỹ•

(M ′
m). (3.5)

To derive a contradiction, suppose that ε < ξ̃. Recall from [15, Lemma 3.10] that

ε = ε(V•;x) = sup
m>0

ε(M ′
m;x).

For any k with ε(M ′
m; x) < k < ξ̃, by Lemma 3.4, there is an irreducible curve Ck on X passing through x

such that
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Ck ⊆ B−(π∗
mM ′

m − kE) ⊆ SB(π∗
mM ′

m − kE),

where Ck is the strict transform of Ck by fm ◦ πm = π ◦ f̃m. Let

α(Ck) := inf{β ∈ Q | Ck ⊆ SB(π∗
mM ′

m − βE)}.

Let Ỹ• be an infinitesimal admissible flag over x centered at a point x′ ∈ Ck ∩ E. By [10, Proposition 2.3], 
[28, Lemma 1.3], for any β with α(Ck) < β < μ(M ′

m; x), we have

ordx′(||π∗
mM ′

m − βE||) ≥ ordCk
(||π∗

mM ′
m − βE||) ≥ β − α(Ck).

For any point

(ν1, . . . , νn−1) ∈ Δ̃Ỹ•
(M ′

m)x1=β = ΔỸ•
(π∗

mM ′
m − βE)x1=0,

by considering Lemma 3.1 (2) and (3.1) in Lemma 3.3, we have

ν1 + · · · + νn−1 ≥ β − α(Ck).

This implies that

interior
(
Δ̃Ỹ•

(M ′
m)x1=β

)
∩ interior

(
�n−1

β−α(Ck)
)

= ∅ in Rn−1
≥0 .

Note that α(Ck) ≤ k so that

lim
k→ε(M ′

m;x)
α(Ck) ≤ ε(M ′

m;x).

By considering (3.5), we see that

interior
(

1
m

Δ̃Ỹ•
(V m

• )
)
∩ interior

(
(ε(M ′

m;x), 0, . . . , 0︸ ︷︷ ︸
n−1 times

) + �̃n
ξ̃−ε(M ′

m;x)

)
= ∅ in Rn

≥0.

Since we have

1
m

Δ̃Ỹ•
(V m

• ), (ε(M ′
m;x), 0, . . . , 0︸ ︷︷ ︸

n−1 times

) + �̃n
ξ̃−ε(M ′

m;x) ⊆ Δ̃Ỹ•
(V•),

it follows from [22, Theorem 2.13] that

volX(V•) −
1
mn

volX(V m
• ) ≥ (ξ̃ − ε(M ′

m;x)))n ≥ (ξ̃ − ε)n.

However, [22, Theorem D and Theorem 2.13] says that volX(V•) − 1
mn volX(V m

• ) is arbitrarily small for a 
sufficiently large integer m 
 0, so we get a contradiction. Therefore, ε = ξ̃, and we complete the proof. �
Remark 3.11. We assume char(k) = 0. One can easily check that if V• is finitely generated, then Theorem 1.2
(4) holds for every point x ∈ X. However, in general, Theorem 1.2 (4) may not hold when the point x is 
not general. For example, we fix a point x ∈ P 2, and consider a graded linear series V• associated to OP2(1)
given by



16 J. Park, J. Shin / Journal of Pure and Applied Algebra 225 (2021) 106493
Vm := {s ∈ H0(P 2,OP2(m)) | ordx(s) ≥ 1}

for any m ≥ 1. Evidently, V• is birational. For any infinitesimal admissible flag Ỹ• over x or any admissible 
flag Y• centered at x, we have

Δ̃Ỹ•
(V•) = Δ̃Ỹ•

(OP2(1)) and ΔY•(V•) = ΔY•(OP2(1)),

so we obtain ξ̃(V•; x) = ξ(V•; x) = 1. However, we have ε(V•; x) = 0.

4. Integrated volume functions

This section is devoted to the study of integrated volume functions; in particular, we prove Theorem 1.3. 
For a given admissible flag Y• on X centered at x and a graded linear series V•, we define the filtered 
Okounkov body Δ̂Y•(V•, Fx) ⊆ Rn+1

≥0 in Section 2.

Definition 4.1. The integrated volume function of (V•, Fx) at x is defined by

ϕ̂x(V•,Fx, t) :=
t∫

u=0

volRn(Δ̂Y•(V•,Fx)xn+1=u)du.

Remark 4.2. We can easily check that the function

ϕ̂x(V•,Fx,−) : R≥0 → R≥0, t �→ ϕ̂x(V•,Fx, t)

is nondecreasing and continuous. When V• is a complete graded linear series of D, we put ϕ̂x(D, t) :=
ϕ̂x(V•, Fx, t). Clearly, if D ≡ D′, then ϕ̂x(D, t) = ϕ̂x(D′, t). Then the function

ϕ̂x : Big(X) ×R≥0 → R≥0, (D, t) �→ ϕ̂x(D, t)

is continuous on the whole domain.

Example 4.3. Let X = P 1 × P 1, and V• be the complete graded linear series associated to D = OP1(1) �
OP1(1). Note that μ(V•; x) = 2. For any admissible flag Y• on X centered at x, we have

volR2

(
Δ̂Y•(V•,Fx)xn+1=t

)
= volR2

(
ΔY•(V

(t)
• )

)
=

⎧⎨
⎩
−1

2 t
2 + 1 if 0 ≤ t ≤ 1,

1
2 t

2 − 2t + 2 if 1 ≤ t ≤ 2.

It then follows that

ϕ̂x(V•,Fx, t) =

⎧⎨
⎩
−1

6 t
3 + t if 0 ≤ t ≤ 1,

1
6 t

3 − t2 + 2t− 1
3 if 1 ≤ t ≤ 2.

See [25, Example in Section 4] for the case that D = OP1(d1) � OP1(d2) with d1, d2 ≥ 1.

We are now in a position to extract several important invariants of graded linear series from the inte-
grated volume function. In particular, Proposition 4.4 (6) together with Theorem 1.2 immediately implies 
Theorem 1.3.
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Proposition 4.4. We have the following:

(1) ϕ̂x(V•, Fx, t) = ϕ̂x(V•, Fx, μ(V•; x)) = volRn+1

(
Δ̂Y•(V•,Fx)

)
for any t ≥ μ(V•; x).

(2) ϕ̂′
x(V•, Fx, t) = dϕ̂x(V•,Fx,t)

dt = volRn(ΔY•(V
(t)
• )) for all t ≥ 0.

(3) volX(V (t)
• ) = n! · ϕ̂′

x(V•, Fx, t) for all t ≥ 0.
(4) ϕ̂′

x(V•, Fx, 0) − ϕ̂′
x(V•, Fx, t) ≤ tn

n! for all t ≥ 0.
(5) μ(V•; x) = inf{t ≥ 0 | ϕ̂′

x(V•, Fx, t) = 0}.
(6) ξ̃(V•; x) = inf

{
t ≥ 0 | ϕ̂′

x(V•,Fx, 0) − ϕ̂′
x(V•,Fx, t) < tn

n!
}
.

Proof. (1) and (2) are clear by the definition. Then (3) follows from (2) and [22, Theorem 2.13]. Now, fix 
an infinitesimal admissible flag Ỹ• over x. Then we have

ϕ̂′
x(V•,Fx, t) = volRn(ΔY•(V

(t)
• )) = volRn(Δ̃Ỹ•

(V•)x1≥t).

By Lemma 3.2 (1) and [22, Theorem 2.13], we obtain (4) (see [25, Lemma 4.1] for an alternative proof of 
(4) when V• is a complete graded linear series). Observe that

μ(V•;x) = sup{ν1 | x = (ν1, . . . , νn) ∈ Δ̃Ỹ•
(V•)}.

This implies (5). Note that

ϕ̂′
x(V•,Fx, 0) − ϕ̂′

x(V•,Fx, t) = volRn(Δ̃Ỹ•
(V•)0≤x1≤t).

Then (6) follows from Lemma 3.2 (1) and (2). �
Recall from [3, Definition 1.2] that the jumping numbers of (Vm, Fx) are defined as

e	(Vm) = e	(Vm,Fx) := sup{t ∈ R | dimF t
xVm ≥ �} for � = 1, . . . ,dimVm = vm.

We have

0 ≤ evm(Vm) ≤ · · · ≤ e1(Vm).

The positive mass of (Vm, Fx) is defined as

mass+(Vm) = mass+(Vm,Fx) :=
∑

ej(Vm)>0

ej(Vm) =
∑

1≤j≤vm

ej(Vm).

Definition 4.5.

(1) Let

S(Vm) = S(Vm,Fx) := {evm(Vm), . . . , e1(Vm)} and N(Vm) = N(Vm,Fx) := |S(Vm)|.

(2) We define the effective jumping numbers of (Vm, Fx) as

αj(Vm) = αj(Vm,Fx) := the j-th largest element in S(Vm) for j = 1, . . . , N(Vm).

For convention, we put αN(Vm)+1 := 0. We have
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0 = αN(Vm)+1(Vm) ≤ αN(Vm)(Vm) < αN(Vm)−1(Vm) < · · · < α1(Vm).

(3) Let

βj(Vm) = βj(Vm,Fx) := max{� ∈ [1, vm] | e	(Vm) = αj(Vm)} for j = 1, . . . , N(Vm),

jt(Vm) = jt(Vm,Fx) := inf{j ∈ [1, N(Vm) + 1] | αj(Vm) ≤ t} for t ≥ 0.

(4) For t ≥ 0, the bounded mass function of (Vm, Fx) is defined as

mass+(Vm, t) = mass+(Vm,Fx, t) := βjt−1(t− αjt) +
N(Vm)∑
j=jt

βj(αj − αj+1),

where αj = αj(Vm), βj = βj(Vm), and jt = jt(Vm). When jt(Vm) = N(Vm) + 1, we put

N(Vm)∑
j=jt(Vm)

βj(Vm)(αj(Vm) − αj+1(Vm)) := 0.

Remark 4.6. One can check that

mass+(Vm) =
∑

ej(Vm)>0

ej(Vm) =
N(Vm)∑
j=1

βj(Vm)(αj(Vm) − αj+1(Vm)) = mass+(Vm,∞).

However, mass+(Vm, t) �=
∑

0<ej(Vm)<t ej(Vm) in general.

We now show that the integrated volume function can be expressed in terms of the bounded mass 
functions. In particular, we see that the integrated volume function ϕ̂x(V•, Fx, t) only depends on the 
multiplicative filtration Fx on V•.

Theorem 4.7. For all t ≥ 0, we have

ϕ̂x(V•,Fx, t) = lim
m→∞

mass+(Vm,Fx,mt)
mn+1 .

Proof. For any t ≥ 0, we have

ϕ̂x(V•,Fx, t) =
t∫

0

volRn(ΔY•(V
(u)
• ))du =

t∫
0

lim
m→∞

dimFmu
x Vm

mn
du.

By [22, Theorem 2.13], the sequence of functions 
{
fm(u) := dimFmu

x Vm

mn

}
converges pointwise to the function 

f(u) := volRn(ΔY•(V
(u)
• )) as m → ∞. We have |fm(u)| ≤ dimVm

mn . By [22, Theorem 2.13 and Remark 2.14],

lim sup
m→∞

dimVm

mn
= lim

m→∞
dimVm

mn
= volX(V•)

n! ,

so there exists a constant C > 0 such that 
∣∣dimVm

mn

∣∣ ≤ C for all m 
 0. It is enough to consider only a 
sufficiently large m 
 0 for the claim, so we may assume that |fm(u)| ≤ C for all m. The integration is 
taken over an area (0, t) with a finite measure, and hence, we see that |fm(u)| is bounded by an integrable 



J. Park, J. Shin / Journal of Pure and Applied Algebra 225 (2021) 106493 19
function. Now, by applying Lebesgue dominated convergence theorem and change of variable v = mu, we 
obtain

t∫
0

lim
m→∞

dimFmu
x Vm

mn
du = lim

m→∞

t∫
0

dimFmu
x Vm

mn
du = lim

m→∞
1

mn+1

mt∫
0

dimFv
xVmdv.

By regarding dimFv
xVm as a function of v, we can write

dimFv
xVm =

⎧⎪⎪⎨
⎪⎪⎩
βN(Vm)(Vm) if v = 0,
βj(Vm) if v ∈ (αj+1(Vm), αj(Vm)] for j = N(Vm), . . . , 1,
0 if v ∈ (α1(Vm),∞).

Now, it is immediate to see that

mt∫
0

dimFv
xVmdv = βjmt−1(mt− αjmt

) +
N(Vm)∑
j=jmt

βj(αj − αj+1) = mass+(Vm,Fx,mt),

where αj = αj(Vm), βj = βj(Vm), and jmt = jmt(Vm), which gives the desired result. �
As a consequence of Theorem 4.7, we recover [3, Corollary 1.13] in our situation.

Corollary 4.8. We have

volRn+1

(
Δ̂Y•(V•,Fx)

)
= ϕ̂x(V•,Fx,∞) = lim

m→∞
mass+(Vm,Fx)

mn+1 .

Example 4.9. Let X = P 2 be any point, and V• be the complete graded linear series associated to OP2(1). 
Note that μ(V•; x) = 1. For integers m, s > 0, we have

dimFs
xVm = (m + 2)(m + 1)

2 − s(s + 1)
2 .

The jumping numbers ej = ej(Vm, Fx) are given by

e (m+2)(m+1)
2 − k(k+1)

2
= · · · = e (m+2)(m+1)

2 − k(k+3)
2

= k

for all k ≥ 0 with (m+2)(m+1)
2 − k(k+3)

2 ≥ 1, so the effective jumping numbers are given by

αj(Vm,Fx) = m + 1 − j for j = 1, . . . ,m + 1 = N(Vm,Fx).

We then obtain

βj(Vm,Fx) = (m + 2)(m + 1)
2 − (m + 1 − j)(m + 2 − j)

2 and jt(Vm,Fx) = m + 1 − �t�.

For 0 ≤ t ≤ 1, the bounded mass function is given by

mass+(Vm,Fx,mt) =
(

(m + 1)(m + 2)
2 − (�mt� + 1)(�mt� + 2)

2

)
(mt− �mt�)

+

mt�∑(

(m + 1)(m + 2)
2 − k(k + 1)

2

)
.

k=1
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By Theorem 4.7, we obtain

ϕ̂x(V•,Fx, t) = lim
m→∞

mass+(Vm,Fx,mt)
m3 = −1

6 t
3 + 1

2 t for 0 ≤ t ≤ 1.
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