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In a recent paper [10], M.E. Kahoui and M. Ouali have proved that over 
an algebraically closed field k of characteristic zero, residual coordinates in 
k[X][Z1, . . . , Zn] are one-stable coordinates. In this paper we extend their result 
to the case of an algebraically closed field k of arbitrary characteristic. In fact, we 
show that the result holds when k[X] is replaced by any one-dimensional seminormal 
domain R which is affine over an algebraically closed field k. For our proof, we 
extend a result of S. Maubach in [11] giving a criterion for a polynomial of the form 
a(X)W + P (X, Z1, . . . , Zn) to be a coordinate in k[X][Z1, . . . , Zn, W ]. Kahoui and 
Ouali had also shown that over a Noetherian d-dimensional ring R containing Q any 
residual coordinate in R[Z1, . . . , Zn] is an r-stable coordinate, where r = (2d − 1)n. 
We will give a sharper bound for r when R is affine over an algebraically closed field 
of characteristic zero.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We will assume all rings to be commutative containing unity. The notation R[n] will be used to denote 
any R-algebra isomorphic to a polynomial algebra in n variables over R. Unless otherwise stated, capital 
letters like X1, X2, . . . , Xn, Z1, Z2, . . . , Zm, X, Y, Z, W will be used as variables in the polynomial ring.

We will discuss results connecting coordinates, residual coordinates and stable coordinates in polynomial 
algebras (see 2.2 to 2.4 for definitions). The study was initiated for the case n = 2 by Bhatwadekar and 
Dutta ([4]) and later extended to n > 2 by Das and Dutta ([7]).

An important problem in the study of polynomial algebras is to find fibre conditions for a polynomial F
in a polynomial ring A = R[n+1] to be a coordinate in A. In the case R = k[X], where k is an algebraically 
closed field of characteristic zero, S. Maubach gave the following useful result for polynomials linear in one 
of the variables ([11, Theorem 4.5]).
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Theorem 1.1. Let k be an algebraically closed field of characteristic zero, P (X, Z1, . . . , Zn) be an ele-
ment in the polynomial ring k[X, Z1, . . . , Zn] and a(X) ∈ k[X] − {0}. Suppose, for each root α of a(X), 
P (α, Z1, . . . , Zn) is a coordinate in k[Z1, . . . , Zn]. Then, the polynomial F defined by F := a(X)W +
P (X, Z1, . . . , Zn) is a coordinate in k[X, Z1, . . . , Zn, W ], along with X.

In this paper, we will show that Maubach’s result holds when k[X] is replaced by any one-dimensional 
ring R which is affine over an algebraically closed field k such that either the characteristic of k is zero or 
Rred is seminormal and a(X) is replaced by a non-zerodivisor a in R for which the image of P becomes a 
coordinate over R/aR (see Theorem 3.2).

As an application of Theorem 1.1, Kahoui and Ouali have recently proved the following two results on 
the connection between residual coordinates and stable coordinates ([10, Theorem 1.1 and Theorem 1.2]).

Theorem 1.2. Let k be an algebraically closed field of characteristic zero, R = k[X] and A = R[Z1, . . . , Zn]. 
Then every residual coordinate in A is a 1-stable coordinate in A.

Theorem 1.3. Let R be a Noetherian d-dimensional ring containing Q and A = R[Z1, . . . , Zn]. Then every 
residual coordinate in A is a (2d − 1)n-stable coordinate in A.

Using our generalization of Maubach’s result (Theorem 3.2) and the concept of exponential maps (see 
Definition 2.13 and Proposition 2.14) we will generalize Theorem 1.2 to the case when k[X] is replaced by a 
one-dimensional ring R which is affine over an algebraically closed field k such that either the characteristic 
of k is zero or Rred is seminormal (see Theorem 3.4). Next, we will show (Theorem 3.6) that the condition “R
contains Q” can be dropped from Theorem 1.3. We will also show that when R is affine over an algebraically 
closed field of characteristic zero, the bound (2d−1)n given in Theorem 1.3 can be reduced to 2d−1(n +1) −n

(see Theorem 3.7).

2. Preliminaries

In this section we recall a few definitions and some well-known results.

Definition 2.1. A reduced ring R is said to be seminormal if it satisfies the condition: for b, c ∈ R with 
b3 = c2, there is an a ∈ R such that a2 = b and a3 = c.

Definition 2.2. Let A = R[X1, . . . , Xn] and F ∈ A. F is said to be a coordinate in A if there exist F2, . . . , Fn ∈
A such that A = R[F, F2, . . . , Fn].

Definition 2.3. Let A = R[X1, . . . , Xn], F ∈ A and m ≥ 0. F is said to be an m-stable coordinate in A if F
is a coordinate in A[m].

Definition 2.4. Let A = R[X1, . . . , Xn] and F ∈ A. F is said to be a residual coordinate in A if, for each 

prime ideal p of R, A ⊗R k(p) = k(p)[F ][n−1], where F denotes the image of F in A ⊗R k(p) and k(p) :=
Rp

pRp

is the residue field of R at p.

Definition 2.5. Let A −→ B be an extension of Noetherian rings and M a B-module. M is said to be 
extended from A if M ∼= N ⊗A B for some A-module N .

Now, we state some known results connecting coordinates, residual coordinates and stable coordinates 
in polynomial algebras. First, we state an elementary result ([9, Lemma 1.1.9]).
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Lemma 2.6. Let R be a ring, nil(R) denote the nilradical of R and F ∈ R[Z1, . . . , Zn]. Let R := R

nil(R) and 

F denote the image of F in R[Z1, . . . , Zn]. Then F is a coordinate in R[Z1, . . . , Zn] if and only if F is a 
coordinate in R[Z1, . . . , Zn].

The following result has been proved by Kahoui and Ouali in [10, Lemma 3.4].

Proposition 2.7. Let R be an Artinian ring and A = R[Z1, . . . , Zn]. Then every residual coordinate in A is 
a coordinate in A.

The following result on residual coordinates was proved by Bhatwadekar and Dutta ([4, Theorem 3.2]).

Theorem 2.8. Let R be a Noetherian ring such that either R contains Q or Rred is seminormal. Let A = R[2]

and F ∈ A. If F is a residual coordinate in A, then F is a coordinate in A.

Now, we state a result on stable coordinates due to J. Berson, J.W. Bikker and A. van den Essen ([3, 
Proposition 5.3]); the following version was observed by Kahoui and Ouali in [10].

Theorem 2.9. Let R be a ring, a be a non-zerodivisor of R and P ∈ R[Z1, . . . , Zn]. Suppose, the image 

of P is an m-stable coordinate in 
R

aR
[Z1, . . . , Zn]. Then the polynomial F defined by F := aW + P is a 

(2m + n − 1)-stable coordinate in R[Z1, . . . , Zn, W ].

The following result on linear planes over a discrete valuation ring was proved by S.M. Bhatwadekar and 
A.K. Dutta in [5, Theorem 3.5].

Theorem 2.10. Let R be a discrete valuation ring with parameter π, K = R[ 1
π ], k = R

πR and F = aW − b ∈

R[Y,Z,W ], where a(�= 0), b ∈ R[Y,Z]. Suppose that R[Y,Z,W ]
(F ) = R[2]. Let, for each G ∈ R[Y,Z,W ], G

denote the image of G in k[Y, Z, W ]. Then there exists an element Y0 ∈ R[Y,Z] such that a ∈ R[Y0], Y0 /∈ k

and K[Y, Z] = K[Y0][1]. Moreover, if dim(k[F , Y0]) = 2, then F is a coordinate in R[Y, Z, W ].

Now, we define Ar-fibration and state a theorem of A. Sathaye ([13, Theorem 1]) on the triviality of 
A2-fibration over a discrete valuation ring containing Q.

Definition 2.11. An R-algebra A is said to be an Ar-fibration over R if the following hold:

(i) A is finitely generated over R,
(ii) A is flat over R,
(iii) A ⊗R k(p) = k(p)[r], for each prime ideal p of R.

Theorem 2.12. Let R be a discrete valuation ring containing Q. Let A be an A2-fibration over R. Then 
A = R[2].

Next, we define exponential maps and see it’s correspondence with locally finite iterative higher derivation 
(see [6]). We also record a basic result on exponential maps.

Definition 2.13. Let R be a ring and A be an R-algebra. Let δ : A −→ A[1] be an R-algebra homomorphism. 
We write δ = δW : A −→ A[W ] if we wish to emphasize an indeterminate W . We say δ is an R-linear 
exponential map if
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(i) ε0δW is the identity map on A, where ε0 : A[W ] −→ A is the A-algebra homomorphism defined by 
ε0(W ) = 0.

(ii) δV δW = δV +W , where δV is extended to a homomorphism of A[W ] into A[V, W ] by setting δV (W ) = W .

For an exponential map δ : A −→ A[1], we get a sequence of maps δ(i) : A −→ A as follows: for a ∈ A, set 
δ(i)(a) to be the coefficient of W i in δW (a), i.e., for δW : A −→ A[W ], we have

δW (a) =
∑

δ(i)(a)W i.

Since δW (a) is an element in A[W ], the sequence {δ(i)(a)}i≥0 has only finitely many nonzero elements for 
each a ∈ A. Since δW is a ring homomorphism, we see that δ(i) : A −→ A is linear for each i and that the 
Leibnitz Rule:

δ(n)(ab) =
∑

i+j=n

δ(i)(a)δ(j)(b) (∗)

holds for all n and for all a, b ∈ A.
The properties (i) and (ii) of the exponential map δW translate into the following properties:

(i)′ δ(0) is the identity map on A.
(ii)′ The “iterative property” δ(i)δ(j) =

(
i+j
j

)
δ(i+j) holds for all i, j ≥ 0.

The sequence {δ(i)}i≥0 with only finitely many nonzero δ(i)(a) for each a ∈ A and satisfying (∗), (i)′, (ii)′
is called a locally finite iterative higher derivation on A.

Now, we state and prove a well known result on exponential maps which follows from a straightforward 
application of properties (i) and (ii) stated above.

Proposition 2.14. Let R be a ring and A an R-algebra. Let δW : A −→ A[W ] be an R-linear exponential map 
and {δ(i)}i≥0 the sequence of maps on A defined above. Then the extension of δW to δ̃W : A[W ] −→ A[W ], 
defined by setting δ̃W (W ) := W , is an R[W ]-automorphism of A[W ].

Proof. Let δ−W : A −→ A[W ] be the R-linear exponential map defined by δ−W (a) =
∑

δ(i)(a)(−W )i and 
δ̃−W : A[W ] −→ A[W ] be the extension of δ−W defined by setting δ̃−W (W ) := W . If ϕ, ψ : A[W, V ] −→
A[W ] are the A[W ]-algebra homomorphisms defined by ϕ(V ) = −W and ψ(V ) = W respectively, then by 
properties (i) and (ii) of exponential maps, both ϕ ◦δV ◦δW and ψ◦δV ◦δ−W happen to be the inclusion map 
from A into A[W ]. Since for each a ∈ A, ϕ ◦ δV (a) = δ−W (a) and ψ ◦ δV (a) = δW (a), it follows that both 
δ̃−W ◦ δ̃W and δ̃W ◦ δ̃−W are the identity map on A[W ]. Thus, δ̃W is an R[W ]-automorphism of A[W ]. �

Next, we quote some famous results which will be needed later in this paper. First, we state Bass’s 
cancellation theorem ([1, Theorem 9.3]).

Theorem 2.15. Let R be a Noetherian d-dimensional ring and Q be a finitely generated projective R-module 
whose rank at each localization at a prime ideal is at least d + 1. Let M be a finitely generated projective 
R-module such that M ⊕Q ∼= M ⊕N for some R-module N . Then Q ∼= N .

Now, we state Quillen’s local-global theorem ([12, Theorem 1]).

Theorem 2.16. Let R be a Noetherian ring, D = R[1] and M be a finitely generated D-module. Suppose, for 
each maximal ideal m of R, Mm is extended from Rm . Then M is extended from R.
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For convenience, we record a basic result on symmetric algebras of finitely generated modules ([8, Lemma 
1.3]).

Lemma 2.17. Let R be a ring and M, N two finitely generated R-modules. If SymR(M) and SymR(N)
denote the respective symmetric algebras then SymR(M) ∼= SymR(N) as R-algebras if and only if M ∼= N

as R-modules.

Finally, we quote the theorem on the triviality of locally polynomial algebras proved by Bass-Connell-
Wright ([2]) and independently by Suslin ([14]).

Theorem 2.18. Let A be a finitely presented R-algebra. Suppose that for each maximal ideal m of R, the 
Rm -algebra Am is Rm -isomorphic to the symmetric algebra of some Rm-module. Then A is R-isomorphic to 
the symmetric algebra of a finitely generated projective R-module.

3. Main results

In this section we prove our main results. First, we will extend Theorem 1.1 (see Theorem 3.2). For 
convenience, we record below a local-global result.

Lemma 3.1. Let R be a one-dimensional ring, n ≥ 2, A = R[Z1, . . . , Zn] and F ∈ A. Suppose that for each 
maximal ideal m of R, Am = Rm [F ][n−1]. Then F is a coordinate in A.

Proof. Let D := R[F ], n be an arbitrary maximal ideal of D, p := n ∩R and m0 a maximal ideal of R such 
that p ⊆ m0. From the natural maps Rm0 −→ Rp −→ Dn , we see that Ap = Rp[F ][n−1] and hence An =
Dn

[n−1]. By Theorem 2.18, there exists a projective D-module Q′ of rank (n − 1) such that A ∼= SymD(Q′). 
Since, for each maximal ideal m of R, Am = Rm [F ][n−1] ∼= SymDm ((Dm)n−1), by Theorem 2.16, we have 
Q′

m
∼= (Dm)n−1 ∼= (Rm)n−1 ⊗R D. Thus, Q′ is locally extended from R and hence by Theorem 2.16, Q′ is 

extended from R, i.e., there exists a projective R-module Q of rank (n −1) such that Q′ = Q ⊗RD. Therefore, 
A ∼= SymR(Q) ⊗R D ∼= SymR(Q) ⊗R SymR(R) ∼= SymR(Q⊕R). Since A = R[Z1, . . . , Zn] ∼= SymR(Rn), 
by Lemma 2.17, we have Q ⊕ R ∼= Rn. Hence, by Theorem 2.15, Q is a free R-module of rank (n − 1). 
Therefore, Q′ is a free D-module of rank (n − 1). Hence, A = R[F ][n−1]. �

We now extend Theorem 1.1.

Theorem 3.2. Let k be an algebraically closed field and R a one-dimensional affine k-algebra. Let a be a 
non-zerodivisor in R and P (Z1, . . . , Zn) ∈ R[Z1, . . . , Zn] be such that the image of P is a coordinate in 
R

aR
[Z1, . . . , Zn]. If Rred is seminormal or if the characteristic of k is zero then the polynomial F defined by 

F := aW + P is a coordinate in R[Z1, . . . , Zn, W ].

Proof. By Lemma 3.1, it is enough to consider the case when R is a local ring with unique maximal ideal m. 
Since R is an affine algebra over the algebraically closed field k, the residue field 

R

m
is k (by Hilbert’s Null-

stellensatz). Let η denote the canonical map R[Z1, . . . , Zn, W ] −→ k[Z1, . . . , Zn,W ](⊂ R[Z1, . . . , Zn,W ]).
If a /∈ m, then a is a unit in R and hence F is a coordinate in R[Z1, . . . , Zn, W ]. So, we assume that a ∈ m. 

Then η(F ) = η(P ). Since the image of P is a coordinate in 
R

aR
[Z1, . . . , Zn], hence g := η(P )(= η(F )) is 

a coordinate in k[Z1, . . . , Zn] and hence in R[Z1, . . . , Zn]. Thus, there exist g2, . . . , gn ∈ k[Z1, . . . , Zn] such 
that k[Z1, . . . , Zn] = k[g, g2, . . . , gn] and hence R[Z1, . . . , Zn] = R[g, g2, . . . , gn].

Set A := R[g2, . . . , gn] and B := R[Z1, . . . , Zn, W ] = A[g, W ](= A[2]). We now show that F is a residual 
coordinate in B = A[g, W ]. Let Q be an arbitrary prime ideal of A and p = Q ∩ R. If p = m, then 
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k = k(p) ↪→ k(Q) and the image of F in B ⊗A k(Q), being the image of g(= η(F )) in B ⊗A k(Q), is a 
coordinate in B ⊗A k(Q). If p �= m, then p is a minimal prime ideal of the one-dimensional ring R and 
hence p ∈ Ass(R). Therefore, a /∈ p. Hence a is a unit in k(p) and therefore the image of F in B ⊗A k(Q)
is a coordinate in B ⊗A k(Q). Thus, F is a residual coordinate in A[g, W ]. Hence, by Theorem 2.8, F is a 
coordinate in A[g, W ](= R[Z1, . . . , Zn, W ]). �

Now, we extend Theorem 1.2 to any algebraically closed field of arbitrary characteristic. First, we prove 
an easy lemma on existence of exponential maps which is a straightforward generalization of Lemma 3.1 in 
[10].

Lemma 3.3. Let R be a ring and A = R[Z1, . . . , Zn]. Let S be a multiplicatively closed subset of R consisting 
of non-zerodivisors in R and P ∈ R[Z1, . . . , Zn]. If P is a coordinate in S−1A then there exists an R-linear 
exponential map ϕW : A → A[W ] such that ϕW (P ) = aW + P , for some a ∈ S.

Proof. Since P is a coordinate in S−1A, there exist c ∈ S and g2, . . . , gn ∈ A such that

Ac = Rc[g2, . . . , gn, P ] (= Rc[g2, . . . , gn][1]),

where Ac and Rc denote the localisation of the rings A and R respectively at the multiplicative set 
{1, c, c2, . . . }. Let Zi =

∑
ai,j1,...,jnP

j1gj22 . . . gjnn , where ai,j1,...,jn ∈ Rc, for all i, 1 ≤ i ≤ n and j1, . . . , jn ≥ 0. 
Then there exists m ≥ 0 such that cmai,j1,...,jn ∈ R, for all i, 1 ≤ i ≤ n and j1, . . . , jn ≥ 0. Define an 
Rc[g2, . . . , gn]-algebra homomorphism ψW : Ac → Ac[W ] by setting ψW (P ) := P + cmW . Clearly, ψW is 
an exponential map and ψW (Zi) = Zi + hi, for some hi ∈ A[W ]. Now, if we set a to be cm and define 
ϕW := ψW |A then ϕW is our desired exponential map. �

We now generalize Theorem 1.2.

Theorem 3.4. Let k be an algebraically closed field, R a one-dimensional affine k-algebra such that either the 
characteristic of k is zero or Rred is seminormal. Then, every residual coordinate in A := R[Z1, . . . , Zn], n ≥
3, is a 1-stable coordinate.

Proof. By Lemma 2.6, it is enough to consider the case when R is a reduced ring. Let P (Z1, . . . , Zn) be a 
residual coordinate in A and S be the set of all non-zerodivisors in R. Since S−1R is Artinian, hence by 
Proposition 2.7, P is a coordinate in S−1A. Therefore, by Lemma 3.3, there exists an R-linear exponential 
map ϕW : A → A[W ] such that ϕW (P ) = aW + P , for some a ∈ S. Now, by Theorem 3.2, aW + P is 
a coordinate in A[W ]. Since by Proposition 2.14, the extension of ϕW to A[W ] is an R-automorphism of 
A[W ] which maps P to aW + P , P is a 1-stable coordinate in A. �
Remark 3.5. Recall that if R is as in Theorem 3.4 then a residual coordinate in R[Z1, Z2] is actually a 
coordinate ([4, Theorem 3.2]).

Now, using Lemma 3.3, we will show that the condition “R contains Q” can be dropped from Theorem 1.3.

Theorem 3.6. Let R be a Noetherian d-dimensional ring. Then every residual coordinate in R[Z1, . . . , Zn] is 
a (2d − 1)n-stable coordinate.

Proof. We prove the result by induction on d. If d = 0, the result follows from Proposition 2.7. Now, let 
d ≥ 1 and P a residual coordinate in A := R[Z1, . . . , Zn]. We show that P is a (2d − 1)n-stable coordinate 
in A.
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By Lemma 2.6, we may assume that R is a reduced ring. Let S be the set of all non-zerodivisors of R. 
Then, as S−1R is an Artinian ring, by the case d = 0, P is a coordinate in S−1A. Hence, by Lemma 3.3, there 
exists a non-zerodivisor a in R and an exponential map ϕW : A −→ A[W ] such that ϕW (P ) = aW + P . 
Now, we observe that the image of P is a residual coordinate in 

R

aR
[Z1, . . . , Zn] and 

R

aR
is a (d − 1)-

dimensional ring. So, by induction hypothesis, P is a (2d−1−1)n-stable coordinate in 
R

aR
[Z1, . . . , Zn]. Hence, 

by Theorem 2.9, aW +P is an r-stable coordinate in A[W ], where r = 2n(2d−1 − 1) +n − 1 = (2d− 1)n − 1. 
Since by Proposition 2.14, the extension of ϕW to A[W ] is an R-automorphism of A[W ] which maps P to 
aW + P , P is an r + 1 (= (2d − 1)n)-stable coordinate in A. �

Next, using Theorem 3.2 and Lemma 3.3, we will show that under the additional hypothesis that R is 
affine over an algebraically closed field of characteristic zero, we can get a sharper bound in Theorem 3.6.

Theorem 3.7. Let k be an algebraically closed field of characteristic zero and R a finitely generated k-
algebra of dimension d. Then every residual coordinate in R[Z1, . . . , Zn] is an r-stable coordinate, where 
r = (2d − 1)n − 2d−1(n − 1) = 2d−1(n + 1) − n.

Proof. We prove the result by induction on d. If d = 1, the result follows from Theorem 3.2. Let d ≥ 2 and 
P a residual coordinate in A := R[Z1, . . . , Zn]. We show that P is a (2d−1(n + 1) − n)-stable coordinate in 
A.

By Lemma 2.6, we may assume that R is a reduced ring. Let S be the set of all non-zerodivisors of R. 
Since S−1R is an Artinian ring, by Proposition 2.7, P is a coordinate in S−1A. Hence, by Lemma 3.3, there 
exists a non-zerodivisor a in R and an exponential map ϕW : A −→ A[W ] such that ϕW (P ) = aW + P . 
Now, we observe that the image of P is a residual coordinate in 

R

aR
[Z1, . . . , Zn] and 

R

aR
is a (d − 1)-

dimensional ring containing an algebraically closed field of characteristic zero. So, by induction hypothesis, 
P is a (2d−2(n + 1) − n)-stable coordinate in 

R

aR
[Z1, . . . , Zn]. Now, arguing as in Theorem 3.6, the result 

follows from Theorem 2.9 and Proposition 2.14. �
The following question asks whether Theorem 3.2 (and thereby Theorem 3.4) can be extended to an affine 

algebra of any dimension over any field (not necessarily algebraically closed) of arbitrary characteristic.

Question 3.8. Let k be a field, R an affine k-algebra, a be a non-zerodivisor in R and P (Z1, . . . , Zn) ∈
R[Z1, . . . , Zn] be such that the image of P is a coordinate in 

R

aR
[Z1, . . . , Zn]. Suppose, Rred is seminormal 

or the characteristic of k is zero. Then, is F := aW + P a coordinate in R[Z1, . . . , Zn, W ]?

The following result shows that for n = 2, the above question has an affirmative answer when R is a 
Dedekind domain containing a field of characteristic zero.

Proposition 3.9. Let R be a Dedekind domain containing Q, a ∈ R− {0} and F = aW + P (Y, Z) ∈
R[Y,Z,W ]. If the image of P is a coordinate in 

R

aR
[Y, Z], then F is a coordinate in R[Y, Z, W ].

Proof. By Lemma 3.1, it is enough to assume that R is a discrete valuation ring with parameter t. Let 

k = R

tR
, K = R[ 1t ], A = R[Y,Z,W ]

(F ) and P denote the image of P in k[Y, Z]. Note that a is a unit in K

and hence F is a coordinate in K[Y, Z, W ]; in particular A[ 1t ] = K [2].
If a /∈ tR, then a is a unit in R and hence F is a coordinate in R[Y, Z, W ]. We now consider the case 

a ∈ tR. Considering the natural map 
R → R (= k), we see that P is a coordinate in k[Y, Z] and hence 

aR tR
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tA
= k[2]. It also follows that P /∈ tR[Y,Z] and hence a and P are coprime in R[Y, Z]. Thus, F (= aW +P )

is irreducible in R[Y, Z, W ]. So, A is a torsion free module over the discrete valuation ring R and hence A is 
flat over R. Thus, A is an A2-fibration over R and hence by Theorem 2.12, A = R[2]. As P is a coordinate in 
k[Y, Z], we see that P /∈ k[Y ] ∩ k[Z](= k). Hence at least one of the rings k[Y, P ] and k[Z, P ] is of dimension 
two. Now, the result follows from Theorem 2.10. �
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