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We prove that given C a presentably symmetric monoidal ∞-category, and any 
essentially small ∞-operad O, the ∞-category of O-algebras in C is enriched, 
tensored and cotensored over the presentably symmetric monoidal ∞-category of O-
coalgebras in C. We provide a higher categorical analogue of the universal measuring 
coalgebra. For categories in the usual sense, the result was proved by Hyland, López 
Franco, and Vasilakopoulou.
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1. Introduction

The dual of a coalgebra is always an algebra. However, unless we require the algebra to be finite dimen-
sional, the dual of an algebra is not a coalgebra. The universal measuring coalgebra was introduced in [24]
as a way to balance this issue. In ordinary categories, the measuring provides an enrichment for algebras 
over coalgebras: this was established in [14, 5.2] and [25, 2.18]. We provide here, in Theorem 3.19, its ∞-
categorical analogue. In any presentably symmetric monoidal ∞-category, the algebra objects are enriched, 
tensored and cotensored over coalgebras. Therefore spaces of algebra morphisms are endowed with a rich 
structure. We use the notion of enriched ∞-categories following [7] and [12].

Algebras in ∞-categories formalize the notion of homotopy coherent associative and unital algebras, see 
[17]. Following [18], we provide a general dual definition of coalgebras in ∞-categories. These are objects 
with a comultiplication that is coassociative up to higher homotopies. We show, in Proposition 2.8, that if 
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an ∞-operad O is essentially small, the ∞-category of O-coalgebras in a presentable ∞-category remains 
presentable.

A similar result would be very challenging to prove in model categories. Let M be a combinatorial 
symmetric monoidal model category. Suppose we have a model structure for algebras Alg(M) in M and a 
model structure for coalgebras CoAlg(M) in M, in which the weak equivalences in both of these models are 
created by their underlying functor. One analogous result would be to show that Alg(M) is a CoAlg(M)-model 
category, in the sense of [15, 4.2.18]. There are several issues with that. A left-induced model structure on 
CoAlg(M) may not always exist, and when it does, M may have been replaced by a Quillen equivalent model 
category that is not a monoidal model category, see [13]. Even in cases where we can left-induce from a 
monoidal model category, the homotopy theory associated to CoAlg(M) may not be the correct one, see [23]
and [21].
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2. Presentability of coalgebras

We present here the formal definition of coalgebras in ∞-categories, generalizing [18, Section 3.1], which 
was for the case of E∞-coalgebras. We define and extend the results for coalgebras over any ∞-operad. Our 
main result in this section is that coalgebras of a presentably symmetric monoidal ∞-category also form a 
presentable ∞-category, see Corollary 2.9.

We invite the reader to review the definition of a symmetric monoidal ∞-category in [17, 2.0.0.7]. More 
generally, for any ∞-operad O (see [17, 2.1.1.10]), we will consider the notion of an O-monoidal ∞-category
as in [17, 2.1.2.15]. If we choose O to be the commutative ∞-operad ([17, 2.1.1.18]), then O-monoidal 
∞-categories are precisely symmetric monoidal ∞-categories.

Definition 2.1. Let O be an ∞-operad. Let C be an O-monoidal ∞-category. An O-coalgebra object in C

is an O-algebra object in Cop. The ∞-category of O-coalgebra objects in C is defined as the ∞-category 
CoAlgO(C) := (AlgO(Cop))op. More generally, given any map O′⊗ → O⊗ of ∞-operads, we define the 
∞-category of O′-coalgebras in C as CoAlgO′/O(C) = (AlgO′/O(Cop))op.

Remark 2.2. If C is an O-monoidal ∞-category, then Cop can be given an O-monoidal structure uniquely 
up to contractible choice, as in [17, 2.4.2.7]. One can use the work of [3] to give an explicit choice of the 
coCartesian fibration for Cop. For instance, let p : C⊗ → O⊗ be the coCartesian fibration associated to the 
symmetric monoidal structure of C. Then straightening of the coCartesian fibration gives a functor:

F : O⊗ −→ Ĉat∞,

where Ĉat∞ is the ∞-category of (not necessarily small) ∞-categories, as in [17, 3.0.0.5]. Then, by [3, 1.5], 
the functor F also classifies a Cartesian fibration:

p∨ : (C⊗)∨ −→ (O⊗)op.

An explicit construction is given in [3, 1.7]. The opposite map:
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(p∨)op : ((C⊗)∨)op −→ O⊗,

is a coCartesian fibration that is classified by:

O⊗ Ĉat∞ Ĉat∞.F op

One can check that the fiber of (p∨)op over X in O is equivalent to (CX)op, and thus gives Cop a O-monoidal 
structure. We see that O-coalgebras are sections of the Cartesian fibration p∨ : (C⊗)∨ → (O⊗)op that sends 
inert morphisms in (O⊗)op to p∨-Cartesian morphisms in (C⊗)∨.

Remark 2.3. Recall from [17, 2.0.0.1] that given any symmetric monoidal (ordinary) category C, one can 
define a category C⊗, such that the nerve N (C⊗) is a symmetric monoidal ∞-category whose underlying 
∞-category is N (C), see [17, 2.1.2.21]. If we denote by CoAlg(C) the category of coassociative and counital 
coalgebras in C, then, dually from [8, 4.21], we obtain:

CoAlgA∞
(N (C)) � N (CoAlg(C)) .

Similarly, if we denote by CoCAlg(C) the category of cocommutative coalgebras in C, we obtain:

CoAlgE∞
(N (C)) � N (CoCAlg(C)) .

Proposition 2.4 ([17, 3.2.4.4]). Let O be an ∞-operad. Let C be an O-monoidal ∞-category. Then the 
∞-category AlgO(C) inherits a O-monoidal structure, given by pointwise tensor product. Dually, the ∞-
category CoAlgO(C) inherits a O-monoidal structure, given by pointwise tensor product.

Proposition 2.5. Let C be a O-monoidal ∞-category and let K be a simplicial set. If, for each X in O, the 
fiber CX admits K-indexed colimits, then the ∞-category CoAlgO(C) admits K-indexed colimits, and the 
forgetful functor U : CoAlgO(C) → C preserves K-indexed colimits.

Proof. Apply [17, 3.2.2.5] to the coCartesian fibration (p∨)op : ((C⊗)∨)op −→ O⊗ defined in Remark 2.2. �
Recall the definition [16, 5.5.0.1] of a presentable ∞-category. Denote PrL the ∞-category of presentable 

∞-categories with small colimit preserving functors. It is endowed with a symmetric monoidal structure 
([17, 4.8.1.15]).

Definition 2.6. An ∞-category C is said to be presentably O-monoidal if it is an O-algebra in PrL, i.e., C
is O-monoidal, for each object X in O⊗, the fiber C⊗

X is presentable, and for every morphism f : X → Y in 
O⊗, the associated functor f! : C⊗

X → C⊗
Y preserves small colimits.

Example 2.7. When O⊗ is the commutative ∞-operad (see [17, 2.1.1.18]), then a presentably O-monoidal 
∞-category is called presentably symmetric monoidal. Notice that a symmetric monoidal ∞-category C is 
presentably symmetric monoidal if and only if C is presentable and the tensor product ⊗ : C × C → C

preserves small colimits in each variable.

The following dualizes the result on algebras in [17, 3.2.3.5] and generalizes the result for cocommutative 
coalgebras in [18, 3.1.4].

Proposition 2.8. Let O be an essentially small ∞-operad. Let C be a presentably O-monoidal ∞-category. 
Then CoAlgO(C) is a presentably O-monoidal ∞-category.
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Proof. By Propositions 2.4 and 2.5, we only need to check that CoAlgO(C) is presentable. Denote the 
coCartesian fibration p : C⊗ → O⊗ that defines the O-monoidal structure of C. We apply [16, 5.4.7.11, 
5.4.7.14] to the subcategory PrL of Ĉat∞, to the Cartesian fibration p∨ : (C⊗)∨ → (O⊗)op described in 
Remark 2.2, and the set of inert morphisms in (O⊗)op. The subcategory PrL respects the conditions (a), 
(b) and (c) of [16, 5.4.7.11] by [16, 5.4.3.13, 5.5.3.6, 5.1.2.4].

Therefore we only need to check that the fibers of p∨ over any object of (O⊗)op are presentable, and that 
the associated functors between the fibers, induced by the Cartesian structure of p∨, are accessible.

For any object X in O⊗, the fiber of p∨ over X is equivalent to the fiber C⊗
X of p over X. By Definition 2.6, 

the fibers over p are presentable and the associated functors CX → CY are accessible maps for any morphism 
X → Y in O⊗. Thus the induced maps ((C⊗)∨)Y → ((C⊗)∨)X are also accessible, as C⊗ and (C⊗)∨ have 
the same underlying ∞-category C by [3, 1.3]. �
Corollary 2.9. Let O be an essentially small ∞-operad. If C is a presentably symmetric monoidal ∞-category, 
then CoAlgO(C) is a presentably symmetric monoidal ∞-category.

Remark 2.10. In general, if C is compactly generated ([16, 5.5.7.1]), there is no guarantee that CoAlgO(C) is 
also compactly generated. However, the fundamental theorem of coalgebras (see [24, II.2.2.1] or [6, 1.6]) states 
that if C is (the nerve of) vector spaces, or chain complexes over a field, then CoAlgA∞

(C) is compactly 
generated and the forgetful functor U : CoAlgA∞

(C) → C preserves and reflects compact objects. From 
[2, 4.2], if κ is an uncountable regular cardinal, we conjecture that the fundamental theorem of coalgebra 
can be expended in the following sense. If C is κ-compactly generated then CoAlgO(C) is κ-compactly 
generated and the forgetful functor preserves and reflects κ-compact objects.

The forgetful functor U : CoAlgO(C) → C admits a right adjoint functor T∨ : C → CoAlgO(C) called 
the cofree O-coalgebra functor.

Corollary 2.11. Let O be an essentially small ∞-operad. Let C be a presentably O-monoidal ∞-category. 
Then there is forgetful-cofree adjunction:

U : CoAlgO(C) C : T∨.⊥

Proof. Apply Propositions 2.5 and 2.8 and the adjoint functor theorem [16, 5.5.2.9]. �
In some cases, the ∞-category CoAlgO(C) is not mysterious. We recall the following result from Lurie. 

Let C be a symmetric monoidal ∞-category, and denote by Cfd the full subcategory spanned by the dualizable 
objects, see [17, 4.6.1]. It inherits a symmetric monoidal structure. For each dualizable object X, we denote 
X∨ its dual and this defines a contravariant endofunctor on Cfd.

Proposition 2.12 ([18, 3.2.4]). Let C be a symmetric monoidal ∞-category. Then taking dual objects assigns 
an equivalence of symmetric monoidal ∞-categories (Cfd)op �−→ Cfd. In particular, for any ∞-operad O, we 
obtain an equivalence CoAlgO(Cfd)op � AlgO(Cfd) of symmetric monoidal ∞-categories.

The anti-equivalence above has been generalized to a wider class in [5, 3.31].

3. The universal measuring coalgebra

Classically, in any presentable symmetric monoidal closed ordinary category, the category of monoids is 
enriched, tensored and cotensored in the symmetric monoidal category of comonoids. This was proven in [14, 
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5.2] and [25, 2.18]. See also the example of the differential graded case in [1]. We show here in Theorem 3.19
an equivalent statement in ∞-categories.

An ∞-category shall be defined to be enriched over a symmetric monoidal ∞-category in the sense of [7]. 
Alternatively, the reader can use the definition in [12, 3.1.2, 7.1.1(2)]. By [12, 3.4.4] they are equivalent. The 
author in [12] uses the term precategory instead of enriched category for various reasons that are explained 
in [12, 4.8], but the reader can safely ignore those technicalities and think of them as enriched ∞-categories 
for all the results we quote in this paper.

An ∞-category is tensored or cotensored over a monoidal ∞-category in the sense of [17, 4.2.1.19] or 
[17, 4.2.1.28] respectively. Our desired enrichment in Theorem 3.19 will also be enriched in the sense of [17, 
4.2.1.28]. It is shown in [10] that the definitions of enrichment of Lurie and Gepner-Haugseng are equivalent.

Throughout this section, let C be a presentably symmetric monoidal ∞-category. It is in particular closed, 
and thus the strong symmetric monoidal functor:

⊗ : C × C −→ C,

induces a lax symmetric monoidal functor [−, −] : Cop × C → C, see [9, I.3], characterized by the universal 
mapping property C(X ⊗ Y, Z) � C(X, [Y, Z]), for all X, Y , and Z in C. In other words, the functor 
− ⊗ Y : C → C is a left adjoint to [Y, −] : C → C.

3.1. The Sweedler cotensor

Let O be an essentially small ∞-operad. From the lax symmetric monoidal structure of [−, −] : Cop×C →
C, we obtain a functor:

[−,−] : AlgO(Cop) × AlgO(C) −→ AlgO(C).

By definition of O-coalgebras, we identify AlgO(Cop) simply as CoAlgO(C)op, and thus obtain the following 
definition.

Definition 3.1. Let C and O be as above. We call the induced functor:

[−,−] : CoAlgO(C)op × AlgO(C) −→ AlgO(C),

the Sweedler cotensor. In the literature, it is sometimes called the convolution algebra or the convolution 
product, see [24, 4.0] and [1].

Remark 3.2. The term convolution product stems from the algebra structure that generalizes the usual 
convolution product in representation theory. See [11, 2.12.3]. It also generalizes the classical convolutions 
of real functions of compact support, see [11, 2.14.4].

Example 3.3. The Sweedler cotensor in the case where O = E∞ and C is the ∞-category of R-modules in 
a symmetric monoidal ∞-category, where R is an E∞-algebra, was presented in [19, Section 1.3.1]. See also 
[20, 6.6].

Example 3.4. Let I be the unit of the symmetric monoidal structure of C. Let C be any O-coalgebra. The 
Sweedler cotensor [C, I] is the linear dual C∗. Therefore the linear dual of an O-coalgebra is always an 
O-algebra. In particular the linear dual functor (−)∗ : Cop → C lifts to the Sweedler cotensor (−)∗ = [−, I] :
CoAlgO(C)op → AlgO(C). Here we recover the classical result that the dual of a coalgebra is always an 
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algebra, see [24, 1.1.1]. More precisely, if C is a coalgebra with comultiplication Δ : C → C ⊗C and counit 
ε : C → I, then C∗ is a coalgebra with multiplication:

C∗ ⊗ C∗ (C ⊗ C)∗ C∗,Δ∗

where the unlabeled map is given by the lax monoidal structure of the linear dual. The unit is given by 
using the equivalence I∗ � I.

Remark 3.5. In a presentably symmetric monoidal ∞-category C, given an object X that is dualizable 
(see [17, 4.6.1]), the dual of X is given precisely by its linear dual X∗ (see [5, 3.10]). Thus, the above 
defined functor (−)∗ : CoAlgO(C)op → AlgO(C) coincides with the equivalence of Proposition 2.12 (−)∨ :
CoAlgO(Cfd)op �−→ AlgO(Cfd), when we restrict (−)∗ to the subcategory CoAlgO(Cfd)op.

3.2. The Sweedler tensor

Since [−, −] : Cop×C → C is a continuous functor in both variables, and limits in AlgO(C) are computed 
in C, we get that the Sweedler cotensor is a continuous functor in both variables. Fix C an O-coalgebra in 
C. Then the continuous functor:

[C,−] : AlgO(C) → AlgO(C),

is accessible (as filtered colimits in AlgO(C) are computed in C) and is between presentable ∞-categories. 
Therefore, by the adjoint functor theorem [16, 5.5.2.9], the functor [C, −] admits a left adjoint denoted 
C �− : AlgO(C) → AlgO(C).

Definition 3.6. Let C and O be as above. We call the induced functor:

− �− : CoAlgO(C) × AlgO(C) → AlgO(C),

the Sweedler tensor. Previously, it was called the Sweedler product in [1] and later in [25]. For C a fixed 
O-coalgebra, the functor C �− is left adjoint to [C, −] and we have in particular the equivalence of spaces:

AlgO(C � A,B) � AlgO(A, [C,B]),

for any O-algebras A and B.

Example 3.7. In [1, 3.4.1], an explicit formula of the Sweedler tensor was given in the discrete differential 
graded case.

3.3. The Sweedler hom

Let now A be an O-algebra in C. The continuous functor:

[−, A] : (CoAlgO(C))op → AlgO(C),

induces a cocontinuous functor on its opposites:

[−, A]op : CoAlgO(C) → (AlgO(C))op.
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The cocontinuous functor is from a presentable ∞-category to an essentially locally small ∞-category: as 
the opposite of an essentially locally small ∞-category is also essentially locally small, and presentable ∞-
categories are always essentially locally small. Thus, by the adjoint functor theorem [16, 5.5.2.9, 5.5.2.10], 
the functor [−, A]op admits a right adjoint {−, A} : AlgO(C)op → CoAlgO(C).

Definition 3.8. Let C and O be as above. We call the induced functor:

{−,−} : AlgO(C)op × AlgO(C) → CoAlgO(C),

the Sweedler hom. For A and B any O-algebra in C, the O-coalgebra {A, B} is called the universal measuring 
coalgebra in C of A and B. See [24, 7.0] for the discrete case in vector spaces. In particular, if we fix A, we 
obtain that {−, A} is the right adjoint of [−, A]op and we have the equivalence of spaces:

CoAlgO(C)(C, {A,B}) � AlgO(C)(B, [C,A]),

for any O-coalgebra C.

Example 3.9. Let I be the unit of the symmetric monoidal structure of C. Then, for any O-algebra A in C, 
define A◦ to be the measuring coalgebra {A, I}. It is called the Sweedler dual or finite dual of the O-algebra 
A in C. In particular, we obtain a functor (−)◦ = {−, I}op : AlgO(C) → CoAlgO(C)op, which is the left 
adjoint of the linear dual functor (−)∗ : CoAlgO(C)op → AlgO(C) defined in Example 3.4. In particular, 
we have the equivalence of spaces:

AlgO(C)(A,C∗) � CoAlgO(C)(C,A◦),

for any O-coalgebra C and any O-algebra A. This was proven in the discrete classical case of vector spaces 
in [24, 6.0.5]. By Remark 3.5, when the O-algebra A is dualizable in C, then A◦ � A∗ as an object in C.

Recall we have defined the cofree O-coalgebra functor T∨ : C → CoAlgO(C) in Corollary 2.11. We show 
that the Sweedler dual defined above of the free O-algebra functor T : C → AlgO(C) provides an explicit 
description of T∨.

Proposition 3.10. Let C be a presentably symmetric monoidal ∞-category. Let O be an essentially small 
∞-operad. Let X be an object in C. Then the cofree O-coalgebra on the double linear dual X∗∗ = (X∗)∗ is 
given by:

T∨(X∗∗) �
(
T (X∗)

)◦
.

Proof. Let C be an O-coalgebra in C. By Example 3.4 we have U(C∗) � U(C)∗ where U represents the 
forgetful functor on algebras or coalgebras. Then, we get the following equivalences:

CoAlgO(C)(C, (T (X∗)◦)) � AlgO(C)(T (X∗), C∗)

� C(X∗, U(C)∗)

� C(X∗ ⊗ U(C), I)

� C(U(C), X∗∗).

Thus we obtain the desired equivalence T∨(X∗∗) � (T (X∗))◦ by uniqueness of the right adjoint functor. �
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The fundamental theorem of coalgebras, as seen in Remark 2.10, provides an explicit formula for the 
cofree O-coalgebra that generalizes the approach of [24, 6.4.1] and [6, 1.10].

Corollary 3.11. Let C be a presentably symmetric monoidal ∞-category. Let O be an essentially small ∞-
operad. Suppose C is compactly generated. Suppose that CoAlgO(C) is also compactly generated. Suppose 
furthermore that every compact object Y in C is naturally equivalent to its double linear dual Y � Y ∗∗. 
Then, for any object X in C, its cofree O-coalgebra is given by:

T∨(X) � colimi

(
(T (X∗

i ))◦
)
,

where X � colimiXi is a filtered colimit of compact objects Xi in C.

Proof. Let C be an O-coalgebra in C. Since CoAlgO(C) is compactly generated, then C is the filtered 
colimit of compact coalgebras Cj :

C � colimj Cj .

By compactness, we obtain the equivalence:

CoAlgO(C)
(
C, colimi

(
(T (X∗

i ))◦
))

� limj colimi CoAlgO(C)(Cj , T (X∗
i )◦).

By Proposition 3.10, we obtain an equivalence:

CoAlgO(C)(Cj , T (X∗
i )◦) � C(U(Cj), X∗∗

i ).

By hypothesis, the natural equivalence Xi � X∗∗
i provides the equivalence:

C(U(Cj), X∗∗
i ) � C(U(Cj), Xi).

Since U : CoAlgO(C) → C preserves colimits and compact objects (by Proposition 2.5 and [16, 5.5.7.2]), 
we obtain that U(C) is the filtered colimit of compact objects U(Cj) in C. Therefore:

limj colimi C(U(Cj), Xi) � C(U(C), X).

Thus we have shown CoAlgO(C) 
(
C, colimi

(
(T (X∗

i ))◦
))

� C(U(C), X). By uniqueness of the right adjoint, 
we obtain the desired equivalences. �

We shall explain where the term universal measuring is coming from. Recall that the internal hom 
property of C implies that, for any X, Y and Z objects in C, there is an equivalence of spaces: C(X⊗Y, Z) �
C(Y, [X, Z]). The Sweedler cotensor gives conditions for an O-algebra structure on [X, Z]. The following is 
a generalization of [24, 7.0.1] and [1, 3.3.1].

Definition 3.12. Let C and O be as above. Let C be an O-coalgebra in C, and A and B be O-algebras in C. 
Let ψ : C ⊗A → B be a map in C. We say that (C, ψ) measures A to B (or (C, ψ) is a measuring of A to 
B) if the adjoint map A → [C, B] is a map of O-algebras in C.

We give examples generalized from [1].

Example 3.13 ([1, 3.3.3]). If I is the unit of the symmetric monoidal structure of C, then a map I⊗A → B

in C is a measuring of A to B if and only if it is a map in AlgO(C).
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Example 3.14 ([1, 3.3.4]). The adjoint of the identity map on [C, A] is a map C⊗ [C, A] → A and is always a 
measuring. In particular, the evaluation C⊗C∗ → I is always a measuring of C∗ to I. Similarly A◦⊗A → I

is a measuring of A to I. It is claimed to be the origin of the term measure in [11, 2.12.10].

By definition of the Sweedler hom, as we have:

CoAlgO(C)(C, {A,B}) � AlgO(C)(B, [C,A]),

we see that the O-coalgebra {A, B}, together with the natural map {A, B} ⊗ A → B (adjoint of the 
identity over {A, B}), is indeed the universal measuring algebra of A to B, in the following sense. Given 
any other measuring (C, ψ) of A to B, there exists a unique (up to contractible choice) map C → {A, B}
of O-coalgebras in C such that the following diagram commutes in C:

C ⊗A

{A,B} ⊗A B.

ψ

Remark 3.15. Following [1, 3.3.6], we see that, given maps A′ → A and B → B′ in AlgO(C), a map C ′ → C

in CoAlgO(C), together with a map A → [C, B] in AlgO(C), we obtain the following map in AlgO(C):

A′ A [C,B] [C ′, B′].

This shows that the space of measurings provides a functor:

CoAlgO(C)op × AlgO(C)op × AlgO(C) −→ S,

that is representable in each variable with respect to the Sweedler hom, tensor and cotensor.

Remark 3.16. We can generalize a result from [4]. Let C be a presentably symmetric monoidal ∞-category. 
Let A and B be E∞-algebras in C. Recall that the topological Hochschild homology THH(A) is given by 
tensoring over the circle:

THH(A) � A⊗ S1.

In particular, if (C, ψ) is a measuring of A and B, then from the map of E∞-algebras A → [C, B] we obtain 
a map of E∞-algebras:

A⊗ S1 −→ [C,B] ⊗ S1 −→ [C,B ⊗ S1].

Therefore (C, ψ) also determines a natural measuring of THH(A) to THH(B). Therefore we obtain a map 
of E∞-coalgebras:

{A,B} −→ {THH(A),THH(B)}.

Remark 3.17. From [1, 1.3.73], the primitive elements of the measuring coalgebra {A, B} are the derivations 
from A to B. In particular, the subcoalgebra of primitive elements of the coalgebra {A, A} is equivalent to 
the tangent complex of A.
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3.4. The enrichment in coalgebras

Let D⊗ be a monoidal ∞-category. Its reverse, denoted (D⊗)rev or simply Drev, is defined in [12, 2.13.1]. 
Essentially, D and Drev have the same underlying ∞-category but the tensor X ⊗ Y in Drev corresponds 
precisely to Y ⊗X in D. Left modules over D correspond to right modules over Drev. If D is symmetric, 
then Drev � D by [12, 2.13.4]. We shall be interested with the reverse opposite, denoted Drop = (Dop)rev, of 
a monoidal ∞-category D. The following is a generalization of the discrete ordinary case [14, 5.1].

Lemma 3.18. Let C and O be as above. Then the Sweedler cotensor endows the ∞-category AlgO(C) with the 
structure of a right module over the reverse opposite of the (symmetric) monoidal ∞-category CoAlgO(C).

Proof. Since the internal hom [−, −] : C × Cop → C is a lax symmetric monoidal functor (see [9, I.3]), then 
it is a map of commutative algebras in Ĉat∞, the ∞-category of ∞-categories endowed with its Cartesian 
monoidal structure. This shows that C is a Cop × C-algebra in Ĉat∞, and thus in particular, C is a left 
module over Cop. Hence C is a right module over its reverse opposite Crop via its internal hom. Therefore, 
by Proposition 2.4, the ∞-category AlgO(C) is a right module over AlgO(Crop) via the Sweedler cotensor. 
Since AlgO(Crev) � AlgO(C)rev, then AlgO(Crop) � CoAlgO(C)rop. �

Since CoAlgO(C) is a presentably symmetric monoidal ∞-category, it is enriched over itself by [7, 
7.4.10]. We denote CoAlgO(C)(D, E) the O-coalgebra in C which classifies coalgebra maps from D to E, 
characterized by the universal mapping property:

CoAlgO(C)
(
C ⊗D,E

)
� CoAlgO(C)

(
C,CoAlgO(C)(D,E)

)
.

Theorem 3.19. Let C be a presentably symmetric monoidal ∞-category. Let O be an essentially small 
∞-operad. The ∞-category of O-algebras AlgO(C) is enriched over the symmetric monoidal ∞-category 
CoAlgO(C), via the Sweedler hom. Moreover it is tensored and cotensored respectively using the Sweedler 
tensor and Sweedler cotensor. In particular, we have an equivalence of O-coalgebras:

CoAlgO(C)
(
C, {A,B}

)
�

{
A, [C,B]

}
�

{
C � A,B

}
,

for any O-coalgebra C in C and any O-algebras A and B in C.

Proof. By Lemma 3.18, the ∞-category AlgO(C)op is a left module over the symmetric monoidal ∞-
category CoAlgO(C), via [−, −]op the opposite of the Sweedler cotensor, such that [−, A]op : CoAlgO(C) →
AlgO(C)op admits a right adjoint {−, A} for all A in AlgO(C). By [7, 7.4.9] (see also [17, 4.2.1.33] and [12, 
6.3.1, 7.2.1]), this shows that AlgO(C)op is enriched over CoAlgO(C), with tensor [−, −]op. Thus, by [12, 
6.2.1], we get that AlgO(C) is enriched over CoAlgO(C), with cotensor [−, −]. �
Remark 3.20. The previous theorem shows that we can enrich the equivalence in Example 3.9 to an equiv-
alence of O-coalgebras in C:

CoAlgO(C)
(
C,A◦

)
�

{
A,C∗

}
�

(
C � A

)◦
,

for any O-coalgebra C and any O-algebra A.

Corollary 3.21. Let C be a presentably symmetric monoidal ∞-category. Let O be an essentially small ∞-
category. Let A be an O-algebra in C. Let C be an O-coalgebra in C. Then there are adjunctions of enriched 
∞-categories over CoAlgO(C):
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C �− : AlgO(C) AlgO(C) : [C,−].⊥ (3.1)

[−, A]op : CoAlgO(C) AlgO(C)op : {−, A}.⊥ (3.2)

− � A : CoAlgO(C) AlgO(C) : {A,−}.⊥ (3.3)

In [1, 5.1.2, 5.1.4], the adjunction (3.1) generalizes adjunctions from Weil restrictions and on the de Rham 
algebra. The second adjunction (3.2) generalizes the anti-equivalence between finite dimensional algebras 
and finite dimensional coalgebras of Proposition 2.12, see also Remark 3.5 and Example 3.9 above. Finally, 
the adjunction (3.3) generalizes the algebraic bar-cobar adjunction as seen in [1, 5.3.14].
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