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We show that two ostensibly different versions of the asymptotic resurgence 
introduced by E. Guardo, B. Harbourne and A. Van Tuyl in 2013 are the same. 
We also show that the resurgence and asymptotic resurgence attain their maximal 
values simultaneously, if at all, which we apply to a conjecture of E. Grifo. For radical 
ideals of points, we show that the resurgence and asymptotic resurgence attain their 
minimal values simultaneously. In addition, we introduce an integral closure version 
of the resurgence and relate it to the other versions of the resurgence. In closing we 
provide various examples and raise some related questions, and we finish with some 
remarks about computing the resurgence.
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1. Introduction

This paper is motivated by wanting to better understand concepts, conjectures and methods introduced 
in [5], [20], [18], [12] and [13] involving various approaches to the containment problem. It makes particular 
use of the groundbreaking methods of [12] and [13].

Let K be a field and let N ≥ 1. Then R = K[PN ] denotes the polynomial ring K[PN ] = K[x0, . . . , xN ]. 
Now let (0) �= I � K[PN ] be a homogeneous ideal; thus I = ⊕t≥0It, where It is the K vector space span of 
all homogeneous polynomials of degree t in I. The symbolic power I(m) is defined as

✩ Acknowledgments: Harbourne was partially supported by Simons Foundation grant #524858. We also wish to thank M. 
DiPasquale, E. Grifo, C. Huneke and A. Seceleanu, M. Dumnicki, H. Tutaj-Gasińska, T. Szemberg and J. Szpond, and the referee 
for helpful comments.
* Corresponding author.

E-mail addresses: bharbourne1@unl.edu (B. Harbourne), jkettinger@huskers.unl.edu (J. Kettinger), 
frank.zimmitti@huskers.unl.edu (F. Zimmitti).
https://doi.org/10.1016/j.jpaa.2021.106811
0022-4049/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2021.106811
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2021.106811&domain=pdf
mailto:bharbourne1@unl.edu
mailto:jkettinger@huskers.unl.edu
mailto:frank.zimmitti@huskers.unl.edu
https://doi.org/10.1016/j.jpaa.2021.106811


2 B. Harbourne et al. / Journal of Pure and Applied Algebra 226 (2022) 106811
I(m) = R ∩ (∩P∈Ass(R/I)I
mRP )

where the intersections take place in K(PN ).
While Ir ⊆ I(m) holds if and only if m ≤ r, the containment problem of determining for which m and r

the containment I(m) ⊆ Ir holds is much more subtle. If hI is the minimum of N and the big height of I
(i.e., the maximum of the heights of associated primes of I), it is known that

I(rhI) ⊆ Ir (1.1)

[15,23], so given r, the issue is for which m with m < rhI do we have I(m) ⊆ Ir. The resurgence ρ(I), 
introduced in [5], gives some notion of how small the ratio m/r can be and still be sure to have I(m) ⊆ Ir; 
specifically,

ρ(I) = sup
{m

r
: I(m) � Ir

}
.

A case of particular interest is that of ideals of fat points. Given distinct points p1, . . . , ps ∈ PN and 
nonnegative integers mi (not all 0), let Z = m1p1 + · · ·+msps denote the scheme (called a fat point scheme) 
defined by the ideal

I(Z) = ∩s
i=1(I(pi)mi) ⊆ K[PN ],

where I(pi) is the ideal generated by all homogeneous polynomials vanishing at pi. Note that I(Z) is always 
nontrivial (i.e., not (0) nor (1)). Symbolic powers of I(Z) take the form I(Z)(m) = I(mZ) = ∩s

i=1(I(pi)mmi). 
We say Z is reduced if mi is either 0 or 1 for each i (i.e., if I(Z) is a radical ideal).

Subsequent to [5], two asymptotic notions of the resurgence were introduced by [20]. The first is

ρ′(I) = lim sup
t

ρ(I, t) = lim
t→∞

ρ(I, t),

where ρ(I, t) = sup
{

m
r : I(m) � Ir, m ≥ t, r ≥ t

}
. The second is

ρ̂(I) = sup
{m

r
: I(mt) � Irt, t 	 0

}
.

A useful new perspective on ρ̂(I) is given by [12, Corollary 4.14], which shows that

ρ̂(I) = sup
{m

r
: I(m) � Ir

}
,

where Ir is the integral closure of Ir (defined below). Since we always have Ir ⊆ Ir, this new perspective 
makes it clear that we always have ρ̂(I) ≤ ρ(I), and that we have ρ̂(I) = ρ(I) if Ir = Ir for all r ≥ 1.

Our major results are to show that ρ̂(I) = ρ′(I) (Theorem 2.1), that ρ̂(I) = hI if and only if ρ(I) = hI

(Theorem 2.2), and that ρ̂(I(Z)) = 1 if and only if ρ(I(Z)) = 1 when Z ⊂ PN is a reduced scheme of points 
(Theorem 2.3) and for every fat point subscheme Z ⊂ P 2 (Corollary 2.8). We also introduce a new version 
of the resurgence, ρint, based on integral closure, and relate it to the original resurgence. We then discuss 
the relevance of our results to a conjecture of E. Grifo. Finally we provide some examples and raise some 
questions, and include a discussion of the computability of the resurgence.
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1.1. Background

Let I ⊆ K[PN ] be a nontrivial homogeneous ideal. Given the comments and definitions above we have 
(see [20])

1 ≤ ρ̂(I) ≤ ρ′(I) ≤ ρ(I) ≤ hI . (1.2)

By [5] and [20] we also have

α(I)
α̂(I) ≤ ρ̂(I) ≤ ρ′(I) ≤ ρ(I), (1.3)

where α(I) is the least degree of a nonzero element of I and α̂(I) is the Waldschmidt constant, defined as

α̂(I) = lim
m→∞

α(I(m))
m

.

For a nontrivial fat point subscheme Z ⊆ PN , by [5] we have in addition

ρ(I(Z)) ≤ reg(I(Z))
α̂(I(Z)) , (1.4)

where reg(I(Z)) is the Castelnuovo-Mumford regularity of I(Z).
A version of resurgence can be defined with integral closure replacing symbolic powers. We pause to 

briefly discuss the concept of integral closure. Given an ideal I ⊆ R = K[PN ], we recall (see [25]) that the 
integral closure I of I consists of all elements c ∈ R satisfying for some n ≥ 1 a polynomial equation

cn + a1c
n−1 + · · · + an = 0

where aj ∈ Ij . We say I is integrally closed if I = I. We note that I is monomial (resp. homogeneous) if 
I is [25, Proposition 1.4.2] (resp. [25, Corollary 5.2.3]). If Ir is integrally closed for all r ≥ 1, we say I is 
normal.

For example, the ideal I(pi) of a point pi ∈ PN is normal. Likewise, M = (x0, . . . , xN ) is normal. 
This is because M is a monomial prime ideal and I(pi) is also, up to choice of coordinates, but monomial 
primes are normal. (Apply the usual criterion for integral closure for monomial ideals, that the integral 
closure of a monomial ideal I is the monomial ideal associated to the convex hull of the Newton polygon 
of I [25].) As further examples of integrally closed ideals, we note I(Z) is integrally closed for all Z, as 
is M t ∩ I(Z) for every t; this is because intersections of integrally closed ideals are integrally closed. Now 
assume α(I(Z)) = reg(I(Z)); then (I(Z)r)t = (I(rZ))t for t ≥ α(I(Z)r) (apply [5, Lemma 2.3.3(c)] using 
the fact that α(I(Z)r) = rα(I(Z))). Thus we have I(Z)r = Mrα(I(Z)) ∩ I(rZ) and hence I(Z) is normal, if 
α(I(Z)) = reg(I(Z)). Thus, when α(I(Z)) = reg(I(Z)), we have ρ̂(I(Z)) = ρ(I(Z)) by the normality, but 
in fact (1.3) and (1.4) give us more, namely

α(I(Z))
α̂(I(Z)) = ρ̂(I(Z)) = ρ(I(Z)).

Now we define the integral closure resurgence. Given any nontrivial homogeneous ideal I ⊂ K[PN ] but 
replacing symbolic power by integral closure in the definition of resurgence gives us the integral closure 
resurgence,

ρint(I) = sup
{m : Im � Ir

}
.

r
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If symbolic powers of I are integrally closed (as is the case when I is the ideal of a fat point subscheme), 
we have ρint(I) ≤ ρ(I), and if moreover I(m) = Im for all m ≥ 1, it follows that ρint(I) = ρ(I) (see 
Theorem 2.6). A lower bound such as ρint(I) ≤ ρ(I) is of interest since for any c > 1 (as the proof of 
Theorem 2.6 shows) it is in principle a finite calculation (although not necessarily an easy one) to verify 
whether or not ρint(I) ≥ c, and if so to compute ρint(I) exactly. In a further analogy of ρint with ρ, by 
Lemma 2.5 we have 1 ≤ ρint(I) ≤ N , and, if I = I, we have Im ⊆ Ir for all m ≥ Nr.

2. Main results

The following result is not explicitly stated in [4], but follows from [4, Theorem 2.1 and Lemma 2.2]. 
This in fact is the result that answered the question that started this paper. We give a direct proof based 
on results of [13].

Theorem 2.1. Let I be a nontrivial homogeneous ideal of K[PN ]. Then ρ̂(I) = ρ′(I).

Proof. If ρ̂(I) = ρ(I), then (1.2) gives ρ̂(I) = ρ′(I), so assume ρ̂(I) < ρ(I). Thus there is an ε > 0 such 
that ρ̂(I) + ε < ρ(I). As in the proof of [13, Proposition 2.6] (which in turn is a consequence of [12, Lemma 
4.12]), we have

s

r + N
< ρ̂(I)

whenever I(s) � Ir.
This means there are only finitely many s and r for which ρ̂(I) + ε ≤ s/r holds but I(s) ⊆ Ir fails. (This 

is because ρ̂(I) + ε ≤ s/r and s
r+N < ρ̂(I) implies r(ρ̂(I) + ε) ≤ s < ρ̂(I)(r + N) and r < Nρ̂(I)/ε.)

Hence for all s and r sufficiently large which have I(s) not contained in Ir, we will have s/r < ρ̂(I) + ε

and hence ρ′(I) ≤ ρ̂(I) + ε. This is true for every ε > 0, and so we get ρ′(I) ≤ ρ̂(I). Since we already have 
ρ′(I) ≥ ρ̂(I), we conclude that ρ′(I) = ρ̂(I). �

An alternate statement of the next result is that ρ̂(I) = hI if and only if ρ(I) = hI . We have learned that 
Theorem 2.2 was also obtained independently by M. DiPasquale and B. Drabkin, but not included in [13].

Theorem 2.2. Let I be a nontrivial homogeneous ideal of K[PN ]. Then ρ̂(I) < hI if and only if ρ(I) < hI .

Proof. If ρ(I) < hI , then we have ρ̂(I) ≤ ρ(I) < hI by (1.2). So assume ρ̂(I) < hI . If ρ̂(I) = ρ(I), then 
ρ(I) < hI . If ρ̂(I) < ρ(I), then by [13, Proposition 2.6], ρ(I) is the maximum of finitely many ratios s/r
with I(s) � Ir. Thus ρ(I) = hI would imply that s/r = hI , which contradicts the result of [15,23] that 
I(m) ⊆ Ir whenever m ≥ rhI . �

The other extreme is also of interest. Let Z ⊂ PN be a fat point subscheme. The next result, Theorem 2.3, 
shows that the question of when ρ(I(Z)) = 1 is related to two concepts: to analytic spreads (see [25]) and 
to symbolic defects (see [17]).

We can define the analytic spread �(I) of a homogeneous ideal I ⊆ R = K[PN ] as being the minimum 
number of elements of I such that, after localizing at the irrelevant ideal, the ideal J they generate has 
J = I [25, Corollary 1.2.5, Proposition 8.3.7]. The analytic spread �(I) of an ideal I ⊆ R is at least the 
height of I, since J and I have the same minimal primes, and the minimal number of generators of an ideal 
is at least the height of its minimal prime of minimal height. By [25, Proposition 5.1.6], it is also at most 
the dimension of R (which is N + 1). For I(Z) ⊂ K[PN ] we thus have N ≤ �(I(Z)) ≤ N + 1.

We say an ideal B ⊆ K[PN ] is a complete intersection if B is generated by a regular sequence; equivalently, 
B is a complete intersection if all associated primes of B have height c, where c is the minimal number of 
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generators of B. If for a fat point subscheme Z ⊂ PN its ideal I(Z) is a complete intersection (i.e., I(Z) has 
N generators), then �(I(Z)) = N , but �(I(Z)) = N can occur even when I(Z) is not a complete intersection 
(for example, �(I(mZ)) = N when I(Z) is a complete intersection but m > 1).

The symbolic defect sdefect(I(Z), m) is the minimum number of generators of the module I(mZ)/I(Z)m

[17]. Thus sdefect(I(Z), m) = 0 if and only if I(mZ) = I(Z)m. If I(Z) is a complete intersection, then 
sdefect(I(Z), m) = 0 for all m ≥ 1 since we have I(mZ) = I(Z)m (indeed, if I is generated by a regular 
sequence, then Ir = I(r) for all r ≥ 0 by [27, Lemma 5, Appendix 6]). When N = 2 and Z is reduced (i.e., 
I(Z) is radical), [17, Theorem 2.6] gives a converse: if sdefect(I(Z), m) = 0 for all m ≥ 1, then I(Z) is a 
complete intersection (see also [8, Remark 2.5] and [24, Theorem 2.8]).

Our next result gives a number of equivalent conditions for sdefect(I(Z), m) = 0 for all m ≥ 1 for any 
reduced fat point subscheme Z ⊂ PN , thereby extending from N = 2 to all N the result that I(mZ) = I(Z)m

for all m ≥ 1 if and only if I(Z) is a complete intersection. We thank A. Seceleanu and C. Huneke for the 
implications (d) ⇒ (e), and, for Z reduced, (e) ⇒ (a). We do not know if (e) ⇒ (a) holds for nonreduced 
fat point schemes Z (i.e., when I(Z) is not radical), but see Corollaries 2.8 and 2.9, and also Examples 4.1
and 4.3 and Question 4.4.

Theorem 2.3. Let Z be a nontrivial fat point subscheme of PN . Then each of the following criteria implies 
the next.

(a) I(Z)m = I(mZ) (i.e., sdefect(I(Z), m) = 0) for all m ≥ 1.
(b) ρ(I(Z)) = 1.
(c) ρ̂(I(Z)) = 1.
(d) I(Z)m = I(mZ) for all m ≥ 1.
(e) The analytic spread of I(Z) is N .

Moreover, if Z is reduced or N = 1, then (e) implies (a). In fact, if Z is reduced or N = 1, then each of 
the conditions (a)-(e) is equivalent to I(Z) being a complete intersection.

Proof. That (a) implies (b) is clear (since I(Z)m ⊆ I(Z)r if and only if m ≥ r), and (b) implies (c) since 
1 ≤ ρ̂(I(Z)) ≤ ρ(I(Z)). Next (c) is equivalent to (d) by [12, Corollary 4.16]. Now we show (d) implies (e). 
By [25, Proposition 5.4.7], we have that (d) implies �(I(Z)) �= N + 1, hence �(I(Z)) = N .

If N = 1, then I(Z) is principal, hence (a) always holds and I(Z) is a complete intersection. Finally 
assume that Z is reduced. Thus the primary components of I(Z) are ideals of points of multiplicity 1, hence 
are complete intersections (i.e., I(Z) is locally a complete intersection). By [9], �(I(Z)) = N implies that 
the localization I(Z)M of I(Z) at the irrelevant ideal M ⊂ R = K[PN ] is a complete intersection, and hence 
(I(Z)m)M = (I(Z)M )m is saturated for all m ≥ 1, so I(Z)m itself is saturated so (a) holds. Moreover, 
since (e) implies that I(Z)M is a complete intersection when Z is reduced, the number of generators of 
I(Z)M is N = dim I(Z)M/I(Z)MMM = dim I(Z)/I(Z)M , hence I(Z) also has N generators, so is itself is 
a complete intersection and hence (a) holds. �

We can now give a characterization of those Z for which I(mZ) = I(Z)m for all m ≥ 1. This characteri-
zation is not so interesting in itself, but it does raise the question of whether the normality hypothesis can 
be dropped; see Question 4.4. Although I(Z) is not always normal (see Example 4.9), we do not know any 
examples with ρ̂(I(Z)) = 1 where I(Z) is not normal.

Corollary 2.4. Let Z ⊂ PN be a fat point subscheme. Then I(mZ) = I(Z)m for all m ≥ 1 if and only if 
ρ̂(I(Z)) = 1 and I(Z) is normal.
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Proof. Having I(mZ) = I(Z)m for all m ≥ 1 implies ρ̂(I(Z)) = 1 by Theorem 2.3, and it implies I(Z) is 
normal since I(Z)m ⊆ I(Z)m ⊆ I(mZ). Conversely, ρ̂(I(Z)) = 1 implies I(mZ) = I(Z)m for all m ≥ 1
by Theorem 2.3 and normality implies I(Z)m = I(Z)m for all m ≥ 1, hence I(mZ) = I(Z)m holds for all 
m ≥ 1. �

We now consider ρint(I). Note for a nontrivial homogeneous ideal I ⊂ K[PN ] that an ideal independent 
version of (1.1) can be stated as I(Nr) ⊆ Ir, and the corresponding bounds (1.2) on ρ(I) are 1 ≤ ρ(I) ≤ N . 
In analogy with this, we have the following lemma. (See Example 4.5 for an example showing that the 
assumption I = I is needed both for the second part of Lemma 2.5 and for Theorem 2.6(b).)

Lemma 2.5. Let I ⊂ K[PN ] be a nontrivial homogeneous ideal. Then 1 ≤ ρint(I) ≤ N . Moreover, if N > 1
and t > 1, or if I = I and t ≥ 1, then INt ⊆ It.

Proof. Since It ⊆ It but It � It+1, we see that It � It+1, so 1 ≤ ρint(I).
The Briançon-Skoda Theorem [25] asserts It+N ⊆ It for each t ≥ 1. For t, N ≥ 2 we have tN ≥ t + N , 

hence INt ⊆ It+N and thus INt ⊆ It+N ⊆ It. This also tells us that if Im � It, we must have either 
m < Nt (and so m/t < N) or t or N must be equal to 1. By Briançon-Skoda, Im � It implies m < t + N , 
so if t = 1, then m/t = m ≤ N , while if N = 1, then we have m < t + 1, so m/t ≤ t/t = 1 = N . Thus in all 
cases we have m/t ≤ N , hence ρint(I) ≤ N .

We already saw that INt ⊆ It if N, t > 1. Assume N > 1 but t = 1. Then IN ⊆ I so if I = I we have 
IN ⊆ I. Finally assume N = 1 and I ⊂ K[x0, x1] is a nontrivial homogeneous ideal. Thus I = (G1, . . . , Gs)
for some nonzero homogeneous generators Gi. Let F be the greatest common divisor of the Gi, and for each 
i let HiF = Gi. Then I = (F )Q where Q = (H1, . . . , Hs). If degHi = 0 for some i, we have Q = (1) and so 
I = (F ). If degHi > 0 for all i, then Q is primary for (x0, x1).

If I = (F ), then I is normal, so we have It = It for all t ≥ 1. So say I = (F )Q where Q is primary for 
(x0, x1), hence It = (F t)Qt for each t ≥ 1.

Note that It = It if and only if Qt = Qt. (Here’s why. Assume It = It. By [25, Remark 1.3.2(2)], we 
have It : J ⊆ It : J for any ideal J . Take J = (F r). Then Qt ⊆ Qt = It : J ⊆ It : J = It : (F r) = Qt. 
Alternatively, say x ∈ Qt. Then xn + a1x

n−1 + · · · + an = 0 for some n and some ai ∈ Qti. Multiplying by 
F tn gives (F tx)n + F ta1(F tx)n−1 + · · · + (F t)nan = 0 so F tx ∈ (F t)Qt = It = It = (F t)Qt, so x ∈ Qt. 
Now assume Qt = Qt. Say x ∈ It. Then xn + F ta1x

n−1 + · · · + (F t)nan = 0 for some n with ai ∈ Qti. Say 
F t = APm where P is an irreducible factor of F and P does not divide A. Then P divides x. Let yP = x. 
Dividing out gives yn + APm−1a1y

n−1 + · · · + AnPn(m−1)an = 0. We can keep dividing out until we have 
zn + Aa1z

n−1 + · · · + Anan = 0, where zPm = x and z ∈ (A)Qt. Continuing in this way, dividing out 
irreducible factors of F t, we eventually see that we get an element w with wF t = x, where w ∈ Qt = Qt, 
hence x ∈ (F t)Qt = It.)

Now we claim that Q is normal if and only if Q = Q. Given this, if I = I, then Q = Q, hence Qt = Qt so 
It = It (i.e., I is normal), which is what we needed to show. But note that Q normal implies by definition 
that Q = Q. Conversely, assume Q = Q. It suffices to show Qt = Qt for each t. By [2, Proposition 4.8] and 
[25, Proposition 1.1.4], it is enough to check this after localizing at (x0, x1). But by results of O. Zariski, 
Q = Q implies Qt = Qt for each t in the local case [25, Theorem 14.4.4]. �
Theorem 2.6. Let I ⊂ K[PN ] be a nontrivial homogeneous ideal, N ≥ 1.

(a) We have

1 ≤ ρint(I) = max
{{m

r
: Im � Ir

}
∪ {1}

}
.

(b) If I = I and N > 1, then ρint(I) < N .



B. Harbourne et al. / Journal of Pure and Applied Algebra 226 (2022) 106811 7
(c) If I(m) = I(m) for all m ≥ 1 (as for example is the case for I = I(Z) for a fat point subscheme Z ⊂ PN ), 
then ρint(I) ≤ ρ(I).

(d) If I(m) = Im for all m ≥ 1, then ρint(I) = ρ(I).

Proof. (a) By Lemma 2.5 we have 1 ≤ ρint(I). In order for ρint(I) > 1 there must be a pair of positive 
integers (r0, m0) with both m0/r0 > 1 and Im0 � Ir0 (and hence m0 < r0 + N by Briançon-Skoda). Set 
c = m0/r0. If ρint(I) > c, then as before we have (r, m) with both m/r > c and Im � Ir (and hence 
m < r + N). But there are only finitely many pairs (r, m) with cr < m and m < r + N (in particular, we 
have r < N/(c − 1) and cr < m < r + N). Thus either ρint(I) = 1 or ρint(I) = max{m

r : Im � Ir}, hence 

ρint(I) = max
{{

m
r : Im � Ir

}
∪ {1}

}
.

(b) Now assume I = I and N > 1. By Lemma 2.5 we have INr ⊆ Ir for r ≥ 1, so Im � Ir implies 
m/r < N , hence ρint(I), being either 1 or a maximum of values m/r less than N , is less than N .

(c) Here we assume I(m) = I(m) for all m ≥ 1. Then since Im ⊆ I(m) we have Im ⊆ I(m), so Im � Ir

implies I(m) � Ir, and hence ρint(I) ≤ ρ(I).
(d) Assuming Im = I(m) for all m ≥ 1, we have

ρint(I) = sup
{m

r
: Im � Ir

}
= sup

{m

r
: I(m) � Ir

}
= ρ(I). �

We do not know any examples with ρint(I(Z)) > 1. For Z ⊂ P 2, there are none, by the next result, 
which is an immediate consequence of [1, Theorem 3.3]. We thank C. Huneke for alerting us to this result.

Corollary 2.7. Let Z ⊂ PN be a nontrivial fat point subscheme and let I = I(Z). Then we have the following:

(a) IN+m−1 ⊆ Im for m ≥ 1;
(b) ρint(I(Z)) ≤ N/2 for N ≥ 2; and
(c) ρint(I(Z)) = 1 for N = 1, 2.

Proof. (a) Let M = (x0, . . . , xN ) ⊂ K[PN ]. Using I as a reduction for I and � for the analytic spread of I, 
[1, Theorem 3.3] states (after localizing at the irrelevant ideal M) that I�+m ⊆ I�−N+m+1 for m ≥ 0. But 
N ≤ � ≤ N +1, so for � = N we have IN+m ⊆ Im+1, while for � = N +1 we have IN+m+1 ⊆ Im+2, both for 
m ≥ 0. Either way, we have IN+m−1 ⊆ Im for m ≥ 1, and hence IN+m−1 ⊆ Im holds without localizing, 
since all of the ideals are homogeneous.

(b) Assume N ≥ 2. For r = 1 we have Im ⊆ Ir for all m ≥ 1, so consider r > 1. Then we have 
Im ⊆ Ir for all m ≥ N + r − 1, so the fractions m/r for which we have Im � Ir are contained in the set 
{m/r : 1 ≤ m ≤ N +r−2, r ≥ 2}. The supremum occurs for m = N +r−2 and r = 2, hence the supremum 
is N/2, so ρint(I(Z)) ≤ N/2.

(c) When N = 1 we have ρint(I(Z)) = 1 from Lemma 2.5, and when N = 2 we have ρint(I(Z)) = 1 from 
(b). �

If ρint(I(Z)) is always 1, then the next result would imply that ρ̂(I(Z)) = 1 if and only if ρ(I(Z)) = 1. 
In particular, it shows that ρ̂(I(Z)) = 1 if and only if ρ(I(Z)) = 1 for every fat point subscheme Z ⊂ P 2.

Corollary 2.8. Let Z ⊂ PN be a nontrivial fat point subscheme. If ρ̂(I(Z)) = 1, then ρint(I(Z)) = ρ(I(Z)), 
hence ρ̂(I(Z)) = 1 if and only if ρ(I(Z)) = 1 when N = 2.

Proof. By Theorem 2.3, ρ̂(I(Z)) = 1 implies I(mZ) = I(Z)m, so ρint(I(Z)) = ρ(I(Z)). Since ρint(I(Z)) = 1
when N = 2 by Corollary 2.7, and since ρ(I(Z)) = 1 implies ρ̂(I(Z)) = 1, we have ρ̂(I(Z)) = 1 if and only 
if ρ(I(Z)) = 1 when N = 2. �
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We now recover a version of [12, Corollary 4.17].

Corollary 2.9. Let Z ⊂ PN be a nontrivial fat point subscheme. Then ρ(I(Z)) = 1 if and only if ρ̂(I(Z)) =
ρint(I(Z)) = 1.

Proof. The proof is immediate from

1 ≤ ρint(I(Z)) ≤ ρ(I(Z)),

1 ≤ ρ̂(I(Z)) ≤ ρ(I(Z))

and Corollary 2.8. �
Remark 2.10. For a nontrivial homogeneous ideal I ⊂ K[PN ], it is also of interest to define

ρint(I) = sup
{m + 1

r
: Im � Ir

}
.

This is exactly what [12] denotes as K(I). Clearly we have ρint(I) ≤ ρint(I), and by applying Theorem 2.6
we see we have equality if and only if ρint(I) = 1, in which case I is normal. By [12, Proposition 4.19] we 
have ρ(I) ≤ ρ̂(I)ρint(I). Thus we have

ρint(I(Z)) ≤ ρ(I(Z)) ≤ ρ̂(I(Z))ρint(I(Z))

for every fat point subscheme Z ⊂ PN .

3. Grifo’s conjecture

We now discuss E. Grifo’s containment conjecture [18, Conjecture 2.1]. In our context it says the following 
(we note it is true and easy to prove for N = 1).

Conjecture 3.1. Let I ⊆ K[PN ] be a radical homogeneous ideal. Then I(hIr−hI+1) ⊆ Ir for all r 	 0.

Remark 2.7 of [18] shows the conjecture holds for I if ρ(I) < hI (whether I is radical or not), or if 
ρ′(I) < hI , and raises the question of whether it holds when ρ̂(I) < hI . This was answered affirmatively 
by [19, Proposition 2.11] with a direct proof (we thank E. Grifo and C. Huneke for bringing this result to 
our attention). Our results also answer this question affirmatively, in two ways. By Theorem 2.1, ρ̂(I) < hI

implies ρ(I)′ < hI , hence Conjecture 3.1 holds for I by the results of [18]. And by Theorem 2.2, ρ̂(I) < hI

implies ρ(I) < hI , so again Conjecture 3.1 holds for I by the results of [18].

Remark 3.2. When I = I(Z) for a fat point scheme Z ⊂ PN we have hI = N . No examples of a fat point 
scheme Z ⊂ PN (radical or not) are known for which it is not true that I(Z)(Nr−N+1) ⊆ I(Z)r for all 
r 	 0. By Remark 2.7 of [18], one approach to proving that I(Z)(Nr−N+1) ⊆ I(Z)r for all r 	 0 holds for 
all Z is to show ρ(I(Z)) < N whenever N > 1. This raises the question of: for which Z is it known that 
ρ(I(Z)) < N?

Let Z = m1p1 + · · ·+msps. If gcd(m1, . . . , ms) > 1, then ρ(I(Z)) < N by [26, Proposition 2.1(2)]. Thus 
it is the cases with gcd(m1, . . . , ms) = 1 that remain of interest.

Another approach is to apply our Theorem 2.2: ρ(I(Z)) < N holds if ρ̂(I(Z)) < N . Aiming to show 
ρ̂(I(Z)) < N has the advantage that the results of [12,13] suggest that ρ̂(I(Z)) is more accessible com-
putationally than is ρ(I(Z)). Another advantage is that in most cases where ρ̂(I(Z)) is known we have 
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ρ̂(I(Z)) = α(I(Z))
α̂(I(Z)) (but see Example 4.10) and in all known cases we have α̂(I(Z)) ≥ α(I(mZ))+N−1

m+N−1 for all 
m ≥ 1. Assuming both we have

ρ̂(I(Z)) = α(I(Z))
α̂(I(Z)) ≤ α(I(Z))

α(I(Z))+N−1
N

= N
α(I(Z))

α(I(Z)) + N − 1 < N

and thus we would have ρ(I(Z)) < N .

The previous paragraph merits further discussion. First we recall [21, Conjecture 2.1], which if true would 
refine the containment I(rNZ) ⊆ I(Z)r of [15,23]:

Conjecture 3.3. Let Z ⊂ PN be a fat point scheme. Let M = (x0, . . . , xN ). Then

I(rNZ) ⊆ Mr(N−1)I(Z)r

holds for all r > 0.

A further refinement of I(rNZ) ⊆ I(Z)r is that I(r(m + N − 1)Z) ⊆ I(mZ)r [15,23]. This suggests a 
refinement of Conjecture 3.3 (cf. [21, Question 4.2.3]), namely

I(r(m + N − 1)Z) ⊆ Mr(N−1)I(mZ)r. (3.1)

If (3.1) were true, then the following conjecture would also be true:

Conjecture 3.4. Let Z ⊂ PN be a fat point scheme. Then

α̂(I(Z)) ≥ α(I(mZ)) + N − 1
m + N − 1

for all m ≥ 1.

The proof that Conjecture 3.3 implies Conjecture 3.4 when m = 1 is given in [21]. The same argument 
shows that (3.1) implies Conjecture 3.4.

The first version of Conjecture 3.4 was posed by Chudnovsky [7] over the complex numbers for the case 
that m = 1 and Z is reduced. He also sketched a proof of his conjecture for N = 2 which works over any 
algebraically closed field (see [21] for a proof). Conjecture 3.4 assuming Z reduced was posed by Demailly 
[10].

The best result currently known is by Esnault and Viehweg [16]. It is over the complex numbers and says 
that if Z is reduced with N > 1, then

α̂(I(Z)) ≥ α(I(mZ)) + 1
m + N − 1

holds for all m ≥ 1. Thus for reduced Z over the complex numbers, taking m = 1, we have

α(I(Z))
α̂(I(Z)) ≤ α(I(Z))

α(I(Z))+1
N

= N
α(I(Z))

α(I(Z)) + 1 < N.

Hence ρ(I(Z)) < N holds over the complex numbers whenever Z is reduced and ρ̂(I(Z)) = α(I(Z)) .
α̂(I(Z))
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4. Examples and questions

For this section assume Z is a fat point subscheme of PN (so I(Z) is a nontrivial ideal of K[PN ]).

Example 4.1. If I(Z) is a complete intersection or a power thereof, then I(mZ) = I(Z)m for all m ≥ 1, 
hence ρ(I(Z)) = 1 by Theorem 2.3. Again by Theorem 2.3, if Z is reduced, then ρ(I(Z)) = 1 if and only 
if I(Z) is a complete intersection. However, when Z is not reduced, ρ(I(Z)) = 1 does not imply I(Z)
is a complete intersection, or even a power of a complete intersection ideal (homogeneous or not), as is 
shown by Example 4.14 and Remark 4.15. (Additionally, let p1, p2, p3 ∈ PN be noncollinear points and let 
Z = m1p1 + m2p2 + m3p3 with 1 ≤ m1 ≤ m2 ≤ m3. If either m1 + m2 ≤ m3 or if m1 + m2 + m3 is even, 
then by [3, Theorem 2] we have I(mZ) = I(Z)m for all m ≥ 1 and hence ρ(I(Z)) = 1. See [6, Example 5.1]
for additional examples in P 2 of Z for which all powers of I(Z) are symbolic. By Remark 4.16, in none of 
these cases is there a homogeneous complete intersection ideal J such that I(Z) = Jr for some r ≥ 1. See 
[21, Proposition 3.5] for a criterion for Z ⊂ P 2 such that I(mZ) = I(Z)m for all m ≥ 1; this gives further 
examples for which I(Z) is not a power of a homogeneous complete intersection.)

It is an interesting problem to clarify which fat point subschemes Z ⊂ PN have I(mZ) = I(Z)m for all 
m ≥ 1. We do not know any Z for which the analytic spread �(I(Z)) = N but for which I(mZ) = I(Z)m
fails for some m ≥ 1. Nor do we know any Z for which either ρ(I(Z)) = 1 or ρ̂(I(Z)) = 1 but for which 
I(mZ) = I(Z)m fails for some m ≥ 1. Thus we have the following question.

Question 4.2. Is it true that all powers of I(Z) are symbolic (i.e., I(mZ) = I(Z)m for all m ≥ 1) if the 
analytic spread of I(Z) is N , or if ρ(I(Z)) = 1 or ρ̂(I(Z)) = 1?

Example 4.3. It is worth noting here that there is a monomial ideal I with ρ(I) = ρ̂(I) = 1 where Im � I(m)

for every m > 1 ([13, Remark 3.5]; we thank M. DiPasquale and E. Grifo for bringing this to our attention). 
Since the ideal I given in [13, Remark 3.5] is a radical monomial ideal and powers of monomial primes are 
primary, we have I(m) = ∩P∈Ass(I)P

m. But monomial primes are normal, so I(m) is integrally closed. Thus 
Im ⊆ I(m), and since ρ̂(I) = 1 we have by [12, Corollary 4.16] that I(m) ⊆ Im, so I(m) = Im for all m ≥ 1. 
Thus Im is integrally closed only for m = 1, but nonetheless ρint(I) = ρ(I) = 1.

Answering Question 4.2 is closely related to whether having ρ(I(Z)) = 1 or ρ̂(I(Z)) = 1 gives a complete 
solution to the containment problem for I(Z). If ρ(I(Z)) = 1 or ρ̂(I(Z)) = 1, then by Theorem 2.3 when 
I(Z) is radical, we do have a complete solution to the containment problem for I(Z): I(mZ) � I(Z)r for 
m < r and otherwise we have I(mZ) ⊆ I(Z)r. When I(Z) is not radical, we do not know if having either 
ρ(I(Z)) = 1 or ρ̂(I(Z)) = 1 solves the containment problem for I(Z). For example, having ρ(I(Z)) = 1
means ρ̂(I(Z)) = 1 and it means I(mZ) � I(Z)r for m < r and I(mZ) ⊆ I(Z)r for m > r, but we do not 
know for which m ≥ 1 that we have I(mZ) ⊆ I(Z)m.

We also do not know any examples with ρ̂(I(Z)) = 1 but ρ(I(Z)) > 1. This raises the following question.

Question 4.4. Does ρ̂(I(Z)) = 1 always imply ρ(I(Z)) = 1?

Example 4.5. The assumption I = I is needed in both Lemma 2.5 and Theorem 2.6(b). For example, take t =
1 and any N ≥ 1. Let I = (xN+1

0 , xN+1
1 , . . . , xN+1

N ) ⊂ K[PN ]. Then xN
0 · · ·xN

N ∈ IN = (x0, . . . , xN )N(N+1)

but xN
0 · · ·xN

N /∈ I, so ItN � It and ρint(I) = N .

Although I(Z) is not always normal (see Example 4.9) and hence I(Z)m = I(Z)m can fail, we do not 
have an example with I(Z)m � I(Z)r when m > r, so we do not know of any Z for which ρint(I(Z)) �= 1. 
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If ρint(I(Z)) = 1 were always true, then by Corollary 2.9 we would have that ρ(I(Z)) = 1 if and only if 
ρ̂(I(Z)) = 1, thus answering Question 4.4. This raises the following question.

Question 4.6. Is it ever true that ρint(I(Z)) > 1?

The next example shows that ρint(I(Z)) = 1 does not force ρ(I(Z)) = 1 or ρ̂(I(Z)) = 1, even if Z is 
reduced. In contrast, we know that (b) (and hence (a)) of Theorem 2.3 implies ρint(I(Z)) = 1, but we do 
not know if any of the other criteria of Theorem 2.3 imply ρint(I(Z)) = 1, unless Z is reduced or N = 2.

Example 4.7. Examples occur with ρint(I(Z)) = 1 but with ρ̂(I(Z)) > 1. Let Z ⊂ PN be a star configuration, 
meaning we have s > N general hyperplanes, and Z is the reduced scheme consisting of 

(
s
N

)
points, where 

each point is the intersection of N of the s hyperplanes; see [21, Definition 3.8]. Then the ideal I(Z) has 
α(I(Z)) = reg(I(Z)) = s + N − 1 [5, Lemma 2.4.2] and α̂(I(Z)) = s/N [5, Lemma 2.4.1]. As noted in 
§1.1, α(I(Z)) = reg(I(Z)) implies that I(Z) is normal and hence ρint(I(Z)) = 1, but α(I(Z)) = reg(I(Z))
also implies that α(I(Z))

α̂(I(Z)) = ρ̂(I(Z)) = ρ(I(Z)), and in the case of a star configuration we have α(I(Z))
α̂(I(Z)) =

N(s −N + 1)/s > 1 when N > 1. However we do not know of any Z with ρ̂(I(Z)) < ρint(I(Z)).

Question 4.8. Is it ever true that ρint(I(Z)) > ρ̂(I(Z))? Do any of (c), (d) or (e) of Theorem 2.3 imply 
ρint(I(Z)) = 1, when Z is not reduced and N > 2?

Example 4.9. When ρ̂(I(Z)) > 1, it is known that ρ̂(I(Z)) < ρ(I(Z)) can occur. For example, let I =
(x(yn − zn), y(zn − xn), z(xn − yn)) ⊂ C[x, y, z] = C[P 2], so I = I(Z) where Z is a certain set of n2 + 3
points. Then by [14, Theorem 2.1], we have ρ̂(I(Z)) = α(I(Z))

α̂(I(Z)) = (n + 1)/n < 3/2 = ρ(I(Z)) for n ≥ 3. 
Moreover, since ρ̂(I(Z)) < ρ(I(Z)), it follows that I(Z) cannot be normal.

Example 4.10. Moreover, examples of Z occur with α(I(Z))
α̂(I(Z)) < ρ̂(I(Z)). The results of [12] suggest that 

this should occur, but up to now no explicit examples have been given. For one such explicit example 
(indeed, the first we are aware of), let Z consist of 8 points in the plane, where 3 of the points (say 
p1, p2, p3) are general (we may as well assume they are the coordinate vertices) and the other 5 (say 
p4, . . . , p8) are on a general line L (defined by a linear form F ) and are general on that line. Then one 
can show that α(I(Z)) = 3, α̂(I(Z)) = 5/2 and I(25sZ) � I(Z)19s+1 for all s ≥ 1, and hence that 
α(I(Z))/α̂(I(Z)) = 6/5 < 25/19 ≤ ρ̂(I(Z)). (We now sketch the justification of these claims. The key 
is that (I(25sZ))65s vanishes on L with order 15s, but (I(Z)19s+1)65s vanishes on L with order 15s + 3, 
hence (I(25sZ))65s � (I(Z)19s+1)65s and so I(25sZ) � I(Z)19s+1. It is easy to check that α(I(Z)) = 3. 
Using Bézout’s Theorem, one can show that (I(2tZ))5t = (xyzF 2)tK ⊂ K[P 2] = K[x, y, z] and hence (since 
dim((I(mZ))i) > 0 implies dim((I(mZ))j) > 1 for all j > i) that α(I(2tZ)) = 5t. (In more detail, note 
that (xyzF 2)t ∈ (I(2tZ))5t. If (I(2tZ))5t contained anything more than scalar multiples of (xyzF 2)t, then 
(I(8tZ))20t would contain more than scalar multiples of (xyzF 2)4t, so it’s enough to consider (I(8tZ))20t. 
But by Bézout, we have

(I(8tZ))20t = F 5t((I(8t(p1 + p2 + p3) + 3t(p4 + · · · + p8)))15t)

= (xyz)tF 5t((I(3t(2(p1 + p2 + p3) + (p4 + · · · + p8))))12t)

= (xyz)tF 5t+1((I((3t(2(p1 + p2 + p3)) + (3t− 1)(p4 + · · · + p8))))12t−1)

= (xyz)t+1F 5t+1((I((3t− 1)(2(p1 + p2 + p3) + (p4 + · · · + p8))))12t−4)

= · · · = (xyz)4tF 8tK.)

It follows that α̂(I(Z)) = 5/2. We also have by Bézout that (I(25sZ))65s = F 15s(I(5sZ ′))50s, where Z ′ is 
the fat point subscheme obtained by taking the three coordinate vertices with multiplicity 5 and the five 
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points on L with multiplicity 2. Moreover, one can check that (I(Z ′))10 has greatest common divisor 1 (i.e., 
it defines a linear system which is fixed component free); to see this, write elements of (I(Z ′))10 in two 
different ways using conics and lines, where the two ways have no factors in common. Thus (I(5sZ ′))50s
also defines a linear system that is fixed component free, so (I(25sZ))65s = F 15s(I(5sZ ′))50s has 15sL as 
the divisorial part of its base locus. But (I(Z))t has L in its base locus for t = 3, 4 and is fixed component 
free for t ≥ 5. Now (I(Z))19s+1 is spanned by products of a homogeneous elements of I(Z) of degree 5 or 
more and b elements of degree 4 or less with a +b = 19s +1. Such an element vanishes on L to order at least 
b. To minimize b we want a as large as possible, and hence we want to take all a elements to have degree 5 
and as many of the b elements as possible to have degree 3, and thus we have the inequality 5a + 3b ≤ 65s. 
Solving 5a + 3b ≤ 65s given a + b = 19s + 1 gives 2a ≤ 8s − 3 and hence, taking a as large as possible 
we have a = 4s − 2, so b = 15s + 3. I.e., every element of ((I(Z))19s+1)65s vanishes on L to order at least 
15s + 3.) We do not know if ρ̂(I(Z)) = 25/19, nor do we know the value of ρ(I(Z)).

Question 4.11. For the example Z in the previous paragraph, what are the exact values of ρ̂(I(Z)), ρ(I(Z))
and ρint(I(Z))?

As Remark 3.2 explains, if the next question has a negative answer, then Conjecture 3.1 holds for I = I(Z)
whenever ρ̂(I(Z)) = α(I(Z))/α̂(I(Z)).

Question 4.12. Is it ever false that

α̂(I(Z)) ≥ α(I(Z)) + 1
N

?

Given a valuation v : K[PN ] → Z, [12] defines

v̂(I(Z)) = lim
s→∞

v(I(Z))
s

,

which they call a skew Waldschmidt constant. Then [12] shows ρ̂(I(Z)) is equal to the maximum of 
v(I(Z))/v̂(I(Z)) for valuations v supported on I(Z), and that this maximum always occurs for some valu-
ation from among a finite set of valuations known as Rees valuations. Thus we have

v(I(Z))
v̂(I(Z)) ≤ ρ̂(I(Z)) ≤ N,

hence

v(I(Z))
N

≤ v̂(I(Z)).

This raises the question of whether Chudnovsky-like bounds occur for valuations:

Question 4.13. Is it always true for N > 1 that

v(I(Z)) + 1
N

≤ v̂(I(Z))?

If the answer is affirmative, then for some v we would have

ρ̂(I(Z)) = v(I(Z))
v̂(I(Z)) ≤ v(I(Z))

v(I(Z))+1
N

< N

which would confirm E. Grifo’s Conjecture for I(Z).
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Example 4.14. Consider Z = p1 + · · · + pN + 2pN+1 ⊂ PN where the points pi are the coordinate vertices. 
Here we show that I(Z)m = I(mZ) for all m ≥ 1. For N = 1, I(Z)m = I(mZ) holds for every Z (since 
fat point ideals are principal), so assume N > 1. (We note that the case N = 2 is covered by the results of 
[3].) Since I(Z) is a monomial ideal, we merely have to check for each monomial f = xa0

0 · · ·xaN

N ∈ I(mZ)
that f ∈ I(Z)m; i.e., that f can is divisible by a product of m monomials, each in I(Z). But if we choose 
coordinates xi such that xj �= 0 at pj for each j, then f ∈ I(mZ) is equivalent to a1 + · · · + aN ≥ 2m and 
a0+a1+· · ·+aN−ai ≥ m for each 0 < i ≤ N . Without loss of generality we may assume a1 ≤ a2 ≤ · · · ≤ aN , 
so the inequalities a0 + a1 + · · · + aN − ai ≥ m reduce to the single inequality a0 + a1 + · · · + aN−1 ≥ m. 
Let us set b = a1 + · · ·+ aN−1. Then f ∈ I(mZ) if and only if a0 + b ≥ m and b + aN ≥ 2m, so we want to 
show a0 + b ≥ m and b + aN ≥ 2m implies f ∈ I(Z)m.

First suppose b ≥ m. We have two cases: b + aN = 2m and b + aN > 2m. First assume b + aN = 2m, so 
0 < b/(N − 1) ≤ aN−1 ≤ aN ≤ b. Let e0 = (e01, . . . , e0N ) = (a1, · · · , aN ) so e0 is the exponent vector of 
g0 = xe01

1 · · ·xe0N
N = xa1

1 · · ·xaN

N . Let b0 = b = e01 + · · ·+ e0,N−1. Note that g0 ∈ I(mZ) and g0 divides f , so 
it’s enough to show g0 ∈ I(Z)m.

Starting with e0 and b0, we will recursively define a sequence ei of exponent vectors ei = (ei1, . . . , eiN )
and nonnegative integers bi for 0 ≤ i ≤ ω with bi > 0 for 0 ≤ i < ω and bω = 0, satisfying the following 
conditions:

(i) the entries of ei are nonnegative and nondecreasing;
(ii) bi + ei,N is even, where bi = ei1 + · · · + ei,N−1;
(iii) bi ≥ eiN .

For e0 we have b0 = b ≥ m > 0. Moreover, conditions (i)-(iii) hold for e0: (i) holds by assumption; (ii) 
holds since b0 + e0,N = b + aN = 2m by assumption; (iii) holds since we noted above that aN ≤ b, but 
e0N = aN and b0 = b.

Given that conditions (i)-(iii) hold for some ei with bi > 0, we now define ei+1 = (ei+1,1, . . . , ei+1,N ) with 
bi > bi+1. In brief, ji and ki are chosen to be as large as possible such that ji < ki and so that the entries of 
ei+1 = (ei+1,1, . . . , ei+1,N ) are nondecreasing, where ei+1,l = eil for all l except that ei+1,ji = eiji − 1 and 
ei+1,ki

= eiki
− 1. More precisely, ji is the least index t such that eit = ei,N−1. Then ki = N if eiN > ei,N−1

and ki = ji + 1 if eiN = ei,N−1. Since bi+1 is either bi − 1 or bi − 2 we have bi > bi+1.
It is easy to check that the construction ensures that the entries of ei+1 are nonnegative and nondecreasing, 

so (i) holds for ei+1. Since bi + ei,N is even and bi+1 + ei+1,N = bi + ei,N − 2, (ii) holds. For (iii), if 
ei+1,N = eiN , then ki < N so 0 < ei,N−2 = ei,N−1 = ei,N , and we cannot have ei,N−2 = 1 with ei,N−3 = 0
since then the sum of the entries of ei would be odd. Thus either ei,N−2 > 1 or ei,N−3 > 0; either way 
bi ≥ 2 + ei,N−1 = 2 + eiN , so bi+1 = bi − 2 ≥ eiN = ei+1,N . If ei+1,N = eiN − 1, then bi+1 = bi − 1, so 
bi ≥ eiN implies bi+1 ≥ ei+1,N (and hence bi+1 ≥ 0).

Let gi be the monomial whose exponent vector is ei, so gi = xei1
1 · · ·xeiN

N . We have gω = 1, since 
0 = bω ≥ eωN , so eω = (0, . . . , 0). If i < ω, then gi = gi+1xjixki

. Thus g0 = (xj0xk0) · · · (xjω−1xkω−1), 
but each factor xjixki

is in I(Z), and since deg g0 = b0 + e0N = 2m, we see that there are m factors, so 
g0 ∈ I(Z)m, as we wanted to show.

We now consider case 2, b + aN > 2m (still under the assumption that b ≥ m). Starting with 
(a1, . . . , aN−1, aN ), replace aN by the smallest integer a satisfying a ≥ aN−1 and b + a ≥ 2m. We then 
have that g = xa0

0 · · ·xaN−1
N−1 x

a
N divides f and is still in I(mZ). Thus it is enough to show that g ∈ I(Z)m. If 

b + a = 2m, we are done by case 1, so assume b + a > 2m. Then by construction we have a = aN−1. Since 
b ≥ m, we must have a ≤ m. It is now not hard to find new exponents 0 ≤ a′1 ≤ a′2 ≤ · · · ≤ a′N−1 such that 
a′i ≤ ai and b′ + a = 2m, where b′ = a′1 + · · · + a′N−1. Let g0 = x

a′
1

1 · · ·xa′
N−1

N−1 x
a
N ; then g divides f and by 

case 1 we have g ∈ I(Z)m.
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We are left with considering the case that b < m. We have a0 + b ≥ m and b + aN ≥ 2m. Clearly we can 
reduce a0 and aN so that a0+b = m and b +aN = 2m (since the associated monomial g divides f and still is 
in I(mZ)). So we may assume a0+b = m and b +aN = 2m, in which case f = (xa1

1 · · ·xaN−1
N−1 x

b
N )xa0

0 xaN−b
N =

(xa1
1 · · ·xaN−1

N−1 x
b
N )xm−b

0 x
2(m−b)
N = (xa1

1 · · ·xaN−1
N−1 x

b
N )(x0x

2
N )m−b. But x0X

2
N ∈ I(Z) and xa1

1 · · ·xaN−1
N−1 x

b
N is a 

product of b factors of the form xixN for 1 ≤ i ≤ N − 1, and each of these is in I(Z). Thus f is a product 
of m = b + (m − b) elements of I(Z), hence f ∈ I(Z)m.

Remark 4.15. Again consider Z = p1 + · · · + pN + 2pN+1 ⊂ PN where the points pi are the coordinate 
vertices and N > 1. Then there is no N -generated ideal J , homogeneous or not, such that I(Z) = Js for 
some s ≥ 1. Suppose there were; say J = (F1, . . . , FN ). The ideal I(Z) defines the N + 1 coordinate lines in 
affine N +1 space, all taken with multiplicity 1 except one taken with multiplicity 2. Since each Fi vanishes 
on each coordinate line, none of the Fi can have any terms which are a power of a single variable (i.e., every 
term involves a product of two or more variables). Therefore, none of the Fi have terms of degree less than 
2. Since (F1, . . . , FN )s = Js = I(Z) and since I(Z) has elements with terms of degree 2, we see that s = 1
(otherwise the least degree of a term of an element of Js would be at least 2s ≥ 4). But s = 1 implies that 
J = I(Z) is homogeneous, and an easy argument shows that the least number of homogeneous generators 
of a homogeneous ideal is the least number of generators possible, which in this case is 

(
N
2
)
+N > N (since, 

for a particular ordering of the points pi we have I(Z) = (xixj : i > 0, j > 0) + (x0x
2
i : i > 0)).

Remark 4.16. Let Z = m1p1 + · · · + mrpr ⊂ PN with N > 1, mi > 0 for all i and K[PN ] = K[x0, . . . , xN ]. 
Here we show that there is an ideal J generated by N forms such that I(Z) = Jm for some m ≥ 1 if and only 
if m1 = · · · = mr = m where I(p1 + · · ·+pr) is generated by N forms. The reverse implication is known [27, 
Lemma 5, Appendix 6], so assume I(Z) = Jm for some m ≥ 1 with forms Fi such that J = (F1, . . . , FN ). 
Choose coordinates x0, . . . , xN such that none of the points lies on x0 = 0 and p1 = (1, 0, . . . , 0). Let U0
be the affine neighborhood defined by x0 �= 0, and let fi(x1, . . . , xN ) = Fi(1, x1, . . . , xN ) be the polynomial 
obtained by setting x0 to 1 in Fi. Given an ideal I ⊆ K[x0, . . . , xN ], let I ′ be the ideal which is the image of I
under the homomorphism K[x0, . . . , xN ] → K[x1, . . . , xN ] given by x0 �→ 1 and otherwise by xi �→ xi. Then 
on U0, pi and likewise Z are defined by the ideals I ′(pi) and I ′(Z) in K[x1, . . . , xN ], and I ′(Z) = (J ′)m where 
J ′ = (f1, . . . , fN ). We have P1 := I ′(p1) = (x1, . . . , xN ) and (J ′)m = I ′(Z) = ∩jI

′(pj)mj ⊆ I ′(p1)m1 = Pm1
1 . 

Localizing at P1 gives (I ′(Z))P1 = (P1)m1
P1

, and modding out by Pm1+1
1 gives

(J ′)m + Pm1+1
1

(P1)m1+1 = I ′(Z) + Pm1+1
1

(P1)m1+1
∼= I ′(Z)P1

(P1)m1+1
P1

=
(P1)m1

P1

(P1)m1+1
P1

∼= Pm1
1

Pm1+1
1

Since (J ′)m+P
m1+1
1

(P1)m1+1
∼= P

m1
1

P
m1+1
1

is induced by the containment (J ′)m + Pm1+1
1 ⊆ Pm1

1 we in fact have (J ′)m +
Pm1+1

1 = Pm1
1 . We now see no fi has terms of degree less than d = m1/m and some of the fi have 

terms of degree exactly d, so d is an integer, hence m ≤ m1. But Pm1
1 is graded in the usual way with 

respect to x1, . . . , xN , hence the vector space dimension of Pm1
1 /Pm1+1

1 is 
(
m1+N−1

N−1
)
, while the vector 

space dimension of (J ′)m+P
m1+1
1

(P1)m1+1 is at most 
(
m+N−1
N−1

)
since (J ′)m+P

m1+1
1

(P1)m1+1 is spanned modulo (P1)m1+1 by 

all “monomials” fe1
1 · · · feN

N with m = e1 + · · · + eN . Thus we have 
(
m1+N−1

N−1
)
≤

(
m+N−1
N−1

)
, which implies 

m1 ≤ m, hence m = m1 and d = 1. With a change of coordinates, the same argument works for each point 
pi, so mi = m for all i, and, at each point pi, the linear terms (in coordinates centered at pi) of the fj
must be linearly independent (otherwise we would have dimK((J ′)m +Pm+1

i )/(Pi)m+1) <
(
m+N−1
N−1

)
). Thus 

J ′ = I(p1 + · · · + pr) on U0, hence J = I(p1 + · · · + pr) ⊆ K[PN ], since J is a complete intersection and 
therefore saturated.

Question 4.17. In Remark 4.16, do we need to assume a priori that J is homogeneous?
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5. Computational estimates of resurgences

It might be possible to address some of the foregoing questions computationally. More generally, it is of 
interest to consider to what extent quantities like resurgences can be computed.

5.1. Denkert’s thesis

In an unpublished part of her thesis [11], Denkert gives an algorithm for computing ρ(I(Z)) arbitrarily 
accurately when the symbolic Rees algebra

Rs(I(Z)) = ⊕tI(tZ)xt ⊆ K[PN ][x]

is Noetherian (equivalently, when for some a ≥ 1, all powers of I(aZ) are symbolic [22, Theorem 2.1]).
Let I = I(Z) ⊆ K[PN ] be nontrivial and assume I(at) = (I(a))t for all t > 0. For each s ≥ 1, let bs be 

the largest b such that I(asN) ⊆ Ib and let ε > 0. Since bs ≥ as, we have asNbs − asN
bs+1 = asN

bs(bs+1) ≤ N
as+1 . So, 

by picking s 	 0 and ε small, we can make N
as+1 + ε arbitrarily small. Denkert’s algorithm either computes 

ρ(I) exactly or gives an estimate which is accurate to less than N
as+1 + ε.

Assume we have picked s and ε. Let A = asN and let B = bs. Thus we have

I(At) = (I(A))t ⊆ (IB)t = IBt

for all t ≥ 1, and for m ≥ At and r ≤ Bt we have

I(m) ⊆ I(At) ⊆ IBt ⊆ Ir.

If r ≥ B� A
Bε� and mr ≥ A

B + ε, we now show for the least t such that r < Bt that m ≥ At, and hence 
I(m) ⊆ Ir. Indeed, we have B(t − 1) ≤ r < Bt, so t − 1 = � r

B � ≥ � A
Bε�. Thus (t − 1)Bε ≥ A, which is 

equivalent to (A
B + ε)(t − 1)B ≥ At, hence we have m ≥ r(A

B + ε) ≥ B(t − 1)(A
B + ε) ≥ At.

In summary, we have I(m) ⊆ Ir for all r ≥ B� A
Bε� and m

r ≥ A
B + ε, and we have I(A) � IB+1. Thus 

A
B+1 ≤ ρ(I) and either ρ(I) < A

B + ε or ρ(I) = m/r for some r < B� A
Bε� with N > m/r ≥ A

B + ε (and there 
are only finitely many such r and m).

Moreover, since we have I(m) ⊆ Ir for all but finitely many m and r with m/r ≥ A
B + ε, we have 

ρ̂(I) ≤ A
B + ε for each ε > 0, and hence we have ρ̂(I) ≤ A

B . This also follows by Theorem 1.2(3) of [20].

5.2. DiPasquale-Drabkin method

An alternate approach is based on [13]. Again assume the symbolic Rees algebra of a homogeneous ideal 
I ⊂ K[PN ] is finitely generated. Then [13] shows that we can compute ρ̂(I) exactly (assuming we know the 
Rees valuations). Let ε > 0. Then, as in the proof of Theorem 2.1, whenever I(m) � Ir, we have s

r+N < ρ̂(I). 
But there are only finitely many r for which there is an s such that both s

r+N < ρ̂(I) and ρ̂(I) + ε ≤ s/r

hold. For each of these s and r we check if I(s) is not contained in Ir. For all such r and s which occur (if 
any), then ρ(I) is the maximum of their ratios s/r. If none occur, then ρ̂(I) ≤ ρ(I) < ρ̂(I) + ε.

The estimates on ρ(I) given by using [13] versus those of [11] are somewhat similar, but each starts with 
different input data. Also, [13] gives us ρ̂(I) exactly (if we know the Rees valuations), whereas [11] just gives 
us an upper bound on ρ̂(I).
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