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0. Introduction

Finite topological spaces or finite posets are an already classic object of study, ever since the work of 
Alexandroff ([1]), Stong ([15]), McCord ([10]), and so on; as well as a current area of interest (see [2] and 
references therein). For a while, let us consider locally compact and Hausdorff spaces.

Let f : X → Y be a proper map between locally compact and Hausdorff topological spaces. The coho-
mology of f (i.e., the higher direct images) satisfies (see [9]):
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(1) Base change theorem: For any sheaf F of abelian groups on X and any y ∈ Y , one has an isomorphism

(Rif∗F )y
∼→ Hi(f−1(y), F|f−1(y)).

(2) Projection formula: for any F ∈ D−(X) and any G ∈ D−(Y ) one has an isomorphism

Rf∗F
L
⊗G

∼→ Rf∗(F
L
⊗ f−1G)

where D− denotes the derived category of complexes of sheaves with bounded above cohomology.
(3) Verdier duality: There exists a functor f ! : D+(Y ) → D+(X) satisfying:

RHom•(Rf∗F,G) = RHom•(F, f !G)

for any F ∈ D+(X), G ∈ D+(Y ), where D+ denotes the derived category of complexes of sheaves 
with bounded below cohomology.

(3.1) Local isomorphism of duality: the isomorphism (3) can be sheafified to an isomorphism

RHom•(Rf∗F,G) = Rf∗RHom•(F, f !G).

A first aim of this paper is to study the validity of these results in the context of finite topological spaces. 
Thus, let f : X → Y be a continuous map between finite topological spaces (or finite posets). Then Verdier 
duality (3) still holds ([11]). However (1), (2) and (3.1) are no longer true, even if we assume that f is 
proper (i.e., universally closed). Properness is too weak in this context (it is equivalent to being closed). 
It is a necessary but not sufficient condition for having (1), (2) and (3.1). A stronger notion is necessary. 
This notion is that of a cohomologically proper map: We say that f : X → Y is cohomologically proper 
(c-proper for short) if it is a closed map and for any x ∈ X the map f|Cx

: Cx → Cf(x) has homologically 
trivial fibers, where Cx, Cf(x) denotes the closure of x and f(x) respectively. We prove that a c-proper map 
satisfies (1), (2) and (3.1) and conversely, any of them characterizes a c-proper map. These results (and 
others characterizing c-proper maps) are given in Theorems 3.2.8, 3.3.3 and 4.3.9.

A second aim of the paper is to develop these results for homology. One of the most striking proper-
ties of a finite topological space X is the equivalence between the category of sheaves of abelian groups 
on X and the category of cosheaves (over closed subsets) of abelian groups on X, thanks to the fact 
that both of these categories are in turn equivalent to the category of functors from X to abelian groups 
(which will be referred to in this paper as abelian data on X). This has the following fundamental im-
plications. On an arbitrary topological space, cohomology is defined for any sheaf and studied within 
the framework of the theory of derived functors, whereas homology is defined only for constant or lo-
cally constant coefficients and thus does not fit within such a framework. However, on finite topological 
spaces one may in fact define the homology and cohomology of any abelian data (or sheaf, or cosheaf) 
and both of these constructions are developed within the framework of the theory of derived functors. In 
other words, on a finite topological space it is possible to consider the homology groups Hi(X, F ) with 
coefficients on any sheaf F , and in this case Hi(X, ) is the i-th (left-)derived functor of H0(X, ). 
This was already pointed out by Deheuvels ([7]). Moreover, just as the functor of sections of a sheaf 
admits a relative version (the direct image f∗), so too does the functor of cosections of a cosheaf ad-
mit a relative version f! (which is the direct image of cosheaves), and again, just as cohomology admits 
a relative version (the higher direct images Rif∗), so too does homology admit a relative version Lif!. 
Thus, one can formulate base change or projection formula morphisms for homology and to study when 
these morphisms are isomorphisms. This leads to the notion of an homologically open map (h-open for 
short), which is the analog for homology to that of a c-proper map, and we obtain the same results for 
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homology in Theorems 3.2.9 and 3.3.3 (we leave aside Verdier duality for homology for the moment, 
and will treat it below). Base change theorem for cohomology (resp. for homology) is related to the 
theory of cohomological (resp. homological) fiber theorems (see [3] and [12]); as an example, see Corol-
lary 3.2.10.

A great part of the paper is dedicated to duality (section 4). There are several types of duality to be 
considered. Subsection 4.1 is devoted to the duality between homology and cohomology. We generalize to 
a relative situation and, for any complex of abelian data, to the standard duality between cohomology and 
homology with coefficients on a locally constant sheaf. Subsection 4.2 is devoted to topological duality, that 
is, to relating the cohomology of complexes of abelian data on X to the cohomology of complexes of abelian 
data on the dual space X̂. The main results are Theorem 4.2.5, Corollary 4.2.6 and Theorem 4.2.8, that 
generalize the well known fact that a space and its dual have the same cohomology and homology groups 
with coefficients on a constant sheaf.

In subsection 4.3 we study Grothendieck-Verdier duality for first cohomology and then homology for a 
morphism f : X → Y . Some related duality results can also be found in [6]. Verdier duality for cohomology 
deals with the existence of a right adjoint f ! of the functor Rf∗. This is the global form of duality, which 
is already done in [11]. We shall give an explicit description of the dualizing complex DX in Theorem 4.3.4
(a related result may be found in [6]). As we mentioned above, we also study the validity of the local form 
of duality in Theorem 4.3.9.

Now, let us comment on the results obtained about Grothendieck-Verdier duality for homology, which 
we have named as co-duality. The first result is the existence of a left adjoint f# of the functor Lf!

(Theorem 4.3.10). This is the global form of co-duality. In particular, we obtain a relative co-dualizing 
complex DX/Y := f#Z and a co-dualizing complex DX (when Y is a point). We shall give an explicit 
description of the complex DX in Theorem 4.3.20. It was a surprising fact for us to find that there is 
not a natural local form of co-duality (in contrast with duality). What still holds is the local structure 
on Y of the functor f#, in the sense that there is a morphism (Proposition 4.3.25), though it is not an 
isomorphism in general. The homological version of Theorem 4.3.9 is given in Theorem 4.3.27. This theorem 
says in particular that the functor f# is local on Y if and only if f is h-open. Notice that there is not a 
perfect symmetry between the cohomological statements of Theorem 4.3.9 and the homological ones in 
Theorem 4.3.27 (in contrast with Theorems 3.2.8–3.2.9 and Theorem 3.3.3). For example: while the local 
form of the adjunction between Rf∗ and f−1 holds for any f , the local form of the adjunction between Lf!

and f−1 holds if and only if f is h-open (Theorem 4.3.27).
Finally, in Theorem 4.3.28 and Proposition 4.3.32 we see the relation between the dualizing and co-

dualizing complexes of a space X.
Sections 1 and 2 have no original results and are well known for specialists on the subject. We have 

included them in order to fix notations and make the exposition more self-contained. In section 1, we recall 
some basic notions related to sheaves and cosheaves on a finite topological space and their equivalence 
to abelian data (Theorem 1.1.8), as well as some facts about direct and inverse images, supporting on 
locally closed subspaces, homology and cohomology of abelian data and standard resolutions. In section 2, 
we collect some standard results about the derived category of abelian data on a finite topological space, 
locally constant complexes, perfect complexes and several adjunction formulas.

Many of the notions and results that are present in this paper can be extended to non-finite posets. 
However, since the finiteness hypothesis is required for the main results obtained here, we have preferred to 
focus our discussion solely on finite topological spaces.

For the rest of the paper, all topological spaces are assumed to be finite, unless otherwise stated. For the 
sake of brevity, we shall just say a finite space to refer to a finite topological space.
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1. Basics

We shall give here some basic results about sheaves, cosheaves, direct and inverse images, homology, 
cohomology and standard resolutions (see also [6, Sections 2., 3. and 6.]) on finite spaces.

Let X be a finite space. For each p ∈ X let us denote

Up = smallest open subset containing p,

Cp = smallest closed subset containing p = closure of p.

(Alexandroff): We have a preorder on X: p ≤ q iff Cp ⊆ Cq (equivalently Up ⊇ Uq). Thus

Up = {q ∈ X : q ≥ p}, Cp = {q ∈ X : q ≤ p}.

A map f : X → Y is continuous if and only if it is monotone: p ≤ q implies that f(p) ≤ f(q).

Definition 1.0.1. The dimension of X is the maximum of the lengths of the chains x0 < x1 < · · · < xn. It is 
also called length of X in the literature.

Definition 1.0.2. Let X be a finite space. The dual space X̂ is the same set as X, but with the opposite 
topology: an open subset of X̂ is a closed subset of X. For any x ∈ X we shall denote by x̂ the same 
element x but considered as an element of X̂. The preorder in X̂ is the inverse of that of X; thus, x̂ ≤ ŷ

is equivalent to x ≥ y. Given a map f : X → Y , we shall denote f̂ : X̂ → Ŷ the same map but with the 
opposite topologies on the sets; f is continuous if and only if f̂ is.

1.1. Abelian data, sheaves and cosheaves

Definition 1.1.1. An abelian data F on X is the following data: an abelian group Fp for each p ∈ X and a 
group homomorphism rpq : Fp → Fq for each p ≤ q, satisfying

rpp = id, for any p ∈ X, and rql ◦ rpq = rpl for any p ≤ q ≤ l.

If we view X as a category, F is just a functor

F : X → {Abelian Groups}.

Morphisms of abelian data are just morphisms of functors. Thus one has the category of abelian data on 
X, which is abelian.

If {Fi} is a direct system of abelian data, the direct limit lim
→

Fi is the abelian data defined by

( lim
→

Fi)p := lim
→

(Fi)p

and it coincides with the categorical direct limit. Analogously, the inverse limit lim
←

Fi is defined by

( lim
←

Fi)p := lim
←

(Fi)p

and it coincides with the categorical inverse limit. The tensor product F ⊗ F ′ of two abelian data F, F ′ is 
defined by (F ⊗ F ′)p := Fp ⊗ F ′

p.
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Example 1.1.2. The finite space with one element will be denoted by {∗}. An abelian data on {∗} is just an 
abelian group. Thus the category of abelian data on {∗} is the category of abelian groups.

Definition 1.1.3. Let S be a subspace of X, F an abelian data on X. We define:

Γ(S, F ) = lim
←
s∈S

Fs, L(S, F ) = lim
→
s∈S

Fs

which will be called sections and cosections of F on S respectively.

By definition, one has exact sequences

0 → Γ(S, F ) →
∏
s∈S

Fs
φ→

∏
(s<s′)∈S

Fs′ , φ((as)s∈S) = ((bs′)s<s′), bs′ = as′ − rss′(as)

⊕
(s′<s)∈S

Fs′
ψ→

⊕
s∈S

Fs → L(S, F ) → 0, ψ((as′)s′<s) = ((bs)s∈S), bs =
∑
s′<s

(rs′s(as′) − as)
.

Functoriality: Γ(S, F ) and L(S, F ) are functorial on S and F . If S ⊆ S′, one has morphisms Γ(S′, F ) →
Γ(S, F ) and L(S, F ) → L(S′, F ). If F → F ′ is a morphism of abelian data on X, then it induces morphisms 
Γ(S, F ) → Γ(S, F ′) and L(S, F ) → L(S, F ′). Thus, for a fixed subspace S, one has a covariant functor

Γ(S, ) : {Abelian data on X} → {Abelian groups}

which is left exact, and a covariant functor

L(S, ) : {Abelian data on X} → {Abelian groups}

which is right exact.

Remark 1.1.4. For each p ∈ X one has:

Γ(Up, F ) = Fp = L(Cp, F ).

Definition 1.1.5. A sheaf F on X is a contravariant functor

F : {Open subsets of X} → {Abelian groups}
U � F (U)

V ⊆ U � F (U) → F (V )

such that for any open subset U and any open covering U = ∪iUi the sequence

0 → F (U) →
∏
i

F (Ui) →
∏
i,j

F (Ui ∩ Uj)

is exact. The elements of F (U) are usually called sections of F on U , which could lead to confusion with our 
Definition 1.1.3. We shall see in Theorem 1.1.8 that both notions agree, i.e. the sections of a sheaf coincide 
with the sections of the corresponding abelian data, once the equivalence of sheaves and abelian data is 
established. A morphism of sheaves is just a morphism of functors, i.e., a natural transformation.
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Definition 1.1.6. A cosheaf F on X is a covariant functor

F : {Closed subsets of X} → {Abelian groups}
C � F (C)

C ⊆ C ′ � F (C) → F (C ′)

such that for any closed subset C and any closed covering C = ∪iCi the sequence⊕
i,j

F (Ci ∩ Cj) →
⊕
i

F (Ci) → F (C) → 0

is exact. A morphism of cosheaves is just a morphism of functors, i.e., a natural transformation.

Remark 1.1.7. The term cosheaf is usually used to refer to a covariant functor from the category of open 
sets of X to abelian groups (see [4, Chapter 5], or [6]). However, in this paper, cosheaf means a functor on 
closed subsets. Since the category of closed subsets of X coincides with the category of open subsets of X̂, 
what we call a cosheaf on X coincides with what is called a cosheaf on X̂ in the literature.

Theorem 1.1.8. Let X be a finite space. There are natural equivalences

{Sheaves on X} 
 {Abelian data on X} 
 {Cosheaves on X}

Proof. If F is an abelian data, let F sheaf be the sheaf on X defined by F sheaf(U) := Γ(U, F ) (one easily 
checks that F sheaf is a sheaf). Conversely, if F is a sheaf on X, let F data be the abelian data defined by 
(F data)p := F (Up) for each p ∈ X, and, for each p ≤ q, rpq := F (i), where i : Uq → Up is the inclusion. If F
is an abelian data, then F = (F sheaf)data, by Remark 1.1.4. If F is a sheaf, for any open subset U and any 
p ∈ U one has the restriction morphism F (U) → F (Up) which yields a morphism F (U) → lim

←
p∈U

F (Up). This 

gives a morphism of sheaves F → (F data)sheaf which is an isomorphism because it is so on each Up.
If F is an abelian data, let F cosheaf be the cosheaf on X defined by F cosheaf(C) := L(C, F ) (one easily 

checks that F cosheaf is a cosheaf). Conversely, if F is a cosheaf on X, let F data be the abelian data defined 
by (F data)p := F (Cp) for each p ∈ X, and, for each p ≤ q, rpq := F (j), where j : Cp → Cq is the inclusion. 
If F is an abelian data, then F = (F cosheaf)data, by Remark 1.1.4. If F is a cosheaf, for any closed subset C
and any p ∈ C one has the morphism F (Cp) → F (C) which yields a morphism lim

→
p∈C

F (Cp) → F (C). This 

gives a morphism of cosheaves (F data)cosheaf → F which is an isomorphism because it is so on each Cp. �
1.2. Direct and inverse images

Definition 1.2.1. Let f : X → Y be a continuous map, F an abelian data on Y . Then f−1F is the abelian 
data on X defined by:

(f−1F )x = Ff(x)

and the obvious restriction morphisms rpq. One says that f−1F is the inverse image of F by f . If we view 

F as a functor Y F→ {Abelian groups}, then f−1F is just the composition

X
f→ Y

F→ {Abelian groups}.



JID:JPAA AID:106200 /FLA [m3L; v1.261; Prn:12/09/2019; 13:42] P.7 (1-38)
V. Carmona Sánchez et al. / Journal of Pure and Applied Algebra ••• (••••) •••••• 7
Remark 1.2.2. If S is a subspace of X and j : S ↪→ X is the inclusion, we shall denote

F|S := j−1F.

A morphism F → F ′ of abelian data on Y , induces a morphism f−1F → f−1F ′ of abelian data on X. 
If Y g→ Z is another continuous map, then (g ◦ f)−1 = f−1 ◦ g−1.

Proposition 1.2.3. f−1 is an exact functor and it commutes with direct and inverse limits.

Definition 1.2.4. Let f : X → Y be a continuous map, F an abelian data on X. One defines:

(1) f∗F as the abelian data on X given by:

(f∗F )y = Γ(f−1(Uy), F ).

(2) f!F as the abelian data on X given by:

(f!F )y = L(f−1(Cy), F ).

Proposition 1.2.5. Let f : X → Y be a continuous map, F an abelian data on X.

(1) For any open subset V of Y one has

Γ(V, f∗F ) = Γ(f−1(V ), F ).

(2) For any closed subset C of Y one has

L(C, f!F ) = L(f−1(C), F ).

Proof. (1) Γ(V, f∗F ) = lim
←

y∈V

(f∗F )y = lim
←

y∈V

Γ(f−1(Uy), F ) = lim
←

y∈V

lim
←

x∈f−1(Uy)

Fx = lim
←

x∈f−1(V )

Fx =

Γ(f−1(V ), F ). (2) is analogous. �
Examples 1.2.6.

(1) Let π : X → {∗} be the projection onto a point. Then

π∗F = Γ(X,F ) and π!F = L(X,F ).

(2) Let U be an open subset and j : U ↪→ X the inclusion. For any abelian data F on U , j!F is the extension 
by zero out of U ; i.e.

(j!F )|U = F and (j!F )|X−U = 0.

In particular, j! is an exact functor.
(3) Let C be a closed subset and j : C ↪→ X the inclusion. For any abelian data F on C, j∗F is the extension 

by zero out of C; i.e.

(j∗F )|C = F and (j∗F )|X−C = 0.

In particular, j∗ is an exact functor.
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A morphism F → F ′ of abelian data on X, induces morphisms f∗F → f∗F ′ and f!F → f!F
′ of abelian 

data on Y . For any continuous map Y
g→ Z one has: (g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)! = g! ◦ f!.

Proposition 1.2.7. f∗ is left exact and commutes with inverse limits. f! is right exact and commutes with 
direct limits.

Remark 1.2.8. Proposition 1.2.7 still holds for arbitrary – not necessarily finite – posets. In the finite case 
it is also true that f∗ commutes with direct limits; however, it is not true that f! commutes with inverse 
limits in general, even though X is finite.

Theorem 1.2.9. f∗ is the right adjoint of f−1 and f! is the left adjoint of f−1. That is, for any abelian data 
F on X and G on Y :

Hom(f−1F,G) = Hom(F, f∗G)

Hom(G, f−1F ) = Hom(f!G,F ).

Proof. Let F be an abelian data on Y and let y ∈ Y . If x ∈ f−1(Cy), then f(x) ≤ y and one has a morphism 
Ff(x) → Fy. Taking direct limit on x ∈ f−1(Cy) one obtains a morphism

(f!f
−1F )y → Fy

hence a morphism of abelian data α : f!f
−1F → F . Then a morphism G → f−1F induces a morphism 

f!G → f!f
−1F , and, by composition with α, a morphism f!G → F . This gives a map

α̃ : Hom(G, f−1F ) → Hom(f!G,F ).

Now let G be an abelian data on X. For each x ∈ X the inclusion Cx ⊆ f−1(Cf(x)) induces a morphism 
L(Cx, G) → L(f−1(Cf(x)), G), i.e., a morphism Gx → (f−1f!G)x. Thus we have a morphism β : G →
f−1f!G. Then, a morphism f!G → F induces a morphism f−1f!G → f−1F and, by composition with β, a 
morphism G → f−1F . This gives a map

β̃ : Hom(f!G,F ) → Hom(G, f−1F ).

One checks that α̃ and β̃ are mutually inverse. �
Proposition 1.2.10. Let f : X → Y be a continuous map and let V ⊆ Y (resp. C ⊆ Y ) be an open (resp. 
closed) subset. For any abelian data F on X, one has

(f∗F )|V = (fV )∗(F|f−1(V )), (f!F )|C = (fC)!(F|f−1(C))

where fV : f−1(V ) → V is the restriction of f to f−1(V ) (resp. fC : f−1(C) → C).

Proof. Immediate. �
Proposition 1.2.11. Let us consider a commutative diagram

X
ḡ

f̄

X

f

Y
g

Y.
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For any abelian data F on X one has natural morphisms

g−1f∗F → f̄∗ ḡ
−1F, f̄! ḡ

−1F → g−1f!F.

Proof. The natural morphism F → f−1f!F induces ḡ−1F → ḡ−1f−1f!F = f̄−1g−1f!F , hence a morphism 
f̄! ḡ

−1F → g−1f!F . �
1.3. Constant and locally constant abelian data

Definition 1.3.1. Let G be an abelian group . The constant abelian data G on X is defined by: Gp = G for 
any p ∈ X and rpq = id for any p ≤ q. An abelian data L is locally constant if for any p ∈ X, L|Up

is 
isomorphic to a constant abelian data on Up. A locally constant data of finite type is a locally constant data 
L such that Lp is a finitely generated abelian group for any p ∈ X.

Locally constant abelian data are characterized by the following:

Proposition 1.3.2. An abelian data L is locally constant if and only if rpq : Lp → Lq is an isomorphism for 
any p ≤ q.

Remark 1.3.3.

(1) If X has a minimum (or a maximum) then any locally constant abelian data on X is constant.
(2) If f : X → Y is continuous and G is the constant abelian data G on Y , then f−1G is the constant 

abelian data G on X, i.e. f−1G = G. If L is a locally constant abelian data on Y , then f−1L is a locally 
constant abelian data on X.

It is proved in [13] that an abelian data F on X is locally constant if and only if it is quasi-coherent (as a 
sheaf of Z-modules). That is why we shall denote by Qcoh(X) the category of locally constant abelian data 
on X. A locally constant data is of finite type if and only if it is a coherent Z-module. We shall denote by 
Coh(X) the category of locally constant data of finite type on X.

Remark 1.3.4. Let #X be the number of connected components of X. If G is the constant abelian data G
on X, then

Γ(X,G) = G× #X· · · ×G,

L(X,G) = G⊕ #X· · · ⊕G.

1.4. Supporting on a locally closed subspace

Definition 1.4.1. Let S be a locally closed subset of X and F an abelian data on X. Then FS is the abelian 
data on X given by

(FS)p =
{
Fp if p ∈ S,

0 if p /∈ S.

The restriction morphisms rpq are those of F if p, q ∈ S and zero otherwise (the associativity rql◦rpq = rpl is 
satisfied because S is locally closed). In other words, if we think F as a sheaf, then F is the sheaf supported 
on S.
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Example 1.4.2. If j : C ↪→ X is a closed subset, then

FC = j∗j
−1F.

If j : U ↪→ X is an open subset, then

FU = j!j
−1F.

Proposition 1.4.3. Let F be an abelian data on X and G an abelian group.

(1) For any closed subset Z of X

Hom(F,GZ) = Hom(L(Z,F ), G).

(2) For any open subset U of X

Hom(GU , F ) = Hom(G,Γ(U,F ))).

Proof. Let i : Z ↪→ X be the inclusion and π : Z → {∗} the projection onto a point. One has GZ = i∗π−1G. 
By adjunctions, one has

Hom(F,GZ) = Hom(F, i∗π−1G) = Hom(F|Z , π
−1G) = Hom(π!F|Z , G).

One concludes because L(Z, F|Z) = L(Z, F ). �
Definition 1.4.4. Let F be an abelian data on X.

(1) For any closed subset Y ⊆ X, we shall denote by ΓY (X, F ) the kernel of the morphism Γ(X, F ) →
Γ(X − Y, F ).

(2) For any open subset U ⊆ X, we shall denote by LU (X, F ) the cokernel of the morphism L(X−U, F ) →
L(X, F ).

Proposition 1.4.5. Let F be an abelian data on X and G an abelian group.

(1) For any closed subset Z of X

Hom(GZ , F ) = Hom(G,ΓZ(X,F )).

(2) For any open subset U of X

Hom(F,GU ) = Hom(LU (X,F ), G).

Proof. For any closed subset Z one has an exact sequence

0 → GX−Z → G → GZ → 0.

Taking Hom( , F ) and applying Proposition 1.4.3, one concludes (1). Analogously, taking Hom(F, ) and 
applying Proposition 1.4.3, one concludes (2). �
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1.5. Homology and cohomology

In order to derive the sections and cosections functors, we need the following basic result.

Theorem 1.5.1. The category of abelian data on X has enough injectives and projectives.

If I is an injective abelian data on X, then I|U is an injective abelian data on U , for any open subset 
U , and f∗I is an injective abelian data on Y for any continuous map f : X → Y . Analogously, if P is a 
projective abelian data on X, then P|C is a projective abelian data on C, for any closed subset C, and f!P

is a projective abelian data on Y for any continuous map f : X → Y .

Definition 1.5.2. We shall denote by Hi(X, ) the right derived functors of Γ(X, ) and by Hi(X, ) the 
left derived functors of L(X, ). More generally, Rif∗ and Lif! are the left and right derived functors of f∗
and f! respectively. One has

(Rif∗F )y = Hi(f−1(Uy), F ), (Lif!F )y = Hi(f−1(Cy), F ).

Definition 1.5.3. Let F be an abelian data on X. F is called flasque if Γ(X, F ) → Γ(U, F ) is surjective for 
any open subset U . F is called coflasque if L(C, F ) → L(X, F ) is injective for any closed subset C.

Proposition 1.5.4. If F is flasque, then F|U is flasque for any open subset U . If F is coflasque, then F|Z is 
coflasque for any closed subset Z. If f : X → Y is a continuous map and F is an abelian data on X, then 
F flasque implies that f∗F is flasque and F coflasque implies that f!F is coflasque.

Proposition 1.5.5. If F is flasque, then Hi(X, F ) = 0 for i > 0. If F is coflasque, then Hi(X, F ) = 0 for 
i > 0.

Proof. The result for a flasque F is well known (see for example [8, Proposition 2.5]). If F is coflasque the 
result follows from the following lemmas:

Lemma 1.5.6. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of abelian data on X. If F ′′ is coflasque, 
then the sequence

0 → L(X,F ′) → L(X,F ) → L(X,F ′′) → 0

is exact.

Proof. If X is irreducible, then X = Cp, so L(X, F ) = Fp for any F and the result is immediate. If X is not 
irreducible, then X is the union of two proper closed subsets X = X1 ∪X2. By induction on the number 
of points, the result holds on X1, X2 and X12 = X1 ∩ X2, so we obtain a commutative diagram of exact 
sequences

0 → L(X1, F
′) ⊕ L(X2, F

′) L(X1, F ) ⊕ L(X2, F ) L(X1, F
′′) ⊕ L(X2, F

′′) → 0

0 −→ L(X12, F
′) L(X12, F ) L(X12, F

′′) −→ 0

One concludes the result by the snake lemma, since L(X12, F ′′) → L(Xi, F ′′) is injective, because F ′′ is 
coflasque. �



JID:JPAA AID:106200 /FLA [m3L; v1.261; Prn:12/09/2019; 13:42] P.12 (1-38)
12 V. Carmona Sánchez et al. / Journal of Pure and Applied Algebra ••• (••••) ••••••
Lemma 1.5.7. If P is projective then it is coflasque.

Proof. Let Z be a closed subset and G an abelian group. One has an epimorphism G → GZ , hence an 
epimorphism Hom(P, G) → Hom(P, GZ); by Proposition 1.4.3, this yields an epimorphism

Hom(L(X,P ), G) → Hom(L(Z,P ), G).

Since this holds for any G, L(Z, P ) → L(X, P ) is injective (in fact, a direct summand). �
Lemma 1.5.8. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of abelian data on X. If F and F ′′ are 
coflasque, then F ′ is coflasque too.

Proof. It follows easily from Lemma 1.5.6. �
�

1.6. Standard resolutions

Finite resolutions by flasque and coflasque abelian data.
A complex F of abelian data on X may be denoted as a sequence

· · · → Fn → Fn+1 → · · ·

whose differential has degree +1, or as a sequence

· · · → Fn → Fn−1 → · · ·

whose differential has degree −1 (in both cases the composition of two consecutive arrows is zero). The 
equivalence between both presentations is given by F−n = Fn.

Definition 1.6.1. Let F be an abelian data on X. For each integer n ≥ 0, CnF is the sheaf on X defined by:

(CnF )(U) =
∏

(x0<···<xn)∈U

Fxn
.

These groups form a complex

0 → (C0F )(U) → (C1F )(U) → · · · → (CdF )(U) → 0, d = dimX.

hence we have a complex C•F of abelian data

0 → C0F → C1F → · · · → CdF → 0

and an augmentation F → C•F .

Theorem 1.6.2. C•F is a finite and flasque resolution of F . Hence, for any open subset U ⊆ X:

Hi[Γ(U,C•F )] 
 Hi(U,F ).

The analogous construction for homology is the following.



JID:JPAA AID:106200 /FLA [m3L; v1.261; Prn:12/09/2019; 13:42] P.13 (1-38)
V. Carmona Sánchez et al. / Journal of Pure and Applied Algebra ••• (••••) •••••• 13
Definition 1.6.3. For each integer n ≥ 0, CnF is the cosheaf on X defined by

(CnF )(C) =
⊕

(x0<···<xn)∈C

Fx0 .

We have a complex

0 → (CdF )(C) → · · · → (C1F )(C) → (C0F )(C) → 0, d = dimX

hence we have a complex C•F of abelian data

0 → CdF → · · · → C1F → C0F → 0

and an augmentation C0F → F .

Theorem 1.6.4. C•F is a finite and coflasque resolution of F . Hence, for any closed subset Z ⊆ X:

Hi[L(Z,C•F )] 
 Hi(Z,F ).

Corollary 1.6.5. Let F be an abelian data on X. If F is of finite type (i.e., Fp is a finitely generated abelian 
group for every p ∈ X), then Hi(X, F ) and Hi(X, F ) are finitely generated.

Proof. By hypothesis, Γ(X, C•F ) (resp. L(X, C•F )) is a complex of finitely generated abelian groups. One
concludes by Theorem 1.6.2 (resp. Theorem 1.6.4). �
Remark 1.6.6. Let Xdis be the set X with the discrete topology, and id : Xdis → X the identity map. 
Then C0F = id∗ id−1 F and C0F = id! id−1 F . More generally, for each n > 0, let Xn

< be the subspace of 
X × n· · · ×X defined as

Xn
< = {(x1, . . . , xn) ∈ Xn : x1 < · · · < xn}

and let π1 : Xn
< → X, πn : Xn

< → X be the projections on the first and last factors. Then

CnF = π1∗C
0(π−1

n F ), CnF = πn!C0(π−1
1 F ).

2. Derived category

We shall denote by C(X) the category of complexes of abelian data on X and by D(X) its derived 
category. Most of the results of this section may be found in [14].

2.1. Standard results

In this subsection we give standard concepts and results regarding derived categories and derived functors 
on a finite space.

For any F, F ′ ∈ C(X) we shall denote by Hom•(F, F ′) the complex of homomorphisms. A complex 
I is called K-injective if Hom•( , I) takes acyclic complexes into acyclic complexes (equivalently, quasi-
isomorphisms into quasi-isomorphisms). A complex P is called K-projective if Hom•(P, ) takes acyclic 
complexes into acyclic complexes (equivalently, quasi-isomorphisms into quasi-isomorphisms).
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Theorem 2.1.1. The category C(X) has enough K-injectives and K-projectives: for each F ∈ C(X) there is 
a functorial quasi-isomorphism F → I(F ) (resp. P (F ) → F ) with I(F ) a K-injective complex (resp. P (F )
a K-projective complex).

2.1.1. The right derived functor R Hom•(F, F ′) is by definition:

RHom•(F, F ′) := Hom•(F, I(F ′)).

We can also derive the complex of homomorphisms by the left: L Hom•(F, F ′) = Hom•(P (F ), F ′); both are 
isomorphic, since they are both isomorphic to Hom•(P (F ), I(F ′)).

2.1.2. For each open subset U of X, the right derived functor of the functor Γ(U, ) is

RΓ(U,F ) := Γ(U, I(F )).

For each closed subset C of X, the left derived functor of the functor L(C, ) is

LL(C,F ) := L(C,P (F )).

For simplicity, we shall denote

L(C,F ) := LL(C,F ).

More generally, if f : X → Y is a continuous map, we have the functors

Rf∗F := f∗I(F ) and Lf!F := f!P (F ).

If Y is a point, we recover the functors RΓ(X, F ) and L(X, F ). The stalkwise description of Rf∗F and Lf!F

is:

(Rf∗F )y = RΓ(f−1(Uy), F ), (Lf!F )y = L(f−1(Cy), F ).

If X f→ Y
g→ Z are continuous maps one has natural isomorphisms

R(g ◦ f)∗F 
 Rg∗Rf∗F and L(g ◦ f)!F 
 Lg!Lf!F.

These functors may be calculated with the standard resolutions: for each complex F ∈ C(X), we shall 
denote C•F and C•F the simple (or total) complexes associated to the bicomplexes CpF q and CpFq re-
spectively; then, one has isomorphisms

Rf∗F 
 f∗C
•(F ) and Lf!F 
 f!C•(F ).

Direct image commutes with filtered direct limits. Since C0F = id∗ id−1 F , one has that C0 commutes 
with filtered direct limits. Now, since CnF = π0∗C

0(π−1
n F ) (Remark 1.6.6), one has that Cn also commutes 

with filtered direct limits. Thus, if f : X → Y is a continuous map and {Fi} a filtered direct system of 
complexes of abelian data on X, we have an isomorphism lim

→
f∗C

•Fi 
 f∗C
•( lim

→
Fi) and

lim
→
i

Rf∗Fi → Rf∗( lim
→
i

Fi)

is an isomorphism in the derived category.
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Definition 2.1.2. A complex F ∈ D(X) is said to be of finite type if Hi(Fx) is a finitely generated abelian 
group, for any i ∈ Z and any x ∈ X.

Corollary 1.6.5 can be generalized in a standard way to the following

Theorem 2.1.3 (Finiteness theorem). Let f : X → Y be a continuous map and F ∈ D(X). If F is of finite 
type, then Rf∗F and Lf!F are also of finite type.

2.1.3. For any F, F ′ ∈ C(X), the complex of sheaves of homomorphisms Hom•(F, F ′) is defined by

Γ(U,Hom•(F, F ′)) := Hom•(F|U , F
′
|U ).

Thus, for each point x ∈ X, Hom•(F, F ′)x = Hom•(F|Ux
, F ′

|Ux
). The right derived functor is

RHom•(F, F ′) := Hom•(F, I(F ′)).

For any open subset U of X one has canonical isomorphisms

RΓ(U,RHom•(F, F ′)) 
 RHom•(F|U , F
′
|U ), RHom•(F, F ′)|U 
 RHom•(F|U , F

′
|U )

Definition 2.1.4. For any F ∈ D(X), the dual F∨ is defined as:

F∨ := RHom•(F,Z).

2.1.4. For each F, F ′ ∈ C(X) we shall denote F ⊗F ′ the tensor product complex. Its left derived functor 
is

F
L
⊗ F ′ := P (F ) ⊗ F ′.

2.1.5. Locally constant complexes. Perfect complexes

Definition 2.1.5. A complex L ∈ C(X) is called locally constant (resp. constant) if it is a complex of locally 
constant (resp. constant) abelian data on X.

A complex L ∈ C(X) is locally constant if and only if the morphisms rpq : Lp → Lq are isomorphisms, 
for any p ≤ q. We shall denote by C(Qcoh(X)) the category of locally constant complexes, which is a full 
subcategory of C(X), and by D(Qcoh(X)) its derived category.

Let π : X → {∗}. If X is connected, the inverse image π−1 : C({∗}) → C(X) establishes an equivalence 
between the category of complexes of abelian groups and the category of constant complexes on X.

We shall denote by Dqc(X) (resp. Dc(X)) the full subcategory of D(X) consisting of the complexes with 
locally constant (resp. locally constant of finite type) cohomology. The objects of Dqc(X) are characterized 
by the following property: for any p ≤ q the morphism rpq : Lp → Lq is a quasi-isomorphism.

One has natural functors D(Qcoh(X)) → Dqc(X) and D(Coh(X)) → Dc(X) which are not equivalences 
in general. However, they are equivalences if X = Up or X = Cp (i.e., X has a minimum or a maximum).

Definition 2.1.6. A complex in D(X) is called perfect if it is locally isomorphic (in the derived category) to 
a bounded complex of free Z-modules of finite type.
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We shall denote Dperf(X) the full subcategory of D(X) consisting of perfect complexes. One has a natural 
inclusion Dperf(X) ↪→ Db

c(X), where Db
c(X) is the full subcategory of complexes in Dc(X) with bounded 

cohomology. This inclusion is an equivalence; this is essentially due to the fact that any finitely generated 
abelian group admits a finite resolution (in fact a resolution of length one) by finitely generated free abelian 
groups. If F ∈ D(X) is of finite type and has bounded cohomology, then L(X, F ) and RΓ(X, F ) are perfect 
complexes of abelian groups.

If L ∈ D(X) is perfect, the natural morphism L → L∨∨ is an isomorphism. Moreover, for any F ∈ D(X)
one has an isomorphism

L∨ L
⊗ F

∼→ RHom•(L, F )

and then, for any F, K ∈ D(X), an isomorphism

RHom•(K,L∨ L
⊗ F ) ∼→ RHom•(K

L
⊗ L, F )

2.1.6. Adjunctions

Proposition 2.1.7 (Adjunctions Lf! ↔ f−1 ↔ Rf∗). Let f : X → Y be a continuous map. For any F ∈ D(X), 
G ∈ D(Y ) one has

RHom•(f−1G,F ) = RHom•(G,Rf∗F ),

RHom•(F, f−1G) = RHom•(Lf!F,G).

Proof. We shall only give the proof of the second part. Let P → F be a projective resolution. Then

RHom•(F, f−1G) = Hom•(P, f−1G) = Hom•(f!P,G) = RHom•(Lf!F,G)

where the last equality is due to the projectivity of f!P . �
Proposition 2.1.8 (Adjunction 

L
⊗ ↔ R Hom). For any F1, F2, F3 ∈ D(X) one has a natural isomorphism

RHom•(F1,RHom•(F2, F3)) 
 RHom•(F1
L
⊗ F2, F3).

Proposition 2.1.9. Let f : X → Y be a continuous map and let G, L ∈ D(Y ).

(1) There is a natural isomorphism

f−1(G
L
⊗ L) 
 (f−1G)

L
⊗ (f−1L).

(2) There is a natural morphism

f−1RHom•(L, G) → RHom•(f−1L, f−1G)

which is an isomorphism if L is locally constant.

Proof. We shall only prove the last statement of (2). Assume that L is locally constant. Let x ∈ X and 
y = f(x). Then
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(f−1RHom•(L,K))x = RHom•(L,K)y = RHom•(L|Uy
,K|Uy

) = RHom•(Ly,Ky),

where the last equality is due to Lemma 2.1.10 (L|Uy
is constant). On the other hand

RHom•(f−1L, f−1K)x = RHom•((f−1L)|Ux
, (f−1K)|Ux

) = RHom•((f−1L)x, (f−1K)x)

= RHom•(Ly,Ky),

where the second equality is due again to Lemma 2.1.10 (since (f−1L)|Ux
is constant). �

Lemma 2.1.10. Let X be connected. For any K ∈ D(X) and any constant G ∈ D(X), one has

RHom•(G,K) = RHom(G,RΓ(X,K))

Proof. Let π : X → {∗}. Since G is constant, G = π−1G. One concludes by adjunction between π−1 and 
Rπ∗. �
3. Base change and (co)projection formula

In this section we establish projection formulae morphisms and base change morphisms for Rf∗ and Lf!. 
We shall introduce the notions of c-proper and h-open maps and see their relation with the validity of base 
change theorems and projection formulae.

3.1. Base change for cohomology and homology

Proposition 3.1.1 (Base change for homology and cohomology). Let

Y ×Y X
ḡ

f̄

X

f

Y
g

Y

be a cartesian diagram and let F ∈ D(X). One has natural morphisms

g−1Rf∗F → Rf̄∗(ḡ−1F )

Lf̄!(ḡ−1F ) → g−1Lf!F.

If g is an open inclusion (resp. a closed inclusion), then g−1Rf∗F → Rf̄∗(ḡ−1F ) is an isomorphism (resp. 
g−1Lf!F ← Lf̄!(ḡ−1F ) is an isomorphism).

Proof. Since the cohomological statement is well known, we prove the homological one. Let P → F and 
Q → ḡ−1P be projective resolutions. By Proposition 1.2.11, one has a morphism

f̄!Q → f̄!(ḡ−1P ) 1.2.11→ g−1f!P

that gives the desired morphism Lf̄!(ḡ−1F ) → g−1Lf!F .
Now assume that g is a closed inclusion and the diagram is cartesian. Then g−1 ◦ f! = f̄! ◦ ḡ−1

(Proposition 1.2.10) and ḡ−1P is a projective resolution of ḡ−1F , because ḡ is a closed immersion; hence 
Lf̄!(ḡ−1F ) → g−1Lf!F is an isomorphism. �
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Remark 3.1.2. If Y = {y} is just a point of Y , then the base change morphisms are

(Rf∗F )y → RΓ(f−1(y), F|f−1(y))

L(f−1(y), F|f−1(y)) → (Lf!F )y.

In particular, for any abelian data F on X, one has the more “classic” morphisms

(Rif∗F )y → Hi(f−1(y), F|f−1(y))

Hi(f−1(y), F|f−1(y)) → (Lif!F )y.

3.2. c-proper and h-open morphisms

In the context of locally compact and Hausdorff spaces, the base change morphisms for cohomology are 
isomorphisms, provided that f is proper (see [9]). However, for finite spaces, properness (in the sense of 
universally closed) is necessary but not sufficient to have base change isomorphisms. For finite spaces, the 
notion of a proper map is too weak (it is equivalent to being a closed map, Proposition 3.2.3) and a stronger 
notion is necessary. The necessary notion is that of a cohomologically proper map (see Definition 3.2.5). 
Analogously, in order to obtain a base change theorem for homology we need the notion of homologically 
open map, which is a stronger notion than that of a universally open map.

Definition 3.2.1. We say that X is homologically trivial if it satisfies any of the equivalent conditions:

(1) Hi(X, Z) = 0 for any i > 0 and H0(X, Z) = Z.
(2) Hi(X, G) = 0 for any i > 0 and H0(X, G) = G for any abelian group G.
(3) Hi(X, Z) = 0 for any i > 0 and H0(X, Z) = Z.
(4) Hi(X, G) = 0 for any i > 0 and H0(X, G) = G for any abelian group G.

Remark 3.2.2. The equivalence of conditions (1)-(4) may be deduced from the following facts. On the one 
hand, one has that Γ(X, C•Z) ⊗Z G = Γ(X, C•G) and L(X, C•Z) ⊗Z G = L(X, C•G); it follows that 
(1) is equivalent to (2) and (3) is equivalent to (4). On the other hand, one has L(X, Z)∨ = RΓ(X, Z)
(see Corollary 4.1.2) and L(X, Z) 
 L(X, Z)∨∨ = RΓ(X, Z)∨ (where the first isomorphism is due to the 
perfectness of L(X, Z)) and then (1) is equivalent to (3).

Notice that any homologically trivial space is connected, because H0(X, Z) = Z. If X is contractible 
(more generally, if X is homotopically trivial), then it is homologically trivial.

Proposition 3.2.3. Let f : X → Y be a continuous map. The following conditions are equivalent.

(1) f is universally closed.
(2) f is closed.
(3) For any x ∈ X, the map f|Cx

: Cx → Cf(x) is surjective.

Proof. (1) ⇒ (2) ⇔ (3) are immediate. Now assume that (3) holds and let Y → Y be a continuous map 
and f̄ : Y ×Y X → Y the natural map. For any (ȳ, x) ∈ Y ×Y X one has C(ȳ,x) = Cȳ ×Cy

Cx, where y is 
the image of x and ȳ in Y . Since Cx → Cy is surjective, Cȳ ×Cy

Cx → Cȳ is also surjective; hence f̄ is 
closed. �
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Proposition 3.2.4. Let f : X → Y be a continuous map. The following conditions are equivalent.

(1) f is universally open.
(2) f is open.
(3) For any x ∈ X, the map f|Ux

: Ux → Uf(x) is surjective.

Proof. Apply the preceding Proposition to f̂ : X̂ → Ŷ . �
Definition 3.2.5. A continuous map f : X → Y is called cohomologically proper (c-proper for short) if:

(1) f is closed.
(2) For any x ∈ X, the induced map f|Cx

: Cx → Cf(x) has homologically trivial fibers: for any y ∈ Cf(x), 
f−1
|Cx

(y) is homologically trivial.

Definition 3.2.6. A continuous map f : X → Y is called homologically open (h-open for short) if:

(1) f is open.
(2) For any x ∈ X, the induced map f|Ux

: Ux → Uf(x) has homologically trivial fibers: for any y ∈ Uf(x), 
f−1
|Ux

(y) is homologically trivial.

Any closed (resp. open) immersion is c-proper (resp. h-open). For any X, the map X → {∗} is c-proper 
and h-open. If f : X → Y is c-proper (resp. h-open), then f|C : C → Y (resp. f|U ) is c-proper (resp. h-open) 
for any closed subset C of X (resp. any open subset U). A continuous map f : X → Y is c-proper if and 
only if f̂ : X̂ → Ŷ is h-open. Finally, c-properness and h-openness remain after base change:

Proposition 3.2.7. Let f : X → Y be a c-proper map (resp. an h-open map). For any continuous map Y → Y , 
the induced map f̄ : Y ×Y X → Y is c-proper (resp. h-open).

Proof. f̄ is closed by Proposition 3.2.3. Now, let (ȳ, x) ∈ Y ×Y X and y the image of x and ȳ in Y . For any 
ȳ1 ∈ Cȳ, the fiber of ȳ1 by the map C(ȳ,x) = Cȳ ×Cy

Cx → Cȳ is homeomorphic to the fiber of y1 (= image 
of ȳ1 in Y ) by the map Cx → Cy. Conclusion follows. �
Theorem 3.2.8. Let f : X → Y be a continuous map. The following conditions are equivalent:

(1) f is c-proper.
(2) f satisfies the base change theorem for cohomology: For any abelian data F on X and any y ∈ Y , the 

base change morphism

(Rif∗F )y → Hi(f−1(y), F|f−1(y))

is an isomorphism.

Proof. Assume that f is c-proper. Let us prove that f satisfies the base change theorem. We proceed by 
induction on n = the number of points of X. For n = 1 it is immediate (notice that f is closed). If X is the 
union of two proper closed subsets C1 and C2, let us consider the exact sequence (where C12 = C1 ∩ C2)

0 → F → FC1 ⊕ FC2 → FC1∩C2 → 0.
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Let us denote f1 (resp. f2, f12) the restriction of f to C1 (resp. to C2, C12) and Xy = f−1(y), Cy
1 = f−1

1 (y)
and analogously Cy

2 and Cy
12. One has by induction

(Rif∗FC1)y = (Rif1∗F|C1)y
∼→ Hi(Cy

1 , F|Cy
1
) = Hi(Xy, (F|Xy )Cy

1
)

and analogously for f2 and f12. One concludes by the commutative diagram of exact sequences

· · · (Rif∗F )y (Rif∗FC1)y ⊕ (Rif∗FC2)y




(Rif∗FC12)y




· · ·

· · · Hi(Xy, F|Xy ) Hi(Xy, (F|Xy )Cy
1
) ⊕Hi(Xy, (F|Xy )Cy

2
) Hi(Xy, (F|Xy )Cy

12
) · · ·

Thus, we may assume that X is irreducible. Let g be the generic point of X and C = X − {g}. Let us 
consider the exact sequence

0 → F{g} → F → FC → 0.

By induction, FC satisfies base change; hence it suffices to prove that F{g} satisfies base change. Let G be 
the stalk of F at g and let us still denote by G the constant sheaf on X. Notice that G{g} = F{g}, so one 
has the exact sequence

0 → F{g} → G → GC → 0

and GC satisfies base change by induction. We are reduced to prove the statement for the constant sheaf G, 
i.e., to prove that (Rif∗G)y → Hi(f−1(y), G) is an isomorphism. If y is not in the image of f , both members 
are zero (notice that f is closed), hence we may assume that y ∈ Im f . Now, (Rif∗G)y = Hi(f−1(Uy), G) = 0
for i > 0 because f−1(Uy) is contractible to g, and (f∗G)y = G. On the other hand, Hi(f−1(y), G) = 0 for 
i > 0 and H0(f−1(y), G) = G because f−1(y) is homologically trivial.

Assume now that f satisfies the base change theorem. Let us first see that f is closed. Let y ∈ Y

be an element of the closure of Im f . Then f−1(Uy) is not empty, hence (f∗Z)y �= 0. By hypothesis, 
(f∗Z)y 
 Γ(f−1(y), Z), hence f−1(y) is not empty and then y ∈ Im f .

Let x ∈ X and let us prove that f|Cx
: Cx → Cf(x) has homologically trivial fibers. Notice that f|Cx

is 
surjective (because f is closed) and it also satisfies the base change theorem. Hence, for any y ∈ Cf(x) one 
has:

Hi(f−1
|Cx

(Uy), G) ∼→ Hi(f−1
|Cx

(y), G|f−1
|Cx

(y)).

If G is constant, then Hi(f−1
|Cx

(Uy), G) = 0 for any i > 0 and H0(f−1
|Cx

(Uy), G) = G, because f−1
|Cx

(Uy) is 
contractible (x is a maximum). Conclusion follows. �

A completely analogous proof gives the following:

Theorem 3.2.9. Let f : X → Y be a continuous map. The following conditions are equivalent:

(1) f is h-open.
(2) f satisfies the base change theorem for homology: For any abelian data F on X and any y ∈ Y , the 

base change morphism

Hi(f−1(y), F|f−1(y)) → (Lif!F )y

is an isomorphism.
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Corollary 3.2.10. (See also [3, Section 4.].) Let f : X → Y be an h-open (resp. c-proper) map. If f has 
homologically trivial fibers (i.e., f−1(y) is homologically trivial for any y ∈ Y ), then

Hi(X,G) = Hi(Y,G) (resp. Hi(X,G) = Hi(Y,G))

for any i ≥ 0 and any constant abelian data G.

Proof. We prove the homological statement; the cohomological one is analogous. By Theorem 3.2.9, for any 
y ∈ Y one has

(Lif!G)y
∼← Hi(f−1(y), G).

Moreover, Hi(f−1(y), G) = 0 for i > 0 and H0(f−1(y), G) = G because f−1(y) is homologically trivial. 
Thus, Lif!G = 0 for i > 0 and G 
 f!G. Hence Hi(X, G) = Hi(Y, f!G) = Hi(Y, G). �
Example 3.2.11. Let X be a finite space and let βX be its barycentric subdivision (i.e., βX is the set of 
properly ascending chains of X, and the topology is given by the preorder: (y0 < · · · < yr) ≤ (x0 < · · · < xs)
iff y0 < · · · < yr is a subchain of x0 < · · · < xs.) One has a continuous map

π : βX → X

(x0 < · · · < xs) �→ xs.

Then π is h-open and has homologically trivial fibers (indeed, contractible fibers). By Corollary 3.2.10, one 
obtains the well known fact:

Hi(βX,G) = Hi(X,G)

for any abelian group G.

Corollary 3.2.12. Let f : X → Y be a continuous map. The following conditions are equivalent:

(1) f is c-proper (resp. h-open).
(2) For any F ∈ D(X) and any g : Y → Y the base change morphism (Proposition 3.1.1)

g−1Rf∗F → Rf̄∗(ḡ−1F ) (resp. Lf̄!(ḡ−1F ) → g−1Lf!F )

is an isomorphism.

Proof. We shall prove the cohomological statement; the homological one is analogous. If (2) holds, then 
condition (2) of Theorem 3.2.8 also holds, and then f is c-proper by Theorem 3.2.8. Conversely, assume 
that f is c-proper and let g : Y → Y be any continuous map. In order to prove that g−1Rf∗F → Rf̄∗(ḡ−1F )
is an isomorphism, it suffices to prove that it is an isomorphism after taking fiber at any point ȳ ∈ Y and 
Hi; in this case, the problem is reduced, by standard arguments, to the case that F is an abelian data on 
X, and we have to prove that

(Rif∗F )g(ȳ) → [Rif̄∗(ḡ−1F )]ȳ

is an isomorphism. Since f and f̄ are c-proper (Proposition 3.2.7), one has by Theorem 3.2.8 (let us denote 
y = g(ȳ)):
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(Rif∗F )y
∼→ Hi(f−1(y), F|f−1(y))

[Rif̄∗(ḡ−1F )]ȳ
∼→ Hi(f̄−1(ȳ), (ḡ−1F )|f̄−1(ȳ))

and one concludes because ḡ : f̄−1(ȳ) → f−1(y) is a homeomorphism. �
Corollary 3.2.13. The composition of c-proper (resp. h-open) maps is c-proper (resp. h-open).

Proof. Let X f→ Y
g→ Z. If f and g are c-proper, then Rf∗ and Rg∗ satisfy base change theorem (Corol-

lary 3.2.12). Since R(g ◦ f)∗ 
 Rg∗ ◦Rf∗, it follows that R(g ◦ f)∗ also satisfies base change theorem, and 
then g ◦ f is c-proper. For h-open maps the proof is analogous. �
3.3. Projection and coprojection formulae

In the context of locally compact and Hausdorff topological spaces, projection formula holds for proper 
maps ([9]). Now, for finite topological spaces, we shall see (Theorem 3.3.3) that projection formula (for 
cohomology) holds if and only if the map is c-proper. Analogously, projection formula for homology holds 
if and only if the map is h-open.

Proposition 3.3.1 (Coprojection formula). Let f : X → Y be a continuous map. For any F ∈ D(X) and any 
L ∈ D(Y ) one has a natural morphism

Lf!(F
L
⊗ f−1L) → (Lf!F )

L
⊗ L

which is an isomorphism if L is locally constant.

Proof. By Proposition 2.1.9, for any K ∈ D(Y ) one has a morphism

f−1RHom•(L,K) → RHom•(f−1L, f−1K),

which is an isomorphism if L is locally constant. Taking R Hom•(F, ), one obtains, by adjunctions, a 
morphism

RHom•((Lf!F )
L
⊗ L,K) → RHom•(Lf!(F

L
⊗ f−1L),K),

hence a morphism

Lf!(F
L
⊗ f−1L) → (Lf!F )

L
⊗ L,

which is an isomorphism if L is locally constant. �
Proposition 3.3.2 (Projection formula). Let f : X → Y be a continuous map. For any F ∈ D(X) and any 
L ∈ D(Y ) one has a natural morphism

(Rf∗F )
L
⊗ L → Rf∗(F

L
⊗ f−1L)

which is an isomorphism if L is locally constant.
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Proof. The natural morphism ε : f−1Rf∗F → F , induces a morphism

f−1(Rf∗F
L
⊗ L) 2.1.9
 f−1Rf∗F

L
⊗ f−1L ε⊗1→ F

L
⊗ f−1L

and, by adjunction, a morphism (Rf∗F ) 
L
⊗L → Rf∗(F

L
⊗f−1L). In order to prove that it is an isomorphism, 

we may assume that Y = Up. If L = lim
→

Li, it suffices to prove the statement for each Li, because both 

sides of the morphism commute with filtered direct limits. Let L≤n be the complex

· · · → Ln−2 → Ln−1 → Zn → 0

with Zn the cycles of degree n. One has that L = lim
→
n

L≤n, so we may assume that L is bounded above. 

Since L is locally constant, it is isomorphic to a bounded above complex of free Z-modules. Now let L≥−n

be the complex

0 → L−n → L−n+1 → L−n+2 → · · ·

One has L = lim
→
n

L≥−n, so we may assume that L is a bounded complex of free Z-modules. This is easily 

reduced to the case where L is just a free Z-module, which is trivial. �
Theorem 3.3.3. Let f : X → Y be a continuous map. The following conditions are equivalent

(1) f is h-open (resp. c-proper).
(2) Coprojection (resp. projection) formula holds: for any F ∈ D(X), L ∈ D(Y ),

Lf!(F
L
⊗ f−1L) → (Lf!F )

L
⊗ L (resp. (Rf∗F )

L
⊗ L → Rf∗(F

L
⊗ f−1L))

is an isomorphism.
(3) Lf! (resp. Rf∗) commutes with supporting on closed subsets: for any closed subset C ⊆ Y and any 

F ∈ D(X) the natural morphism

Lf!(Ff−1(C)) → (Lf!F )C (resp. (Rf∗F )C → Rf∗(Ff−1(C)))

is an isomorphism.
(4) Lf! (resp. Rf∗) commutes with supporting on open subsets: for any open subset V ⊆ Y and any 

F ∈ D(X) the natural morphism

Lf!(Ff−1(V )) → (Lf!F )V (resp. (Rf∗F )V → Rf∗(Ff−1(V )))

is an isomorphism.

Proof. We give the proofs for the homological statements and leave the reader to do the analogous ones for 
the respective cohomological statements.

(2) ⇒ (3). It suffices to apply coprojection formula to L = ZC .
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(3) ⇒ (4). It follows from the commutative diagram of exact triangles

(Lf!F )X−C Lf!F

id

(Lf!F )C




Lf!(Ff−1(X−C)) Lf!F Lf!(Ff−1(C)).

(4) ⇒ (1). Let V be an open subset of Y . Let us denote i : V ↪→ Y and j : f−1(V ) ↪→ X. Then

i![(Lf!F )|V ] = (Lf!F )V
∼→ Lf!(Ff−1(V )) = Lf!(j!F|f−1(V )) = i![LfV !(F|f−1(V ))].

Restricting to V one concludes that

LfV !(F|f−1(V ))
∼→ (Lf!F )|V . (∗)

In particular, let us take y ∈ Y , V = Uy and F an abelian data on X. Taking fiber at y and Hi in the 
isomorphism (∗), one obtains (notice that {y} is a closed subset of Uy, so we can apply Proposition 3.1.1)

Hi(f−1(y), F|f−1(y))
∼→ (Lif!F )y.

By Theorem 3.2.9, f is h-open.
(1) ⇒ (2). Let us prove that

Lf!(F
L
⊗ f−1L) → (Lf!F )

L
⊗ L

is an isomorphism. Taking the stalk at a point y ∈ Y and making use of Corollary 3.2.12, one obtains the 
morphism

L(f−1(y), F|f−1(y)
L
⊗ f−1

y Ly) → L(f−1(y), F|f−1(y))
L
⊗ Ly

with fy : f−1(y) → {y}. This is an isomorphism by coprojection formula (Proposition 3.3.1) applied to the 
morphism fy. �
4. Dualities

4.1. Duality between homology and cohomology

Theorem 4.1.1. Let f : X → Y be a continuous map. For any F ∈ D(X) and G ∈ D(Y ) one has:

RHom•(Lf!F,G) = RΓ(X,RHom•(F, f−1G)).

In particular,

RHom•(Lf!Z, G) = RΓ(X, f−1G).

Proof. R Hom•(Lf!F, G) = R Hom•(F, f−1G) = RΓ(X, R Hom•(F, f−1G)). �
Notation. Recall that we are using the simplified notation

L(X,F ) = LL(X,F ) = L(X,C•F ).
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Corollary 4.1.2. For any F ∈ D(X) and any complex G of abelian groups one has

RHom•(L(X,F ), G) = RΓ(X,RHom•(F,G)).

In particular,

(1) L(X, F )∨ = RΓ(X, F∨).
(2) For any closed subset Y ⊆ X,

RHom•(L(X,ZY ), G) = RΓY (X,G).

4.2. Duality between X and X̂

Definition 4.2.1. Let F be an abelian data on X and L a locally constant data on X. For each p̂ ∈ X̂, we 
shall denote

Hôm(F,L)p̂ = Hom(Fp,Lp).

For each p̂ ≤ q̂, one has a morphism Fq → Fp and an isomorphism Lq
∼→ Lp (L is locally constant) that 

induce a morphism

Hôm(F,L)p̂ = Hom(Fp,Lp) → Hom(Fq,Lp)
∼← Hom(Fq,Lq) = Hôm(F,L)q̂.

Thus Hôm(F, L) is an abelian data on X̂.

We can derive the construction Hôm(F, L). Let F be a complex of abelian data and L a complex of 
locally constant abelian data. We define Hôm•(F, L) as:

Hôm•(F,L)p = Hom•(Fp,Lp)

and we shall denote

LHôm•(F,L) := Hôm•(P,L)

where P → F is a projective resolution. This defines a contravariant functor

D(X) → D(X̂)

F �→ LHôm•(F,L)
.

Finally, we shall denote F̂ := L Hôm•(F, Z).

Proposition 4.2.2. Let F ∈ C(X). If Fx is projective for any x ∈ X, then the natural morphism

Hôm•(F,L) → LHôm(F,L)

is a quasi-isomorphism (an isomorphism in D(X̂)).

Proof. Let P → F be a projective resolution. For any x̂ ∈ X̂ the morphism

Hom•(Fx,Lx) = Hôm•(F,L)x̂ → LHôm(F,L)x̂ = Hom•(Px,Lx)

is a quasi-isomorphism because Px is a projective resolution of Fx and Fx is projective. �
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Remark 4.2.3. Let L be a locally constant abelian data on X. For any p ≤ q, rpq : Lp → Lq is an isomorphism. 
Thus L may be viewed as a locally constant abelian data on X̂:

Lp̂ := Lp and rp̂q̂ = r−1
qp .

It is immediate to see that this abelian data is Hôm•(Z, L) (moreover, Hôm•(Z, L) → L Hôm•(Z, L) is an 
isomorphism in the derived category, by Proposition 4.2.2). Thus, we obtain an equivalence

{
Locally constant

abelian data on X

}
∼−→

{
Locally constant

abelian data on X̂

}
L �→ L = Hôm•(Z,L)

.

If L is the constant data G on X, then L = Hôm•(Z, L) is also the constant data G on X̂. For the derived 
category we obtain an equivalence

D(Qcoh(X)) → D(Qcoh(X̂))

L �→ L = Hôm•(Z,L) 
 LHôm•(Z,L)

Lemma 4.2.4. Let T be an abelian data on X̂, F an abelian data on X and L a locally constant data on X
(and hence on X̂). One has:

Hom(T,Hôm(F,L)) = Hom(F,Hôm(T,L)).

More generally, for any T ∈ C(X̂), F ∈ C(X) and L ∈ C(Qcoh(X)) = C(Qcoh(X̂)) one has

Hom•(T,Hôm•(F,L)) = Hom•(F,Hôm•(T,L)).

Proof. By definition, a morphism h : T → Hôm(F, L) of abelian data is equivalent to give, for each 
p̂ ∈ X̂, a morphism of groups hp̂ : Tp̂ → Hôm(F, L)p̂ = Hom(Fp, Lp), which are compatible with 
the restriction morphisms rp̂q̂. But a morphism hp̂ : Tp̂ → Hom(Fp, Lp) is equivalent to a morphism 
h̃p : Fp → Hom(Tp̂, Lp) = Hôm(T, L)p, and the compatibility of the hp̂ with rp̂q̂ is equivalent to the 
compatibility of the h̃p with the restriction morphisms rqp; thus h̃p define a morphism of abelian data 
F → Hôm(T, L). The extension to complexes is purely formal. �
Theorem 4.2.5. For any F ∈ D(X), T ∈ D(X̂) and any complex L of locally constant data on X (and hence 
on X̂) one has:

RHom•(T,LHôm•(F,L)) = RHom•(F,LHôm•(T,L)).

Proof. Let P → F and Q → T be projective resolutions. Then

RHom•(T,LHôm•(F,L)) = Hom•(Q,Hôm•(P,L)) = Hom•(P,Hôm•(Q,L))

= RHom•(F,LHôm•(T,L))

where the second equality is due to Lemma 4.2.4. �
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Corollary 4.2.6. For any F ∈ D(X) and any L ∈ D(Qcoh(X)) one has

RΓ(X̂,LHôm•(F,L)) = RΓ(X,RHom•(F,L)).

In particular,

RΓ(X̂,L) = RΓ(X,L)

RΓ(X,F∨) = RΓ(X̂, F̂ ).

We shall conclude this subsection by generalizing Theorem 4.2.5 to the relative case (Theorem 4.2.8). 
For the proof, we shall need the following result:

Proposition 4.2.7. Let f : X → Y be a continuous map. For any F ∈ C(Y ) and any L ∈ C(Qcoh(Y )) one 
has a natural isomorphism

f̂−1 Hôm•(G,L) ∼→ Hôm•(f−1G, f−1L).

Proof. For any x̂ ∈ X̂[
f̂−1 Hôm•(G,L)

]
x̂

= Hôm•(G,L)f̂(x̂) = Hom•(Gf(x),Lf(x)) = Hom•((f−1G)x, (f−1L)x)

= Hôm•((f−1G), f−1L)x̂. �
Theorem 4.2.8. Let f : X → Y be a continuous map.

(1) For any G ∈ D(Y ), L ∈ D(Qcoh(Y )), one has a natural isomorphism

f̂−1LHôm•(G,L) ∼−→ LHôm•(f−1G, f−1L).

(2) For any F ∈ D(X), L ∈ D(Qcoh(Y )), one has a natural isomorphism

LHôm•(Lf!F,L) ∼−→ Rf̂∗ LHôm•(F, f−1L).

In particular,

̂Lf!F 
 Rf̂∗F̂ .

Proof. (1) Let P → G and Q → f−1P be projective resolutions. By Proposition 4.2.7 one has an iso-
morphism f̂−1 Hôm•(P, L) 
 Hôm•(f−1P, f−1L); moreover, the natural morphism Hôm•(f−1P, f−1L) →
Hôm•(Q, f−1L) is an isomorphism (in the derived category) by Proposition 4.2.2. Thus, we have an isomor-
phism

f̂−1LHôm•(G,L) → LHôm•(f−1G, f−1L).

(2) Taking R Hom•(T, ) for any T ∈ D(X̂) in the isomorphism of item (1), one obtains (by adjunctions 
and Theorem 4.2.5) an isomorphism

RHom•(G,LHôm•(Lf̂!T,L)) ∼−→ RHom•(G,Rf∗ LHôm•(T, f̂−1L))

i.e., an isomorphism L Hôm•(Lf̂!T, L) → Rf∗(L Hôm•(T, f̂−1L). Replacing f : X → Y by f̂ : X̂ → Ŷ , we 
conclude. �
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4.3. Duality and coduality

4.3.1. Grothendieck-Verdier duality for cohomology
Finite spaces admit a Verdier duality theorem: the functor Rf∗ admits a right adjoint f !; in particular, 

one has relative and absolute dualizing complexes. After giving some basic results on the structure of the 
dualizing complex, we shall study the role that c-proper maps have in duality theory; the main result is 
Theorem 4.3.9 that says that a map f is c-proper if and only if the local isomorphism of duality holds and 
if and only if the functor f ! is local on Y . Thus, c-proper maps play, again, the same role that proper maps 
do for locally compact and Hausdorff spaces.

Theorem 4.3.1 ([11]). Let f : X → Y be a continuous map. The functor

Rf∗ : D(X) → D(Y )

has a right adjoint (that shall be denoted by f !).

Proof. We shall give a sketch of a (slightly modified) proof and refer to [11] for the details, because the 
construction of the functor f ! will be used in the sequel.

Let G be an abelian data on Y . The functor

{Abelian data on X} → {Abelian groups}
F �→ Hom(f∗CnF,G)

is right exact and takes filtered direct limits into filtered inverse limits. Hence it is representable. Let f−nG

be the representant. A morphism G → G′ induces a morphism f−nG → f−nG′. The natural morphism 
f∗C

n−1F → f∗C
nF induces a morphism f−nG → f−n+1G. Thus, if G is a complex of abelian data on 

Y , then we have a bicomplex f−pGq, whose associated simple complex is denoted by f∇G. One has an 
isomorphism

Hom•(f∗C•F,G) = Hom•(F, f∇G)

and then it suffices to define f !G := f∇I(G), with G → I(G) an injective resolution. �
Definition 4.3.2. We shall denote

DX/Y := f !Z

and call it relative dualizing complex of X over Y . If Y is a point, it will be denoted by DX and named by 
dualizing complex of X.

Remark 4.3.3. By definition, for any F ∈ D(X) one has:

RHom•(Rf∗F,Z) = RHom•(F,DX/Y )

RΓ(X,F )∨ = RHom•(F,DX).

In particular, RΓ(U, DX) = RΓ(X, ZU )∨. Thus the stalkwise description of DX is:

(DX)p = RΓ(X,ZUp
)∨

and, for any p ≤ q, the restriction morphism (DX)p → (DX)q is obtained by applying RΓ(X, )∨ to the 
natural morphism ZUq

↪→ ZUp
.
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Theorem 4.3.4 (Explicit description of the dualizing complex). Let n = dimX. The dualizing complex DX

is isomorphic to a complex

0 → D−n
X → · · · → D0

X → 0

where

D−p
X =

⊕
x0<···<xp

ZCxp
.

In particular, DX is of finite type and has amplitude [−n, 0].

Proof. Let Ω be the standard resolution of Z by injective abelian groups: Ω0 = Q → Ω1 = Q/Z. Let F be 
an abelian data. Then RΓ(X, F ) is the complex

0 → Γ(X,C0F ) → Γ(X,C1F ) → · · · → Γ(X,CnF ) → 0

and Γ(X, CpF ) =
⊕

x0<···<xp

Fxp
. For each point x ∈ X, let i : x ↪→ X be the inclusion. One has that 

i∗G = GCx
for any abelian group G, hence

(Fx)∨ = Hom•(Fx,Ω) = Hom•(F, i∗Ω) = Hom•(F,ΩCx
)

and then

Γ(X,CpF )∨ = Hom•(F,
⊕

x0<···<xp

ΩCxp
).

One concludes because ΩCxp
is an injective resolution of ZCxp

. �
Remark 4.3.5. One can easily compute the differential of the complex DX , which is induced by the differential 
of Γ(X, C•F ).

Proposition 4.3.6. If X has a minimum p, then DX 
 Z{p}.

Proof. Let i : {p} ↪→ X be the inclusion. For any abelian data F on X one has

Γ(X,F ) = Γ(Up, F ) = Fp = i−1F

Hence

RHom•(F,DX) = RHom(Γ(X,F ),Z) = RHom(i−1F,Z) = RHom(F,Ri∗Z) = RHom(F,Z{p}). �
Proposition 4.3.7. Let f : X → Y be a continuous map, F ∈ D(X), K ∈ D(Y ).

(1) One has a natural morphism

Rf∗RHom•(F, f !K) → RHom•(Rf∗F,K)

which is called local homomorphism of duality. Taking global sections (i.e. applying RΓ(Y, )) one 
obtains the duality isomorphism.
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(2) For any open subset V ⊆ Y , one has a natural morphism

(f !K)|f−1(V ) → fV
!(K|V ).

Proof. For any F ∈ D(X), L ∈ D(Y ) one has the projection formula morphism:

Rf∗F
L
⊗ L → Rf∗(F

L
⊗ f−1L).

Taking R Hom•( , K), one obtains, by adjunctions, a morphism

RHom•(L,Rf∗RHom•(F, f !K)) → RHom•(L,RHom•(Rf∗F,K))

hence a morphism

Rf∗RHom•(F, f !K) → RHom•(Rf∗F,K).

Taking sections on V one obtains a morphism (let us denote U = f−1(V ))

RHom•(F|U , (f !K)|U ) → RHom•(RfV ∗(F|U ),K|V ) Duality=== RHom•(F|U , fV
!(K|V )

hence a morphism

(f !K)|U → fV
!(K|V ). �

Proposition 4.3.8. Let f : X → Y be a continuous map. For any L, K ∈ D(Y ) one has a natural morphism

RHom•(f−1L, f !K) → f !RHom•(L,K)

which is an isomorphism if L is locally constant.

Proof. Taking R Hom•( , K) in the projection formula one obtains a morphism

RHom•(F,RHom•(f−1L, f !K)) → RHom•(F, f !RHom•(L,K))

hence a morphism

RHom•(f−1L, f !K) → f !RHom•(L,K)

which is an isomorphism if L is locally constant, because projection formula is so in that case. �
Theorem 4.3.9. Let f : X → Y be a continuous map. The following conditions are equivalent

(1) f is c-proper.
(2) f ! is local on Y : for any open subset V ⊆ Y and any K ∈ D(Y ) the morphism (Proposition 4.3.7)

(f !K)|f−1(V ) → f !
V (K|V )

is an isomorphism.
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(3) Local isomorphism of duality holds: for any F ∈ D(X), K ∈ D(Y ), the local morphism of duality 
(Proposition 4.3.7)

Rf∗RHom•(F, f !K) → RHom•(Rf∗F,K)

is an isomorphism.
(4) Commutation of f ! with homomorphisms: for any L, K ∈ D(Y ) the morphism (Proposition 4.3.8)

RHom•(f−1L, f !K) → f !RHom•(L,K)

is an isomorphism.

Proof. By Theorem 3.3.3, (1) is equivalent to saying that projection formula holds. Then (3) and (4) are 
equivalent to (1) by adjunction. It is also clear that (3) implies (2). To conclude, let us see that (2) implies 
(3). In order to prove that

Rf∗RHom•(F, f !K) → RHom•(Rf∗F,K)

is an isomorphism, let us take sections on an open subset V of Y . We obtain the morphism

RHom•(F|f−1(V ),(f !K)|f−1(V )) 
 RΓ(V,Rf∗RHom•(F, f !K)) → RΓ(V,RHom•(Rf∗F,K)) =

= RHom•((Rf∗F )|V ,K|V ) 
 RHom•(RfV ∗(F|f−1(V )),K|V ) Duality===

= RHom•(F|f−1(V )), f !
V (K|V ))

which is an isomorphism because (f !K)|f−1(V ) → f !
V (K|V ) is an isomorphism by hypothesis. �

4.3.2. Co-duality: Grothendieck-Verdier duality for homology
In this subsection we shall provide a Grothendieck-Verdier duality theorem for homology. In particular, 

we shall obtain relative and absolute codualizing complexes. We shall give the basic properties of the 
codualizing complex and study the significance of h-open maps in co-duality. Finally, we shall make a brief 
study of the relation between the dualizing and codualizing complexes.

Our first aim is to prove the following:

Theorem 4.3.10. Let f : X → Y be a continuous map. The functor Lf! has a left adjoint: f#.

For the proof, we shall need some previous results.

Lemma 4.3.11. Let {Fi} be an inverse system of abelian data on X. If X has the discrete topology, then the 
natural morphism

L(X, lim
←

Fi) → lim
←

L(X,Fi)

is an isomorphism.

Proof. Since X has the discrete topology,

L(X,F ) = ⊕
x∈X

Fx

for any abelian data F on X. One concludes because X is finite. �
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Proposition 4.3.12. Let f : X → Y be a continuous map and {Fi} an inverse system of abelian data on X. 
If X has the discrete topology, the natural morphism

f! lim← Fi → lim
←

f!Fi

is an isomorphism.

Proof. For any y ∈ Y ,

(f! lim← Fi)y = L(f−1(Cy), lim
←

Fi)
4.3.11
 lim

←
L(f−1(Cy), Fi) = lim

←
(f!Fi)y = [ lim

←
f!Fi]y. �

Proposition 4.3.13. Let f : X → Y be a continuous map and {Fi} an inverse system of abelian data on X. 
The natural morphism

f!Cn( lim
←

Fi) → lim
←

f!CnFi

is an isomorphism.

Proof. By Remark 1.6.6, for any abelian data F on X, one has

CnF = πn!C0(π−1
0 F ) = πn! id! id−1 π−1

0 F,

so

f!CnF = (f ◦ πn ◦ id)!(π0 ◦ id)−1F.

Conclusion follows from Proposition 4.3.12. �
Proposition 4.3.14. Let f : X → Y be a continuous map, G an abelian data on Y and p ≥ 0 an integer. The 
functor

{Abelian data on X} → {Abelian Groups}
F �→ Hom(G, f!CpF )

is representable.

Proof. This functor is left exact, commutes with finite direct products and with inverse limits (by Propo-
sition 4.3.13). Hence it is representable. �

By definition, there exists an abelian data f−pG on X and a morphism ε : G → f!Cp(f−pG) such that, 
for any abelian data F on X, the map

Hom(f−pG,F ) → Hom(G, f!CpF )

h �→ f!Cp(h) ◦ ε

is an isomorphism. A morphism G → G′ induces a morphism f−pG → f−pG
′, thus f−p defines a functor 

from abelian data on Y to abelian data on X. Moreover, the natural morphism CpF → Cp−1F induces a 
morphism f−p+1G → f−pG.
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Definition 4.3.15. Let G be a complex of abelian data on Y . We shall denote f�G the simple complex 
associated to the bicomplex f−pGq.

Proposition 4.3.16. For any G ∈ C(Y ) and any F ∈ C(X) one has an isomorphism

Hom•(f�G,F ) ∼→ Hom•(G, f!C•F )

Proof. Homn(G, f!C•F ) =
∏
p

Hom(Gp+n, f!CpF ) =
∏
p

Hom(Gp+n,
∏
i

f!CiFp−i)

=
∏
p,i

Hom(Gp+n, f!CiFp−i)
∼←

∏
p,i

Hom(f−iGp+n, Fp−i)

q=p−i====
∏
q,i

Hom(f−iGq+i+n, Fq) =
∏
q

Hom(
⊕
i

f−iGq+i+n, Fq)

=
∏
q

Hom((f�G)q+n, Fq) = Homn(f�G,F ) �

Corollary 4.3.17. If G is projective (resp. homotopic to zero), then f�G is also projective (resp., homotopic 
to zero).

Definition 4.3.18. For any G ∈ D(Y ), we shall denote f#G := f�P , where ε : P → G is a projective reso-
lution. If ε′ : P ′ → G is another projective resolution, then there are unique (up to homotopies) morphisms 
h : P → P ′ and h′ : P ′ → P such that ε′ ◦ h = ε, ε ◦ h′ = ε′ (up to homotopies) and then h′ ◦ h and h ◦ h′

are homotopic to the identity. Hence f�(h) : f�P → f�P ′ and f�(h′) : f�P ′ → f�P are mutually inverse 
(up to homotopies), so that f#G is well defined as an object of D(X) (it does not depend on the choice of 
the projective resolution of G).

Thus one has a functor

f# : D(Y ) → D(X)

such that

RHom•(f#G,F ) = RHom•(G,Lf!F )

for any G ∈ D(Y ), F ∈ D(X). In particular, f# is a left adjoint of Lf! and Theorem 4.3.10 is proved.

Definition 4.3.19. Let f : X → Y be a continuous map. We shall denote

DX/Y = f#Z

and name it relative codualizing complex of X over Y . In the case that Y is a point, it will be called 
codualizing complex of X and denoted by DX . By definition one has

RHom(DX/Y , F ) = RΓ(Y,Lf!F )

RHom(DX , F ) = L(X,F ).

Theorem 4.3.20 (Explicit description of the codualizing complex). Let n = dimX. The codualizing complex 
DX is isomorphic to a complex
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0 → (DX)0 → · · · → (DX)n → 0

with

(DX)i =
⊕

x0<···<xi

ZUx0
.

In particular, DX is of finite type.

Proof. Let F be an abelian data. Then L(X, F ) is the complex

0 → L(X,CnF ) → · · · → L(X,C1F ) → L(X,C0F ) → 0

and L(X, CpF ) =
⊕

x0<···<xp

Fx0 . For each point x ∈ X, one has

Fx = Γ(Ux, F ) = Hom(ZUx
, F )

and then

L(X,CpF ) = Hom(
⊕

x0<···<xp

ZUx0
, F ).

One concludes because ZUx
is projective. �

Remark 4.3.21. One can easily compute the differential of the complex DX , which is induced by the differ-
ential of L(X, C•F ).

Corollary 4.3.22. For any closed subspace Y of X one has

L(Y,DX) = RΓY (X,Z).

In particular, L(X, DX) = RΓ(X, Z).

Proof. L(Y, DX)∨ = R Hom(DX , ZY ) = L(X, ZY ). Taking dual,

L(Y,DX) = L(X,ZY )∨ = RΓY (X,Z). �
Corollary 4.3.23. For each p ∈ X one has:

(DX)p = RΓCp
(X,Z)

Thus, Hi(DX)p = Hi
Cp

(X, Z).

Proof. Apply the preceding corollary to Y = Cp. �
Proposition 4.3.24. If X is irreducible (i.e., it has a maximum g), then DX 
 Z{g}.

Proof. Let i : {g} ↪→ X be the inclusion. For any abelian data F on X one has

L(X,F ) = L(Cg, F ) = Fg = i−1F.
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Hence

RHom•(DX , F ) = RHom•(Z,L(X,F )) = RHom•(Z, i−1F ) = RHom•(i!Z, F )

and one concludes because i!Z = Z{g}. �
Proposition 4.3.25. Let f : X → Y be a continuous map. For any K ∈ D(Y ) and any closed subset C ⊆ Y , 
one has a natural morphism

fC
#(K|C) → (f#K)|f−1(C).

Proof. Let us denote i : C ↪→ Y and j : f−1(C) ↪→ X the inclusions and let F ∈ D(f−1(C)). Taking j∗ in 
the natural map F → f−1

C LfC !F , one obtains a morphism

j∗F → j∗f
−1
C LfC !F

∼→ f−1i∗LfC !F

hence a morphism

Lf!j∗F → i∗LfC !F.

Taking R Hom•(K, ) one obtains a morphism

RHom•((f#K)|f−1(C), F ) → RHom•(fC#(K|C), F )

and one concludes. �
Remark 4.3.26. The adjunction between f−1 and Rf∗ (Proposition 2.1.7) can be sheafified to an isomorphism

RHom•(G,Rf∗F ) 
 Rf∗RHom•(f−1G,F ).

However, the adjunction between Lf! and f−1 can be sheafified to a morphism

RHom•(Lf!F,G) → Rf∗RHom•(F, f−1G)

which is not an isomorphism in general (indeed, we shall see in Theorem 4.3.27 that this isomorphism holds 
if and only if f is h-open). In fact, for any K ∈ D(Y ), taking R Hom•( , G) in the coprojection formula

Lf!(F
L
⊗ f−1K) → (Lf!F )

L
⊗K

gives a morphism

RHom•(K,RHom•(Lf!F,G)) → RHom•(K,Rf∗RHom•(F, f−1G))

i.e., a morphism

RHom•(Lf!F,G) → Rf∗RHom•(F, f−1G).

Theorem 4.3.27. Let f : X → Y be a continuous map. The following conditions are equivalent

(1) f is h-open.
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(2) Local adjunction isomorphism between Lf! and f−1 holds: for any F ∈ D(X), G ∈ D(Y ), the natural 
morphism

RHom•(Lf!F,G) → Rf∗RHom•(F, f−1G)

is an isomorphism.
(3) f−1 commutes with homomorphisms: for any L, G ∈ D(Y ) the morphism

f−1RHom•(L, G) → RHom•(f−1L, f−1G)

is an isomorphism.
(4) f# is local on Y : for any closed subset C ⊆ Y and any K ∈ D(Y ) the natural morphism

(fC)#(K|C) → (f#K)|f−1(C)

is an isomorphism.

Proof. By Theorem 3.3.3, (1) is equivalent to saying that coprojection formula holds. Then, the equivalence 
of (1), (2) and (3) follows from adjunction: one has a commutative diagram

RHom•(L,RHom•(Lf!F,G))




RHom•(L,Rf∗RHom•(F, f−1G))




RHom•((Lf!F )
L
⊗ L, G)




RHom•(Lf!(F
L
⊗ f−1L), G)




RHom•(F, f−1RHom•(L, G)) RHom•(F,RHom•(f−1L, f−1G)).

(1) ⇒ (4). Let us denote i : C ↪→ Y , j : f−1(C) ↪→ X. By Theorem 3.3.3, Lf! commutes with supporting 
on closed subsets. Hence, Lf!(Ff−1(C)) 
 (Lf!F )C for any F ∈ D(X). Taking R Hom(K, ), one obtains

RHom•(K,Lf!(Ff−1(C))) 
 RHom•(K, (Lf!F )C)

Now,

RHom•(K,Lf!(Ff−1(C))) = RHom•(f#K,FC) = RHom•(j−1f#K, j−1F )

and

RHom•(K, (Lf!F )C) = RHom•(i−1K, i−1Lf!F ) = RHom•(i−1K,LfC !j
−1F )

= RHom•((fC)#i−1K, j−1F )

and we conclude that j−1f#K 
 (fC)#i−1K.
(4) ⇒ (1). The above isomorphisms prove that the isomorphism j−1f#K 
 (fC)#i−1K implies an 

isomorphism Lf!(Ff−1(C)) 
 (Lf!F )C . One concludes by Theorem 3.3.3. �
Theorem 4.3.28. One has a natural morphism

RHom(DX , F ) → RHom(F∨, DX)
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which is an isomorphism if F is of finite type. In other words, there exists a morphism

ξ : (DX)∨ → DX

such that, the induced morphism

RHom(DX , F ) → RHom(F∨, DX)

h �→ ξ ◦ h∨

is an isomorphism if F is of finite type.

Proof. For any F one has

RHom(DX , F ) = L(X,F ) → L(X,F )∨∨ = RΓ(X,F∨)∨ = RHom(F∨, DX)

and L(X, F ) → L(X, F )∨∨ is an isomorphism if F is of finite type. �
The following definition is inspired by its algebro-geometric analog.

Definition 4.3.29. We say that X is homologically Gorenstein (resp. cohomologically Gorenstein) if

DX 
 T X [−d] (resp. DX 
 TX [d])

for some integer d ≥ 0 and some invertible abelian data T X (resp. TX).

Remark 4.3.30. Any finite space X has an associated finite simplicial complex ΔX ([10]). Our Gorenstein 
condition on X is related to, but not equivalent to, the Gorenstein condition on ΔX , in the sense of 
Stanley-Reisner theory ([5, Section 5.6]).

Example 4.3.31. Let n ≥ 1 and let X = Sn(S0), which is the minimal finite model of the n-dimensional 
sphere Sn (see [2]). Then

DSn(S0) 
 Z[−n].

Proof. For brevity, let us denote Sn = Sn(S0). For any p ∈ Sn, Sn − Cp is contractible. Hence

Hi[(DX)p] = Hi
Cp

(Sn,Z) =
{

0, if i �= n

Hn(Sn,Z) = Z, if i = n,

and for any p ≤ q the morphism

Z = Hi[(DX)p] → Z = Hi[(DX)q]

is the identity. It follows that DX 
 T X [−n], with T X an invertible abelian data. From the isomorphism 
R Hom•(DX , Z) = L(X, Z), it follows that Hom(T X , Z) = Hn(Sn, Z) = Z, and then T X 
 Z and DX =
Z[−n]. �

Notice that if X is homologically Gorenstein then DX is perfect. The following Proposition says that 
the converse is also true and that being homologically Gorenstein is stronger than being cohomologically 
Gorenstein.
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Proposition 4.3.32. If X is connected and DX is perfect, then X is homologically Gorenstein and (DX)∨ →
DX is an isomorphism. In particular, X is also cohomologically Gorenstein and Hom(T X , Z) 
 TX .

Proof. Let us denote L = DX . Since L is perfect, one has: L(X, F ) = R Hom(L, F ) = RΓ(X, F
L
⊗ L∨). 

Taking dual, one obtains RΓ(X, F∨) = R Hom(F
L
⊗ L∨, DX). This can be translated into an isomorphism

RHom(F,Z) = RHom(F,DX

L
⊗ L),

and then DX

L
⊗ L 
 Z. Thus, for any point p ∈ X, one has that (DX)p

L
⊗ Lp 
 Z. By Lemma 4.3.33, one 

has that Lp 
 Z[−d] and then, since X is connected, L 
 T X [−d] for some integer d and some invertible 
abelian data T X . Consequently, DX 
 L∨ 
 TX [d], with TX = Hom(T X , Z). �
Lemma 4.3.33. Let K, L be two bounded complexes of finitely generated abelian groups. If K

L
⊗ L = Z, then 

K 
 Z[n] for some integer n (and then L 
 Z[−n]).

Proof. It is an easy exercise taking into account that any bounded complex of abelian groups is isomorphic 
(in the derived category) to its cohomology: K 
 ⊕

i
Hi(K)[−i]. �
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