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Given an inverse semigroup S endowed with a partial action on a topological 
space X, we construct a groupoid of germs S � X in a manner similar to Exel’s 
groupoid of germs, and similarly a partial action of S on an algebra A induces a 
crossed product A � S. We then prove, in the setting of partial actions, that if X
is locally compact Hausdorff and zero-dimensional, then the Steinberg algebra of 
the groupoid of germs S � X is isomorphic to the crossed product AR(X) � S, 
where AR(X) is the Steinberg algebra of X. We also prove that the converse holds, 
that is, that under natural hypotheses, crossed products of the form AR(X) � S
are Steinberg algebras of appropriate groupoids of germs of the form S � X. We 
introduce a new notion of topologically principal partial actions, which correspond 
to topologically principal groupoids of germs, and study orbit equivalence for these 
actions in terms of isomorphisms of the corresponding groupoids of germs. This 
generalizes previous work of the second-named author as well as from others, which 
dealt mostly with global actions of semigroups or partial actions of groups. We 
finish the article by comparing our notion of orbit equivalence of actions and orbit 
equivalence of graphs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Partial actions of groups on C∗-algebras, initially defined for the group of integers in [23] (and for general 
discrete groups in [48]), are a powerful tool in the study of many C∗-algebras associated to dynamical 
systems. In [21], Dokuchaev and Exel introduced the analogous notion of partial group actions in a purely 
algebraic context, and although the theory is not at present as well-developed as its C∗-algebraic counterpart, 
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it has attracted interest or researchers in the area, since some important classes of algebra, such as graph 
and ultragraph Leavitt path algebras, have been shown to be crossed products (see [33,34]).

In fact, in [24, Theorem 4.2] it is proven that partial group actions correspond to actions of certain “uni-
versal” inverse semigroups, which were already considered in [60] and can be used, for example, to describe 
groupoid C∗-algebras as crossed products by inverse semigroups (see [53, Theorem 3.3.1]). Although these 
approaches are similar in some respects, each of them has its advantages and drawbacks – for example, ac-
tions of inverse semigroups respect the operation completely, whereas groups have, overall, a better algebraic 
structure.

Groupoids are also being extensively used in order to classify and study similar classes of algebras (see 
[15] for example), and one can relate these two approaches in the following manner: From a partial group 
action on a topological space we associate a transformation groupoid, or from an inverse semigroup action on 
a space we associate a groupoid of germs (see [1] and [25], respectively). It turns out that both in the purely 
algebraic and the C∗-algebraic settings, the algebras of such groupoids coincide with the algebras induced 
from the group or semigroup actions (see [4,20]). In fact, under appropriate assumptions, the relationships 
between the representation theory of groupoids and inverse semigroups have also been made categorical, 
see for example [11,42,6].

In this article we will be concerned with partial actions of inverse semigroups, defined in [10], which are a 
common generalization of both partial actions of groups and actions of inverse semigroups. In particular, we 
generalize the constructions of groupoids of germs for topological partial actions, and of crossed products 
for algebraic partial actions.

Therefore we have a common ground for the study of both partial group actions and inverse semigroup 
actions.

The first problem we tackle is to describe the Steinberg algebra of the groupoid of germs of a topological 
partial inverse semigroup action as a crossed product algebra. This generalizes results of [4,20], where such 
isomorphisms were obtained under (strictly) stronger assumptions. In the converse direction, by starting with 
an appropriate crossed product, we manage to construct a groupoid of germs which realizes the isomorphism 
above.

Orbit equivalence and full groups for Cantor systems were initially studied by Giordano, Putnam and 
Skau in [30,31], and has enjoyed recent developments in [44,43,9]. The notion of continuous orbit equiva-
lence can be immediately extended to partial inverse semigroup actions. We introduce and study a natural 
notion of topological principality for partial inverse semigroup actions, which corresponds to topological 
principality of the groupoid of germs. In Theorems 8.4 and 8.9 we prove, in particular, that two ample, 
topologically principal partial inverse semigroup actions are continuously orbit equivalent if and only if 
the corresponding groupoids of germs are isomorphic, thus generalizing the analogous part of [43, The-
orem 2.7]. It is important to note that the semigroups considered do not need to be isomorphic, since 
continuous orbit equivalence deals mostly with the dynamics of the unit space inherited from the partial 
action.

We finish this article by connecting the notions of continuous orbit equivalence of (partial) semigroup 
actions, continuous orbit equivalence of graphs, and isomorphism of Leavitt path algebras.
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2. Preliminaries

2.1. Inverse semigroups

A semigroup is a set endowed with an associative binary operation (s, t) �→ st, called product. An inverse 
semigroup is a semigroup S such that for every s ∈ S, there exists a unique s∗ ∈ S such that ss∗s = s and 
s∗ss∗ = s∗. We call s∗ the inverse of S.

An inverse subsemigroup of an inverse semigroup S is a nonempty subset P ⊆ S which is closed under 
product and inverses. Homomorphisms and isomorphisms of inverse semigroups are defined in the same 
manner as for groups. We refer to [36] for details.

Example 2.1. Given a set X, define I(X) to be the set of partial bijections of X, i.e., bijections f : dom(f) →
ran(f) where dom(f), ran(f) ⊆ X. We endow I(X) with the natural composition of partial maps: given 
f, g ∈ I(X), the product gf has domain dom(gf) = f−1(ran(f) ∩ dom(g)) and range ran(gf) = g(ran(f) ∩
dom(g)), and is defined by (gf)(x) = g(f(x)) for all x ∈ dom(gf).

This makes I(X) into an inverse semigroup, where the inverse element of f ∈ I(X) is the inverse function 
f∗ = f−1.

Example 2.2. A (meet) semilattice is a poset (L, ≤) which admits binary meets (infima), i.e., if a, b ∈ L then 
{a, b} admits an infimum a ∧ b. The operation ∧ makes L into an inverse semigroup.

Given an inverse semigroup S, we denote by E(S) =
{
e ∈ S : e2 = e

}
the set of idempotents of S. E(S)

is a commutative inverse subsemigroup of S, and it is a semilattice under the order e ≤ f ⇐⇒ e = ef . 
This order is extended to all of S by setting s ≤ t ⇐⇒ s = ts∗s. This order is preserved under products 
and inverses of S. Homomorphisms of inverse semigroups preserve their orders.

2.2. Partial actions of inverse semigroups

Definition 2.3 ([10, Definition 2.11, Proposition 3.1]). A partial homomorphism between inverse semigroups 
S and T is a map ϕ : S → T such that for all s and t in S, one has that

(i) ϕ(s∗) = ϕ(s)∗;

(ii) ϕ(s)ϕ(t) ≤ ϕ(st);

(iii) ϕ(s) ≤ ϕ(t) whenever s ≤ t.

Note that homomorphisms of inverse semigroups are also partial homomorphisms.

In the most general context ([10, Definition 3.3]), a partial action of a semigroup S on a set X is simply a 
partial homomorphism S → I(X). However, when X has some extra structure (topological and/or algebraic) 
we will be interested in partial actions that preserve this structure.

Definition 2.4. A topological partial action of an inverse semigroup S on a topological space X is a tuple 
θ = ({Xs}s∈S , {θs}s∈S) such that:

(i) For all s ∈ S, Xs is an open subset of X and θs : Xs∗ → Xs is a homeomorphism;
(ii) The map s �→ θs is a partial homomorphism of inverse semigroups;
(iii) X =

⋃
Xe.
e∈E(S)
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If s �→ θs is a homomorphism of inverse semigroups, we call θ a global action, or simply an action if no 
confusion arises.

Condition (iii) above is usually called non-degeneracy, and is sometimes not required. If (i) and (ii) are 
satisfied by a tuple θ as above, then Xs∗ ⊆ Xs∗s for all s ∈ S, and thus one can always substitute X by ⋃

e∈E(S) Xe (which in fact coincides with 
⋃

s∈S Xs) and obtain a non-degenerate partial action. In fact, θ is 
a global action if and only if Xs∗ = Xs∗s for all s ∈ S. Similar comments hold for partial actions of groups 
on algebras, which we now define. For the remainder of this section, we fix a commutative unital ring R, 
and will consider algebras over R.

Remark 2.5. Every ring has a canonical Z-algebra structure, or alternatively, when restricted to commutative 
rings, every commutative ring R has a canonical R-algebra structure. Thus the definitions we adopt for 
algebras restrict to partial actions and crossed products of rings.

Definition 2.6. An algebraic partial action of an inverse semigroup S on an associative R-algebra A is a 
tuple α = ({As}s∈S , {αs}s∈S) such that:

(i) For all s ∈ S, As is an ideal of A and αs : As∗ → As is an R-isomorphism;
(ii) α : S → I(A), s �→ αs is a partial homomorphism of inverse semigroups;
(iii) X = spanR

⋃
e∈E(S) Ae.

If s �→ αs is a homomorphism of inverse semigroups, we call α a global action or simply an action.

2.3. Crossed products

Let R be a commutative unital ring, and let α = ({As}s∈S , {αs}s∈S) be a partial action of an inverse 
semigroup S on an associative R-algebra A. Consider L = L (α) the R-module of all finite sums of the 
form

finite∑
s∈S

asδs, where as ∈ As and δs is a formal symbol,

with a multiplication defined as the bilinear extension of the rule

(asδs)(btδt) = αs(αs∗(as)bt)δst.

Then L is an R-algebra which is possibly not associative (see [21, Example 3.5]). A proof similar to that 
of [21, Corollary 3.2] shows that if As is idempotent or non-degenerate for each s ∈ S, then L is associative.

Definition 2.7. Let α = ({As}s∈S , {αs}s∈S) be an algebraic partial action of an inverse semigroup S on an 
R-algebra A end let N = N (α) be the additive subgroup of L generated by all elements of the form

aδr − aδs, where r ≤ s and a ∈ Ar.

Then N is an ideal of the R-algebra L . We define the crossed product, which we denote by A �α S (or 
simply A � S) as the quotient algebra

A�α S := L /N

The class of an element x ∈ L in A �α S will be denoted by x.
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Remark 2.8.

(1) As a ring, A �S depends only on the ring structure of A and the maps α. So distinct algebra structures 
over A will induce distinct algebra structures over the same ring A � S (as long as the partial action 
preserves these distinct algebra structures).

(2) Crossed products are sometimes called skew inverse semigroup algebras or rings, or partial crossed 
products (see [5,8,21]). Since these are simply particular cases of the construction above, we adopt the 
simplest nomenclature for the most general case.

The diagonal of the crossed product A �S is the additive abelian subgroup generated by elements of the 
form aδe, where e ∈ E(S) and a ∈ Ae, and the diagonal is a subalgebra of A � S.

Recall that a ring B is left s-unital if for all finite subsets F ⊆ B, there exists u ∈ B such that x = ux

for all x ∈ F .

Proposition 2.9. Suppose that α is a partial action of S on an algebra A, and that for all e ∈ E(S), Ae is a 
left s-unital ring. Then A is isomorphic to the diagonal algebra of A � S.

Proof. Any element of A is a sum of elements of 
⋃

e∈E(S) Ae, so the same argument of [67, Theorem 1]
proves that A is a left s-unital ring. The proof of [19, Proposition 4.3.11] (see also [5, Proposition 3.1]) can 
be easily adapted to obtain an isomorphism between A and the diagonal subalgebra of A � S. �
2.4. Étale groupoids

A groupoid is a small category G with invertible arrows. We identify G with the underlying set of arrows, 
so that objects of G correspond to unit arrows, and the space of all units is denoted by G(0). The source
of an element a ∈ G is defined as s(a) = a−1a and the range of a is r(a) = aa−1. A pair (a, b) ∈ G × G is 
composable (i.e., the product ab is defined) if and only if s(a) = r(b), and the set of all composable pairs is 
denoted by G(2).

A topological groupoid is a groupoid G endowed with a topology which makes the multiplication map 
G(2) � (a, b) �→ ab ∈ G and the inverse map G � a �→ a−1 ∈ G continuous, where we endow G(2) with the 
topology induced from the product topology of G × G.

Definition 2.10 ([42,58]). An étale groupoid is a topological groupoid G such that the source map s : G → G(0)

is a local homeomorphism.

Alternatively, a topological groupoid G is étale precisely when G(0) is open and the product of any two 
open subsets of G is open (see [58, Theorem 5.18]), where the product of A, B ⊆ G is defined as

AB =
{
ab : (a, b) ∈ (A×B) ∩ G(2)

}
.

An open bisection of an étale groupoid is an open subset U ⊆ G such that the source and range maps 
are injective on U , and hence homeomorphisms onto their images. The set of all open bisections of an étale 
groupoid forms a basis for its topology and it is an inverse semigroup under the product of sets. We denote 
this semigroup by Gop.

Definition 2.11. An étale groupoid is ample if G(0) is Hausdorff and admits a basis of compact-open subsets.

Suppose that G is an ample groupoid. Then G admits a basis of compact-open bisections, since G(0) does 
and s : G → G(0) is a local homeomorphism. Since G(0) is Hausdorff then G(2) is closed in G × G, and the 
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product of two compact subsets A, B of G is compact, as AB is the image of the compact (A × B) ∩ G(2)

under the continuous product map (alternatively, see [42, Lemma 3.13]). We denote by Ga the inverse 
subsemigroup of Gop consisting of compact-open bisections and call Ga the ample semigroup of G.

Example 2.12. Let G be an étale groupoid. The canonical action of Gop on G(0) is defined as τ = τG =(
{r(U)}U∈Gop , {τU}U∈Gop

)
, with τU : s(U) → r(U) the homeomorphism τ = r ◦ s |−1

U . This is the homeo-
morphism which takes the source of each arrow of U to its range.

2.5. Steinberg algebras of ample groupoids

Throughout this section, we fix a commutative unital ring R. Given an ample groupoid G, we denote by 
RG the R-module of R-valued functions on G. Given A ⊆ G, define 1A as the characteristic function of A
(with values in R).

Definition 2.13. Given an ample groupoid G, AR(G) is the R-submodule of RG generated by the characteristic 
functions of compact-open bisections of G.

The support of f ∈ RG is defined as supp f = {a ∈ G : f(a) 
= 0}. If G is Hausdorff, then AR(G) coincides 
with the R-module of locally constant compactly supported R-valued functions on G [15, Lemma 3.3].

In the general (non-Hausdorff) case, for every f ∈ AR(G) and every x ∈ G(0), the sets (supp f) ∩ s−1(x)
and (supp f) ∩ r−1(x) are finite (see [63, Proposition 4.5]), and so we can define their convolution product
by any of the formulas

(f ∗ g)(a) =
∑
xy=a

f(x)g(y) =
∑

x∈r−1(r(a))

f(x)g(x−1a) =
∑

y∈s−1(s(a))

f(ay−1)g(y).

This product makes AR(G) an associative R-algebra, called the Steinberg algebra of G (with coefficients 
in R).

The map Ga → AR(G), U �→ 1U , is a representation of Ga as a Boolean semigroup (see [42]), that is, it 
satisfies (i) 1U ∗ 1V = 1UV ; and (ii) 1U∪V = 1U + 1V if U ∩ V = ∅ and U ∪ V ∈ Ga.

In fact, AR(G) is universal for such representations. The proof for a general commutative ring with unit 
R follows the same arguments as in [15, Theorem 3.10], and we state it here explicitly:

Theorem 2.14 (Universal property of Steinberg algebras, [19, Theorem 4.4.8]). Let R be a commutative unital 
ring and G an ample Hausdorff groupoid. Then AR(G) is universal for Boolean representations of Ga, i.e., 
if B is an R-algebra and π : Ga → B is a function satisfying

(i) π(AB) = π(A)π(B) for all A, B ∈ Ga; and
(ii) π(A) = π(A \B) + π(B) whenever A, B ∈ Ga and B ⊆ A,

then there exists a unique R-algebra homomorphism Φ: AR(G) → B such that Φ(1U ) = π(U) for all U ∈ Ga.

Recall that a topological space X is zero-dimensional (or has small inductive dimension 0) if it admits 
a basis of clopen subsets of X. A locally compact Hausdorff space is zero-dimensional if and only if it is 
totally disconnected. Moreover, an étale groupoid G is ample if and only if G(0) is locally compact Hausdorff 
and zero-dimensional.

Example 2.15. Every locally compact, Hausdorff and zero-dimensional space X is an ample groupoid with 
X(0) = X (that is, the product is only defined as xx = x for all x ∈ X). The Steinberg algebra AR(X) coin-
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cides with the R-algebra of locally constant compactly supported R-valued functions on X with pointwise 
operations.

In general, we identify AR(G(0)) with the subalgebra DR(G) =
{
f ∈ AR(G) : supp f ⊆ G(0)} of AR(G), 

called the diagonal subalgebra of AR(G). More precisely, the map DR(G) � f �→ f |G(0) ∈ AR(G(0)) is an 
R-algebra-isomorphism, and its inverse extends every f ∈ AR(G(0)) as 0 on G \ G(0).

3. Groupoids of germs

In this section we will describe the groupoid of germs associated to a partial action of an inverse semigroup. 
Let us briefly describe the history of the concept.

In short, two partial bijections f and g of a topological space X are said to define the same germ at a 
point x of X if both f and g are defined and coincide on some neighbourhood of x. Usually one restricts the 
class of functions under consideration (e.g. they should be homeomorphisms between open subsets of X), 
but in any case this defines an equivalence relation on the set of all such functions which are defined on 
neighbourhoods of x. In this manner, any “local property” (e.g. continuity) of a function f at a point x is 
completely determined by the equivalence class [f, x] of f , called the germ of f at x.

The set of germs at arbitrary points of X is then given a structure of groupoid over X, a construction 
which dates back to Reinhart (see [55, Proposition 1.7]). This process was then applied in [57] and [53] to 
the current “groupoid approach to C∗-algebras” program, initiated by Renault in [56] (and which slightly 
predates Reinhart’s work).

More recently, Exel gave in [25] the appropriate description of germs for global actions of inverse semi-
groups. The same construction will be made below, with trivial changes, in the case of partial actions 
of inverse semigroups. This will allow us to also cover transformation groupoids induced by partial group 
actions, which have played important role in C∗-dynamics (see [1,8,12,27,29,32,35]).

Let θ = ({Xs}s∈S , {θs}s∈S) be a partial action of an inverse semigroup S on a topological space X. We 
denote by S ∗X the subset of S ×X given by

S ∗X := {(s, x) ∈ S ×X : x ∈ Xs∗} .

Recall that a semigroupoid is a structure satisfying the same axioms as a category,2 except possibly 
the existence of identities at objects (see [66, Appendix B]). Quotients of semigroupoids are defined, up to 
obvious modifications, in the same manner as quotients of categories (see [45, Section II.8]).

We make S ∗X a semigroupoid with object space (S ∗X)(0) = X by setting the source and range maps 
as

s(s, x) = x, r(s, x) = θs(x)

and the product (s, x)(t, y) = (st, y) whenever s(s, x) = r(t, y). In this case, the verification that (st, y) ∈
S ∗X is done just as in [25, Proposition 4.7(i)]. This product makes S ∗X an inverse semigroupoid, in the 
sense that for every p = (s, x) ∈ S ∗X, p∗ = (s∗, θs(x)) is the unique element of S ∗X satisfying pp∗p = p

and p∗pp∗ = p∗.
We define the germ relation ∼ on S ∗X: for every (s, x) and (t, y) in S ∗X,

(s, x) ∼ (t, y) ⇐⇒ x = y and there exists u ∈ S such that u ≤ s, t and x ∈ Xu∗ . (3.1)

Alternatively,

2 A slightly more general definition appears in [26, Definition 2.1].
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(s, x) ∼ (t, y) ⇐⇒ x = y and there exists e ∈ E(S) such that x ∈ Xe and se = te. (3.2)

Indeed, if (s, x) ∼ (t, y) and u ∈ S satisfies (3.1), then e = u∗u satisfies (3.2). Conversely, if e ∈ E(S)
satisfies (3.2), then u = se satisfies (3.1).

We call the equivalence class of (s, x) is the germ of s at x, and we denote it by [s, x].

Remark 3.3. If u ≤ s in S and x ∈ Xu∗ , then x ∈ Xs∗ as well and [s, x] = [u, x].

Equation (3.1) and Remark 3.3 readily imply that ∼ is a congruence, i.e., that the source and range maps 
of S ∗X are invariant on equivalence classes, and that if (si, xi) ∼ (ti, yi) for i = 1, 2, then (s1, x1)(s2, x2) ∼
(t1, y1)(t2, y2), in the sense that one side is defined if and only if the other side is defined, in which case 
they are equivalent. This induces a natural semigroupoid structure on the quotient (S ∗ X)/ ∼, which 
may be readily verified to be a groupoid. In short, we obtain the following slight generalization of [25, 
Proposition 4.11].

Proposition 3.4. The relation ∼ is a congruence, and the quotient semigroupoid S �X := (S ∗X)/ ∼ is a 
groupoid. The inverse of [s, x] ∈ S �X is [s∗, θs(x)], and the unit space of S �X consists of all germs of 
the form [e, x], where e ∈ E(S) and x ∈ Xe.

Since we consider only non-degenerate partial actions, the proposition above yields a bijection

X → (S �X)(0), x �→ [e, x], where e ∈ E(S) is chosen so that x ∈ Xe. (3.5)

We will now endow S �X with an appropriate topology. Given s ∈ S and U ⊆ Xs∗ , define the subset 
[s, U ] of S �X

[s, U ] = {[s, x] : x ∈ U} .

Using the definition of germs, it readily follows that

[s, U ] ∩ [t, V ] =
⋃

{[z, U ∩ V ∩Xz∗ ] : z ∈ S, z ≤ s, t} . (3.6)

Therefore the family Bgerm of sets [s, U ], where s ∈ S and U ⊆ Xs∗ is open forms a basis for a topology 
of S �X. The same proof as in [25, Proposition 4.14] may be applied (up to simple modifications) in order 
to prove that this topology makes S �X into a topological groupoid.

One may verify that this topology makes S � X into an étale groupoid, for example, by applying the 
same arguments as in the proofs of [25, Propositions 4.15-4.18]. A slightly more direct argument is given in 
[19, Proposition 4.2.12].

Proposition 3.7. When endowed with the topology generated by Bgerm, S�X is an étale groupoid, and each 
basic open set [s, U ] ∈ Bgerm is an open bisection. Moreover, the bijection (S�X)(0) → X, [e, x] �→ x, given 
in Equation (3.5), is a homeomorphism.

Notice that if s ∈ S and U ⊆ Xs∗ is an open set then [s, U ] is compact if and only if U is compact. 
Moreover, if B is a basis for the topology of X, then a basis for S � X consists of those sets of the form 
[s, U ] with U ∈ B. Hence, if X is zero-dimensional then the collection of sets of the form [s, U ] with U
compact-open subset of X is a basis for S �X.

Corollary 3.8. If X is a locally compact Hausdorff and zero-dimensional space then S � X is an ample 
groupoid.
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Let us prove a universal property for the groupoid of germs. Recall from Example 2.12 the definition of 
the canonical action of an étale groupoid.

Theorem 3.9 (Universal property of groupoids of germs). Let θ be a topological partial action of an in-
verse semigroup S on a topological space X. Suppose that G is an étale groupoid, σ : S → Gop is a partial 
homomorphism, and φ : X → G(0) is a continuous function satisfying

(i) φ(Xs) ⊆ r(σ(s)) for all s ∈ S; and
(ii) τσ(s)(φ(x)) = φ(θs(x)) for all s ∈ S and x ∈ Xs∗ ,

where τ denotes the canonical action of Gop on G(0).
Then there exists a unique continuous groupoid homomorphism Ψ: S �X → G satisfying

Ψ[s, x] ∈ σ(s) and s(Ψ[s, x]) = φ(x), (3.10)

whenever s ∈ S and x ∈ Xs∗ .

Proof. Equation (3.10) simply means that Ψ[s, x] = s |−1
σ(s)(φ(x)) for all s ∈ S and x ∈ Xs∗ , so uniqueness 

is immediate.
Define Φ: S ∗X → G by Φ(s, x) = s |−1

σ(s)(φ(x)) for all (s, x) ∈ S ∗X, that is, Φ(s, x) is the arrow in σ(s)
with source φ(x). Let us prove that it is a semigroupoid homomorphism.

Suppose that the product (s, x)(t, y) is defined in S ∗ X. This means that x = θt(y). Applying φ and 
using property ((ii)) yields

s(Φ(s, x)) = φ(x) = φ(θt(y)) = τσ(t)(φ(y)),

and the last term above is simply the range of the arrow in σ(t) whose source is φ(y), that is,

s(Φ(s, x)) = r(Φ(t, y)).

Therefore, the product Φ(s, x)Φ(t, y) is defined. It belongs to σ(s)σ(t)σ(st), since σ is a partial homomor-
phism, and its source is s(Φ(t, y)) = φ(y). Therefore,

Φ(s, x)Φ(t, y) = Φ(st, y) = Φ((s, x)(t, y)),

which proves that Φ is a semigroupoid homomorphism.
Let us prove that Φ is invariant by the germ relation ∼ as in (3.1): Suppose (s, x) ∼ (t, y). Then x = y

and there exists v ≤ s, t such that x ∈ Xv∗ . Then Φ(v, x) is an arrow which in σ(v) ⊆ σ(s), σ(t), as σ is a 
partial homomorphism, and whose source is φ(x), thus

Φ(s, x) = Φ(v, x) = Φ(t, x) = Φ(t, y).

Therefore Φ factors though a groupoid homomorphism Ψ: S �X → G satisfying (3.10).
It remains only to prove that Ψ is continuous. Suppose that V ⊆ G is open. As G is étale, s(V ) is open. 

We are thus finished by proving that

Ψ−1(V ) =
⋃{

[s,Xs∗ ∩ φ−1(s(σ(s) ∩ V ))] : s ∈ S
}
. (3.11)

If [s, x] ∈ Ψ−1(V ), then

φ(x) = s(Ψ[s, x]) ∈ s(σ(s) ∩ V )

so [s, x] belongs to the right-hand side of (3.11).
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Conversely, if [s, x] belongs to the right-hand side of (3.11), then there is an arrow γ in σ(s) ∩ V whose 
source is φ(x). By definition of Ψ, we have Ψ[s, x] = γ ∈ V , so [s, x] ∈ Ψ−1(V ). �
Example 3.12. Following [53], a localization consists of a global action θ = ({Xs}s∈S , {θs}s∈S) of an inverse 
semigroup S on a topological space X such that {Xs : s ∈ S} is a basis for the topology of S. The groupoid 
of germs in the sense of Paterson (see [53]) coincides with the definition above of groupoids of germs.

Example 3.13. Let X be a topological space. The canonical action of I(X) on X is the action τ given by 
τφ = φ for all φ ∈ I(X). Let G be an inverse subsemigroup of I(X) whose elements are homeomorphisms 
between open subsets of X, and let B be a basis for the topology of X, and for each B ∈ B consider its 
identity function idB : B → B.

We denote by GB the inverse subsemigroup of I(X) generated by G ∪ {idB : B ∈ B}. Then the canonical 
action of GB on X is a localization.

The groupoid of germs in the sense of Renault (see [57]) of G coincides with the groupoid of germs GB�X

defined above.

Example 3.14 (Transformation groupoids). In the case that S is a discrete group, the equivalence relation 
∼ on S ∗ X is trivial and the topology is the product topology, so S � X is (isomorphic to) the usual 
transformation groupoid.

Example 3.15 (Maximal group image). Suppose that X = {x} is a one-point space on which S acts trivially. 
Then S � X is a groupoid whose unit space is X, a singleton, that is, S � X is a group. The universal 
property of S � X implies that S � X satisfies the universal property of the maximal group image G(S)
of S (see [53] or Section 4), so S �X is isomorphic to G(S).

Example 3.16 (Restricted product groupoid). Let X = E(S) with the discrete topology, and let θ =
({Xs}s∈S , {θs}s∈S) be the Munn representation of S (see [51]): Xs = {e ∈ E(S) : e ≤ ss∗} and θs(e) = ses∗

for all e ∈ Xs∗ .
From S we can construct the restricted product groupoid (S, ·), which is the same as S but the product 

s · t = st is defined only when s∗s = tt∗. See [40] for more details.
Then S � E(S) is a discrete groupoid, and the map

S � E(S) → (S, ·), [s, e] �→ se

is an isomorphism from S � E(S) to (S, ·), with inverse s �→ [s, s∗s].

Example 3.17 ([63]). Let S = N ∪ {∞, z}, with product given, for m, n ∈ N,

nm = min(n,m), n∞ = ∞n = nz = zn = n, z∞ = ∞z = z and zz = ∞∞ = ∞.

In other words, S is the inverse semigroup obtained by adjoining the lattice N to the group {∞, z} of order 2 
(where ∞ is the unit), in a way that every element of N is smaller than z and ∞.

Let X = E(S) = N ∪ {∞}, seen as the one-point compactification of the natural numbers, and θ the 
Munn representation of S, so that S � X = (S, ·), however with the topology whose open sets are either 
cofinite or contained in N. In particular, S �X is not Hausdorff.

Example 3.18. Every étale groupoid is isomorphic to a groupoid of germs. Indeed, let G be an étale groupoid, 
and S any subsemigroup of Gop which covers G (i.e., G =

⋃
A∈S A). We let S act on G(0) by the restriction 

of the canonical action of Gop on G(0) (as Example 2.12). Then the map Φ: S�G(0) → G, [A, x] �→ s |−1
A (x), 
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is a surjective homomorphism of topological groupoids. Moreover, Φ is injective if and only if S forms a 
basis for some topology on G (see [25, Proposition 5.4]).

In particular, if G is an ample groupoid, and γ is the canonical action of Ga on G(0), then the groupoid 
of germs Ga

� G(0) is (canonically) isomorphic to G.

Let us finish this section with some remarks regarding the Hausdorff property of groupoids of germs. Since 
the theory of Steinberg (and also of C∗-)algebras associated to ample groupoids is much better developed 
in the Hausdorff case than in the non-Hausdorff one, it is important to have conditions that guarantee that 
a groupoid of germs is Hausdorff, even though this will not be a hypothesis which we will need to make 
(except in Theorem 8.15). We refer to [14] for more details on the issues related to the Hausdorff property.

Let us briefly recall the concept of a weak semilattice.

Definition 3.19. Let (L, ≤) be a poset. A downset of L is a subset D such that x ≤ d and d ∈ D implies 
x ∈ D. A downset D is said to be generated by a subset F of L if D = {x ∈ X : x ≤ f for some f ∈ F}, 
and in the case that F is finite we say that D is finitely generated. The poset L is called a (meet) weak 
semilattice if the intersection of two finitely generated downsets is again a finitely generated downset.

Every semilattice and every group is a weak semilattice. More generally, the E-unitary inverse semigroups 
which will be considered in the next section are weak semilattices. See [63, Section 5] for more details.

The following relation between inverse semigroups which are weak semilattices and the topology of their 
groupoids of germs can be proven just as in [63, Theorem 5.17].

Proposition 3.20 ([63, Theorem 5.17]). An inverse semigroup S is a weak semilattice if and only if for any 
partial action θ = ({Xs}s∈S , {θs}s∈S) of S on a Hausdorff space X such that Xs is clopen for all s ∈ S, the 
groupoid of germs S �X is Hausdorff.

In particular, if S is a weak semilattice and X is locally compact and zero-dimensional, then the groupoid 
of germs S �X is an ample Hausdorff groupoid.

Remark 3.21. The hypothesis that the domains of the partial action are clopen is necessary. For example, if 
G is a non-Hausdorff ample groupoid, then Gop is a semilattice, where inf {A,B} = A ∩B for all A, B ∈ Gop, 
and in particular it is a weak semilattice. However, as in Example 3.18, the groupoid of germs Gop

�G(0) ∼= G
is not Hausdorff.

4. Partial actions from associated groups and inverse semigroups

We will now describe how to construct partial actions of groups from actions of inverse semigroups and 
vice-versa. The class of inverse semigroups which allows us to do this in a precise manner is that of E-unitary 
inverse semigroups. This class of semigroups was originally explicitly defined by Saitô in [59] (and called 
proper inverse semigroups). The terminology “E-unitary”, which is currently more prevailing, appears in 
Munn [52] as an adaptation of the notion of an unitary subset U of an inverse semigroup S, given in [17, 
p. 55]: U is left unitary if for all u ∈ U and s ∈ S, us ∈ U implies s ∈ S. Right unitary subsets are defined 
analogously, and a subset which is both left and right unitary is simply unitary. The inverse semigroup S
is said to be E-unitary if E(S) is unitary in S.

Equivalently S is E-unitary if whenever e, s ∈ S, e ≤ s and e ∈ E(S), we have s ∈ E(S) as well. 
Throughout this section we shall use another description of E-unitary inverse semigroups, in terms of 
compatibility of elements. Two elements s, t of an inverse semigroup S are compatible if s∗t and st∗ are 
idempotents. In this case, the set {s, t} has infimum s ∧ t = inf {s, t} = st∗t = ts∗s.
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Lemma 4.1 ([40, Theorem 2.4.6]). S is E-unitary if and only if s, t, u ∈ S and u ≤ s, t implies that s and t
are compatible.

To each inverse semigroup S we can naturally associate a group G(S): define a relation in S by

s ∼ t ⇐⇒ there exists u ∈ S such that u ≤ s, t. (4.2)

Alternatively, s ∼ t if and only if there exists e ∈ E(S) such that se = te. From this and the fact that 
the order of S is preserved under products and inverses, it follows that ∼ is in fact a congruence, so we 
endow S/ ∼ with the quotient semigroup structure. Given s ∈ S, we denote by [s] the equivalence class of 
s with respect to the relation (4.2). The following proposition is a particular case of Proposition 3.4 and 
Theorem 3.9 (see Example 3.15).

Proposition 4.3 ([50, Theorem 1]). Let S be an inverse semigroup. The quotient

G(S) := S/∼

is a group. Furthermore, G(S) is the maximal group homomorphic image of S in the sense that if ψ : S → G

is a homomorphism and G is a group, then ψ factors through G(S).

Example 4.4. If G is a group then G(G) is isomorphic to G.

Example 4.5. If L is a semilattice, regarded as an inverse semigroup under meets, then G(L) = {1} is the 
trivial group.

Example 4.6. If S is an inverse semigroup with a zero, then G(S) = {1} is the trivial group.

We will now be interested in relating partial actions of inverse semigroups and partial actions of their 
maximal group images. A version this theorem has been proven in [62, Lemma 3.8] when considering global 
actions of inverse semigroups. The next theorem is a specific instance of [38, Lemma 2.2], where the author 
in fact considers a strictly weaker notion of partial action – namely, condition 2.3(iii) is not required. Note 
that this condition is trivial when considering partial actions of groups, and thus we may apply [38, Lemma 
2.2] without problems.

Theorem 4.7 ([38, Remark 2.3]). Let θ =
(
{Xs}s∈S , {θ}s∈S

)
be a partial action of an E-unitary inverse 

semigroup S on a topological space X. Then there is a unique partial action θ̃ =
(
{Xγ}γ∈G(S) ,

{
θ̃γ

}
γ∈G(S)

)
of G(S) on X such that for all s ∈ S,

(i) Xγ =
⋃

[s]=γ Xs for all γ ∈ G(S);
(ii) θ̃[s](x) = θ(x) for all (s, x) ∈ S ∗X;

(in other words, θ̃γ is the join of {θs : [s] = γ} in I(X), which is commonly denoted by 
∨

[s]=γ θs).

Remark 4.8. If one allows degenerate partial actions, then item (i) implies that θ is non-degenerate if and 
only if θ̃ is non-degenerate.

A version of the next theorem has been proven in [49], when considering the canonical action of S on the 
spectrum of its idempotent set E(S). We prove the result for general partial actions of inverse semigroups 
on arbitrary topological spaces.
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Proposition 4.9. Let θ be a partial action of an E-unitary group S on a space X and θ̃ be the induced action 
on G(S). Then

S �θ X ∼= G(S) �θ̃ X

Proof. Consider the map [s, x] �→ ([s], x), which is well-defined by the definitions of the relations involved 
(see Equations (3.1) and (4.2)). It is clearly a homomorphism, and surjectivity follows since θ̃γ =

∨
[s]=γ θs. 

As for injectivity, suppose ([s], x) = ([t], y), where [s, x], [t, y] ∈ S �θ X. Then x = y and [s] = [t], so 
x ∈ Xs∗ ∩Xt∗ . Hence s and t are compatible, which implies s(s∗st∗t) = t(s∗st∗t) (as both products describe 
the meet s ∧ t). Since x ∈ Xs∗ ∩Xt∗ ⊆ Xs∗s ∩Xt∗t ⊆ Xs∗st∗t we conclude that [s, x] = [t, y]. �

The two previous propositions describe a strong relationship between partial actions of an E-unitary 
inverse semigroup and partial actions of the associated group. The other direction initially reads as follows: 
“How to associate, to a group G, an inverse semigroup S together with a map G → S such that every 
partial action of G factors through a partial action of S?” The obvious answer would be S = G, so instead 
we look for global actions of our semigroup S. This is the content of the paper [24]:

Given a group G, let S(G) be the universal semigroup generated by symbols of the form [t], where t ∈ G, 
modulo the relations

(i) [s−1][s][t] = [s−1][st];
(ii) [s][t][t−1] = [st][t−1];
(iii) [s][1] = [s];
(iv) [1][s] = [s];

Exel proved that S(G) is an inverse semigroup with unit [1] (see [24, Theorem 3.4]). More specifically, 
Kellendonk and Lawson proved in [37] that this semigroup is actually the Birget-Rhodes expansion of the 
group G, which was already defined in [7], and thus may be given an explicit representation after work 
of Szendrei [65], which makes it more amenable to computations by avoiding representations given by 
generators and relations.

We will describe all the necessary properties of S(G) that we will need. For every g ∈ G, the inverse of 
[g] is [g−1]. Let us denote

εg = [g][g−1].

By [24, Proposition 2.5 and 3.2], for each γ ∈ S(G), there is a unique n ≥ 0 and distinct elements 
r1, . . . , rn, g ∈ G such that

(1) γ = εr1 · · · εrn [g], (if n = 0, this is simply [g]), and
(2) ri 
= 1 for all i.

We call such a decomposition γ = εr1 · · · εrn [g] the standard form of γ, which is unique up to the order of 
r1, . . . , rn. Moreover, given g, r ∈ G, we have [g]εr = εgr[g]. Thus, for γ = εr1 · · · εrn [g] ∈ S(G), the inverse 
of γ is written in standard form as

γ∗ = [g−1]εrn · · · εr1 = εg−1rn · · · εg−1r1 [g
−1].

The idempotents of S(G) are the elements of the form ε = εr1 · · · εrn [1].
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For any group G the inverse semigroup associated S(G) is E-unitary ([24, Remark 3.5]). Indeed, suppose 
γ ∈ S(G), ε ∈ E(S(G)) and ε ≤ γ. Writing γ and ε in standard form, we obtain

γ = εs1 · · · εsn [s] and ε = εe1 · · · εem [1].

Since ε = εγ and [1] is a unit of S(G), we obtain

εe1 · · · εem [1] = ε = εγ = εe1 · · · εemεs1 · · · εsn [s].

From the uniqueness of the standard form of ε we conclude that s = 1 and γ is an idempotent.
The main result of [24] is the following property of the semigroup S(G). Although it is proven in principle 

only for partial on discrete sets, the same proof applies in the topological setting.

Proposition 4.10 ([24, Theorem 4.2.]). Let θ =
(
{Xs}s∈S , {θs}s∈S

)
be a topological partial action of a group 

G on a space X. Then there is a unique topological action θ of S(G) on X such that θ[g] = θg, for all g ∈ G.

Proposition 4.11. Let G be a group and S(G) the universal semigroup of G. Then the map G → G(S(G)), 
g �→ [[g]], is an isomorphism.

Proof. First note that for all s, t ∈ G,

[s][t] = [s][t][t−1][t] = [st]εt.

Thus the map G → S(G), g �→ [g], is a partial homomorphism, and the map S(G) → G(S(G)), α �→ [α], is 
a homomorphism. So g �→ [[g]] is a partial homomorphism between groups, hence a homomorphism.

Given α ∈ S(G), since α = εs1 · · · εsn [s] for certain s, s1, . . . , sn we get [α] = [[s]], so g �→ [[g]] is surjective.
If [[g]] = 1 = [[1]], then there is an idempotent ε = εe1 · · · εen [1] for which

εe1 · · · εen [g] = ε[g] = ε[1] = εe1 · · · εen

and the uniqueness of the standard form implies g = 1. �
Corollary 4.12. Let θ be a partial action of a group G on a space X and θ̃ be the induced action of S(G). 
Then

G�θ X ∼= S(G) �θ̃ X.

Proof. Let γ = ˜̃
θ, the partial action of G(S(G)) induced by θ̃ as in Theorem 4.7. Let us prove that for all 

g ∈ G, θg = γ[[g]]. From this fact and Proposition 4.11, it follows easily that

G�θ X → G(S(G)) �γ X, (g, x) �→ ([[g]], x)

is a topological groupoid isomorphism. Proposition 4.9 provides the isomorphism G(S(G)) �γ X ∼= S(G) �θ̃

X, so we are done.
Let g ∈ G be fixed. By definition, γ[[g]] is the supremum of 

{
θ̃s : s ∼ [g]

}
. From the uniqueness of the 

standard form of each s ∈ S(G), it follows that s ∼ [g] if and only if s ≤ [g], and thus we conclude that 
γ[[g]] = θ̃[g]. �

Note that the construction S �→ G(S) is functorial, from the category INVpart of inverse semigroups 
and partial homomorphisms, to the category GRP of groups and their homomorphisms: Given θ : S → T a 
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partial homomorphism, the map s �→ [θ(s)] is a partial homomorphism from S to the group G(T ), hence a 
homomorphism, and thus it factors through a homomorphism G(θ) : G(S) → G(T ).

Similarly, we have a functor S from GRP to INV, the subcategory of INVpart consisting of semigroup 
homomorphisms. It is not hard to see (following the proof of Proposition 4.12) that G ◦ S is naturally 
isomorphic to the identity of GRP.

Question. Which semigroups S are isomorphic to S(G) for some group G? One condition for such a semigroup 
is that it satisfies the ascending chain condition. Also note that, up to isomorphism, we need G = G(S).

The following interesting corollary shows that for such semigroups one can always extend partial actions 
to actions:

Corollary 4.13. Let G be a group, S = S(G) and θ a partial action of S on a set X. Then there exists an 
action α of S on X such that θs ≤ αs for all s ∈ S and S �θ X = S �α X.

Proof. Let

(1) γ be the partial action of G(S) induced by θ;
(2) γ′ be the composition of γ with the canonical isomorphism G → G(S(G)), g �→ [[g]];
(3) α be the action of S = S(G) induced by γ′;

Then for all s ∈ S,

θ[s] ≤ γ[[s]] = γ′
s = α[s]

and

S �θ X ∼= G(S) �γ X ∼= G�γ′ X ∼= S(G) �α X = S �α X. �
5. Dual partial actions and their crossed products

In [4, Theorem 3.2], Beuter and Gonçalves showed that any Steinberg algebra of a transformation groupoid 
given by a partial action of a group, AR(G �X), is isomorphic to the crossed product AR(X) �G. In the 
same paper ([4, Theorem 5.2]), they proved that every Steinberg algebra associated with an ample Hausdorff 
groupoid G is isomorphic to the crossed product AR(G(0)) �Ga. Similarly, in [20, Theorem 2.3.6], Demeneghi 
proved that any Steinberg algebra of a groupoid of germs associated to an ample global action of an inverse 
semigroup is isomorphic to a crossed product AR(X) � S, and as a consequence obtained the latter result 
presented by the previous authors (see [20, Proposition 2.4.3]). However, [4, Theorem 3.2] considers partial 
(non-global) actions of groups, and thus does not follow from [20, Theorem 2.3.6].

The objective of this section is to present a self-contained proof that generalizes both results above. More 
precisely, let θ = ({Xs}s∈S , {θs}s∈S) be a partial action of an inverse semigroup S on a locally compact 
Hausdorff and zero-dimensional space X. Define, for each s ∈ S,

Ds = {f ∈ AR(X) : supp f ⊆ Xs} ∼= AR(Xs),

where the rightmost isomorphism, Ds → AR(Xs), is given by restriction: f �→ f |Xs
(the inverse map extends 

elements of AR(Xs) as zero on X \Xs). We then define

αs : Ds∗ → Ds

f �→ f ◦ θs∗

(or, more precisely, αs(f) is the extensions of f ◦ θs∗ as zero on X \Xs).
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It is routine to check that α = ({Ds}s∈S , {αs}s∈S) is an algebraic partial action of S on AR(X). In this 
case, we say that α is the dual partial action of θ.

We will now prove that the Steinberg algebra AR(S �θ X) is isomorphic to the crossed product 
AR(X) �α S. To this, end, we will need a few technical lemmas.

Lemma 5.1. Every compact-open bisection of S �X is a disjoint union of compact-open elements of Bgerm

(see Proposition 3.7).

Proof. Let A be a compact-open bisection of S �X. Since Bgerm is a basis for S �X and A is compact, 
there exists a finite family {[si, Ui] : 1 ≤ i ≤ n} in Bgerm such that each Ui is a compact-open subset of X
and A =

⋃n
i=1[si, Ui].

Let W1 = U1 and for i ≥ 2, let Wi = Ui \
⋃i−1

j=1 Ui. Then the Wi are all compact-open subsets of X, and

s

(
n⋃

i=1
[si,Wi]

)
=

n⋃
i=1

Wi =
n⋃

i=1
Ui = s

(
n⋃

i=1
[si, Ui]

)
= s(A).

Since the source map is injective on A, we have A =
⋃n

i=1[si, Wi]. Moreover, if i 
= j, then

s([si,Wi] ∩ [sj ,Wj ]) ⊆ s[si,Wi] ∩ s[sj ,Wj ] = Wi ∩Wj = ∅,

and thus we have a partition of A by compact-open elements of Bgerm. �
Lemma 5.2. For every pair of finite families s1, . . . , sn ∈ S and r1, . . . , rn ∈ R, and for every compact-open 
subset V ⊆

⋂n
i=1 Xs∗i , if 

∑n
i=1 ri1[si,V ] = 0 in AR(S �X), then 

∑n
i=1 ri1θsi (V )δsi = 0 in AR(X) � S.

Proof. We proceed by induction on n. The case n = 1 is trivial, for r11[s1,V ] = 0 implies that either r1 = 0
or V = ∅, and in either case we have r11θs1 (V )δs1 = 0.

Assume then that the statement is valid for n, and that we have a sum with n + 1 elements, of the form

n∑
i=1

ri1[si,V ] + r1[s,V ] = 0 (5.3)

For every x ∈ V , consider the finite subcollection F (x) = {i ∈ {1, . . . , n} : [s, x] ∈ [si, V ]}. Applying both 
sides of (5.3) on [s, x], we obtain

r = −
∑

i∈F (x)

ri. (5.4)

Moreover, by definition of F (x), we have [s, x] = [si, x] for all i ∈ F (x), so there exists tx ∈ S such that

(1) tx ≤ s, si (i ∈ F (x));
(2) x ∈ Xt∗x .

Fix any compact-open neighbourhood Wx ⊆ V ∩Xt∗x of x.
The collection {Wx : x ∈ V } is an open cover of V , so it admits a finite subcover: There exist x1, . . . , xM ∈

V such that {W1, . . . ,WM} is a cover of V , where Wj = Wxj
. We may, with the same argument as in 

Lemma 5.1, assume that the Wj are pairwise disjoint. Denote also Fj = F (xj) and tj = txj
.
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Given any j, we apply Equation (5.4) on x = xj to obtain r = − 
∑

i∈Fj
ri. Thus

r1[s,V ] =
M∑
j=1

r1[s,Wj ] = −
M∑
j=1

∑
i∈Fj

ri1[s,Wj ] = −
M∑
j=1

∑
i∈Fj

ri1[si,Wj ]

where we used tj ≤ s, si (i ∈ Fj) and Wj ⊆ Xt∗j in the third equality. Then

0 =
n∑

i=1
ri1[si,V ] + r1[s,V ] =

M∑
j=1

⎛⎝ n∑
i=1

ri1[si,Wj ] −
∑
i∈Fj

ri1[si,Wj ]

⎞⎠ =
M∑
j=1

⎛⎝∑
i/∈Fj

ri1[si,Wj ]

⎞⎠ . (5.5)

Now note that

supp

⎛⎝∑
i/∈Fj

ri1[si,Wj ]

⎞⎠ ⊆ s−1(Wj),

and these sets are pairwise disjoint since the Wj are pairwise disjoint. Equation (5.5) then implies that for 
each j, ∑

i/∈Fj

ri1[si,Wj ] = 0. (5.6)

Using the induction hypothesis on Equation (5.6) and summing over j we obtain

0 =
M∑
j=1

⎛⎝∑
i/∈Fj

ri1θsi (Wj)δsi

⎞⎠ =
M∑
j=1

⎛⎝ n∑
i=1

ri1θsi (Wj)δsi −
∑
i∈Fj

ri1θsi (Wj)δsi

⎞⎠
=

n∑
i=1

ri1θsi (V )δsi −
M∑
j=1

∑
i∈Fj

ri1θsi (Wj)δsi . (5.7)

Given i ∈ Fj , we have tj ≤ s, si and Wj ⊆ Xt∗j , so we may again apply Equation (5.4), and the fact that 
{Wj : j = 1, . . . ,M} is a partition of V , to obtain

M∑
j=1

∑
i∈Fj

ri1θsi (Wj)δsi =
M∑
j=1

∑
i∈Fj

ri1θs(Wj)δs =
M∑
j=1

−r1θs(Wj)δs = −r1θs(V )δs,

so the induction step follows from (5.7). �
Lemma 5.8. If 

∑n
i=1 ri1[si,Ui] = 0 in AR(S �X), then 

∑n
i=1 ri1θsi (Ui)δsi = 0 in AR(X) � S.

Proof. All the subsets U1, . . . , Un are compact-open, and thus so is U =
⋃n

i=1 Ui. We may find3 a partition 
{V1, . . . , Vm} (where m ≤ 2n − 1) of U by compact-open subsets of X with the property that each Ui is the 
union of some of the sets Vj . In this case, Ui ∩ Vj 
= ∅ if and only if Vj ⊆ Ui. We then have

0 =
n∑

i=1
ri1[si,Ui] =

n∑
i=1

⎛⎝ ∑
j:Vj⊆Ui

ri1[si,Vj ]

⎞⎠ =
m∑
j=1

⎛⎝ ∑
i:Vj⊆Ui

ri1[si,Vj ]

⎞⎠ . (5.9)

3 This is a combinatorial fact easily proven by induction, or with the following argument: For any of the 2n−1 non-zero sequences 
S ∈ {0, 1}n \ {0}, we set VS =

⋂
i∈S−1(1) Ui, and disregard any of these sets which are empty.
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For each j, we have supp
(∑

i:Vj⊆Ui
ri1[si,Vj ]

)
⊆ s−1(Vj), and these sets are pairwise disjoint. Equation (5.9)

implies that for each j, 
∑

i:Vj⊆Ui
ri1[si,Vj ] = 0. By Lemma 5.2, 

∑
i:Vj⊆Ui

ri1θsi (Vj)δsi = 0 for each j. Summing 
over j,

0 =
m∑
j=1

⎛⎝ ∑
i:Vj⊆Ui

ri1θsi (Vj)δsi

⎞⎠ =
n∑

i=1

⎛⎝ ∑
j:Vj⊆Ui

ri1θsi (Vj)δsi

⎞⎠ =
n∑

i=1
ri1θsi (Ui)δsi . �

Theorem 5.10. Let θ = ({Xs}s∈S , {θs}s∈S) be a partial action of an inverse semigroup S on a locally compact 
Hausdorff and zero-dimensional topological space X. Then the Steinberg algebra of S�θ X is isomorphic to 
the crossed product AR(X) �α S, where α = ({Ds}s∈S , {αs}s∈S) is the dual partial action of θ.

Proof. We will use the notation introduced in the definition of crossed product, Definition 2.7.
We will first show the existence of a homomorphism φ of L to AR(S�X) that vanishes on the ideal N , 

and thus factors through a homomorphism Φ of the quotient L /N = AR(X) �α S.
Define φ : L → AR(S �X) on a generating element fsδs of L by

φ(fsδs)(a) =
{
fs(r(a)), if a ∈ [s,Xs∗ ]
0, otherwise,

and extend φ linearly to all of L .
We first need check that φ is well-defined, that is, φ(fsδs) is a linear combination of characteristic functions 

of bisections of S �X.
We first write fs =

∑n
i=1 ri1θs(Ui) for certain r1, . . . , rn ∈ R and Ui ⊆ Xs∗ compact-open. Then

φ(fsδs)(a) =

⎧⎪⎨⎪⎩
∑

i:a∈[s,Xs∗ ]∩r−1(θs(Ui))

ri, if a ∈ [s,Xs∗ ]

0, otherwise.
(5.11)

As [s, Xs∗ ] ∩ r−1(θs(Ui)) = [s, Ui], equation (5.11) simply means that

φ(fsδs) =
n∑

i=1
ri1[s,Ui] whenever fs =

n∑
i=1

ri1θs(Ui). (5.12)

Therefore φ is a well-defined R-module homomorphism from L to AR(S�X). Now, we will show that φ
is multiplicative. By linearity of φ, it is enough to verify that it is multiplicative on the generators. Notice 
that supp(φ(fsδs)) = [s, θ−1

s (supp(fs))] for every generator fsδs.
Let fsδs, ftδt ∈ L and a ∈ S �X. There are two possibilities:

Case 1: a /∈ [s, Xs∗ ][t, Xt∗ ] = [st, θ−1
t (Xt ∩Xs∗)].

Since supp(φ(fsδs) ∗ φ(ftδt)) ⊆ [s, Xs∗ ][t, Xt∗ ], then

φ(fsδs) ∗ φ(ftδt)(a) = 0

On the other hand, (fsδs)(ftδt) = αs(αs∗(fs)ft)δst. Since

supp(αs∗(fs)ft) = θ−1
s (supp fs) ∩ supp(ft)
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then

supp(αs(αs∗(fs)ft)) = supp(fs) ∩ θs(supp(ft) ∩Xs∗)

and this set is contained in Xs ∩ θs(Xt ∩Xs∗), which is the domain of the composition θ−1
t ◦ θ−1

s = θt∗ ◦ θs∗ , 
and thus in the domain Xst of θ(st)∗ . Hence

θ−1
st (supp(αs(αs∗(fs)ft))) = θ−1

t (θ−1
s (supp fs) ∩ supp ft),

and therefore

supp(φ((fsδs)(ftδt))) = [st, θ−1
t (θ−1

s (supp fs) ∩ supp ft)]

which is contained in [st, θ−1
t (Xt ∩Xs∗)] = [s, Xs∗ ][t, Xt∗ ], so

φ((fsδs)(ftδt))(a) = 0 = (φ(fsδs) ∗ φ(ftδt))(a)

as we expected.

Case 2: a ∈ [s, Xs∗ ][t, Xt∗ ].
In this case, we can write a = [s, x][t, y] for unique x ∈ Xs∗ and y ∈ Xt∗ with θt(y) = x. Since 

supp(φ(fsδs)) ⊆ [s, Xs∗ ] then

(φ(fsδs) ∗ φ(ftδt))(a) =
∑

b∈r−1(r(a))

φ(fsδs)(b)φ(ftδt)(b−1a)

= φ(fsδs)[s, x]φ(ftδt)[t, y]

= fs(θs(x))ft(θt(y)).

On the other hand, a ∈ [s, Xs∗ ][t, Xt∗ ] ⊆ [st, X(st)∗ ], so

φ((fsδs) ∗ (ftδt))(a) = φ(αs(αs∗(fs)ft)δst)(a)

= αs(αs∗(fs)ft)(r(a)) = αs(αs∗(fs)ft)(θs(x))

= (αs∗(fs)ft)(x) = fs(θs(x))ft(x) = fs(θs(x))ft(θt(y))

= (φ(fsδs) ∗ φ(ftδt))(a)

as we desired.
Now let us prove that φ vanishes on the ideal N . Since φ is a homomorphism, it is enough to show that 

φ is zero in elements of the form fδs − fδt, where s ≤ t and f ∈ Ds, because these elements generate N . 
Let a ∈ S �X. Then

• if a ∈ [s, Xs∗ ] then a ∈ [t, Xt∗ ], and

φ(fδs − fδt)(a) = f(r(a)) − f(r(a)) = 0;

• if a ∈ [t, Xt∗ ] \ [s, Xs∗ ] then r(a) /∈ Xs, because r is injective on [t, Xt∗ ], and f(r(a)) = 0 because f ∈ Ds. 
Thus

φ(fδs − fδt)(a) = 0 − f(r(a)) = 0;
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• if a /∈ [t, Xt∗ ] then a /∈ [s, Xs∗ ] as well, so

φ(fδs − fδt)(a) = 0 − 0 = 0.

Therefore, φ factors through the quotient L /N = AR(X) �α S to a map Φ: AR(X) �α S → AR(S�X)
satisfying Φ(fδs) = φ(fδs) whenever f ∈ Ds∗.

In order to prove that Φ is bijective, we will show the existence of a map Ψ: AR(S �X) → AR(X) �α S

which is in fact the inverse map of Φ.
By Lemma 5.1, AR(X) is generated, as an R-module, by characteristic functions of compact-open basic 

bisections (those of the form 1[s,U ], where U ⊆ Xs is compact-open).
By Lemma 5.1, every element f ∈ AR(S�X) may be written as f =

∑n
i=1 ri1[si,Ui] ∈ AR(S�X), where 

r1, . . . , rn ∈ R and [s1, U1], . . . , [sn, Un] ∈ Bgerm. Define

Ψ(f) = Ψ
(

n∑
i=1

ri1[si,Ui]

)
:=

n∑
i=1

ri1θsi (Ui)δsi .

By Lemma 5.8, Ψ is well-defined, and clearly additive. To prove that Ψ is a left inverse to Φ, let fsδs ∈
AR(X) � S (where fs ∈ Ds). We already know (Equation (5.12)) that, by writing fs =

∑n
i=1 ri1θs(Ui), we 

have

Ψ(Φ(fsδs)) = Ψ
(

n∑
i=1

ri1[s,Ui]

)
=

n∑
i=1

ri1θs(Ui)δs = fsδs.

Since the elements fsδs generate AR(X) � S as an additive group, we conclude that Ψ ◦ Φ is the identity 
of AR(X) � S. Similarly, the elements of the form r1[s,U ] (where s ∈ S and U ⊆ Xs∗ is compact-open) 
generate AR(S �X) as an additive group, by Lemma 5.1, and Equation (5.12) again implies

Φ(Ψ(r1[s,U ])) = Φ(r1θs(U)δs) = r1[s,U ],

therefore Φ ◦ Ψ is the identify of AR(S �X). �
Remark 5.13. Note that the diagonal subalgebra DR(S�X) ∼= AR((S�X)(0)) of AR(S�X) coincides with 
span

{
1[e,U ] : e ∈ E(S), U ⊆ Xe

}
, and so it is mapped, under the isomorphism of the previous theorem, to 

the diagonal subalgebra span
{
1Uδe : e ∈ E(S), U ⊆ Xe

}
of the crossed product AR(X) � S.

Corollary 5.14. Let G be an ample groupoid. Then the Steinberg algebra AR(G) is isomorphic to the crossed 
product AR(G(0)) �μ Gop and AR(G(0)) �η Ga, where μ and η are the dual actions of the canonical actions 
of Gop and Ga on G(0).

Proof. By Example 3.18, G is isomorphic to the groupoids of germs Gop
� G(0) and Ga

� G(0), given by the 
respective canonical actions of Gop and Ga on G(0). The result follows from Theorem 5.10. �

It is interesting to note that the crossed products AR(G(0)) � Gop and AR(G(0)) � Ga arise from global 
actions, and not simply partial action as in the previous theorem. Further, using Theorem 5.10 and Corol-
lary 5.14 to a groupoid of germs of a partial action, we obtain

AR(X) �α S ∼= AR(S �X) ∼= AR(X) �η (S �X)a,

where η is dual to the canonical action of (S �X)a on (S �X)(0) ∼= X.
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6. Recovering a topological partial action from a crossed product

In the previous section we realized the Steinberg algebra of an ample groupoid of germs as a crossed 
product. In this section we will be interested in the opposite direction, that is, to determine which crossed 
products of the form AR(X) �α S can be realized as Steinberg algebras AR(S �θ S) in such a way that α
is induced by θ. The first problem we deal with is to find conditions which allow us to obtain a topological 
partial action θ of S on X from an algebraic action α.

It is well-known that given a partial action θ = ({Xg}g∈G, {θg}g∈G) of a group G on a locally compact 
Hausdorff topological space X, there is an associated partial action α = ({Dg}g∈G, {αg}g∈G) of G on the 
C∗-algebra C0(X), and conversely, every partial action of a group G on C0(X) comes from a partial action 
of G on X. In [3], a similar relation is shown at the purely algebraic level. More precisely, let K be a field 
and denote by F0(X) the algebra of all functions X → K with finite support, endowed with the pointwise 
operations. Then there is a one-to-one correspondence between the partial actions of a group G on X and 
the partial actions of G on F0(X).

In this section, we will show that the same occurs with partial actions of inverse semigroups. Throughout 
this section, we will consider that:

• X and Y are locally compact Hausdorff and zero-dimensional topological spaces;
• S is an inverse semigroup;
• R is a commutative unital ring; and
• AR(X) is the Steinberg algebra of X, i.e., the R-algebra formed by all locally constant, compactly 

supported, R-valued functions on X, with the pointwise operations.

In order to find a bijective correspondence between partial actions θ = ({Xs}s∈S , {θs}s∈Xs
) of S on X

and the dual partial actions α = ({Ds}s∈S , {αs}s∈S) of S in AR(X), we will need a few preliminary results.
Recall that a ring A is said to have local units if, for every finite subset F of A, there exists an idempotent 

e ∈ A such that r = er = re for each r ∈ F . Such an element e will be referred to as a local unit for the 
set F . A commutative unital ring R is said to be indecomposable if its only idempotents are 0 and 1 (the 
trivial ones).

We will prove that, when R is indecomposable, there is a bijection between ideals with local units of 
AR(X) and open subsets of X. On one hand, if U is an open subset of X, then

I(U) := {f ∈ AR(X) : supp(f) ⊆ U} ∼= AR(U) (6.1)

is an ideal of AR(X) with local units. Indeed, if f1, . . . , fn ∈ I(U) then the characteristic function 1K , where 
K =

⋃n
i=1 supp(fi), is a local unit for these functions. Moreover, U is compact if and only if I(U) has an 

identity, namely, the characteristic function 1U is its identity.

Proposition 6.1. Suppose that R is an indecomposable commutative unital ring. Then the map U �→ I(U)
is an order isomorphism between the lattices of open subsets of X and of ideals with local units of AR(X). 
The inverse map is given by I �→ U(I) :=

⋃
f∈I supp f .

Proof. Let I ⊆ AR(X) be an ideal with local units. Then the inclusion I ⊆ I(U(I)) follows from the 
definitions of I and U. For the converse, suppose f ∈ AR(X) and supp f ⊆ U(I) =

⋃
g∈I supp(g). By 

compactness of supp f , there are f1, . . . , fn ∈ I with supp(f) ⊆
⋃n

i=1 supp(fi).
Let e ∈ I be a local unit for f1, . . . , fn. Since e is idempotent and R is indecomposable then e = 1C for 

some clopen C ⊆ X, and since e is a local unit for f1, . . . , fn this means that 
⋃n

i=1 supp fi ⊆ C. Therefore 
supp f ⊆ C, and f = f1C = fe ∈ I. This proves that I(U(I)) = I.
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For the converse, let U ⊆ X be open, so that the inclusion U(I(U)) ⊆ U is also immediate from the 
definitions of I and U. If x ∈ U , simply take any compact-open subset V with x ∈ V ⊆ U , so 1V ∈ I(U)
and

x ∈ supp 1V ⊆ U(I(U)),

which proves that U = U(I(U)). �
Corollary 6.2. Suppose that R is an indecomposable commutative unital ring. Then there is an order-
isomorphism between unital ideals of AR(X) and compact-open subsets of X.

The following is a particular case of [18, Theorem 3.42]. We sketch its proof for the sake of completeness.

Proposition 6.3. Let R be an indecomposable commutative unital ring. Then Γ: AR(Y ) → AR(X) is an 
R-algebra isomorphism if and only if there exists a (necessarily unique) homeomorphism ϕ : X → Y such 
that Γ(f) = f ◦ ϕ for all f ∈ AR(X).

Proof. Given a commutative ring A, denote by Ω(A) the set of all maximal ideals with local units of A.
By Proposition 6.1, the map X � x �→ I(X \ {x}) ∈ Ω(AR(X)) is a bijection, and it is also a homeomor-

phism when we endow Ω(AR(X)) with the topology generated by all sets of the form

[f ] = {I ∈ Ω(AR(X)) : f /∈ I} (f ∈ AR(X)).

Repeating the same argument with Y in place of X, and using the fact that Γ preserves maximal 
ideals with local units, we obtain a homeomorphism ϕ : X ∼= Ω(AR(X)) → Ω(AR(Y )) ∼= Y such that 
supp(f) = ϕ(supp(Γ(f)) for all f ∈ AR(Y ).

Let x ∈ X be fixed, and choose any compact-open neighbourhood U of x and let e = 1ϕ(U) ∈ AR(Y ). 
Then Γ(e)2 = Γ(e2) = Γ(e), so Γ(e) only takes values 0 and 1 since R is indecomposable. Moreover, 
ϕ(U) = supp(e) = ϕ(supp Γ(e)), so supp(Γ(e)) = U , and therefore Γ(e) = 1U .

Now given f ∈ AR(Y ), fix r = f(ϕ(x)). We have f(ϕ(x)) = re(ϕ(x)), thus

ϕ(x) /∈ supp(f − re) = ϕ(supp(Γ(f) − rΓ(e))).

Therefore x /∈ supp(Γ(f) − rΓ(e)), so

Γ(f)(x) = rΓ(e)(x) = r = f(ϕ(x)). �
In particular, from the proposition above, we may conclude that there is bijective anti-homomorphism 

between the group of all homeomorphism from X to Y , and the group of all R-algebra isomorphisms from 
AR(Y ) to AR(X), given by

T : Homeo(X,Y ) → Iso(AR(Y ), AR(X)), ϕ �→ Tϕ,

where Tϕ(f) = f ◦ ϕ (compare this with [18, Corollary 3.43]).

Proposition 6.4. Suppose that R is an indecomposable commutative unital ring. If α = ({Ds}s∈G, {αs}s∈S)
is a partial action of S on the algebra AR(X) for which each ideal Ds has local units, then there is a 
partial action θ = ({Xs}s∈S , {θs}s∈S) of S on X such that α is the dual partial action coming from θ (see 
Section 5).
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Proof. Let α be a partial action of S in AR(X) satisfying the hypotheses above. By Proposition 6.1, for 
each s ∈ S there is an open subset Xs ⊆ X such that

Ds = I(Xs) = {f ∈ AR(X) : supp f ⊆ Xs} ∼= AR(Xs).

By Proposition 6.3, for each isomorphism αs : AR(Xs∗) → AR(Xs), there is a unique homeomorphism 
θs∗ : Xs → Xs∗ such that

αs(f) = f ◦ θs∗ for all f ∈ AR(Xs∗) ∼= Ds∗ .

So we simply let θ = ({Xs}s∈S , {θs}s∈S), and it is clear that, as long as θ is indeed a partial action, then α
is the dual partial action of θ.

To finish the proof we need to show that θ is indeed a partial action. By its very definition, each Xs is 
open in X and θs : Xs∗ → Xs is a homeomorphism. Non-degeneracy of θ can be proven as follows:

Let x ∈ X and f ∈ AR(X) such that x ∈ supp(f). Since AR(X) = span
⋃

s∈S Ds, we can write f as 
f =

∑n
i=1 fi for certain elements si ∈ S and fi ∈ Dsi

∼= AR(Xsi). In particular,

supp f ⊆
n⋃

i=1
supp fi ⊆

n⋃
i=1

Xsi

and so x ∈ Xsi for some i. This proves that X =
⋃

s∈S Xs.
So it remains only to prove that s �→ θs is a partial homomorphism. Let us verify the conditions of 

Definition 2.3:

(i) Given s ∈ S, we need to prove that θs∗ = (θs)∗ αs∗ ◦αs is the identity on Ds∗
∼= AR(Xs∗), however for 

all f ∈ Ds∗
∼= AR(Xs∗),

f ◦ idXs∗ = αs∗ ◦ αs(f) = αs∗(f ◦ θs∗) = f ◦ (θs∗ ◦ θs)

so the uniqueness part of Proposition 6.3 implies that θs∗ ◦ θs = idXs∗ . Similarly, θs ◦ θs∗ = idXs
, thus 

θs∗ = (θs)∗.
(ii) Let s, t ∈ S. We need to prove that θs ◦θt ≤ θst. On one hand, note that (under the usual identification 

AR(U) ∼= I(U)),

f ∈ AR(θ−1
t (Xt ∩Xs∗)) ⇐⇒ supp f ⊆ θ−1

t (Xt ∩Xs∗)

⇐⇒ supp(f ◦ θt∗) ⊆ Xt ∩Xs∗

⇐⇒ supp(αt(f)) ⊆ Xt ∩Xs∗

⇐⇒ αt(f) ∈ Dt ∩Ds∗ ,

that is, under the canonical identification, AR(θ−1
t (Xt ∩Xs∗)) ∼= α−1

t (Dt ∩Ds∗). Since α is a partial 
action, we obtain

AR(θ−1
t (Xt ∩Xs∗)) ∼= α−1

t (Dt ∩Ds∗) ⊆ D(st)∗ ∼= AR(X(st)∗)

which implies θ−1
t (Xt∩Xs∗) ⊆ X(st)∗ . The map α(st)∗ ◦αs ◦αt coincides with the identity on α−1

t (Dt∩
Ds∗), however

α(st)∗(αs(αt(f))) = α(st)∗(αs(f ◦ θt∗)) = α(st)∗(f ◦ θt∗ ◦ θs∗) = f ◦ θt∗ ◦ θs∗ ◦ θst
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so again uniqueness in Proposition 6.3 implies that θt∗ ◦ θs∗ ◦ θst is the identity on θ−1
t (Xt ∩X∗

s ). We 
can conclude that θs ◦ θt ≤ θst.

(iii) Suppose s ≤ t in S. Let us prove that θs ⊆ θt. We have

AR(Xs∗) ∼= Ds∗ ⊆ Dt∗
∼= AR(Xt∗)

so Xs∗ ⊆ Xt∗ . The restriction of αt∗ to Ds coincides with αs∗ , so for all f ∈ Ds
∼= AR(Xs),

f ◦ (θt|Xs∗ ) = (f ◦ θt)|Xs∗ = αt∗(f)|Xs∗ = αs∗(f) = f ◦ θs

and again the uniqueness part in Proposition 6.3 implies that θt|Xs∗ = θs, so θs ≤ θt. �
Corollary 6.5. Suppose that S is an inverse semigroup, that R is an indecomposable commutative unital 
ring, and that α = ({Ds}s∈S , {αs}s∈S) is an algebraic partial action of S on AR(X), where each ideal Ds

has local units. Then AR(X) �α S is isomorphic to a Steinberg algebra AR(S �θ X) such that α is dual to 
the topological partial action θ.

Proof. By Proposition 6.4, α is dual to a topological partial action θ of S on X, and Theorem 5.10 implies 
that AR(S �θ X) ∼= AR(X) �α X. �
7. Topologically principal partial actions

In this section our main goal is to introduce topologically principal partial actions of inverse semigroups, 
which will be used later in our study of continuous orbit equivalence. We then use this notion to describe 
E-unitary inverse semigroups in terms of the existence of certain topologically principal partial actions.

Let G be a groupoid. The isotropy group at a point x ∈ G(0) is

Gx
x = {a ∈ G : s(a) = r(a) = x} .

Note that Gx
x is a group with the operation inherited from G. The isotropy subgroupoid of a groupoid G is 

the subgroupoid

Iso(G) =
⋃

x∈G(0)

Gx
x = {a ∈ G : s(a) = r(a)} .

Since G(0) is an open subset of Iso(G), then G(0) ⊆ int(Iso(G)). Following the nomenclature of [57], a 
topological groupoid G is effective if the converse inclusion holds, i.e., if G(0) = int(Iso(G)).

A topological groupoid G is topologically principal if the set of points in G(0) with trivial isotropy group 
is dense in G(0). By [57, Proposition 3.6], every Hausdorff topologically principal étale groupoid is effective 
(the Hausdorff property is necessary, as the groupoid constructed in Example 3.17 is topologically principal 
but not effective). Conversely, if G is a second-countable effective (possibly non-Hausdorff) groupoid and 
G(0) satisfies the Baire property, then G is topologically principal.

The class of (global) actions of inverse semigroups which correspond to effective groupoids of germs was 
defined in [28]. However, we will be interested in partial actions which correspond to topologically principal 
groupoids of germs. Since we will not make assumptions of second-countability or the Hausdorff property, 
it is important to distinguish effectiveness and topological principality of groupoids.

Remark 7.1. The nomenclature “essentially principal” has been used to mean either effective or topologically 
principal (or even slight variations) in different works. See [56, Definition II.4.3], [61, Section 2.2] and [28, 
Definition 4.6(4)]. To avoid confusion on this part, we settle with the nomenclature of [57].



JID:JPAA AID:6160 /FLA [m3L; v1.260; Prn:18/07/2019; 9:38] P.25 (1-41)
L.G. Cordeiro, V. Beuter / Journal of Pure and Applied Algebra ••• (••••) •••–••• 25
Moreover, distinct notions of topological freeness – for either partial actions of countable groups or 
global actions of inverse semigroups (see [43] and [28]) – have natural generalizations to the context of 
partial actions of inverse semigroups, however they do not coincide in general.

To avoid any confusion, partial actions which correspond to topologically principal or effective groupoids 
of germs will be called topologically principal or effective, respectively (so the term “topologically free” will 
not be used).

Throughout this section, θ =
(
{Xs}s∈S , {θs}s∈S

)
will always denote a topological partial action of an 

inverse semigroup S on a topological space X.

Definition 7.2 ([28, Definition 4.1]). Let x ∈ X and s ∈ S. We say that

(1) x is fixed by s if θs(x) = x;
(2) x is trivially fixed by s if there exists e ∈ E(S) such that e ≤ s and x ∈ Xe. (In particular, x is fixed 

by s.)

The partial action θ is effective if for all s ∈ S, the interior of the set of fixed points of s consists of the 
trivially fixed points of s, i.e.,

int {x ∈ Xs∗ : θs(x) = x} =
⋃

{Xe : e ∈ E(S) and e ≤ s} .

A proof analogous to that of [28, Theorem 4.7] proves that effective partial actions correspond to effective 
groupoids of germs.

Proposition 7.3. The groupoid of germs S �θ X is effective if and only if θ is effective.

If θ is a partial action of an inverse semigroup S on a set X, the subset {s ∈ S : x ∈ Xs∗} of S will be 
denoted by Sx.

Definition 7.4. We denote by Λ(θ) the set of points of X which are trivially fixed whenever they are fixed, 
i.e.,

Λ(θ) = {x ∈ X : for all s ∈ Sx, if θs(x) = x then there exists e ∈ E(S) ∩ Sx with e ≤ s} .

We say that θ is topologically principal if Λ(θ) is dense in X.

Similarly to the two descriptions of the germ relation as in Equations (3.1) and (3.2), we can alternatively 
describe Λ(θ) as

Λ(θ) = {x ∈ X : for all s, t ∈ Sx, if θs(x) = θt(x) then there exists u ∈ Sx with u ≤ s, t} . (7.5)

Suppose now that θ is a partial action of S on a discrete space X - that is, a set. As closures and interiors 
of discrete spaces are trivial, we may rewrite both topological principality and effectiveness of θ as follows: 
for all (s, x) ∈ S ∗X, if θs(x) = x then there exists e ∈ Sx ∩ E(S) with e ≤ s. In particular, θ is effective if 
and only if it is topologically principal, thus we can unambiguously call it free.

More generally, by a free partial action θ of S on a topological space X, we mean a partial action which 
is free when X is regarded simply as a set. Equivalently, this is to say that Λ(θ) = X.

In the case that G is a group, a partial action θ of G is free if for all x ∈ X (and for all g ∈ Gx), one has 
that θg(x) = x implies g = 1, where 1 is the identity of G, which is the usual notion of freeness for partial 
group actions.
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It is interesting to note that freeness of a topological partial action implies that the associated groupoid 
of germs is Hausdorff. However, this is not true for topologically principal partial actions.

Proposition 7.6. If the action θ is free, then the groupoid of germs S �X is Hausdorff.

Proof. Suppose [s, x] 
= [t, y]. First assume that s[s, x] 
= s[t, y], that is, x 
= y. As X is Hausdorff, choose 
disjoint neighbourhoods U and V of x and y in X, respectively. Then s−1(U) and s−1(V ) are disjoint neigh-
bourhoods of [s, x] and [t, y], respectively. Similarly, if r[s, x] 
= r[t, y], we may find disjoint neighbourhoods 
of [s, x] and [t, y], respectively.

We are done if we prove that the two cases above are the only possibilities. Suppose then s[s, x] = s[t, y]
and r[s, x] = r[t, y], that is, x = y and θs(x) = θt(y) = θt(x). By freeness of θ, there is u ∈ S, such that 
u ≤ s, t and x ∈ Xu∗ , which is equivalent to stating [s, x] = [t, x] = [t, y], a contradiction. �
Example 7.7. As in Example 3.17, let S = N∪{∞, z} and θ be the Munn representation of S on X = E(S) =
N ∪ {∞}, endowed with the same topology as the one-point compactification of N. This is a topologically 
principal partial action, since Λ(θ) = N is dense in X, however the associated groupoid of germs S �X is 
not Hausdorff.

In the specific setting of topological partial actions of countable groups on locally compact Hausdorff 
and second-countable spaces, [43] adopts a notion of “topological freeness” which happens to coincide (in 
this specific setting) with both effectiveness and topologically principality partial actions (of groups). The 
following proposition can be proven as in [43, Lemma 2.4], as an application of Baire’s Category Theorem.

Proposition 7.8. Suppose that S is countable and that X is locally compact Hausdorff. Then the partial 
action θ of S on X is topologically principal if and only if for all s ∈ S, the set

{x ∈ Xs∗ : if θs(x) = x then there exists e ∈ E(S) ∩ Sx with e ≤ s}

is dense in Xs∗ .

We will now reword topological principality of a partial action in terms of the groupoid of germs S�X.

Proposition 7.9. The groupoid of germs S � X is topologically principal if and only if θ is topologically 
principal.

Proof. As usual, we may assume the action θ is non-degenerate and identify X with (S �X)(0). Then it is 
enough to prove that, under this identification, Λ(θ) is the set of points of X with trivial isotropy, i.e.,

Λ(θ) = {x ∈ X : (S �X)xx = {x}} .

Let x ∈ X be given. First suppose x ∈ Λ(θ) and [s, x] ∈ (S �X)xx. This means that x = r[s, x] = θs(x), so 
there is e ∈ E(S) ∩ Sx, e ≤ s, which implies [s, x] = [e, x] � x.

Conversely suppose (S �X)xx = {x} and let s ∈ Sx with θs(x) = x. This means that [s, x] ∈ (S �X)xx, 
and so [s, x] � x � [e, x] for some idempotent e ∈ Sx. By definition of the groupoid of germs, we can find 
another idempotent f ∈ Sx with se = ef , so in particular ef is an idempotent, ef ≤ s, and x ∈ Xef . This 
proves x ∈ Λ(θ). �

We finish this section by describing how E-unitary inverse semigroups can be characterized in terms of 
their partial actions. Recall that the inverse semigroup S is E-unitary if for all s ∈ S and e ∈ E(S), e ≤ s

implies s ∈ E(S).
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Proposition 7.10. Suppose that S is E-unitary and that θ̃ =
(
{Xγ}γ∈G(S) ,

{
θ̃γ

}
γ∈G(S)

)
is the unique 

partial action of G(S) on X given by Theorem 4.7. Then θ is topologically principal if and only if θ̃ is 
topologically principal.

Proof. We will prove that Λ(θ) = Λ(θ̃). Suppose that x ∈ Λ(θ), and that s ∈ S is such that x = θ̃[s](x) =
θs(x). As x ∈ Λ(θ), there exists e ∈ E(S) ∩ Sx with e ≤ s. In particular, se = e, so [s] = [e] = 1, the unit of 
G(S). This proves that Λ(θ) ⊆ Λ(θ̃).

Conversely, assume x ∈ Λ(θ̃), and that s ∈ Sx is such that x = θs(x) = θ̃[s](x). This implies that 
[s] = 1 = [s∗s], so there is an idempotent e ∈ E(S) with se = s∗se. In particular, s ≥ s∗se, which is 
idempotent, so s is itself an idempotent because S is E-unitary. It follows that s∗s ∈ E(S) ∩ Sx, and 
s∗s = s. This proves that Λ(θ̃) ⊆ Λ(θ). �
Lemma 7.11. Suppose that θ is topologically principal, and that Xs 
= ∅ for all s ∈ S. Then E(S) =
{s ∈ S : θs is idempotent}.

Proof. Suppose θs is an idempotent. Since Xs∗ 
= ∅, choose any x ∈ Xs∗ ∩ Λ(θ). Then θs(x) = x, which 
implies that there is some e ∈ E(S) with e ≤ s, so s is idempotent because S is E-unitary. �
Lemma 7.12. Let S be an inverse semigroup and θ =

(
{Xs}s∈S , {θs}s∈S

)
be a partial action of S a space 

X such that

(i) θ factors through G(S) – there is a partial action θ̃ =
({

X[s]
}

[s]∈G(S) ,
{
θ̃[s]

}
[s]∈G(S)

)
such that 

θ̃[s](x) = θs(x) for all x ∈ Xs∗ ;
(ii) E(S) = {s ∈ S : θs is idempotent}.

Then S is E-unitary.

Proof. Suppose e ∈ E(S), e ≤ s. We have 1 = [e] = [s], thus for all x ∈ Xs∗ , θs(x) = θ̃[s](x) = θ̃1(x) = x, 
so θs is an idempotent and s is idempotent by (ii). �

Given an inverse semigroup S, we will consider the canonical action of S on itself as the action α =(
{Ds}s∈S , {αs}s∈S

)
, where Ds = {t ∈ S : t∗t ≤ ss∗}, and αs(t) = st for t ∈ Ds∗ . (This action is usually 

considered when one proves the Vagner-Preston theorem.)

Theorem 7.13. S is E-unitary if and only if it admits a topologically principal partial action satisfying (i) 
and (ii) of Lemma 7.12.

Proof. One implication is proven in Lemma 7.12. Assume then that S is E-unitary, and let us prove that 
the canonical action α of S is free: Suppose st = t, where tt∗ ≤ s∗s. Then s ≥ stt∗ = tt∗, which is 
idempotent, so s is itself an idempotent. This clearly implies that the action α is free. Condition (i) follows 
from Theorem 4.7, and condition (ii) from Lemma 7.11. �

In fact, condition (ii) of Lemma 7.12 is always satisfied by the canonical action α of an inverse semigroup 
S on itself: if αs is idempotent, then s = ss∗s = αs(s∗s) = s∗s is idempotent. We thus obtain:

Corollary 7.14. S is E-unitary if and only if the canonical action of S factors through G(S).
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8. Continuous orbit equivalence

In [43], Li characterized continuous orbit equivalence of topologically free partial actions of countable 
groups on second-countable, locally compact Hausdorff spaces in terms of diagonal-preserving isomorphisms 
of the associated C∗-crossed products. In this section, we will extend the notion of continuous orbit equiv-
alence to partial actions of inverse semigroups and characterize orbit equivalence of topologically principal 
systems in terms of diagonal-preserving isomorphisms of the associated crossed products.

Throughout this section, θ =
(
{Xs}s∈S , {θs}s∈S

)
and γ =

(
{Yt}t∈T , {γt}t∈T

)
will always denote topo-

logical partial actions of inverse semigroup S and T on topological spaces X and Y , respectively. Recall 
that S ∗X = {(s, x) ∈ S ×X : s ∈ S and x ∈ Xs∗} (and similarly for T ∗Y ). We regard S and T as discrete 
topological spaces.

Definition 8.1. We say that θ and γ are continuously orbit equivalent if there exist a homeomorphism

ϕ : X −→ Y

and continuous maps

a : S ∗X −→ T and b : T ∗ Y −→ S

such that for all x ∈ X, s ∈ Sx, y ∈ Y and t ∈ Ty,

(i) ϕ(θs(x)) = γa(s,x)(ϕ(x));
(ii) ϕ−1(γt(y)) = θb(t,y)(ϕ−1(y)).

Implicitly, we require that a(g, x) ∈ Tϕ(x) and b(t, y) ∈ Sϕ−1(y). We call the triple (ϕ, a, b) a continuous orbit 
equivalence from θ to γ.

Our next goal is to prove that continuous orbit equivalence of topologically principal partial actions 
is equivalent to the isomorphism of the respective groupoids of germs. For this, we need to prove some 
identities related to how the functions a and b above preserve the structure of S and T .

Lemma 8.2. Let (ϕ, a, b) be a continuous orbit equivalence from θ to γ. Assume that X and Y are Hausdorff. 
Then the following implications hold:

(a) [s1, x] = [s2, x] ⇒ [a(s1, x), ϕ(x)] = [a(s2, x), ϕ(x)], for all x ∈ X and s1, s2 ∈ Sx.
(b) [a(s1s2, x), ϕ(x)] = [a(s1, θs2(x))a(s2, x), ϕ(x)] for all x ∈ X, s2 ∈ Sx and s1 ∈ Sθs2 (x).
(c) [b(a(s, x), ϕ(x)), x] = [s, x], for all x ∈ X and s ∈ Sx.

Analogous statements hold with (ϕ−1, b, a) in place of (ϕ, a, b).

Proof.

(a) Let x ∈ X and s1, s2 ∈ Sx. Suppose that [s1, x] = [s2, x]. First, choose s ≤ s1, s2 such that x ∈ Xs∗ . 
Then choose an open neighbourhood U ⊆ Xs∗ of x ∈ X such that

a(s1, x̃) = a(s1, x) and a(s2, x̃) = a(s2, x) whenever x̃ ∈ U.
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Then for all x̃ ∈ U ∩ ϕ−1(Λ(γ)) and for i = 1, 2, we have [si, ̃x] = [s, ̃x], so

γa(si,x)(ϕ(x̃)) = γa(si,x̃)(ϕ(x̃)) = ϕ(θsi(x̃)) = ϕ(r[si, x̃]) = ϕ(r[s, x̃]).

It follows that γa(s1,x)(ϕ(x̃)) = γa(s2,x)(ϕ(x̃)). As ϕ(x̃) ∈ Λ(γ), the description of Λ(γ) as in Equation 
(7.5) implies that

[a(s1, x), ϕ(x̃)] = [a(s2, x), ϕ(x̃)] for all x ∈ U ∩ ϕ−1(Λ(γ)). (8.3)

In particular, [a(si, x), ϕ(x̃)] and [a(si, x), ϕ(x)] belong to the bisection [a(s1, x), ϕ(U)], which is Haus-
dorff.
Since γ is topologically principal, Λ(γ) is dense in Y , so U ∩ ϕ−1(Λ(γ)) is dense in U and therefore we 
may take the limit x̃ → x in Equation (8.3) and conclude that [a(s1, x), ϕ(x)] = [a(s2, x), ϕ(x)] because 
limits are unique in Hausdorff spaces.

(b) Choose an open neighbourhood U of x ∈ X such that

a(s1s2, x̃) = a(s1s2, x), a(s1, θs2(x̃)) = a(s1, θs2(x)) and a(s2, x̃) = a(s2, x)

for all x̃ ∈ U . Then for all x̃ ∈ U ∩ ϕ−1(Λ(γ))

γa(s1s2,x̃)(ϕ(x̃)) = ϕ(θs1s2(x̃)) = ϕ(θs1(θs2(x̃))) = γa(s1,θs2 (x̃))(ϕ(θs2(x̃)))

= γa(s1,θs2 (x̃))(γa(s2,x̃)(ϕ(x̃))) = γa(s1,θs2 (x̃))a(s2,x̃)(ϕ(x̃))

so, the same way as in item (a), the given property of U and the definition of Λ(γ) imply that 
[a(s1s2, x), ϕ(x̃)] = [a(s1, θs2(x))a(s2, x), ϕ(x̃)]. Since ϕ−1(Λ(γ)) ∩ U is dense in the Hausdorff space 
U , we conclude that [a(s1s2, x), ϕ(x)] = [a(s1, θs2(x))a(s2, x), ϕ(x)] by taking the limit x̃ → x.

(c) Similarly to the previous items, take neighbourhoods U of x and V of ϕ(x) such that

a(s, x̃) = a(s, x) and b(a(s, x), ỹ) = b(a(s, x), ϕ(x))

whenever x̃ ∈ U and ỹ ∈ V . Then for all x̃ ∈ U ∩ ϕ−1(V ) ∩ Λ(θ),

θb(a(s,x̃),ϕ(x̃))(x̃) = ϕ−1(γa(s,x̃)(ϕ(x̃))) = ϕ−1(ϕ(θs(x̃))) = θs(x)

so the properties of U , V and Λ(θ) yield [b(a(s, x), ϕ(x)), ̃x] = [s, ̃x] and again taking x̃ → x gives us 
the desired result. �

Theorem 8.4. Suppose that θ and γ are topologically principal, continuously orbit equivalent partial actions, 
and that X and Y are Hausdorff. Then S �X and T � Y are isomorphic as topological groupoids.

Proof. Let (ϕ, a, b) be a continuous orbit equivalence from θ to γ (as in Definition 8.1). Then the map

Φ: S �X → T � Y, Φ[s, x] = [a(s, x), ϕ(x)]

is a continuous groupoid homomorphism. Indeed, by Lemma 8.2(a), Φ is well-defined, and item (b) of that 
lemma implies that Φ is a homomorphism. As a and ϕ are continuous, it follows that Φ is continuous. 
Similarly, the map

Ψ: T � Y → S �X, Ψ[t, y] = [b(t, y), ϕ−1(y)]
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is a continuous groupoid homomorphism, and Ψ is a left inverse to Φ by Lemma 8.2(c). The same arguments 
with (ϕ−1, b, a) in place of (ϕ, a, b) prove that it is also a right inverse. �

We will now be interested in constructing an orbit equivalence for two actions from an isomorphism of 
the corresponding groupoids of germs. Note that in general the continuous maps a and b in the definition 
of continuous orbit equivalence take values in discrete spaces (namely, the corresponding semigroups), and 
so X and Y are required to have sufficiently many clopen sets in order for a continuous orbit equivalence 
between the corresponding partial actions to exist. Thus we concentrate on spaces which have sufficiently 
many clopen sets and partial actions which respect this structure.

The required property for the topological spaces that we will need to consider is ultraparacompactness, 
which is a stronger version of zero-dimensionality and covers most cases of interest (namely locally compact 
Hausdorff and zero-dimensional spaces which are also second countable or compact; see Example 8.6). 
We refer to [22,68] and the references therein to finer properties, the history, and nontrivial examples of 
ultraparacompact spaces.

Definition 8.5. A Hausdorff topological space X is ultraparacompact if every open cover U of X admits a 
refinement by clopen pairwise disjoint sets.

Alternatively (see [22, Proposition 1.2]), a Hausdorff space X is ultraparacompact if and only if it is 
paracompact,4 and if whenever F ⊆ O ⊆ X, where F is closed and O is open, there is a clopen C ⊆ X such 
that F ⊆ C ⊆ O.

Example 8.6. Recall that a topological space X is Lindelöf if every open cover of X admits a countable 
subcover. All compact spaces are Lindelöf, and all second-countable spaces are Lindelöf, and there are spaces 
which are compact but not second-countable and vice-versa.

Let us prove that every Lindelöf, Hausdorff and zero-dimensional space X is ultraparacompact. Let U
be an open cover of X. Since X is zero-dimensional, there exists a refinement V of U by clopen sets, and 
we may assume that V is countable as X is Lindelöf, say V = {Vn : n ∈ N}. Letting V0 = ∅, and defining 
Wn = Vn \

⋃n−1
i=0 Vi for all n ≥ 1, we obtain a refinement W = {Wn : n ∈ N} of U by pairwise disjoint 

clopen sets.

Definition 8.7. The topological partial action θ = ({Xs}s∈S , {θs}s∈S) is almost ample if X is locally compact 
Hausdorff and all the subsets Xs (s ∈ S) are ultraparacompact. (In particular, X is zero-dimensional.)

The class of almost ample partial actions is strictly larger class than the class of “ample actions” consid-
ered in [63, Definition 5.2], as Example 8.6 shows.

Lemma 8.8. Suppose that the partial actions θ and γ are almost ample. Let ϕ : X → Y be a continuous 
function. Then the following are equivalent:

(a) There exist a continuous function a : S ∗ X → T such that for every s ∈ S and x ∈ Xs∗ , ϕ(θs(x)) =
γa(s,x)(ϕ(x));

(b) For every s ∈ S and every x ∈ Xs∗ , there exists a neighbourhood U ⊆ Xs∗ of x and t ∈ T such that 
ϕ(θs(x̃)) = γt(ϕ(x̃)) for all x̃ ∈ U .

Proof. Assuming that (a) is valid and given (s, x) ∈ S∗X, we take t = a(s, x) and U = {y ∈ Xs∗ : a(s, y) = t}, 
which is open since T is discrete and a is continuous. Then the statement in (b) is valid.

4 A topological space X is paracompact if every open cover of X admits a locally finite refinement.
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Assume then that (b) is valid. Given s ∈ S, the condition in (b) and ultraparacompactness of Xs∗ allow 
us to find a clopen partition Us, and a family {tU : U ∈ Us} ⊆ T such that for all U ∈ Us and all x ∈ U , 
ϕ(θs(x)) = γtU (ϕ(x)).

We define a : S ∗ X → T , by setting a(s, x) = tU , where U is chosen as the unique element of Us such 
that x ∈ U . Then (a) holds. �

We are now ready to prove that topological isomorphisms between groupoids of germs of almost ample 
topological partial actions yield a continuous orbit equivalence between the respective partial actions.

Theorem 8.9. Suppose that θ and γ are almost ample topological partial actions, and that the groupoids of 
germs S �X and T � Y are topologically isomorphic. Then θ and γ are continuously orbit equivalent.

Proof. Let Φ: S � X → T � Y be an isomorphism of topological groupoids. As (S � X)(0) = X and 
(T � Y )(0) = Y , the restriction

ϕ := Φ|X : X → Y

is a homeomorphism.
We will use Lemma 8.8. Let s ∈ S and x ∈ Xs∗ be fixed. Since [s, Xs∗ ] is a neighbourhood of [s, x], then 

Φ[s, Xs∗ ] is a neighbourhood of Φ[s, x], so we may choose a basic neighbourhood [t, V ] of T �Y , where t ∈ T

and V ⊆ Yt∗ , such that Φ[s, x] ∈ [t, V ]. Consider the neighbourhood U = ϕ−1(V ) ∩Xs∗ of x.
If a ∈ [t, V ], then r(a) = γt(s(a)). It follows that for all x̃ ∈ U , we have

ϕ(θs(x̃)) = Φ(r[s, x̃]) = r(Φ[s, x̃]) = γt(s(Φ[s, x̃])) = γt(Φ(s[s, x])) = γt(ϕ(x̃)).

Thus Lemma 8.8(b) holds, which implies item (a) of the same lemma. This yields us the function a : S ∗
X → T satisfying property (i) of Definition 8.1. The function b : T ∗ Y → S satisfying Definition 8.1(ii) is 
constructed in a similar manner, and we therefore obtain a continuous orbit equivalence from θ to γ. �
Example 8.10. In some sense, the hypothesis that the domains of the partial actions are ultraparacompact 
is the weakest condition possible one needs to assume to obtain Theorem 8.9.

For example, suppose that X is Hausdorff, but not ultraparacompact (for example, X = ω1, the first 
uncountable ordinal with the order topology, which is in fact locally compact and zero-dimensional).

Let U be any clopen cover of X which does not admit any refinement by pairwise disjoint clopen sets. 
We let S be the collection of all finite intersections of elements of U , which is a semigroup (actually, a 
semilattice) under intersection, and let θ = ({XA}A∈S , {θA}A∈S) be the natural action of S on X: XA = A

and θA = idA, the identity of A, for all A ∈ S.
Also, let G = {1} be the trivial group and γ the trivial action of G on X: γ1 = idX .
Then both S�X and G �X are isomorphic, as topological groupoids, to X. Let us prove, however, that 

θ and γ are not continuously orbit equivalent. Suppose, on the contrary, that (ϕ, a, b) were a continuous 
orbit equivalence from θ to γ. For all x ∈ X, we have

ϕ(x) = ϕ(γ1(x)) = θb(1,x)(ϕ(x))

which in particular implies that

ϕ(x) ∈ b(1, x). (8.11)
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For each A ∈ S, we consider the subset UA = {x ∈ X : b(1, x) = A} of X. The collection V :=
{ϕ(UA) : A ∈ S} is a clopen partition of X, and Equation (8.11) means that ϕ(UA) ⊆ A for each A ∈ S. 
Thus V is a refinement of S, and therefore a refinement of U , contradicting the choice of U .

8.1. Topological full semigroup

We will use a similar terminology to that of [47]. For each compact-open bisection U ∈ Ga of an ample 
groupoid G, we denote by τU the homeomorphism given by the canonical action of Ga on G(0), namely 
τU = r ◦(s |−1

U ) : s(U) → r(U). Recall from Example 2.12 that U �→ τU is a homomorphism from Ga to 
I(G(0)).

Definition 8.12. The topological full semigroup of an ample groupoid is the semigroup

[[G]] = {τU : U ∈ Ga}

Example 8.13. If θ is a partial action of an inverse semigroup S on a locally compact Hausdorff and zero-
dimensional space X, then the topological full semigroup [[S�X]] is the set of all partial homeomorphisms 
ϕ : U → V of X for which there are s1, . . . , sn ∈ S and compact-open U1, . . . , Un ⊆ X such that

(i) U =
⋃n

i=1 Ui;
(ii) Ui ⊆ Xs∗i for all i; and
(iii) ϕ|Ui

= θsi |Ui
for all i.

The proposition below was proven in [57, Corollary 3.3] when one considers all open bisections instead 
of only compact-open ones. In any case, we provide a short and direct proof of it.

Proposition 8.14. Suppose G is an ample groupoid. Then the homomorphism τ : Ga → [[G]] is an isomorphism 
if and only if G is effective.

Proof. First suppose that G is effective, that is, G(0) = int(Iso(G)). We need to prove that τ is injective, so 
assume τU = τV . Then τV −1U = τ−1

V ◦ τV = ids(V ), which means that V −1U ⊆ Iso(G). Since V −1U is open, 
we obtain V −1U ⊆ G(0), or equivalently s(V −1U) = V −1U .

Moreover, from ids(V ) = τV −1U we also have equality of the domains, s(V ) = s(V −1U), which implies

V = V s(V ) = V s(V −1U) = V V −1U ⊆ U,

and symmetrically we obtain U ⊆ V . Therefore U = V and τ is injective.
Conversely, suppose int(Iso(G)) 
= G(0). Take any nonempty compact-open bisection U ⊆ int(Iso(G))

which is not contained in G(0). Then U 
= s(U) but τU = τs(U), so τ is not injective. �
Let us now summarize the connections between continuous orbit equivalence of partial actions, isomor-

phisms of groupoids of germs, isomorphisms of topological full semigroups, diagonal-preserving isomorphisms 
of Steinberg algebras, and consequently diagonal-preserving isomorphisms of the associated crossed prod-
ucts. To do so, we will use [64, Corollary 5.8], which is an improvement of [13, Theorem 3.1].

Note that each individual implication in the next theorem is valid under weaker hypotheses (e.g. (1) ⇐⇒
(2) does not require that the groupoids of germs are Hausdorff).

Theorem 8.15. Let R be an indecomposable commutative unital ring and suppose that θ and γ are almost 
ample and topologically principal partial actions, and that the groupoids of germs S � X and T � Y are 
Hausdorff. Then the following are equivalent:
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(1) the partial actions θ and γ are continuously orbit equivalent;
(2) the groupoids of germs S �X and T � Y are topologically isomorphic;
(3) the inverse semigroups (S �X)a and (T � Y )a are topologically isomorphic;
(4) the inverse semigroups [[S �X]] and [[T � Y ]] are isomorphic;
(5) there exists a diagonal-preserving (ring or R-algebra) isomorphism between the Steinberg algebras 

AR(S �X) and AR(T � Y );
(6) there exists a diagonal-preserving (ring or R-algebra) isomorphism between the crossed products 

AR(X) � S and AR(Y ) � T .

Proof. (1) ⇐⇒ (2) follows from Theorems 8.4 and 8.9.
(2) ⇐⇒ (3) follows from non-commutative Stone duality, which states, in simple terms, that it is possible 

to reconstruct, in purely abstract semigroup-theoretical terms, any Hausdorff ample groupoid G from the 
semigroup Ga. See, for example, [42, Theorem 3.23] for a general result, or see [41] for a more direct proof 
in the case that G(0) is compact, and which may be easily adapted to the non-compact case. (Note that the 
Hausdorff Boolean groupoids of [42] corresponds to the ample Hausdorff groupoids that we consider.)

(3) ⇐⇒ (4): Since the actions θ and γ are topologically principal, then the groupoids of germs S�X and 
T �Y are topologically principal and, as we also assume that they are Hausdorff, then they are effective by 
[57, Proposition 3.6]. The desired equivalence then follows from Proposition 8.14.

(2) ⇐⇒ (5) follows from [64, Corollary 5.8].
(5) ⇐⇒ (6) follows from Theorem 5.10. �

9. Orbit equivalence of graphs and Leavitt path algebras

In [9], the notion of continuous orbit equivalence for directed graphs was introduced, following Matsumo-
to’s notion of continuous orbit equivalence for topological Markov shifts (see [46]). We will compare this 
notion with the continuous orbit equivalence of canonical actions of inverse semigroups associated to directed 
graphs. A similar study was made by Li in [43], who considered the case of partial actions of free groups 
generated by edges of a graph. We reiterate that we do not make any assumptions on the second-countability 
of topological spaces, or countability of graphs.

9.1. Directed graphs

A directed graph is a tuple E = (E0, E1, s, r), where E0 is a set of vertices, E1 is a set of edges and 
s, r : E1 → E0 are functions, called the source and range.

A path in E is a finite or infinite sequence μ = (μi)i = μ1μ2 · · · , where μi ∈ E1 and s(μi+1) = r(μi) for 
each i.

Remark 9.1. Even though every groupoid has a structure of graph, the conventions for “concatenation” do 
not agree: arrows/edges in groupoids are usually thought of functions, and thus they are read from right 
to left. On the other hand, the usual convention for paths in a graph is to read them from left to right. 
Nevertheless, this shall bring no confusion to our discussion.

The length of a finite path μ is the number |μ| of edges in μ, that is, if μ = μ1 · · ·μn, where μi ∈ E1, 
then |μ| = n. Each vertex in E0 is also regarded as a path of length 0, and each edge in E1 is a path of 
length 1. So given an integer n ≥ 0, we denote En the set of paths of length n. The set of finite paths of E
will be denoted by E	 =

⋃∞
0≤n<∞ En.

The length of an infinite path μ is simply |μ| = ∞, and the set of all infinite paths is denoted E∞.
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We extend the source map to E	 ∪ E∞, and the range map to E	 as follows: If v ∈ E0 is a vertex, 
then s(v) = r(v) = v; If μ = μ1 · · · is a path (finite or infinite) of length |μ| ≥ 1, then s(μ) = s(μ1); If 
μ = μ1 · · ·μ|μ| is finite, we set r(μ) = r(μ|μ|).

Paths can be concatenated if their range and source agree, as long as we take the proper care with 
vertices: if v is a vertex and μ ∈ E	 is such that r(μ) = v, then we specify that μv = μ, and similarly if 
ν ∈ E	 ∪ E∞ is such that s(ρ) = v, we set vρ = ρ.

If μ = μ1 · · ·μ|μ| ∈ E	 and ν = ν1 · · · ∈ E	 ∪ E∞ are paths of length ≥ 1 with r(μ) = s(ν), we set 
μν = μ1 · · ·μ|μ|ν1 · · · .

Note that we always have |μν| = |μ| + |ν| whenever the concatenation μν is defined.
A vertex v is called a sink if s−1(v) = ∅ and it is called an infinite emitter if |s−1(v)| = ∞. If v ∈ E0 is 

either a sink or an infinite emitter then it is called singular.
The boundary path space of E is defined as

∂E := E∞ ∪ {μ ∈ E	 : r(μ) is singular} .

For a finite path μ ∈ E	, we define the cylinder set

Z(μ) = {μx | x ∈ ∂E and r(μ) = s(x)} ⊆ ∂E,

and for a finite set F ⊆ s−1(r(μ)) (possibly empty), we define the generalized cylinder set

Z(μ, F ) = Z(μ) \
⋃
e∈F

Z(μe) = {μx | x ∈ ∂E, x1 /∈ F and r(μ) = s(x)}.

The generalized cylinder sets provide a basis of compact-open sets for a Hausdorff topology on ∂E (see [69, 
Theorem 2.1]).

9.2. Graph semigroup

We will associate an inverse semigroup SE to the graph E = (E0, E1, s, r). This construction was first 
made by Ash and Hall in [2] for directed simple graphs, and may be easily adapted to the case of non-simple 
graphs (e.g. as in [53, p. 158]). Let

SE = {(μ, ν) | μ, ν ∈ E	 and r(μ) = r(ν)} ∪ {0}.

The product is determined by setting 0 as a zero (absorbing) element, and

(μ, ν)(ζ, η) =

⎧⎪⎪⎨⎪⎪⎩
(μ, ηγ), if ν = ζγ for some γ ∈ E	

(μγ, η), if ζ = νγ for some γ ∈ E	

0, otherwise.
(9.2)

This operation makes SE into an inverse semigroup, with the inverse given by (μ, ν)∗ = (ν, μ) and 0∗ = 0
(see [54, Proposition 3.1] for a proof). The set E(SE) of idempotents of SE coincides with the set of all 
pairs (μ, μ), where μ ∈ E	, and the zero element 0.

Notice that the product of two pairs (μ, ν), (ζ, η) is non-zero if, and only if, ν is an initial segment of ζ
or vice-versa. In this case, we say that ν and ζ are comparable. It is easy to see that (μ, ν) ≤ (ζ, η) if and 
only if there is γ ∈ E	 such that (μ, ν) = (ζγ, ηγ).
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We will now describe the canonical action of SE on the boundary path space ∂E. Given (μ, ν) ∈ SE \{0}
we let

θ(μ,ν) : Z(ν) → Z(μ), νx �→ μx, (9.3)

and θ0 : ∅ → ∅ the empty map. The verification that the collection

θ =
(
{Z(μ)}(μ,ν)∈SE

,
{
θ(μ,ν)

}
(μ,ν)∈SE

)
is a topological (global) action of SE on ∂E is straightforward, by considering the different cases as in 
Equation (9.2). The groupoid of germs SE � ∂E is ample since ∂E is locally compact Hausdorff and 
zero-dimensional.

9.3. The shift map and boundary path groupoid

For each n ∈ N, let ∂E≥n = {x ∈ ∂E : |x| ≥ n}. Then ∂E≥n =
⋃

μ∈En Z(μ) is an open subset of ∂E. We 
define the one-sided shift map σ : ∂E≥1 → ∂E as follows: given x = x1x2 · · · ∈ ∂E≥1,

σ(x) =
{
r(x), if |x| = 1
x2 · · · , if |x| ≥ 2

(9.4)

The n-fold composition σn is defined on ∂E≥n and we understand σ0 : ∂E → ∂E as the identity map. 
Following [9], the boundary path groupoid of E is

GE = {(x,m− n, y) ∈ ∂E × Z× ∂E : σm(x) = σn(y)}
= {(μx, |μ| − |ν|, νx) : μ, ν ∈ E	, x ∈ ∂E, r(μ) = r(ν) = s(x)},

where the product and inverse are defined as

(x, k, y)(y, l, z) = (x, k + l, z), and (x, k, y)−1 = (y,−k, x).

As such, GE is a groupoid with unit space G(0)
E = {(x, 0, x) : x ∈ ∂E}, which we identify with ∂E. To put a 

topology on GE , we consider finite paths μ, ν ∈ E	 with r(μ) = r(ν), and a finite set of edges F ⊆ s−1(r(μ)). 
Then we define the sets

Z(μ, ν) :=
{
(μx, |μ| − |ν|, νx) : x ∈ s−1(r(μ))

}
and

Z(μ, ν, F ) := Z(μ, ν) \
⋃
e∈F

Z(μe, νe) =
{

(μx, |μ| − |ν|, νx) : x ∈ s−1(r(μ)) \
⋃
e∈F

Z(e)
}
.

The collection of these sets provides a basis of compact-open bisections for a Hausdorff topology on GE

(see [39, Proposition 2.6] for more details in the case of row-finite graphs and [54, Section 3] for the general 
case).

Proposition 9.5. The groupoid of germs SE � ∂E, associated to the canonical action of SE on ∂E and the 
boundary path groupoid GE are isomorphic as topological groupoids.
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Proof. The map

ψ : SE ∗ ∂E → GE , ψ((μ, ν), x) = (θ(μ,ν)(x), |μ| − |ν|, x)

is a surjective semigroupoid homomorphism. Given ((μi, νi), xi) ∈ SE ∗ ∂E (i = 1, 2), we need to verify the 
equivalence

ψ((μ1, ν1), x1) = ψ((μ2, ν2), x2) ⇐⇒ ((μ1, ν1), x1) ∼ ((μ2, ν2), x2), (9.6)

where ∼ is the germ equivalence relation (Equation (3.2)). This is enough, because it implies that ψ factors 
(uniquely) to a (semi)groupoid isomorphism between SE � ∂E and GE .

First assume that ψ((μ1, ν1), x1) = ψ((μ2, ν2), x2). This is equivalent to the following three statements 
(simultaneously):

(i) x1 = x2, i.e., ν1x
′
1 = ν2x

′
2;

(ii) |μ1| − |ν1| = |μ2| − |ν2|;
(iii) μ1x

′
1 = μ2x

′
2.

Item (i) implies that ν1 and ν2 are comparable, and similarly item (iii) implies that μ1 and μ2 are also 
comparable. Item (ii), in fact, implies that either both ν1 and μ1 are subpaths of ν2 and μ2, respectively, or 
that the reverse is true. By symmetry, let us assume that ν1 and μ1 are subpaths of ν2 and μ2, respectively, 
say ν2 = ν1p and μ2 = μ1q. From item (i) we obtain px′

2 = x′
1, and thus from (iii), μ1px

′
2 = μ1x

′
1 = μ2x

′
2 =

μ1qx
′
2, and therefore p = q. This means that (μ2, ν2) = (μ1q, ν1q), which is smaller than (μ1, ν1). Remark 3.3

then yields ((μ1, ν1), x1) ∼ ((μ2, ν2), x2).
We leave the converse implication to the reader.
Therefore ψ factors through a groupoid isomorphism Ψ: SE � ∂E → GE . To verify that Ψ is a home-

omorphism, note that a basic (nonempty) open subset of SE � ∂E has the form [(μ, ν), Z(νη, F )], where 
(μ, ν) ∈ SE , η ∈ s−1(r(ν)) and F is a finite subset of r−1(s(η)). Then

Ψ([(μ, ν), Z(νη, F )]) =
{

(μηx, |μ| − |ν|, νηx) : x ∈ s−1(r(η)) \
⋃
e∈F

Z(e)
}

= Z(μη, νη, F )

and these are precisely the basic open subsets of GE . Therefore, Ψ is a homeomorphism. �
A loop or cycle in a graph E is a finite path y ∈ E	 such that |y| ≥ 1 and s(y) = r(y). An exit of a loop 

y = y1 · · · y|y| (where yi ∈ E1) is an edge e for which there is i such that s(e) = s(yi) and e 
= yi. The graph 
E is said to satisfy Condition (L) if every loop has an exit.

Definition 9.7 ([9, Definition 3.1]). Two directed graphs E = (E0, E1, r, s) and F = (F 0, F 1, r, s) are 
continuously orbit equivalent if there exists a homeomorphism ϕ : ∂E → ∂F together with continuous maps 
k, l : ∂E≥1 → N and k′, l′ : ∂F≥1 → N such that

σ
k(x)
F (ϕ(σE(x))) = σ

l(x)
F (ϕ(x)), for all x ∈ ∂E≥1, (9.8)

and

σ
k′(y)
E (ϕ−1(σF (x))) = σ

l′(y)
E (ϕ−1(y)), for all y ∈ ∂F≥1. (9.9)

Here, σE and σF denote the shift maps on E and F , respectively.
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The following is an analogue of [9, Proposition 2.3]. We provide a simple proof for completeness.

Proposition 9.10. Let E = (E0, E1, r, s) be a directed graph. Then E satisfies Condition (L) if and only if 
the canonical action θ of SE on ∂E is topologically principal (or equivalently, GE is topologically principal).

Proof. Let us say that an element x ∈ ∂E is cyclic if there exists x′ ∈ E	 with |x′| ≥ 1 such that x = x′x, 
or equivalently x = x′x′x′ · · · , and that x is periodic if x = νy for some ν ∈ E	 and some cyclic y.

First suppose that E satisfies Condition (L). Consider the set X=(E	∩∂E) ∪{x ∈ E∞ : x is not periodic}. 
Condition (L) implies that X is dense in ∂E. We are done by proving that X ⊆ Λ(θ). Suppose (μ, ν) ∈ SE

and x = νy ∈ Z(ν) is such that θ(μ,ν)(x) = x. Let us prove that μ = ν. We have

μy = θ(μ,ν)(x) = x = νy. (9.11)

It follows that μ and ν are comparable, so to prove that μ = ν it suffices to prove that |μ| = |ν|. Without 
loss of generality, let us assume that μ = νμ′ for some μ′. From (9.11) we obtain y = μ′y. However, y is 
not cyclic, since x is not periodic, so |μ′| = 0, and |μ| = |νμ′| = |ν|. We conclude that θ is topologically 
principal.

Conversely, suppose E does not satisfy Condition (L), and let y be any loop in E without exit. The element 
x = yyy · · · is isolated in ∂E, because Z(y) = {x}, and θ(y,yy)(x) = x. However, the only idempotent in SE

which is smaller than (y, yy) is the zero, and θ0 is the empty function, thus Z(y) ∩ Λ(θ) = ∅. This proves 
that Λ(θ) is not dense in ∂E, therefore θ is not topologically principal. �

We will now compare continuous orbit equivalence of graphs and continuous orbit equivalence of the 
canonical action of the associated semigroups. The following is analogue to [43, Lemma 3.8], but we do not 
require that the graphs satisfy Condition (L).

Proposition 9.12. Let E = (E0, E1, s, r) and F = (F 0, F 1, s, r) be directed graphs. Then E and F are 
continuously orbit equivalent if and only if the canonical actions θE and θF associated to E and F are 
continuously orbit equivalent.

Proof. Assume that (ϕ, a, b) is a continuous orbit equivalence between θE and θF . Given x ∈ ∂E≥1, let us 
denote by x1 ∈ E1 the first edge of x (i.e., x = x1y for some y ∈ ∂E). The map x �→ x1 is locally constant 
on ∂E≥1 – namely, it is the constant map x �→ e on Z(e) for each e ∈ E1, and 

{
Z(e) : e ∈ E1} is a partition 

of ∂E≥1.
Let α, β : ∂E≥1 → SE be functions such that a((r(x1), x1), x) = (α(x), β(x)) for all x ∈ ∂E≥1, and define 

k(x) = |α(x)| and l(x) = |β(x)|. As a is continuous, then k and l are continuous. Moreover, we have

ϕ(σE(x)) = ϕ(θE(r(x1),x1)(x)) = θF(α(x),β(x))(ϕ(x)),

which means that ϕ(σE(x)) = α(x)y and ϕ(x) = β(x)y, for some y ∈ ∂F . Thus

σ
k(x)
F (ϕ(σE(x))) = σ

|α(x)|
F (α(x)y) = y = σ

|β(x)|
F (β(x)y) = σ

l(x)
F (ϕ(x))

and so (9.8) holds. To prove (9.9), k′ and l′ are defined in a similar way, using b.
Conversely, suppose ϕ : ∂E → ∂F is a homeomorphism and that there are maps k, l : ∂E≥1 → N

satisfying, for all x ∈ ∂E≥1,

σ
k(x)
F (ϕ(σE(x))) = σ

l(x)
F (ϕ(x)). (9.13)
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We must show that there is a continuous function a : SE ∗ ∂E → SF such that

ϕ(θE(μ,ν)(x)) = θFa(μ,ν,x)(ϕ(x)), (9.14)

for all (μ, ν) ∈ SE and x ∈ ZE(ν).
By Lemma 8.8, it is sufficient to prove that for all (μ, ν) ∈ SE and for all x ∈ Z(ν), there exists an open 

set U containing x and (α, β) ∈ SF such that for all x̃ ∈ U ,

ϕ(θE(μ,ν)(x̃)) = θF(α,β)(ϕ(x̃)).

Let us separate the proof in cases:

(1) Assume that |μ| = |ν| = 0 (which implies that μ = ν).
In this case, we simply take U = ZE(ν) ∩ ϕ−1(ZF (s(ϕ(x)))). Then for all x̃ ∈ U ,

ϕ(θE(μ,ν)(x̃)) = ϕ(x̃) = θF(s(ϕ(x)),s(ϕ(x)))(ϕ(x̃)),

so we are done.
(2) Assume that |μ| = 0 and |ν| = 1.

Let K = k(x) and L = l(x). For all x̃ ∈ ZE(ν) ⊆ ∂E≥1, we have

θE(μ,ν)(x̃) = σE(x̃)

Let U1 = ZE(ν) ∩ k−1(K) ∩ l−1(L). Then for all x̃ ∈ U1, Equation (9.13) implies that

σK
F (ϕ(θE(μ,ν)(x̃)) = σL

F (ϕ(x̃)) (9.15)

Equation (9.15) with x̃ = x implies that there exist (α, β) ∈ SF , with |α| = K and |β| = L, such that

ϕ(θE(μ,ν)(x)) = θF(α,β)(ϕ(x)).

Thus setting U = U1 ∩ ϕ−1(ZF (ν)) ∩ (ϕ ◦ θE(μ,ν))−1(ZF (μ)), we obtain Equation (9.14) on U .
(3) Assume that |μ| = 0 and |ν| ≥ 1.

Write ν = ν1 · · · ν|ν|, where νi ∈ E1. Notice that

(μ, ν) = (μ, ν|ν|)(s(ν|ν|), ν|ν|−1) · · · (s(ν3), ν2)(s(ν2), ν1)

In other words, there are elements e1, . . . , e|ν| of the form considered in the previous case, such that 
(μ, ν) = e|ν| · · · e1. Applying the previous case, for each k ≥ 1 we may find a neighbourhood Uk of 
θek−1···e1(x) (or simply x in the case k = 1) and an element fk ∈ SF such that

ϕ ◦ θEek = θFfk ◦ ϕ

on Uk. Then U = U1 ∩
⋂|ν|

k=2 θ
−1
ek−1···e1(Uk) is a neighbourhood of x such that

ϕ ◦ θE(μ,ν) = ϕ ◦ θEe|ν|
◦ · · · ◦ θEe1 = θFf|ν|

◦ · · · ◦ θFf1
◦ ϕ = θFf|ν|···f1

◦ ϕ,

since θE and θF are actions.
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(4) Assume that |μ| ≥ 1 and |ν| = 0.
Applying the case 3 to (ν, μ), there exists a neighbourhood V of θE(μ,ν)(x) and (β, α) ∈ SF such that 
ϕ ◦ θE(ν,μ) = θF(β,α) ◦ ϕ on V . In other words, ϕ ◦ θE(μ,ν) = θF(α,β) ◦ ϕ on the neighbourhood U = θE(ν,μ)(V )
of x, as we wanted.

(5) Assume that |μ|, |ν| ≥ 1. In this case, (μ, ν) = (μ, r(μ))(r(μ), ν), so we may apply cases 3 and 4, and 
proceed in a manner similar to that of case 3.

Since we have exhausted all possibilities for (μ, ν), the theorem is proven. �
The Leavitt path algebra LR(E) of a directed graph E with coefficients in a unital commutative ring R

is the R-algebra generated by a set {v ∈ E0} of pairwise orthogonal idempotents and a set of variables {
e, e∗ : e ∈ E1} satisfying the relations:

(i) s(e)e = e = er(e) for all e ∈ E1;
(ii) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1;
(iii) e∗f = δe,fr(e) for all e, f ∈ E1 (where δx,y denotes the Kronecker delta);
(iv) v =

∑
e∈s−1(v) ee

∗ whenever v is not a sink nor an infinite emitter.

The Leavitt path algebra LR(E) is isomorphic to the Steinberg algebra AR(GE) of the boundary path 
groupoid GE (see [16, Example 3.2]). By Proposition 9.5 the groupoids GE and SE � ∂E are isomorphic, so 
by Theorem 5.10 we obtain the isomorphisms

LR(E) ∼= AR(GE) ∼= AR(SE � ∂E) ∼= AR(∂E) � SE .

Finally, from Propositions 9.12 and Theorem 8.15, we obtain the following theorem:

Theorem 9.16. Let E and F be directed graphs that satisfy the Condition (L) and R an indecomposable 
commutative unital ring. Then the following are equivalent:

(i) the graphs E and F are continuously orbit equivalent;
(ii) the actions θE and θF are continuously orbit equivalent;
(iii) SE � ∂E and SF � ∂F are isomorphic as topological groupoids;
(iv) GE and GF are isomorphic as topological groupoids;
(v) there exists a diagonal-preserving isomorphism between the Steinberg algebras AR(GE) and AR(GF );
(vi) there exists a diagonal-preserving isomorphism between the skew inverse semigroup rings AR(∂E) �SE

and AR(∂F ) � SF ;
(vii) there exists a diagonal-preserving isomorphism between the Leavitt path algebras LR(E) and LR(F ).
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