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We aim to reconstruct a monoid scheme X from the category of quasi-coherent 
sheaves over it. This is much in the vein of Gabriel’s original reconstruction theorem.
Under some finiteness condition on a monoid schemes X, we show that the 
localisations of the topos Qc(X) of quasi-coherent sheaves on X are in a one-to-
one correspondence with open subsets of X, while the elements of X correspond to 
the topos points of Qc(X). This allows us to reconstruct X from Qc(X).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

According to the classical result of Gabriel [6], a Noetherian scheme S can be reconstructed from the 
category of quasi-coherent sheaves over S. The aim of this work is to modify an argument by Gabriel, to 
show that a similar statement is true for a monoid scheme of finite type.

To state our result, let us fix some terminology and notations. See any book in topos theory, or the 
main body of this paper for the terms used here. In what follows, S denotes the category of sets, which 
is the terminal topos. For a category A, one denotes the centre of A by Z(A), which, by definition, is 
the commutative monoid of all natural transformation of the identity functor idA to itself. We denote the 
collection of all isomorphism classes of points of a topos T by F(T ), while Loc(T ) denotes the poset of 
all localisations of T . For a localisation D of T and p = (p∗, p∗) : S → T a topos point of T , we write 
p � D if p∗(S) ∈ D for every set S ∈ S .

Let X be a monoid scheme. The poset of all open subsets of X is denoted by Open(X). The structure 
sheaf of X is denoted by OX and the category of quasicoherent sheaves over X by Qc(X). A monoid scheme 
is called of finite type if it is separate and can be covered by a finite number of affine subschemes Spec(Mi), 
such that each Mi is a finitely generated monoid.
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The following is our version of the reconstruction theorem:

Theorem 1.0.1 (Main theorem). Let X be a Noetherian monoid scheme. The following results hold:

i) The category Qc(X) is a topos.
ii) The map ΦX : Open(X) → Loc(Qc(X)), given by

ΦX(U) = Qc(U),

is an isomorphism of posets
iii) If U is an open subset of X and D = ΦX(U) is corresponding localisation of Qc(X), then

OX(U) = Z(D).

iv) For any point x ∈ X, the functor

Qc(X) → S , A �→ Ax,

which assigns to a quasicoherent sheaf A the stalk Ax at x, is the inverse part of a point of the topos 
Qc(X). Furthermore, the corresponding map Π : X → F(Qc(X)) on the underlying topological space of 
X is a bijection if X is quasi-projective.

v) If x ∈ X and U is an open subset of X, then x ∈ U if and only if Π(x) � ΦX(U).

Parts i) and iv) were proven in [13]. The aim of this work is to prove the rest. Specifically, we will prove 
part ii) in the affine case at the end of Section 4 (see Corollary 4.3.11), part iii), in full generality, is proven 
in Section 5.2 (Lemma 5.2.1) and finally, part v) and the general case of part ii) is proven at the very end 
of the paper, in subsection 5.4.

I would like to thank the referee for his/her corrections and suggested improvements.

2. Preliminaries on topoi and localisations

2.1. Grothendieck topologies and Grothendieck topoi

Let A be a small category. A set valued presheaf (or simply presheaf) on A is a functor P : Aop → S .
For an object A in A, a sieve S on A is a subfunctor of the representable functor HomA(−, A). Recall 

that a Grothendieck topology J on A assigns to each object A in A a collection JA of sieves on A, called 
covering sieves, such that certain axioms hold. We refer to [11] (or [1], [9]) for these axioms. However, we 
will list these axioms in Section 3.2, for the special case when A is a one object category, corresponding to 
a monoid M .

A site (A, J) consists of a small category A, equipped with a Grothendieck topology J . A presheaf 
F : Aop → S is said to be a sheaf for the topology J if, whenever we have a covering sieve S of an object A, 
any morphism α : S → F of presheaves has a unique extension HomA(−, A) → F . The category of sheaves 
on A with respect to the topology J is denoted by Sh(A, J).

Recall that a Grothendieck topos is a category T , equivalent to the category of set valued sheaves over 
a Grothendieck site.

If T ′ and T are topoi, a geometric morphism f : T ′ → T is a pair of functors f∗ : T ′ → T and 
f∗ : T → T ′, such that f∗ is the left adjoint of f∗ and f∗ respects finite limits.

A point of a topos T is simply a geometric morphism p = (p∗.p∗) : S → T from the topos of sets to T .



I. Pirashvili / Journal of Pure and Applied Algebra 225 (2021) 106782 3
For a small category A, one denotes by Top(A) the collection of all Grothendieck topologies on A. It is 
well-known that the inclusion induces an order on Top(A), which makes it a complete lattice [9, Lemma 
0.34]. If J is the minimal (discrete) topology on A, then the corresponding category T = Sh(A, J) is just the 
category Fct(Aop

, S ) of all presheaves over A. If J is the maximal (indiscrete) topology, then T = Sh(A, J)
is the trivial category, which has only one object and one morphism. For a site (A, J), we write TopJ(A) to 
denote the subclass of Grothendieck topologies containing J . This class is in one-to-one correspondence to 
two other classes, which can be described entirely in terms of the topos T = Sh(A, J). To describe them, 
we need some additional facts from topos theory.

2.2. Subobject classifier

It is well-known (see for example [11]), that any Grothendieck topos has a subobject classifier. This is an 
object Ω, together with a morphism from the terminal object t : 1 → Ω, such that for any object A and any 
subobject i : B ⊆ A, there is a unique morphism χB : A → Ω, for which

B
i

B !

A

χB

1
t

Ω

is a pullback diagram in T . Here and elsewhere, B! denotes the unique morphism from B to the terminal. 
The map χB : A → Ω is called the characteristic map of a subobject B. For example, χA = t◦A!.

2.3. Lawvere-Tierney topologies

Let T be a topos. Recall that a Lawvere-Tierney topology on T is given by a morphism j : Ω → Ω, such 
that j ◦ j = j and the following diagrams commute:

1 t

t

Ω

j

Ω × Ω

j×j

∧ Ω

j

Ω Ω × Ω ∧ Ω.

Here, ∧ : Ω × Ω → Ω is the characteristic map of the subobject 1 = 1 × 1 
(t,t)−−→ Ω × Ω. The collection of all 

Lawvere-Tierney topologies on T is denoted by LT(T ).
Let j be a Lawvere-Tierney topology on T . An subobject B ↪→ A is called j-dense if the following 

diagram commutes

A
χB χA

Ω
j

Ω.

A object F of the topos T is called a j-sheaf, if for any object A and any dense subobject B ⊆ A, the 
induced map

HomT (A,F ) → HomT (B,F )
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is a bijection. Denote by Shj(T ) the full subcategory of T consisting of j-sheaves. It is well-known that 
Shj(T ) is also a topos and the inclusion Shj(T ) → T has a left adjoint functor, which commutes with 
finite limits.

2.4. Localisations of categories

Recall that a localisation of a topos T is a full subcategory D of T , such that the following conditions 
hold:

i) If x belongs to D and y ∈ T is isomorphic to x, then y belongs to D .
ii) The inclusion ι : D → T has a left adjoint ρ : T → D , called the localisation functor.
iii) The localisation functor ρ respects finite limits.

If this is the case, then D is also a topos and the composite functor ρ ◦ ι is isomorphic to the identity 
functor idD , see [7, Proposition I.1.3]. Moreover, the pair (i, ρ) defines a geometric morphism D → T , 
known as embedding [11]. Without loss of generality, we can always choose ρ in such a way that ρι = idD .

We denote by Loc(T ) the collection of all localisations of T . The collection (T ) has a natural poset 
structure induced by inclusion of subcategories.

The following well-known result explains the relationship between Grothendieck topologies and localisa-
tions.

Lemma 2.4.1. Let (A, J) be a site and T = Sh(A, J) the corresponding topos.

i) For K ∈ TopJ(A), the category Sh(A, K) is a localisation of T and the localisation functor is the 
composite

T = Sh(A, J) ⊆ Fct(Aop,S ) → Sh(A,K),

where the last functor is the sheafification functor.
ii) If D is a localisation of T with localisation functor ρ : T → D , we denote by K the collection of all 

sieves R ⊆ HomA(−, A) for which the induced morphism

ρ(R) → ρ(HomA(−, A))

is an isomorphism. Then K ∈ TopJ(A).
iii) The correspondences defined in i) and ii) induces an order reversing bijection between Loc(T ) and 

TopJ (A).
iv) The result remains true if one uses the Lawvere-Tierney topologies on T . That is, if j is a Lawvere-

Tierney topology on T , then Shj(T ) is a localisation of T . The localisation functor in this case is 
given by sheafification. In this way, one obtains an order reversing bijection

LT(T ) ∼= Loc(T ).

This fact is well-known, see for example [1, Propositions 3.5.4 and 3.5.7] for the bijection in iii) and [9, 
Exercise 2. Ch. 3] for the bijection in iv).
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2.5. Centre of a category

One way to obtain a commutative monoid from a category is to consider its centre. Recall that the centre
Z(A) of a category A is the monoid of all natural transformation idA → idA of the identity functor to itself. 
It is well-known that the monoid Z(A) is commutative.

Thus, an element θ of the centre Z(A) of A is a collection of morphisms θA : A → A, where A is running 
through all the objects of A, such that for any morphism f : a → b of the category A, the diagram

a

f

θa
a

f

b
θb

b

commutes.
Let T be a topos. If D ⊆ D ′ are localisations of T and θ is an element of Z(D ′), then the collection 

(θx)x∈D belongs to Z(D). Hence, one obtains the monoid homomorphism Z(D ′) → Z(D), called restriction. 
This allows us to define a functor

Z : Loc(T )op → Com.Monoids.

2.6. Gluing of topoi

Let Ti, i = 0, 1, 2 be Grothendieck topoi and ρ∗i : Ti → T0, i = 1, 2 localisations. A gluing (see [13]) of 
T1 and T2 along T0 is the category T , whose objects are triples (A1, A2, α), where Ai is an object of Ti, 
i = 1, 2 and α : ρ∗1(A1) → ρ∗2(A2) is an isomorphism in T0. A morphism (A1, A2, α) → (B1, B2, β) in T is a 
pair (f1, f2), where fi : Ai → Bi, is a morphism in Ti, i = 1, 2, such that ρ∗2(f2)α = βρ∗1(f1). We have the 
following diagram

T
pr1

pr2

T1

ρ∗
1

T2
ρ∗
2

T0,

where pri : T → Ti is given by pri(A1, A2, α) = Ai, i = 1, 2.
Recall that an object A of a Grothendieck topos T is called s-Noetherian if it satisfies the ascending 

chain condition on its subobjects. A Grothendieck topos T is called locally s-Noetherian provided it posses 
a system of s-Noetherian generators, see [13, Section 2.4] for more on this.

According to [13], T is a locally s-Noetherian topos and the functors pr1, pr2 are localisations if Ti, 
i = 0, 1, 2, are locally s-Noetherian topoi.

Proposition 2.6.1. Let Ti, i = 0, 1, 2 be locally s-Noetherian topoi, ρ∗i : Ti → T0, i = 1, 2 localisations and 
T be the corresponding gluing topos. The following is a pull-back diagram

Z(T ) Z(T1)

Z(T2) Z(T0).



6 I. Pirashvili / Journal of Pure and Applied Algebra 225 (2021) 106782
Proof. The functors ρ∗i : Ti → T0 have, by assumption, right adjoint functors ρi∗ : T0 → Ti, i = 1, 2. 
Denote by κi : idTi

→ ρi∗ρ
∗, i = 1, 2 the counite of the adjoints. We may assume, without loss of generality, 

that ρ∗i ρi∗(A0) = A0 for any object A0 of T0. Hence, the categories T0, T1 and T2 can be identified 
respectively with the following full subcategories of T :

{(ρ1∗(A0), ρ2∗(A0), idA0)|A0 ∈ T0},

{(A1, ρ2∗ρ
∗
1(A1), idρ1∗A1)|A1 ∈ T1},

{(ρ1∗ρ
∗
2(A2), A2, idρ2∗A2)|A2 ∈ T2}.

We have to show that for any natural transformations ξi : idTi
→ idTi

, i = 1, 2, such that

ξ1(ρ1∗(A0)) = ξ2(ρ2∗(A0))

for every object A0 of T0, there exists a unique natural transformation θ : idT → idT , such that

θ(A1, ρ2∗ρ
∗
1(A1), idρ1∗A1) = (ξ1(A1), ρ2∗ρ

∗
1ξ1(A1))

and

θ(ρ1∗ρ
∗
2(A2), A2, idρ2∗A2) = (ρ1∗ρ

∗
2ξ2(A2), α2(A2))

holds for every Ai ∈ Ti, i = 1, 2.
To this end, take any object (A1, A2, α) of T . Since θ(A1, A2, α) must be a morphism in T , we have

θ(A1, A2, α) = (θ1(A1, A2, α), θ2(A1, A2, α)),

where

θ1(A1, A2, α) : A1 → A1 and θ2(A1, A2, α) : A2 → A2

are morphisms in T1 and T2 respectively. We have the following morphism in T :

(idA1 , ρ
∗
2(α−1) ◦ κ2(A2)) : (A1, A2, α) → (A1, ρ2∗ρ

∗
1(A1), idρ1∗A1).

Applying the naturality of θ for this morphism, we obtain

θ1(A1, A2, α) = ξ1(A1).

Similarly, we obtain θ2(A1, A2, α) = ξ2(A2). This, not only proves the uniqueness of θ, but also yields the 
method to construct it and the result follows. �
3. Monoids, M -sets and subobject classifier

We investigate some properties of the subobject classifier of the topos of M -sets, where M is a monoid. 
The main result of this section says that if M is s-Noetherian and commutative, then the subobject classifier 
respects localisations. This allows us to construct, in Theorem 5.1.1, the subobject classifier of the topos 
Qc(X) of quasi-coherent sheaves over X, where X is an s-Noetherian monoid scheme.
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3.1. Subobject classifier for the topos of M -sets

In this section, we will recall the construction of the subobject classifier of the topos of right M -sets SM , 
where M is a multiplicatively written monoid [11].

Elements of the set Ω (also denoted as ΩM , to make explicit the role of the monoid M) are right ideals 
of M . We recall that a subset m ⊆ M is called a right ideal, if mM ⊆ m. In order to describe the action of 
M on Ω, for a right ideal m and an element a ∈ M , we set

(m : a) = {x ∈ M |ax ∈ m}.

Lemma 3.1.1. Let the notations be as above. One has:

i) (m : a) is a right ideal,
ii) (m : 1) = m,
iii) ((m : a) : b) = (m : ab),
iv) (M : a) = M .

Proof. i) Take any element m ∈ M and x ∈ (m : a). Then ax ∈ m. Since m is a right ideal (ax)m ∈ m. So 
xm ∈ (m : a).

ii) and iv) are obvious.
iii) For an element x ∈ M , one has x ∈ ((m : a) : b) if and only if bx ∈ (m : a). The last condition is 

equivalent to abx ∈ m. In other words, x ∈ ((m : a) : b) if and only if x ∈ (m : ab). �
Corollary 3.1.2. The rule (m, a) �→ (m : a) defines a right M -set structure on Ω.

By iv) of Lemma 3.1.1, the map t : 1 → Ω, given by t(1) = M ∈ Ω, is a morphism of M -sets. For any 
right M -set A and any M -subset i : B ⊆ A, define the map χB : A → Ω by

χB(a) = {m ∈ M |am ∈ B}.

One easily sees that χB is a morphism of M -sets and the diagram

B
i

B !

A

χB

1
t

Ω

is a pullback diagram. Hence, Ω is the subobject classifier in SM [11].

3.2. Grothendieck topologies on a monoid

According to Lemma 2.4.1, there is an order reversing bijection between the set Loc(SM ) and all 
Grothendieck topologies defined on the one object category corresponding to M . Let us recall the last 
notion in this particular case.

For a monoid M (not necessarily commutative), a Grothendieck topology, or simply a topology, F on M
is a collection of right ideals, such that

(T1) M ∈ F ,
(T2) If a ∈ F and m ∈ M , then (a : m) ∈ F ,
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(T3) If b ∈ F and a is a right ideal of M such that (a : m) ∈ F for any m ∈ b, then a ∈ F .

Thus, F is a subobject of the M -set ΩM . Since ΩM is a subobject classifier, it defines a map χF : ΩM →
ΩM , which is a Lawvere-Tierney topology on SM and any Lawvere-Tierney topology on SM is of this form. 
Explicitly, the map χF is given by

χF (a) = {m ∈ M |(a : m) ∈ F}.

This result draws a clear analogy to Gabriel’s topologies in ring theory [15]. We will see that many of 
the results originally proven for rings by Gabriel [6] are still valid for monoids.

Lemma 3.2.1. Let F be a topology on M . The following hold:

(i) If a ⊆ b are right ideals and a ∈ F , then b ∈ F .
(ii) If a, b ∈ F , then a ∩ b ∈ F .
(iii) If a, b ∈ F , then ab ∈ F .

Proof. i) Take any element m ∈ a. Then m ∈ b and (b : m) = R ∈ F . Hence, by (T3), we have b ∈ F .
ii) If m ∈ a, then (a ∩ b : m) = (b : m) ∈ F by (T2). Hence, a ∩ b ∈ F , by (T3).
iii) For any m ∈ a, we have b ⊆ (ab : m). Hence, by i), we have (ab : m) ∈ F and (T3) implies that 

ab ∈ F . �
For a monoid M , we let Top(M) denote the set of all topologies on M . As was already mentioned, 

Top(M) is closed under arbitrary intersections and is a complete lattice, where the ordering is given by 
inclusion. The least element is just {M}, while the greatest element is the set of all right ideals.

3.3. Monoid homomorphisms and subobject classifier

Let f : M → N be a monoid homomorphism. One has the following set maps between the subobject 
classifiers of M and N :

f∗ : ΩN → ΩM , and f∗ : ΩM → ΩN

defined by

f∗(n) = f−1(n), and f∗(m) =
⋃

x∈m

f(x)N.

We point out that 
⋃

x∈m

f(x)N is the right ideal generated by f(m).

Lemma 3.3.1. For any m ∈ ΩM , n ∈ ΩN and a ∈ M , one has

i) m ⊆ f∗f∗(m), f∗f∗(n) ⊆ n,
ii) f∗f

∗f∗(m) = f∗(m), f∗f∗f
∗(n) = f∗(n),

iii) f∗(m : a) ⊆ (f∗(m) : f(a)) and
iv) (f∗(n) : a) = f∗(n : f(a)).

Moreover, if g : N → K is a monoid homomorphism, then

v) (gf)∗(m) = g∗(f∗(m)).
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Proof. i) is clear and ii) is a formal consequence of i).
To prove iii), observe that f∗(m : a) is a right ideal of N , generated by elements of the form f(x), where 

ax ∈ m. It follows that f(ax) ∈ f∗(m). Hence, f(x) ∈ (f∗(m) : f(a)), showing iii).
For iv), observe that

(f∗(n) : a) = {x ∈ M |ax ∈ f∗(n)}
= {x ∈ M |f(ax) ∈ n}
= {x ∈ M |f(x) ∈ (n : f(a))}
= f∗(n : f(a)).

v) By definition, (gf)∗(m) is an ideal of K, generated by gf(m). Since g∗(f∗(m)) is also an ideal containing 
gf(m), we have (gf)∗(m) ⊆ g∗(f∗(m)). To prove the converse, take an element x ∈ g∗(f∗(m)). We have 
x = kg(y), where y ∈ f∗(m) and k ∈ K. Thus, y = nf(m), where m ∈ m and n ∈ N . It follows that 
x = kg(nf(m)) = (kg(n))gf(m) ∈ (gf)∗(m) and vi) follows. �
Corollary 3.3.2. The map f∗ : ΩN → ΩM (unlike f∗ : ΩM → ΩN ) is a morphism of M -sets. Here and in 
what follows, the monoid M acts on ΩN via f .

3.4. Localisation of monoids

Let M be a commutative monoid. Recall that if S ⊆ M is a submonoid, one can form a new monoid 
S−1M , called the localisation of M by S. Elements of S−1M are fractions ms , where m ∈ M and s ∈ S. 
By definition, m1

s1
= m2

s2
if and only if there is an element s ∈ S, such that m1ss2 = m2ss1. Actually, this 

construction can be extended to M -sets in the obvious way. It is also obvious that if A is a M -set, then 
S−1A becomes an S−1M -set. The canonical map

f : M → S−1M, f(m) = m

1

is a monoid homomorphism, called the localisation map.

Lemma 3.4.1. Let S be a submonoid of a commutative monoid M and let f : M → S−1M be the corre-
sponding localisation.

i) If n is an ideal of S−1M , then f∗f∗(n) = n.
ii) f∗(m : a) = (f∗m : f(a)).
iii) f∗f∗(m) =

⋃
s∈S(m : s).

iv) For any t ∈ S, one has

(f∗f∗(m) : t) = f∗f∗(m).

Proof. i) By part i) of Lemma 3.3.1, it suffices to show that n ⊆ f∗f
∗(n). Take an element x = n

s ∈ n. Since 
n is an ideal, we see that sx ∈ n. Hence, n ∈ f∗(n) and sx = f(n) ∈ f∗f

∗(n). Since f∗f∗(n) is an ideal of 
S−1M , we see that x = f(n) · 1

s ∈ f∗f
∗(n) and i) follows.

ii) By part iii) of Lemma 3.3.1, it suffices to show that (f∗(m) : f(a)) ⊆ f∗(m : a). To this end, take an 
element z ∈ (f∗m : f(a)). Since z ∈ S−1M , we can write z = m

s , where m ∈ M and s ∈ S. By assumption, 
zf(a) ∈ f∗(m). So, ma

s ∈ f∗(m). Thus, there exist an element u ∈ m and t ∈ S, such that

ma = u
.

s t



10 I. Pirashvili / Journal of Pure and Applied Algebra 225 (2021) 106782
This implies that matt′ = ust′, for an element t′ ∈ S. We have z = m′

s′ , where m′ = mtt′ and s′ = stt′. 
Since am′ = amtt′ = ust′ ∈ m, we have z ∈ (f∗(m) : a). This proves the result.

iii) We have x ∈ f∗f∗(m) if and only if x1 ∈ f∗(m). This is equivalent to saying that x1 = m
s , for some 

m ∈ m, s ∈ S. The last condition holds if and only if xt ∈ m for some t ∈ S, i.e. when x ∈ (m : t) and the 
result follows.

iv) Since n ⊆ (n : a) for any ideal n in a commutative monoid M , we only need to show (f∗f∗(m) : t) ⊆
f∗f∗(m). Take z ∈ (f∗f∗(m) : t), then

zt ∈ f∗f∗(m) =
⋃

s∈S

(m : s).

Thus there exists s ∈ S such that zts ∈ m. Hence,

z ∈ (m : ts) ⊆
⋃

r∈S

(m : r) = f∗f∗(m)

and iv) follows. �
Corollary 3.4.2. The map f∗ : ΩM → ΩS−1M is compatible with the monoid actions and as such, induces 
the map of S−1M -sets

f∗S : S−1ΩM → ΩS−1M ,

which is surjective.

Proof. The first assertion follows from the part ii) of Lemma 3.4.1, while surjectivity property from part i) 
of Lemma 3.4.1. �

Thus, by construction, we have a commutative diagram

ΩM

f∗

S−1ΩM

f∗S

ΩS−1M ,

where the horizontal map is the localisation: m �→ m

1 .

3.5. s-Noetherian monoids

Following [13], a monoid M is called right s-Noetherian if M satisfies the ascending chain condition on 
right ideals. Equivalently, any family of right ideals of M contains a maximal member and this holds if and 
only if any right ideal of M is finitely generated.

Example 3.5.1.

i) Any finite monoid is right s-Noetherian.
ii) Any group is right s-Noetherian.
iii) Let M be a commutative and finitely generated monoid. Then M is s-Noetherian, see [13].
iv) A commutative monoid M is s-Noetherian if and only if Mred = M/M× is s-Noetherian [13]. Here, M×

is the group of invertible elements of M .
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3.6. Subobject classifier of s-Noetherian monoids

We will show that under the s-Noetherianness assumption, the functor

f! : SM → SS−1M ; f!(A) = S−1A

respects the subobject classifier. This is due to the following Proposition:

Proposition 3.6.1. Let M be a commutative and s-Noetherian monoid. The canonical map

f∗S : S−1ΩM → ΩS−1M

is an isomorphism of S−1M -sets for any submonoid S ⊆ M .

Proof. The above map is surjective by Corollary 3.4.2. Before we prove injectivity, we need to prove two 
auxiliary claims.

Our first claim is that for any ideal m, there is an element sm, such that

f∗f∗(m) = (m : sm).

We have f∗f∗(m) =
⋃

s∈S(m : s) by part iii) Lemma 3.4.1. Since M is s-Noetherian, the ideal 
⋃

s∈S(m : s)
is finitely generated, say by x1 ∈ (m : s1), · · · , xk ∈ (m : sk). Take sm = s1 · · · sk. Then xi ∈ (m : sm) for all 
i = 1, · · · , k. Hence, (m : sm) contains the ideal generated by x1, · · · , xk, which is f∗f∗(m).

For any ideal m of M , we have m ∈ ΩM , which is an M -set. So, we can also consider m1 as an element of 
S−1ΩM .

Our second claim is that the equality

m

1 = f∗f∗(m)
1

holds in S−1ΩM . To show this fact, observe that by Claim 1 and part iv) of Lemma 3.4.1, we have

(m : sm) = f∗f∗(m) = (f∗f∗(m) : sm)

and the second claim follows.
This second claim shows that the composite of the map f∗ : ΩS−1M → ΩM with the canonical morphism 

ΩM → S−1ΩM is the inverse of f∗S : S−1ΩM → ΩS−1M . �
3.6.1. The necessity of s-Noetherianness

More generally, if f = (f∗, f∗) : T → K is a geometric morphism from a topos T to a topos K , there 
exists a canonical morphism τ : f∗(ΩK ) → ΩT , classifying the monomorphism f∗(t) : f∗(1) → f∗(ΩT ). 
According to [10], f is called sub-open if τ is a monomorphism. Hence, if M is an s-Noetherian monoid, 
the localisation S−1 : SM → SS−1M is the inverse image part of a sub-open geometric morphism SM →
SS−1M . It should be point-out that the s-Noetherian assertion is essential.

In fact, take M to be the multiplicative monoid of the natural numbers. For S = M , the map τ is not a 
monomorphism. To prove this claim, take A = ΩM and B = ΩS−1M , where α(I) = S−1I, I ∈ ΩM as in the 
next Lemma. Moreover, let a1, a2 ∈ ΩM be the following elements: a1 = M , while a2 = J consists of those 
natural numbers =

∏
p p

vp , for which either vp = 0 or vp ≥ p. Here, p runs through the set of all prime 
numbers. In this case, α(a1) = α(a2). We claim that there is no natural number s, for which M = J : s. 
The Lemma below will imply the non-injectivity of τ . To prove the assertion, assume that such an s exists. 
Choose a prime p, such that p does not divide s. Then p ∈ M , but p �= sn, where n ∈ J .
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Lemma 3.6.2. Let M be a commutative monoid and S ⊂ M a submonoid. Moreover, let A be an M -set and 
B an S−1M -set, which is considered as an M -set via the canonical homomorphism M → S−1M . Denote 
by β : A → S−1A the canonical map. For a morphism of M -sets α : A → B, the following two conditions 
are equivalent

i) The morphism of S−1M -sets τ : S−1A → B is a monomorphism. Here, τ(as ) = α(a)
s .

ii) If α(a1) = α(a2), there exist s ∈ S, such that a1s = a2s.

Proof. i) =⇒ ii). If α(a1) = α(a2), then β(a1) = β(a2). This follows from the injectivity of τ , since α = τβ. 
So, a1

1 = a2
1 and a1s = a2s for some s ∈ S.

ii) =⇒ i). Assume τ(a1
s1

) = τ(a2
s2

). Thus, α(a1)
s1

= α(a2)
s2

. So, α(a1s2s) = α(a2s1s) for some s ∈ S. By ii), 
this implies a1s2st = a2s1st for some t ∈ S and a1

s1
= a2

s2
. The injectivity of τ follows. �

4. The case of affine monoid schemes

In this section, we aim to prove part ii) of Theorem 1.0.1 (the main theorem) for affine monoid schemes, 
i.e., when X = Spec(M). In this case, the topos Qc(X) is the category SM of M -sets.

We start with a few general remarks on ordered sets, the order topology and the relationship between 
the order- and the Zariski topology.

4.1. Ordered sets

Let P be a poset. For an element a ∈ P , we set

Pa = {x ∈ P |a ≤ x}

and

P a = {x ∈ P |x ≤ a}.

Any poset P has a natural topology, called the order topology, where a subset S ⊆ P is open if y ∈ S and 
x ≤ y imply x ∈ S. Thus, Open(P ) is a distributive lattice and it is finite if P is finite. It is well-known, 
that any finite distributive lattice L is of this form for a uniquely defined P (see for example [14, p. 106]), 
namely for P = Irr(L), the subset of irreducible elements of L (an element x ∈ L is irreducible if x = y ∨ z

implies x = y or x = z).
Recall that a Galois connection between posets X and Y is a pair γ = (α, β), where α : X → Y and 

β : Y → X are maps such that

(x1 ≤ x2) =⇒ (α(x1) ≥ α(x2)) , (y1 ≤ y2) =⇒ (β(y1) ≥ β(y2))

and for any x ∈ X, y ∈ Y , one has

(x ≤ β(y)) ⇐⇒ (α(x) ≤ y) .

It follows that

x ≤ βα(x) and y ≤ αβ(y).

An element x ∈ X (resp. y ∈ Y ) is called stable under the Galois connection, if x = βα(x) (resp. y = αβ(y)). 
In this case, α and β induce bijections on stable elements.
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4.2. The comparison between the order- and the Zariski topology

Recall that a proper ideal p � M of a commutative monoid M is called prime if for any a, b ∈ M , such 
that ab ∈ p, one has a ∈ p or b ∈ p [5], [12]. This implies that, M \ p is a submonoid of M . We denote the 
set of all prime ideals of M with Spec(M). Let a be an ideal of M . We set

V (a) = {p ∈ Spec(M)|a ⊆ p}.

It is classical to equip the set Spec(M) with a topology, called the Zariski topology, where the V (a)’s are 
closed subsets. Here, a runs through all the ideals of M .

For any element f ∈ M , one puts

D(f) = {p ∈ Spec(M)|f /∈ p}.

It is well-known, that the sets D(f) form a basis of open sets for the Zariski topology on Spec(M).
Since Spec(M) is also a poset under inclusion, it also has the order topology. Any Zariski open subset is 

open in the order topology. To see this, we can restrict ourself with subsets of the form D(f). If p ∈ D(f)
and q ⊆ p, then f /∈ p and hence, f /∈ q. Thus, q ∈ D(f). It follows that, D(f) is open in the order topology. 
The converse is not true in general, but it is true in the following important case.

In what follows the group of invertible elements of M is denoted by M×.

Lemma 4.2.1. If M/M× is finitely generated, the Zariski topology on Spec(M) coincides with the order 
topology.

Proof. We have to show that for any prime ideal p, the set {q ∈ Spec(M)|q ⊆ p} is open in the Zariski 
topology. Let x1, · · · , xk ∈ M be the representatives of generators of M/M×. Without loss of generality, 
we can assume that x1, · · · , xm /∈ p and xm+1, · · · , xk ∈ p. Denote by S the submonoid of M generated 
by invertible elements and by x1, · · · , xm. Since p is prime, M \ p is a submonoid containing the invertible 
elements of M and, also, the elements x1, · · · , xm. Hence, S ⊆ M \p. Take any y /∈ p. It can be decomposed 
as a product of an invertible element and elements from the set {x1, ..., xm}. Clearly, 1 ≤ i ≤ m as otherwise 
y would be an element in p, since p is an ideal. This shows that S = M \ p. Take f = x1 · · ·xm. We claim

D(f) = {q|q ⊆ p},

which obviously implies the result. To show the claim, observe that f /∈ p (because p is prime) and hence, 
p ∈ D(f). It follows that

{q|q ⊆ p} ⊆ D(f).

Conversely, take q ∈ D(f). Then f /∈ q. Assume q ∩ S �= ∅. The product 
∏m

i=1 xi is in q. Since q is prime, 
it follows that xi ∈ p for some 1 ≤ i ≤ m. Thus, f ∈ q, which contradicts of our choice of q. Hence, 
q ⊆ M \ S = p and the claim is proven. �
4.3. Grothendieck topologies on a commutative monoid M and subsets of Spec(M)

The goal of this subsection is to construct a Galois connection between the posets of Grothendieck 
topologies on a commutative monoid M and subsets of Spec(M).

We start with the following observation.
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Proposition 4.3.1. Let M be a commutative monoid and p be prime ideal of M . We set Sp = M \ p. The 
following assertions hold:

(i) The set

F{p} := {a ∈ ΩM and a ∩ Sp �= ∅}

is a topology on M .
(ii) For an ideal a, one has

(
a ∈ F{p}

)
⇐⇒ (p /∈ V (a)) .

(iii) For prime ideals p and q, one has p ⊆ q if and only if F{q} ⊆ F{p}.

Proof. i) Since 1 ∈ Sp = M ∩Sp, we obtain M ∈ F{p}. Assume a ∈ F{p} and m ∈ M . By assumption, there 
exists an element s ∈ S, such that s ∈ a. Since s ∈ (a : m), the axiom (T2) follows. In order to verify (T3), 
let b be an ideal from F{p} and let a be an ideal, such that (a : m) ∈ F{p} for any m ∈ b. By assumption, 
there are s, t ∈ S, such that s ∈ b and t ∈ (a : s). Thus, st ∈ a. Since st ∈ S, we see that a ∩ S �= ∅ and 
axiom (T3) holds.

ii) Obvious.
iii) Assume p ⊆ q and a ∈ F{q}. Then

∅ �= a \ q ⊆ a \ p.

Hence, a ∈ F{p}. It follows that F{q} ⊆ F{p}.
Conversely, assume F{q} ⊆ F{p}. Take an element m ∈ p. For the principal ideal mM we have mM /∈

F{p}. It follows that mM /∈ F{q}. Hence mM ⊆ q. In particular m ∈ q. Thus p ⊆ q. �
Recall our discussion on topologies on a monoid in Section 3.2. Denote by P(X) the set of all subsets of 

a set X. We construct two maps

Υ : P(Spec(M)) → Top(M) and Ξ : Top(M) → P(Spec(M)),

given by

Υ (P) :=
⋂

p∈P
F{p} and Ξ(F ) = {p ∈ Spec(M)|p /∈ F},

where P ⊆ Spec(M) is a subset of the set of prime ideals of M and F is a topology on M .

Proposition 4.3.2.

i) For an ideal a, one has

(a ∈ Υ (P)) ⇐⇒ (p /∈ V (a) for all p ∈ P)

and hence,

Υ (P) = {a|V (a) ∩ P = ∅}.
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ii) The functions Υ and Ξ form a Galois correspondence between the posets P(Spec(M)) and Top(M).
iii) Let F be a topology on M . Then

Υ (Ξ(F )) = {a ∈ ΩM |V (a) ⊆ F}.

iv) Let P be a subset of Spec(M). Then

Ξ(Υ (P)) = {q ∈ Spec(M)|∃p ∈ P, q ⊆ p}.

Proof. i) follows from part ii) of Proposition 4.3.1.
ii) Clearly both maps reverse the ordering. Thus, we have to show that if F is a topology on M and P

is a subset of Spec(M), then

(F ⊆ Υ (P)) ⇐⇒ (P ⊆ Ξ(F )).

In fact, F ⊆ Υ (P) holds if and only if for any ideal a ∈ F and any prime ideal p ∈ P, one has p /∈ V (a). 
Since p ∈ V (p), it follows that p /∈ F and P ⊆ Ξ(F ).

On the other hand, assume P ⊆ Ξ(F ). For any p ∈ P one has p /∈ F . Take an ideal a ∈ F . If 
V (a) ∩ P �= ∅, it follows that there exists p ∈ P, such that a ⊆ p. Hence, p ∈ F . This contradicts our 
assumption on P. We have V (a) ∩ P = ∅ and a ∈ Υ (P), showing F ⊆ Υ (P) and ii) follows.

iii) For an ideal a, one has

(a ∈ Υ (Ξ(F ))) ⇐⇒ (∀p ∈ Ξ(F ) =⇒ p /∈ V (a)) ⇐⇒ (p /∈ F =⇒ p /∈ V (a)) .

The last condition is the same as V (a) ⊆ F and we are done.
iv) We have q ∈ Ξ(Υ (P)) if and only if q /∈ Υ (P). By i), this happens if and only if there exists p ∈ P, 

such that q ⊆ p. �
Example 4.3.3.

i) We have

Υ ({∅}) = {all nonempty ideals of M} = ΩM \ {∅},

while

Υ (∅) = ΩM = {all ideals of M}.

ii) If m(M) is the ideal of all non invertible elements of M , which is the greatest proper ideal of M , then

Υ ({m(M)}) = {M}

and

Υ (Spec(M)) = {M}.

Lemma 4.3.4. Let f ∈ M be an element. We have

Υ (D(f)) = {a ∈ ΩM |f ∈ a}.
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Moreover, the localisation corresponding to the topology Υ (D(f)) via iii) of Lemma 2.4.1 is the category of 
Mf -sets.

Proof. For the first assertion, observe that, by part i) of Proposition 4.3.2, we have a ∈ Υ (D(f)) if and only 
if V (a) ∩D(f) = ∅. In other words, if for any prime ideal p containing a, it also contains f . Obviously, this 
condition holds if f ∈ F . The converse is also true because if f /∈ a, the ideal, which is maximal among the 
ideals containing a and not containing any power of f , is prime.

For the second part, we have to show that an M -set A is a sheaf with respect to this topology if and 
only if the map lf : A → A, given by lf (a) = fa, is a bijection.

Assume A is a sheaf in this topology. This means that for any ideal a such that f ∈ a, the restriction 
map

A = HomM (M,A) → HomM (a, A)

is a bijection. By considering a = fM , injectivity of this map implies the injectivity of lm : A → A, a �→ ma. 
For the surjectivity of lf , take any element a ∈ A. Let m, n ∈ M be elements such that fm = fn. We have 
fma = fna and hence, ma = na, since lf is injective. This shows the existence of a well-defined morphism 
of M -sets fM → A for which fm �→ ma. By the bijectivity of the map A = HomM (M, A) → HomM (a, A), 
it follows that there exist b ∈ A, such that fb = a. Thus, lf is a bijection.

Conversely, assume that lf : A → A is bijective. This condition obviously implies the bijectivity of the 
restriction map A = HomM (M, A) → HomM (a, A). Let us take any ideal a, such that f ∈ a. To show the 
bijectivity of A = HomM (M, A) → HomM (a, A), observe that it fits in the diagram

A = HomM (M,A) → HomM (a, A) → HomM (fM,A).

Since the composite map is a bijection, we only need to show injectivity of the second map. For this, take 
any morphism of M -sets α : a → A. We have α(fx) = fα(x) for any x ∈ a. Thus

α(x) = l−1
f (α(fx)),

showing that α is uniquely defined by its restriction on fM and the result follows. �
Recall that a topology F (resp. a subset P) is stable if and only if F = ΥΞ(F ) (resp. P = ΞΥ (P)). From 

the properties of Galois correspondences, one obtains a bijective correspondence between stable topologies 
on M and stable subsets of Spec(M). Our next goal is to find a convenient way of characterising stable 
subsets and stable topologies.

Proposition 4.3.5. Let M be a commutative monoid. A subset P ⊆ Spec(M) is stable if and only if it is an 
open subset in the order topology of Spec(M).

Proof. This follows from part iv) of Proposition 4.3.2. �
Proposition 4.3.6. Let F be a topology on a commutative monoid M . Then F is stable if and only if for 
any ideal a /∈ F , there exists p ∈ V (a), such that p /∈ F .

Proof. The ‘if’ part is a consequence of Proposition 4.3.2. For the other side, it suffices to show that 
ΥΞ(F ) ⊆ F . Take an ideal a /∈ ΥΞ(F ). By Proposition 4.3.2, we have V (a) � F . So, there is a prime 
p ∈ V (a), such that p /∈ F . �
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Corollary 4.3.7. For any commutative monoid M , there exist a bijection between the stable topologies of M
and open subsets of Spec(M) in the order topology.

Proof. This is a formal consequence of Galois correspondence and Proposition 4.3.5. �
Lemma 4.3.8. Let F be a topology on a commutative monoid M .

(i) Let c be an ideal of M . If a is an ideal which is maximal with respect to the property that a /∈ F and 
c ⊆ a, then a is a prime ideal.

(ii) Assume that for any ideal b ∈ F , there exists a finitely generated ideal a, such that a ⊆ b and a ∈ F . 
For any ideal c /∈ F , there exists a prime ideal p ∈ V (c), such that p /∈ F .

Proof. (i) Take elements a, b /∈ a and assume ab ∈ a. Consider the ideals a′ = a ∪aM and b′ = a ∪ bM ∈ F . 
By our assumption, a′, b′ ∈ F . We have a′b′ ⊆ a, which contradicts the fact that a′b′ ∈ F . The latter holds 
due to Lemma (3.2.1), implying that a is prime.

(ii) Consider the set A of all ideals a, such that c ⊆ a and a /∈ F . Clearly, A admits an ordering by 
inclusion and c ∈ A. We will use Zorn’s lemma.

Take any chain (ai)i∈I in A. Then b =
⋃

i ai is an ideal since any union of ideals of a monoid is an 
ideal. We claim that b /∈ F . Assume b ∈ F . We can find a finitely generated ideal b′ ∈ F , such that 
b′ ⊆ b =

⋃
i ai. Since b′ is finite generated, b′ ∈ ai for some i. This contradicts the fact that ai ∈ A, proving 

the claim. Now we can use Zorn’s lemma to conclude that A has a maximal element p, which is prime 
thanks to (i) and c ⊆ p. �
Lemma 4.3.9. Let M be an s-Noetherian monoid. Any topology F on M is stable and hence, there exists a 
subset P ⊆ Spec(M), such that F = FP .

Proof. By Proposition 4.3.6, we have to show that for any ideal c /∈ F , there exists a prime p ∈ V (c), such 
that p /∈ F . This follows from the second part of Lemma 4.3.8. �

This fact, together with Corollary 4.3.7, implies the following:

Corollary 4.3.10. Let M be an s-Noetherian monoid. There exists a bijection between the topologies of M
and open subsets of Spec(M) in the order topology.

We are now in a position to prove part ii) of Theorem 1.0.1 in the affine case.

Corollary 4.3.11. Let M/M× be a finitely generated monoid and T the category of M -sets. There is an 
isomorphism

Loc(T ) ∼= Open(Spec(M)).

Proof. We know (see Lemma 2.4.1, part iii)) that Loc(T ) ∼= Top(M) (this is valid for all M). Hence, the 
result follows from Lemma 4.2.1 and Corollary 4.3.10. �
5. The general case

5.1. Preliminaries on monoid Schemes

Recall that for any commutative monoid M and any M -set A, there exists a unique sheaf Ã of sets on 
Spec(M), such that
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Γ(D(f), Ã) = Af .

Here and elsewhere, Γ(U, F) denotes the set of sections of a sheaf F on an open subset U (i.e. F(U)) and 
Af is the localisation of A with respect to the submonoid of M generated by f . The stalk of Ã at the point 
p is the localisation Ap of A by the submonoid M \ p. If A = M , the sheaf M̃ is denoted by OM . The sheaf 
OM is the sheaf of monoids, while the sheaf Ã becomes a sheaf of OM -sets. The pair (Spec(M), OM ) is 
called an affine monoid scheme.

Like in classical algebraic geometry, one can glue affine monoid schemes to obtain general monoid schemes
[5]. In [3], the authors define a separated monoid scheme in the same line as in the classical algebraic 
geometry.

A monoid scheme is called s-Noetherian (resp. Noetherian orof finite type), if it can be covered by a 
finite number of open affine monoid subschemes Spec(Mi), where each Mi is an s-Noetherian (resp. finitely 
generated) monoid. Furthermore, we shall assume that s-Noetherian and Noetherian monoid schemes are 
also separated for the purposes of this paper.

Let X be a monoid scheme and A a sheaf of OX -sets; that is, a sheaf of sets, together with an action of 
the monoid OX(U) on the set A(U) for all open U ⊆ X, such that these actions are compatible when U
varies. One denotes by OX -Sets the category of sheaves of OX -sets.

Let A be a sheaf of OX -sets. It is quasicoherent [4], [13] if for any point x ∈ X, there is an open and 
affine subscheme U = Spec(M), such that x ∈ U and the restriction of A on U is isomorphic to a sheaf of 
the form Ã, for an M -set A. The category of all quasicoherent sheaves on X is denoted by Qc(X).

According to [13], the category of quasi-coherent sheaves over an s-Noetherian scheme is a locally s-
Noetherian topos [13]. The next result describes the subobject classifier of this topos. To state it, we fix 
some notations. Let U = Spec(M) be an s-Noetherian affine monoid scheme. We denote by ΩU the quasi-
coherent sheaf corresponding to the M -set ΩM . Moreover, if V is an open affine monoid subscheme, then it 
is open in the order topology. Since it is also affine, V has a greatest element, say p. Then V = Spec(Mp). 
We can thus define an isomorphism of sheaves

αU,V : ResUV (ΩU ) → ΩV ,

corresponding to the canonical isomorphism S−1ΩM → ΩS−1M , constructed in Proposition 3.6.1. Here, 
S = M \ p and ResUV is the restriction Sh(U) → Sh(V ).

Theorem 5.1.1. Let X be an s-Noetherian monoid scheme. There exists a unique quasi-coherent sheaf ΩX, 
together with isomorphisms of quasi-coherent sheaves

ψU : ResXU (ΩX) → ΩU ,

where U is an affine open monoid subscheme, such that if V is also an affine open subscheme and W = U∩V , 
the diagram

ResXW (ΩX)

ResVW (ψV )

ResUW (ψU )
ResUW (ΩU )

αU,W

ResVW (ΩV )
αV,W

ΩW

commutes. The sheaf ΩX is the subobject classifier of the topos Qc(X).
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Remark 5.1.2. In the statement of this theorem, we implicitly use the fact, that the intersection of two open 
affine subschemes of a separated monoid scheme is again an open affine subscheme [3].

Proof. The collection of sheaves ΩU and isomorphisms

φU,V = α−1
V,W ◦ αU,W : ResUW (ΩU ) → ResVW (ΩV )

satisfy the requirements of [8, Exercise II, 1.22] thanks to part v) of Lemma 3.3.1, and as such, glue as 
sheaves. Thus, the existence and uniqueness of ΩX follows. Take quasi-coherent sheaves A and B and 
assume that A ⊆ B. We know that ΩM is a subobject classifier in the topos of M -sets. Hence, locally, 
there exists a unique morphism of sheaves : ξB : A → ΩX , as in the definition of the subobject classifier. 
Uniqueness implies that these local maps agree on the intersection of affine open subsets. This shows that 
they are restrictions of a uniquely defined morphism of sheaves A → ΩX and the result follows. �
5.2. The centre of Qc(X)

Lemma 5.2.1. Let X be an s-Noetherian monoid scheme. Then

Z(Qc(X)) ∼= Γ(X,OX).

Proof. We first consider the case when X = Spec(M) is affine. In this case, the result is classical and it 
follows basically from the Yoneda lemma, since for any M -set A, we have a functorial isomorphism

A ∼= HomM (M,A).

This shows that M represents the identity functor on the category of M -sets. For a general monoid scheme 
X, observe that if U and V are open monoid subschemes of X, the category Qc(U ∪ V ) is equivalent to 
the gluing of Qc(U) and Qc(V ) along Qc(U ∩ V ). This fact, well-known in classical algebraic geometry (see 
[6, Proposition 2, p. 441]), follows directly from the gluing of sheaves discussed in [8, Ch. 2. Exercise 1.22]. 
Thus, we can use Lemma 2.6.1 to finish our proof. �
5.3. The proof of main theorem

The aim of this subsection is to prove the main Theorem, described in the introduction. We will need 
one preliminary lemma before that though. To state it, let us fix some terminology.

If ι : W1 ⊆ W2 is the inclusion of open monoid subschemes, then ι∗ : Open(W2) → Open(W1) is a map 
given by L �→ L ∩W1, L ∈ Open(W2). We also have a similar map

ι∗ : Loc(Qc(W2)) → Loc(Qc(W1)),

which sends a localisation D of Qc(W2) to the intersection D ∩ Qc(W1). Here, we consider Qc(W1) as a 
localisation subcategory of Qc(W2) (see [13, 4.3.2]) and use the fact that the intersection of localisations in 
a topos is again a localisation [2, Theorem 6.8 and Example 6.9 iv)].

We have a map ΦX : Open(X) → Loc(Qc(X)), given by ΦX(U) = Qc(U). By construction, Φ is 
compatible with ι, meaning that the following diagram commutes
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Open(W2)
ΦW2

ι∗

Loc(Qc(W ))

ι∗

Open(W1)
ΦW1

Loc(Qc(W1)).

Lemma 5.3.1. Let X be a monoid scheme of finite type. Assume U1 and U2 are open monoid subschemes of 
X and U12 = U1 ∩ U2, V = U1 ∪ U2. Then both

Open(V )
ι∗1

ι∗2

Open(U1)

ι∗3

Open(U2)
ι∗4

Open(U12)

and

Loc(Qc(V ))
ι∗1

ι∗2

Loc(Qc(U1))

ι∗3

Loc(Qc(U2))
ι∗4

Loc(Qc(U12))

are pullback diagrams. Here, ι1, ι2, ι3, ι4 are the appropriate inclusions.

Proof. The statement related to the first diagram follows from the definition.
For the second diagram, observe that Loc(Qc(V )) is in a one-to-one correspondence with the Lawvere-

Tierney topologies on the topos Qc(V ) (see iii) and iv) of Lemma 2.4.1). Thus, we can and we will work 
with Lawvere-Tierney topologies.

Any such topology j on Qc(V ) is a morphism of sheaves ΩV → ΩV with appropriate properties. The 
restriction of ΩV on U1 (res. U2, U12) is ΩU1 (res. ΩU2 , ΩU12). The result follows from the fact that for any 
two morphisms ΩU1 → ΩU1 and ΩU2 → ΩU2 , which restrict to the same morphisms ΩU12 → ΩU12 , there 
exists a unique morphism ΩV → ΩV , which restrict to the given morphisms. �
5.4. Proof of the main theorem

We are now in a position to prove Theorem 1.0.1, the main theorem of this paper.

Proof of Theorem 1.0.1. i) and iv) As already sated in the introduction, parts i) and iv) were already proven 
in [13].

ii) Observe that by Lemma 5.3.1, it suffices to restrict ourself to the affine case. This is a consequence of 
Corollary 4.3.11 and Lemma 4.3.4.

iii) This follows from Lemma 5.2.1.
v) Let p = (p∗, p∗) be a point of the topos T and D a localisation of T . Denote the canonical inclusion 

D ⊂ T by ι and the corresponding localisation functor by ρ : T → D . The pair of morphisms (ι, ρ) is a 
geometric morphism D → T . By our definition, p � D if and only if p∗ : S → T factors through D . If this 
happens, the induced functor S → D will be the direct image part of a geometric morphism S → D and 
hence, give rise to a topos point of D .
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Equivalently, this happens if and only if p∗ : T → S factors through the functor ρ : T → D . That is to 
say, there exists a functor p1 : D → S , such that p∗ = p1 ◦ ρ.

Let Qc(X) be our topos, x ∈ X a point and U an open subset of X. In this case, the functor ρ : Qc(X) →
Qc(U) is just the restriction functor. If x ∈ U , then the stalk functor Π(x) : Qc(X) → S factors through 
Qc(U) → S . Hence, Π(x) � Qc(U). Conversely, if Π(x) � Qc(U), then Π(x) = p1 ◦ρ, where p1 is the inverse 
image functor of a topos point of Qc(U). As shown in [13], it corresponds to the stalk at some point y ∈ U . 
The equality Π(x) = p1 ◦ρ shows that for any quasi-coherent sheaf F defined on X, we have Fx = Fy. Thus 
x = y and hence x ∈ U . �
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