
Journal of Pure and Applied Algebra 226 (2022) 106840
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Codimension one distributions of degree 2 on the 

three-dimensional projective space

Hugo Galeano a, Marcos Jardim b,∗, Alan Muniz c

a Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Córdoba, Colombia
b IMECC - UNICAMP, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, 13083-970 
Campinas-SP, Brazil
c São Gonçalo-RJ, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 May 2021
Received in revised form 14 June 
2021
Available online 12 July 2021
Communicated by I. Coskun

MSC:
Primary: 58A17; 14D20; 14J60; 
secondary: 14D22; 14F06; 13D02

Keywords:
Holomorphic distributions
Sheaves
Singular scheme

We establish a full classification of degree 2 codimension one distributions on P3

according to invariants of their tangent sheaves.
© 2021 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Basic constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4. Distributions with c2(TD) ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5. Distributions with c2(TD) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6. Distributions with c2(TD) = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7. Distributions with c2(TD) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8. Distributions with c2(TD) = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9. Distributions with c2(TD) = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

* Corresponding author.
E-mail addresses: hagaleano@correo.unicordoba.edu.co (H. Galeano), jardim@unicamp.br (M. Jardim), 

alannmuniz@gmail.com (A. Muniz).
https://doi.org/10.1016/j.jpaa.2021.106840
0022-4049/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2021.106840
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2021.106840&domain=pdf
mailto:hagaleano@correo.unicordoba.edu.co
mailto:jardim@unicamp.br
mailto:alannmuniz@gmail.com
https://doi.org/10.1016/j.jpaa.2021.106840


2 H. Galeano et al. / Journal of Pure and Applied Algebra 226 (2022) 106840
1. Introduction

Let TPn and Ω1
Pn denote the tangent and cotangent bundles of the complex projective space Pn. A 

codimension one holomorphic distribution D on Pn is the data of a closed subset |Z| and, for each point 
p ∈ Pn \ |Z|, a subspace TD(p) ⊂ TpPn of codimension one. For every such distribution D there exists a 
twisted 1-form ω ∈ H0(Ω1

Pn(d + 2)) for some d ≥ 0 such that |Z| is its vanishing set and the fiber TD(p) at 
the point p is precisely kerω(p).

In sheaf theoretical terms, ω defines a morphism ω : TPn → OPn(d + 2) whose image is a twisted sheaf 
of ideals IZ(d + 2) defining a natural scheme structure to |Z|; we call Z =: Sing(D) the singular scheme
of D . It is assumed that Sing(D) has codimension at least 2 and we denote by Singn−2(D) the union of its 
irreducible components of pure codimension 2. The sheaf TD � kerω, called the tangent sheaf of D , is a 
saturated subsheaf of TPn of rank n − 1; in particular it is reflexive. Moreover, the integer d is called the 
degree of D .

The information provided in the previous paragraph can be neatly described in terms of a short exact 
sequence as follows:

D : 0 −→ TD −→ TPn ω−→ IZ(d + 2) −→ 0.

A codimension one distribution D is integrable, i.e. it defines a foliation, if TD ⊂ TPn is closed under the 
Lie bracket, [TD , TD ] ⊂ TD ; this is equivalent to the condition ω ∧ dω = 0 on the 1-form ω.

The study of distributions, and especially foliations, on Pn from the point of view of Algebraic Geometry 
has been a very active theme of research in the past few decades. A central problem has been the classification 
of codimension one foliations on Pn with a given degree d. In [20], Jouanolou classified codimension one 
foliations of degrees 0 and 1 on Pn; in [4], Cerveau and Lins Neto classified codimension one foliations of 
degree 2 on Pn. These authors describe the irreducible components of the algebraic set

F(d, n) := {[ω] ∈ PH0(Ω1
Pn(d + 2)) | ω ∧ dω = 0}

for d = 0, 1 and 2, which can be regarded as parametrizing codimension one foliations of degree d on Pn; 
their classification is given in terms of a naive deformation theory for the 1-form ω.

If we remove the integrability condition then any two 1-forms in H0(Ω1
Pn(d + 2)) can be deformed into 

one another with no regard of the distributions they define. Thus a finer moduli theory was needed to 
study such objects. A novel approach to the study of flat deformations of codimension one distributions, 
regardless of integrability, was introduced in [2]. The authors propose a classification in terms of natural 
topological invariants associated to a codimension one distribution, namely the Chern classes of tangent 
sheaf TD , and provide a full description for TD and Z when d = 0 or 1, see [2, Proposition 7.1] and [2, 
Section 8], respectively. In addition, a classification of codimension one distribution on P 3 of degree 2 with 
locally free tangent sheaf and reduced singular scheme is also given, see [2, Theorem 9.5].

The aim of this work is to present a complete picture for codimension one distributions on P 3 such that 
d = 2 or, equivalently, c1(TD) = 0. More precisely, we describe all possible tangent sheaves, addressing 
(semi)stability, Chern classes and spectra, if applicable. In addition, we also describe all possible singular 
schemes. Our main result is the following.

Main Theorem. Let D be a codimension one distribution of degree 2 on P 3. Then TD is μ-semistable when-
ever it does not split as a sum of line bundles; it can be strictly μ-semistable only when (c2(TD), c3(TD)) =
(1, 2) or (2, 4). In addition, the second and third Chern classes and spectra of TD are listed in Table 1, where 
Sing1(D) is given. Finally, Sing(D) is never contained in a quadric surface.
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Table 1
Possible Chern classes, spectra and singular loci of codimension one dis-
tribution of degree 2; the last column describes a generic point in the 
irreducible component of the Hilbert scheme that contains Sing1(D).

c2(TD) c3(TD) Spectrum Sing1(D)
6 20 {-3,-2,-1,-1,-1} empty
5 14 {-2,-2,-1,-1,-1} line

4
10 {-2,-1,-1,-1} conic
8 {-1,-1,-1,-1} two skew lines
6 {-1,-1,-1,0} double line of genus −2

3

8 {-2,-1,-1} plane cubic curve
6 {-1,-1,-1} twisted cubic
4 {-1,-1,0} conic � line
2 {-1,0,0} three skew lines
0 {0,0,0} double line of genus −2 � line

2
4 {-1,-1} elliptic quartic curve
2 {-1,0} rational quartic curve
0 {0,0} twisted cubic � line

1 2 {-1} curve of degree 5, genus 2
0 {0} elliptic curve of degree 5

0 0 split ACM curve of degree 6 genus 3
-1 0 split ACM curve of degree 7 genus 5

We recall that the spectrum of a rank 2 reflexive sheaf is a multiset of integers that encodes partial 
information on its cohomology, see Section 2.2.

The bulk of this article is dedicated to the proof of Main Theorem. Some cases, namely those with 
c2(TD) ≤ 1 and (c2(TD), c3(TD)) = (2, 4) or (3, 8), where already established in [2]; in addition, the case 
(c2(TD), c3(TD)) = (6, 20) corresponds to 1-forms with only isolated singularities, which are known to form 
an open subset of H0(Ω1

P3(4)). Furthermore, the following facts were already observed in [2, Section 8]:

(i) if c2(TD) = 5, then TD is μ-stable and c3(TD) = 14;
(ii) if c2(TD) = 4, then TD is μ-stable and 0 ≤ c3(TD) ≤ 10;
(iii) if c2(TD) = 3, then TD is μ-semistable and 0 ≤ c3(TD) ≤ 8;
(iv) if c2(TD) = 2, then TD is μ-semistable and 0 ≤ c3(TD) ≤ 4.

A precise description of the cases for which TD is either strictly μ-semistable or not μ-semistable is given 
in Theorem 5 below. In fact, it is worth emphasising that we find two families of distributions with 
(c2(TD), c3(TD)) = (2, 4), one with TD μ-stable and the other with TD strictly μ-semistable, see Section 5.

For the sake of completeness, we begin our proof by revising the basic properties of codimension one 
distributions of degree 2 mentioned above (see Section 2), as well as the cases with c2(TD) ≤ 1 in Section 4.

The remaining cases are established using three different techniques, introduced in Section 3. The key 
point is that once (c2(TD), c3(TD)) is fixed, the degree and arithmetic genus of Sing1(D) can be computed 
via the expressions in display (18). When the degree is less than 5, the curves with these given degree and 
arithmetic genus are explicit described in the literature, especially [22,23]. So if we construct a codimension 
one distribution D with a given Sing1(D), then TD will have the desired properties.

The first technique, described in Section 3.1, relies on codimension two distributions on P 3, i.e., foliations 
by curves: given a codimension two distribution, one can find a codimension one distribution containing it 
and whose singular locus can be explicitly described, see Proposition 6. This result is applied to prove the 
existence of codimension one distributions D of degree 2 such that Sing1(D) is a pair of disjoint lines, a 
smooth conic or a line, see Sections 7.2, 7.3 and 8, establishing the existence of the cases (c2(TD), c3(TD)) =
(4, 8), (4, 10) and (5, 14), respectively. It is also interesting to note that our results can be regarded as a 
proof of existence of stable rank 2 reflexives sheaves with the spectra given in Table 1.
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Table 2
The first column lists the 6 irreducible components of 
F(2, 3) according to Cerveau and Lins Neto [4]. Each line 
provides a description of the tangent sheaves for a generic 
point lying in each component.

Foliation c2(TD) c3(TD) TD

R(1, 3) 3 8 stable
R(2, 2) 2 4 stable
L(1, 1, 2) 1 2 str. μ-semistable
L(1, 1, 1, 1) 0 0 OP3 ⊕ OP3

E(3) 0 0 OP3 ⊕ OP3

S(2, 3) -1 0 OP3 (1) ⊕ OP3 (−1)

The second approach, described in Section 3.2, relies on constructing an explicit expression for a 1-form 
ω vanishing along a given curve. This procedure provides explicit examples for the cases (c2(TD), c3(TD)) =
(3, 2), (3, 4), (3, 6) and (4, 6) (see Sections 6.1 and 7) and also allows to show, as a consequence of Corollary 9, 
that the cases (c2(TD), c3(TD)) = (4, 0), (4, 2) and (4, 4) cannot be realized. All explicit examples presented 
in this paper were computed with Macaulay2 [11].

Finally, the third technique looks into properties of stable rank 2 reflexive sheaves with desired second 
and third Chern classes. Exploring these properties, one can prove the existence of a monomorphism from a 
given sheaf F into TP 3 whose cokernel is torsion free. This is applied to the case (c2(TD), c3(TD)) = (3, 0), 
for which a profound knowledge of stable rank 2 reflexive sheaves is available. The advantage of this more 
delicate technique is that it allows for the construction not only of a particular example, but actually for 
the construction of the whole family of distributions with the prescribed invariants, see Theorem 28 and 
Proposition 30.

For the sake of comparison, we recall in Table 2 the Cerveau-Lins Neto classification of codimension one 
foliations of degree 2, comparing with classification scheme outlined in [2] and further expanded here. Any 
integrable distribution of degree 2 must be in the closure of one of those six families: R(a, b) and L(d1, .., d4)
are the families of rational and logarithmic foliations; E(3) is the family of exceptional foliations; S(2, 3)
are pullback foliations.

Our thorough study of codimension one distributions of degree 2 on P 3, together with previous study of 
distributions of degrees 0 and 1, allows us to propose two questions. Let D a degree d ≥ 0 distribution on 
P 3.

(i) It is true that the singular scheme Sing(D) is never contained in a hypersurface of degree ≤ d? This 
was already remarked in [8] and we see here that it holds for d = 2.

(ii) If D is integrable then is it true that

c2(TD) ≤ d2 − d + 1?

If we assume that Sing1(D) is reduced, then this bound is an easy consequence of [9, Proposição 2.6]. 
Note also that the equality is satisfied for generic rational foliations D of type R(1, d).
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2. Preliminaries and notation

We begin by setting up the notation and nomenclature to be used in the rest of the paper.

2.1. Codimension one distributions on P 3

A codimension one distribution on P 3 is given by an exact sequence

D : 0 −→ TD −→ TP 3 ω−→ IZ(d + 2) −→ 0, (1)

where d ≥ 0 is called the degree of D , and Z is its singular scheme. The last map is given by a global section 
ω ∈ H0(Ω1

P3(d + 2)) which can be seen, from the Euler sequence, as a homogeneous polynomial 1-form 
ω =

∑3
i=0 Aidxi, on C4, such that deg(Ai) = d + 1 and the contraction with the Euler radial vector field ∑3

i=0 xi
∂

∂xi
vanishes, i.e., 

∑3
i=0 Aixi = 0. Moreover, Z is precisely the vanishing locus of ω with its natural 

scheme structure locally given by the Ai.
Let F = gcd(A0, A1, A2, A3), then ω = Fω′ for ω′ a homogeneous 1-form of lower degree. Since both ω

and ω′, define the same distribution on the Zariski open subset P 3 \ {F = 0}, we will assume throughout 
that F = 1, i.e. the Ai are relatively prime. This is equivalent to assuming that dimZ ≤ 1.

In general, Z may have both 0- and 1-dimensional components. Letting U be the maximal 0-dimensional 
subsheaf of OZ , we obtain the exact sequence

0 −→ U −→ OZ −→ OC −→ 0, (2)

where C is a pure 1-dimensional scheme, i.e., a Cohen-Macaulay curve. We also denote it by Sing1(D) := C. 
One can show that [2, Theorem 3.1]:

c1(TD) = 2 − d;

c2(TD) = d2 + 2 − deg(C);

c3(TD) = length(U) = d3 + 2d2 + 2d− deg(C) · (3d− 2) + 2pa(C) − 2,

(3)

where pa(C) denotes the arithmetic genus of C.
Since this paper is dedicated to the case d = 2, we specialize it further. Then c1(TD) = 0 and TD � T ∗

D , 
since TD is a rank two reflexive sheaf. The formulas in display (3) simplify to

c2(TD) = 6 − deg(C);

c3(TD) = 18 − 4 deg(C) + 2pa(C).
(4)

Since U is supported in dimension zero, Extj(U, OP3) = 0 for j ≤ 2, see [19, Proposition 1.1.6]. Then (2)
implies that

Ext1(IZ(4),OP3) = Ext2(OZ ,OP3(−4)) = Ext2(OC ,OP3(−4)) = ωC .

Dualizing the sequence in display (1) and using d = 2, we obtain

0 −→ OP3(−4) −→ Ω1
P3 −→ TD

ζ−→ ωC −→ 0. (5)

Computing the cohomology we get the following key lemma; a similar result holds in any given degree.
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Lemma 1. Let D be a degree 2 codimension one distribution on P 3 then

(i) h0(TD(1)) = h0(ωC(1));
(ii) h2(TD) ≤ 1;

and for p ≥ 1 we have

(iii) h1(TD(p)) = h1(ωC(p));
(iv) h2(TD(p)) = 0.

Note that since C is a Cohen-Macaulay curve, Serre duality holds and we may use hi(ωC(p)) =
h1−i(OC(−p)) for i ∈ 0, 1 and every p ∈ Z, see [13, III Corollary 7.7].

An important invariant of C is its Rao module MC =
⊕

p H
1(IC(p)). From the sequence (1) and using 

that U = IC/IZ is zero-dimensional, we get

h1(IC(p)) ≤ h2(TD(p− 4)) for p ∈ Z.

Thus we have a restriction on the curves that can appear in the singular loci of degree two distributions.

2.2. The spectrum of a rank 2 reflexive sheaf

For a normalized rank two reflexive sheaf F on P 3, such that h0(F (−1)) = 0, there exists a unique 
multiset (i.e. repeated elements are allowed) of integers {k1, . . . , kc2(F )}, called the spectrum of F , that 
encodes partial information on the cohomology of F . It was first defined by Barth and Elencwajg for locally 
free sheaves and later extended for reflexive sheaves by Hartshorne; we will use [15, Section 7] as reference.

Remark 2. Let F be a μ-semistable rank 2 reflexive sheaf on P 3 with c1(F ) = 0 and set c2(F ) = n and 
c3(F ) = 2l. If {k1, . . . , kn} is the spectrum of F then:

h1(F (p)) =
n∑

i=1
h0(P 1,OP1(ki + p + 1)) for each p ≤ −1;

h2(F (p)) =
n∑

i=1
h1(P 1,OP1(ki + p + 1)) for each p ≥ −3.

(6)

The possible spectra of a sheaf with given Chern classes can be determined via the following properties, see 
[15, Propositions 7.2 and 7.3 and Theorem 7.5].

(i)
∑n

i=1 ki = −l;
(ii) if k > 0 belongs to the spectrum, then so do 1, . . . , k; if, in addition, F is μ-stable then 0 must also 

occur;
(iii) if k < 0 belongs to the spectrum, then so do k, k + 1, . . . , −1;
(iv) if F is μ-stable then either 0 occurs or −1 occurs at least twice;
(v) If F is locally free, then the spectrum is symmetric, i.e., if ki occurs, then so does −ki.

As we have seen in Lemma 1, being the tangent sheaf of a codimension one distribution imposes certain 
restrictions on h1(F (p)) and h2(F (p)), which can in turn be used to rule out several possible spectra for 
sheaves with given Chern classes. Studying the spectrum of tangent sheaves also leads to a precise knowledge 
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of the associated singular schemes, and vice-versa, allowing us to collect the information displayed in Table 1. 
Here is an immediate application.

Lemma 3. Let D be a codimension one distribution on P 3 of degree 2 and let {k1, . . . , kn} be the spectrum 
of TD . Then ki ≥ −3 for every i and −3 occurs at most once. Moreover, 1 occurs in the spectrum if and 
only if Sing(D) is contained in a quadric surface.

Proof. From Lemma 1 we get h2(TD) ≤ 1; then from (6) we must have ki ≥ −3 for every i and −3 occurs 
at most once. Computing the cohomology for the sequence (1) we see that h1(TD(−2)) 	= 0 if and only if 
Sing(D) is contained in a surface of degree at most 2. On the other hand, h1(TD(−2)) 	= 0 if and only if 1
occurs in the spectrum. �

In Sections 4 through 9 we will use Remark 2 to compute the possible spectra for tangent sheaves of 
distributions of degree 2; they are listed in the third column of Table 1. In particular, we check that 1 never 
appears in any spectrum, thus the second part of Lemma 3 guarantees that Sing(D) is never contained in 
a quadric surface, as stated in the Main Theorem.

2.3. Foliations by curves on P 3

Consider now codimension 2 distributions on P 3; they are given by an exact sequence

G : 0 −→ OP3(1 − k) ν−→ TP 3 −→ NG −→ 0; (7)

where NG , called the normal sheaf, is torsion free. The integer k ≥ 0 is called the degree of the distribution 
determined by the vector field ν ∈ H0(TP 3(k − 1)), up to scalar factor. Since every one-dimensional 
distribution is automatically integrable, we call (7) a foliation by curves of degree k on P 3. For a detailed 
account on foliations by curves we refer to [3,7]. We will be mostly interested in the cases k = 0 and k = 1.

In order to make the role of the singular locus more explicit, we dualize the sequence in display (7) to 
obtain

0 −→ N∗
G −→ Ω1

P3
ιν−→ IW (k − 1) −→ 0, (8)

where W is the scheme of zeros of the vector field ν. From the Euler sequence, ν is an equivalence class of 
homogeneous polynomial vector fields ν̃ =

∑3
i=0 Fi

∂
∂xi

with deg(Fi) = k, on C4, modulo multiples of the 

radial vector field, i.e., ν̃1 and ν̃2 represent ν if and only if ν̃1 − ν̃2 = P
(∑3

i=0 xi
∂

∂xi

)
for some polynomial 

P . We can choose ν̃ such that div(ν̃) =
∑3

i=0
∂Fi

∂xi
= 0; this choice is unique. Given any representative ν̃ of 

ν, one can show, by comparing with (8), that W is the locus of points where ν̃ and 
∑3

i=0 xi
∂

∂xi
are parallel. 

More precisely, W is given by the homogeneous ideal generated by the 2 × 2 minors of the matrix[
F0 F1 F2 F3
x0 x1 x2 x3

]
. (9)

As for codimension one distributions, W may not be pure dimensional, so we have an exact sequence

0 −→ R −→ OW −→ OY −→ 0, (10)

where R is a 0-dimensional sheaf and Y is a curve; we set Y := Sing1(G ) and R := Sing0(G ). The foliation 
by curves G is said to be generic if dimW = 0, that is, ν only vanishes at points.
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When k = 0, the picture is very simple. The foliation G is given by a constant vector field ν vanishing at 
only one point, and NG is a stable rank 2 reflexive sheaf given by a sequence of the following form

0 −→ OP3 −→ OP3(1)⊕3 −→ NG −→ 0;

note that N∗
G � NG (−3); see also [7, Section 5].

When k = 1 we have that G is given by a linear vector field ν =
∑3

i,j=0 aijxj
∂

∂xi
that we can choose such 

that the matrix A = (aij) has vanishing trace; this choice of ν defining G is unique up to scalar multiples. 
Thus G can be described by the structure of the matrix A, and we can provide a complete classification of 
foliation by curves of degree one.

First, recall that a torsion free sheaf E on Pn is μ-semistable if for every saturated subsheaf F ⊂ E,

c1(F )
rkF ≤ c1(E)

rkE .

The sheaf E is μ-stable if it is μ-semistable and the inequalities are always strict. If E is a rank 2 reflexive 
sheaf, then we only need to consider F = OPn(l) for some l ∈ Z.

Theorem 4. Let G be a foliation by curves of degree 1 on P 3. Then

(i) N∗
G is a μ-stable rank 2 reflexive sheaf with Chern classes c2(N∗

G ) = 6 and c3(N∗
G ) = 4, and W is a 

0-dimension scheme of length 4;
(ii) N∗

G is a strictly μ-semistable reflexive sheaf with Chern classes c2(N∗
G ) = 5 and c3(N∗

G ) = 2 and given 
by an extension

0 −→ OP3(−2) −→ N∗
G −→ IL(−2) −→ 0, (11)

where L is a line. In this case, W = L′∪p where L′ is a line and p is a 0-dimensional scheme of length 
2, possibly embedded in L′. Moreover, p ⊂ L and W is nonplanar; in particular, L 	= L′;

(iii) N∗
G = OP3(−2) ⊕OP3(−2), in particular c2(N∗

G ) = 4 and c3(N∗
G ) = 0, and W consists of either 2 skew 

lines or a double line of genus −1.

Proof. Let A be the matrix associated with a vector field ν ∈ H0(TP 3), as described above. We argue 
that Sing(G ) corresponds to the eigenspaces of A counted with multiplicities. Indeed, the minors of the 
matrix (9), for ν =

∑3
i,j=0 aijxj

∂
∂xi

, vanish if and only if (x0, x1, x2, x3)T is an eigenvector of A. Hence 
W = Sing(G ) is a scheme supported at the projectivized set of eigenvectors of A. We have three cases:

(i) A has only eigenspaces of dimension 1, then dimW = 0;
(ii) A has one eigenspace of dimension 2, then Sing1(G ) is supported on a line L1;
(iii) A has two eigenspaces of dimension 2, then W is supported on two skew lines L1 � L2.

If A has an eigenspace of dimension 3, then the vector field vanishes along a plane, and therefore the G is 
not saturated. Finally, A has an eigenspace of dimension 4 if and only if A = 0 since it has vanishing trace.

Due to [7, Theorem 4.1], we have that c1(N∗
G ) = −4, c2(N∗

G ) = 6 − deg(Y ) and c3(N∗
G ) = 2 + 2pa(Y ) (or 

c3(N∗
G ) = 4 if Y = ∅). It follows from the sequence (8) that h0(N∗

G (1)) = 0, hence N∗
G is μ-semistable.

In the first case dimW = 0. Then dualizing (8) we see that h0(N∗
G (2)) = 0 hence N∗

G is μ-stable. We also 
have that c2(N∗

G ) = 6 and c3(N∗
G ) = 4.

In the second case, first assume Sing1(G ) = L1. Then it follows that c2(N∗
G ) = 5, c3(N∗

G ) = 2, and 
W = L1 ∪ p with p being a 0-dimensional subscheme of length 2. Then [5, Lemma 2.1] applied to N∗

G (2)
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shows that N∗
G is strictly μ-semistable and fits in the exact sequence (11). In particular, L must contain the 

scheme p. It also follows from (11) that h1(N∗
G (1)) = 0, and then (8) implies that W is not planar.

Still in the second case, assume that Sing1(G ) has a nonreduced structure along L1. Checking the Jordan 
normal forms we see that it is only possible if, up to a linear change of coordinates,

A =

⎡⎢⎣0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎦
hence W is given by the homogeneous ideal (x2

1, x1x3, x3
3, x1x2 − x0x3) and W is a double line of genus −1. 

Then c2(N∗
G ) = 4 and c3(N∗

G ) = 0 and N∗
G (2) is a μ-semistable sheaf with trivial Chern classes, hence it is 

the trivial vector bundle and N∗
G = OP3(−2) ⊕OP3(−2).

In the third case, as in the last paragraph, c2(N∗
G ) = 4 and c3(N∗

G ) = 0. Hence N∗
G = OP3(−2) ⊕OP3(−2)

as well. �
2.4. Stability for distributions and sub-foliations

In order to describe codimension one distributions, we analyse the stability of the possible tangent 
sheaves. If D is a degree d codimension one distribution on P 3 such that TD is not μ-stable, there exists 
a line sub-bundle OP3(l) ⊂ TD such that 2l ≥ 2 − d. On the other hand, OP3(l) ↪→ TD ↪→ TP 3 can only 
exist if l ≤ 1. For d = 2, we must have l = 0 or 1; the later only occurs if TD is not μ-semistable. These line 
sub-bundles induce sub-distributions of codimension two; next, we will describe them.

If D is a codimension one distribution of degree two then −1 ≤ c2(TD) ≤ 6. Indeed, we know from (4)
that c2(TD) = 6 − deg(Sing1(D)) and, on the other hand, the restriction of D to a general plane H is 
singular at Sing1(D) ∩H, whence deg(Sing1(D)) ≤ 7; see [2, p. 28].

If TD is not μ-semistable then h0(TD(−1)) 	= 0 and, owing to [2, Lemma 4.3], it must split as sum of 
line bundles and, as TD ↪→ TP 3, the only possibility is TD = OP3(1) ⊕ OP3(−1). This covers the case 
c2(TD) = −1 and, conversely, TD is μ-semistable if c2(TD) ≥ 0.

If c2(TD) = 0 then TD = OP3 ⊕OP3 . If c2(TD) = 1 then c3(TD) = 0 or 2, owing to [15, Theorem 8.2]. For 
c3(TD) = 0 we have that TD must be a null correlation bundle, which is stable; for c3(TD) = 1 [5, Lemma 
2.1] shows that TD is strictly μ-semistable.

If c2(TD) ≥ 4, then it follows from [2, Proposition 6.3] that the tangent sheaf TD is stable. We will now 
complete this picture, and the first claim of Main Theorem, with the following result.

Theorem 5. Let D be a codimension one distribution on P 3 of degree 2. The stability of TD is described as 
follows:

(i) TD is not μ-semistable if and only if c2(TD) = −1; if that is the case TD = OP3(1) ⊕OP3(−1);
(ii) If TD is strictly μ-semistable then (c2(TD), c3(TD)) = (0, 0), (1, 2) or (2, 4);

For all the other cases TD is μ-stable.

Proof. The first item follows from the above discussion; we will prove now the second one. Consider a 
codimension 1 distribution of degree 2

D : 0 −→ TD
φ−→ TP 3 −→ IZ(4) −→ 0;

also from the previous discussion, we may assume c2(TD) ≥ 2. If D is not μ-stable then h0(TD) 	= 0; 
so let σ ∈ H0(TD) be a non trivial section, and let S := (σ)0. Due to μ-semistability, S is a curve of 



10 H. Galeano et al. / Journal of Pure and Applied Algebra 226 (2022) 106840
degree deg(S) = c2(TD) ≥ 2; otherwise we could factor out the divisoral part of S, yielding a section in 
H0(TD(−1)). Moreover, σ induces a (sub-)foliation by curves of degree 1

G : 0 −→ OP3
φ◦σ−→ TP 3 −→ NG −→ 0.

Since im(φ ◦ σ)∨ ⊂ im σ∨, we see that S ⊆ Y = Sing1(G ); in particular, we have deg(Y ) ≥ 2. According to 
Theorem 4, we must have N∗

G = OP3(−2) ⊕OP3(−2) and Sing(G ) = Y consists of two skew lines; otherwise 
Y would have degree one. As S has degree at least two, we conclude that S = Y . Therefore, c2(TD) = 2
and c3(TD) = 2pa(S) − 2 + 8 = 4. �

One advantage of the μ-semistability to our classification is to bound the third Chern class. For a μ-stable 
rank two reflexive sheaf F on P 3 with c1(F ) = 0 we have, owing to [15, Theorem 8.2], that

c3(F ) ≤ c2(F )2 − c2(F ) + 2. (12)

Also recall [15, Corollary 2.4] that c3 ≡ c1c2 (mod 2), hence c3(F ) is always even.

3. Basic constructions

In the remainder of this paper we will provide the existence or non-existence of distributions according 
to the given Chern classes. To fulfill our purpose, we will establish in this section the key results needed for 
the construction of examples of codimension one distributions of degree 2; and some results to discard the 
impossible cases.

3.1. Distributions from foliations by curves

Let G be a degree k foliation by curves as in display (8) and let σ ∈ H0(N∗
G (l)) be a section, for some 

l ∈ Z. We assume that X := (σ)0, the vanishing locus of σ, has codimension 2. We will use σ to produce a 
codimension one distribution.

Now consider the composed monomorphism ρ : OP3(−l) σ
↪→ N∗

G ↪→ Ω1
P3 and let F := coker ρ. Using the 

Snake Lemma, we can see that F fits into the following exact sequence

0 −→ IX(l − k − 3) −→ F −→ IW (k − 1) −→ 0, (13)

where W = Sing(G ). In particular, since X and W have codimension at least two, F is torsion free. 
Therefore, we have a codimension one distribution of degree l− 2 given by the exact sequence

D : 0 −→ F ∗ −→ TP 3 −→ IZ(l) −→ 0,

called the codimension one distribution induced by the pair (G , σ). Note that Ext1(F, OP3) � OZ(l); it is 
also clear that X ⊂ Z.

Dualizing the exact sequence in display (13) yields the long exact sequence

0 −→ OP3(1 − k) −→ F ∗ −→ OP3(k + 3 − l) η−→ ωY (5 − k) −→
−→ OZ(l) −→ ωX(k − l + 7) −→ ωR −→ 0, (14)

where Y := Sing1(G ) and R := Sing0(G ), noting that

Ext1(IW (k − 1),OP3) � ωY (5 − k).
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In addition, the morphism η in display (14) can also be regarded as a section η ∈ H0(ωY (l − 2k + 2)).

Proposition 6. Let G be a foliation by curves with Y = Sing1(G ), and take a non zero section σ ∈ H0(N∗
G (l))

such that (σ)0 is a curve; let D be the codimension one distribution induced by (G , σ), and let η ∈ H0(ωY (l−
2k + 2)) be as above. If dim coker η = 0, then

Sing1(D) = (σ)0 , Sing0(D) = (η)0 ,

and 0 −→ OP3(1 − k) −→ TD −→ IW (k + 3 − l) −→ 0.

Proof. We will use the same notation as above. Breaking the exact sequence in display (14) into short exact 
sequences, we extract the following two:

0 −→ coker η −→ OZ(l) −→ OZ′(l) −→ 0; (15)

0 −→ OZ′(l) −→ ωX(k − l + 7) −→ ωR −→ 0; (16)

note that Z ′ ⊂ X ⊂ Z. As X is Cohen-Macaulay and R has dimension zero, (16) implies that Z ′ = X and 
it follows from (15) that

coker η = IX/Z(l).

If dim coker η = 0 then X = Sing1(D) which implies that (η)0 = Sing0(D). Since TD � F ∗, the exact 
sequence in the statement comes from dualizing the exact sequence in display (13), using the hypothesis 
dim coker η = 0. �
Remark 7. We make two observations on the previous argument.

(i) η = 0 if and only if F ∗ = OP3(1 − k) ⊕OP3(k + 3 − l), so that l − k ≥ 2;
(ii) If η 	= 0 and Y := Sing1(G ) is irreducible and reduced, then the hypothesis dim coker η = 0 is auto-

matically satisfied.

Also note that the codimension one distribution D constructed above, and for which dim coker η = 0
holds, has the following invariants:

c1(TD) = 4 − l;

c2(TD) = l(k − 1) + 6 − c2(N∗
G );

c3(TD) = c3(N∗
G ) + (1 − k − l)c2(N∗

G ) + (k2 + 2k + 3)l − 4.

(17)

They can be calculated from (3) using that Sing1(D) = (σ)0. Since we are interested in degree two distri-
butions, we specialize the above formulas to l = 4:

c2(TD) = 4k + 2 − c2(N∗
G );

c3(TD) = c3(N∗
G ) − (k + 3)c2(N∗

G ) + 4k2 + 8k + 8.
(18)

3.2. Distributions from syzygies

Another way to construct codimension one distributions, maybe the most traditional one, is to give an 
explicit twisted 1-form that defines it. We will see how to construct 1-forms with specified vanishing locus, 
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so that the distribution has the desired invariants. We will proceed by studying some homogeneous ideals 
as in [8, Section 4].

Recall that a degree d codimension one distribution D may be given by a homogeneous 1-form ωD =
A0dx + A1dy + A2dz + A3dw. The singular scheme Z of D is defined by the saturated ideal

IZ = Isat =
⊕
l∈Z

H0(IZ(l)) ,

where I = (A0, A1, A2, A3) ⊂ C[x, y, z, w]. As the Aj have degree d + 1, restrictions are imposed on the 
possible subschemes of P 3 that can fit into the singular loci of distributions.

Lemma 8. Let C ⊂ P 3 be a subscheme with saturated ideal IC and let D ⊃ C be the subscheme defined by 
(IC)≤d+1, the ideal generated by the elements of IC of degree ≤ d + 1. If D is a distribution as above and 
C ⊂ Z, then D ⊂ Z.

Proof. Since C ⊂ Z we have IZ ⊂ IC ; in particular (A0, A1, A2, A3) ⊂ IC . In fact, (A0, A1, A2, A3) ⊂
(IC)≤d+1 and the result follows from the inclusion of the saturations. �

A direct consequence of this lemma is a bound on the genus of double and triple lines that can be included 
in the singular scheme of a distribution.

Corollary 9. Let D be a degree d distribution on P 3 and let C be a double line of genus g ≤ 0. If g < −d

then D is singular along the second infinitesimal neighborhood of Cred, i.e., the curve defined by (ICred
)2.

Proof. Up to a linear change of coordinates, Cred = {x = y = 0} and the ideal of C is IC = (x2, xy, y2, xp +
yq) where p and q have degree −g, see [22].

If g < −d, then deg(xp + yq) ≥ d + 2 and Lemma 8 implies that IZ ⊂ (x, y)2. �
The second infinitesimal neighborhood of a line has degree three. This will be useful to bound c3(TD) in 

some cases. Next we describe the restriction on triple lines.
Fix Cred = {x = y = 0}. According to [22], a triple structure on Cred is described by a pair of numbers 

(a, b) and falls in one of two cases:

(i) a = −1 then C is a curve of genus pa(C) = 1 − b given by

IC = (x2, xy, y3, xq − y2p),

where deg p + 1 = deg q = b.
(ii) If a ≥ 0 then C is a curve of genus pa(C) = −2 − 3a − b given by

IC = (x, y)3 + (x(xg − yf), y(xg − yf), p(xg − yf) − rx2 − sxy − ty2),

where deg f = deg g = a + 1 and deg p = b.

Corollary 10. Let D be a degree d distribution on P 3 and let C be a triple line of type (a, b). If either a = −1
and b ≥ d; or a ≥ 0 and a + b ≥ d then Sing(D) contains a multiple structure on Cred of degree at least 4.

Proof. If a = −1 and b ≥ d then Sing(D) must contain the curve given by the ideal (x2, xy, y3), which has 
degree 4.

If a ≥ 0 and a +b ≥ d then Sing(D) must contain the curve given by the ideal (x, y)3+(x(xg−yf), y(xg−
yf)), which has degree at least 4. �
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Finally we recall the following result, [8, Proposition 4.4], that exhibits a correspondence between the 
1-forms a closed subscheme and the linear syzygies of its homogeneous ideal.

Proposition 11 ([8]). Let Z ⊂ Pn be a closed subscheme and let d ≥ 0 be an integer. Suppose that Z is not 
contained in a hypersurface of degree less than or equal to d. Then there exists a linear isomorphism between 
the spaces of degree d + 2 twisted 1-forms singular at Z and linear first syzygies of the homogeneous ideal 
IZ .

To produce the 1-forms we fix a minimal generating set {F0, . . . , Fr} for IZ and consider a linear first 
syzygy {G0, . . . , Gr}. Then we define

ω = F0dG0 + · · · + FrdGr;

it is clear that ω is homogeneous and descends to Pn since F0G0 + · · · + FrGr = 0. Note that, for general 
ideals, one may also use higher degree syzygies and replace dGj by 1

degGj
dGj in the definition of ω. But 

then ω may be non-homogeneous and the syzygies must be chosen wisely. We used Macaulay2 [11] to do 
such computations.

3.3. Morphisms to the tangent bundle

Let F be a rank 2 reflexive sheaf on P 3, with c1(F ) = 0. Assuming that Hom(F, TP 3) 	= 0, we would like 
to find conditions that guarantee the existence of a monomorphism F ↪→ TP 3 with torsion free cokernel. 
One criterion is given by [2, Corollary A.4], which we now recall.

Lemma 12 ([2]). Let F be a globally generated rank 2 reflexive sheaf on P 3. Then F∨(1) is the tangent sheaf 
of a codimension one distribution D of degree c1(F ) with c2(TD) = c2(F ) − c1(F ) + 1, and c3(TD) = c3(F ).

In particular, if F (1) is globally generated, then there exists φ ∈ Hom(F, TP 3) such that cokerφ is torsion 
free; if, in addition, c1(F ) = 0, then the corresponding codimension one distribution D has degree equal to 
c1(F (1)) = 2, and satisfies (c2(TD), c3(TD)) = (c2(F ), c3(F )).

More generally, assume that φ : F → TP 3 is not injective; it then follows that imφ must be a torsion 
free sheaf, which implies that kerφ is reflexive of rank 1, therefore kerφ � OP3(−k) and imφ � IC(k) for 
some curve C. The stability of F forces k ≥ 1 and the natural inclusion imφ ↪→ TP 3 induces a nontrivial 
section in H0(TP 3(−k)), thus k = 1. Then φ decomposes as

F
s∨−→ OP3(1) ν−→ TP 3

where s ∈ H0(F (1)) and ν ∈ H0(TP 3(−1)). This factorization allows us to prove the following lemma.

Lemma 13. Let F be a μ-stable rank 2 reflexive sheaf on P 3 such that c1(F ) = 0 and Hom(F, TP 3) 	= {0}. 
Then there exists an injective morphism φ : F ↪→ TP 3 if and only if either

(i) h0(F (1)) 	= 1;
(ii) h0(F (1)) = 1 and hom(F, TP 3) > 4.

Moreover, if h0(F (1)) = 0 then every morphism in Hom(F, TP 3) is injective;

Proof. Consider the map ξ : H0(F (1)) ⊗H0(TP 3(−1)) → Hom(F, TP 3) defined by ξ(s ⊗ ν) = s∨ν; clearly 
ξ is injective. Let Σ ⊂ H0(F (1)) ⊗H0(TP 3(−1)) be the locus of the decomposable elements, i.e., those of 
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the form s ⊗ ν. From our previous discussion, the locus of maps in Hom(F, TP 3) that are not injective is 
precisely ξ(Σ).

If h0(F (1)) = 0 then Σ = ∅ and we are done. If h0(F (1)) = 1 we have the other extremal case Σ =
H0(F (1)) ⊗H0(TP 3(−1)), then there exists an injective morphism if and only if hom(F, TP 3) > dim Σ = 4. 
Finally, if h0(F (1)) ≥ 2 then Σ is the affine cone of a Segre variety and

hom(F,TP 3) ≥ 4h0(F (1)) > h0(F (1)) + 3 = dim Σ.

Thus there exist injective morphisms. �
Now we analyse the morphisms that are injective but have torsion in their cokernels. Let φ : F ↪→ TP 3

be a monomorphism whose cokernel is not torsion free, and let

P := ker{cokerφ −→ (cokerφ)∨∨} (19)

be the maximal torsion subsheaf of cokerφ. The quotient (cokerφ)/P is a torsion free sheaf of rank 1, so it 
must be of the form IZ(d′ + 2) for 1-dimensional scheme Z and some d′ ≥ 0. We end up with the following 
commutative diagram

0

0 P

0 F
φ

TP 3 K 0

0 F ′ φ′

TP 3 IZ(d′ + 2) 0

P 0

0

(20)

where K := cokerφ and F ′ := ker{TP 3
↠ K ↠ K/P}.

The second row of the previous diagram defines a codimension one distribution D of degree d′, called the 
saturation of the monomorphism φ : F → TP 3; note that TD = F ′.

Lemma 14. Let F be a rank 2 reflexive sheaf on P 3, and let φ : F → TP 3 be a monomorphism whose cokernel 
is not torsion free. If D is the saturation of φ, then:

(i) The sheaf P defined in display (19) has pure dimension 2.
(ii) deg(D) < 2 − c1(F );
(iii) hom(TD , TP 3) ≤ hom(F, TP 3).

Proof. For the first item it suffices to prove that Ext3(P, OP3) = 0 and Ext2(P, OP3) has dimension 0. 
Consider the diagram in display (20). Dualizing the bottom row and using that F ′ = TD is reflexive we get 
Ext3(IZ(d′ + 2), OP3) = 0. Then, dualizing the rightmost column we get
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Table 3
Possible values of hom(TD , TP3) for all possible 
D of degree ≤ 1.

deg(D) (c2(TD), c3(TD)) hom(TD ,TP3)

0 (2,0) 1
(1,0) 8

1

(3,5) 1
(2,2) 5
(1,1) 12
(0,0) 19

Ext2(K,OP3) −→ Ext2(P,OP3) −→ 0;

0 −→ Ext3(K,OP3) −→ Ext3(P,OP3) −→ 0.

On the other hand, we dualize the top row to get dim Ext2(K, OP3) = 0 and Ext3(K, OP3) = 0; using this 
information in the sequences above we show that P is pure of dimension two. Therefore c1(P ) > 0 and

deg(D) = 2 − c1(TD) = 2 − (c1(F ) + c1(P )) < 2 − c1(F ).

Finally, we apply the functor Hom( · , TP 3) to the leftmost column and get

0 −→ Hom(TD ,TP 3) −→ Hom(F,TP 3),

which proves the third item. �
In general, it is hard to describe the possible saturations for a given morphism and one may rely on ad 

hoc methods. In our case, it will be useful to know the dimensions of Hom(TD , TP 3) for a distribution of 
degree 0 or 1. These dimensions were obtained in [2] and we summarize them in Table 3.

4. Distributions with c2(TD) ≤ 1

We start the description with the cases c2(TD) = −1, 0 or 1. For c2(TD) = −1 we have that TD =
OP3(1) ⊕OP3(−1). In particular, the map φ : TD ↪→ TP 3 yields vector fields ν0 := φ(1, 0) and ν2 := φ(0, 1), 
of respective degrees 0 and 2, that generate D . Choosing homogeneous coordinates (x : y : z : w), we may 
assume that ν0 = ∂

∂w and ν2 = A ∂
∂x + B ∂

∂y + C ∂
∂z , for some degree 2 polynomials A, B and C. Then 

[ν0, ν2] = 0, i.e. D is integrable, if and only if A, B and C do not depend on the variable w. These are the so 
called linear pullback foliations S(3). Of course, one can easily produce a non-integrable distribution setting 
ν0 = ∂

∂w and choosing ν2 depending on w.
As TD splits we can use the surjection OP3(1)⊕4

↠ TP 3 to construct a free resolution for C = Sing(D).

0 −→ OP3(−5) ⊕OP3(−4) ⊕OP3(−3) −→ OP3(−3)⊕4 −→ IC −→ 0. (21)

In particular, C is arithmetically Cohen-Macaulay (ACM). This is true whenever TD splits and in a more 
general setting, see [6, Theorem 1].

If c2(TD) ≥ 0, we have μ-semistability, recall Theorem 5. In particular, for c2(TD) = 0, this implies 
that c3(TD) = 0, hence TD = OP3 ⊕ OP3 . In this case, we get from φ : TD ↪→ TP 3 two linear vector fields 
ν and ν′. Clearly, the choice of any two (linearly independent) vector fields defines a distribution. The 
integrable cases, i.e. [ν, ν′] = aν + bν′ with a, b ∈ C, come from representations of two-dimensional complex 
Lie algebras. Among these we find logarithmic foliations L(1, 1, 1, 1), that come from representations of the 
trivial algebra, and the exceptional foliations E(3) that come from representations of the affine Lie algebra 
aff(C).
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As above TD splits and we can build a free resolution

0 −→ OP3(−4)⊕3 −→ OP3(−3)⊕4 −→ IC −→ 0 (22)

for C = Sing(D).
We summarize the previous discussion in the following proposition.

Proposition 15. Let D be a codimension one distribution on P 3 of degree 2. If c2(TD) ≤ 0 then one of the 
following holds.

(i) TD = OP3(1) ⊕OP3(−1) and Sing(D) is an ACM curve as in (21);
(ii) TD = OP3 ⊕OP3 and Sing(D) is an ACM curve as in (22).

For c2(TD) = 1 we have two possibilities: either c3(TD) = 0 and TD is μ-stable; or c3(TD) = 2 and 
TD must be strictly μ-semistable. Indeed, this holds for any reflexive sheaf with such Chern classes, see 
[5, Lemma 2.1]. Moreover, if c3(TD) = 0 then TD is a null correlation bundle, see [24, Lemma 4.3.2]. We 
will show, in the next two results, that distributions with these invariants do exist. We recall that a curve 
is arithmetically Buchsbaum if its Rao module H1

∗(IC) is annihilated by the irrelevant ideal, see [1]; in 
particular, this is true if H1

∗ (IC) is supported in only one degree.

Proposition 16. Let N be a null correlation bundle on P 3. Then there exists a distribution D such that 
TD = N . Moreover, its singular scheme is an arithmetically Buchsbaum curve C of degree 5 and arithmetic 
genus 1.

Proof. As N(1) is a quotient of Ω1
P3(2), it is globally generated. We then apply Lemma 12 to show that 

there exists a distribution D with tangent sheaf TD = N . Note that from (4) C = Sing(D) is a curve of 
degree 5 and genus 1. From the sequence

0 −→ N −→ TP 3 −→ IC(4) −→ 0

we get, for l ∈ Z,

0 −→ H1(IC(4 + l)) −→ H2(N(l)) −→ H2(TP 3(l));

on the other hand, H2(N(l)) = H2(TP 3(l− 1)). Therefore, h1(IC(l)) = 0 for l 	= 1 and h1(IC(1)) = 1 and 
C is arithmetically Buchsbaum. �

We note that the spectrum of a null correlation bundle is {0}; it follows from the fact that h1(N(l)) = 0
for l 	= −1 and h1(N(−1)) = 1.

Proposition 17. Let F be μ-semistable rank 2 reflexive sheaf on P 3 with Chern classes c1(F ) = 0, c2(F ) = 1
and c3(F ) = 2. Then F can be realized as the tangent sheaf of a codimension one distribution of degree 2. 
Moreover, Sing1(D) is an ACM curve of degree 5 and genus 2 contained in a quadric.

Proof. Let F be as in the statement. Consulting [5, Table 2.3.1] we check that: h1(F (p)) = 0 for every 
p ∈ Z; h3(F (p)) = 0 for p ≥ −3; and

h2(F (p)) =

⎧⎪⎪⎨⎪⎪⎩
0, p ≥ −1
1, p = −2
2, p ≤ −3

.
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Then the Castelnuovo–Mumford criterion implies that F (1) is globally generated. Owing to Lemma 12, 
there exists a codimension one distribution D of degree 2 whose tangent sheaf is precisely F .

For the second claim, let C := Sing1(D); it follows from the equations in display (4) that C has degree 
5 and arithmetic genus 2. We must show that h1(IC(p)) = 0 for every p, so that C is ACM.

From the definition of C in the sequence in display (2), we have that

H0(IZ(l)) → H0(IC(l)) → H0(U) → H1(IZ(l)) → H1(IC(l)) → 0 (23)

and h0(U) = c3(F ) = 2. Also recall that h1(IZ(l)) = h2(F (l − 4)) for l 	= 0 and h1(IZ) ≤ h2(F (−4)).
For l ≥ 3, we see that h1(IC(l)) ≤ h1(IZ(l)) = h2(F (l − 4)) = 0.
For l ≤ 1, we have h0(IC(l)) = 0, since C cannot be planar. On the other hand, h1(IZ(l)) ≤ h2(F (l −

4)) = 2. This implies that H0(U) � H1(IZ(l)) hence h1(IC(l)) = 0.
For l = 2, we have h1(IZ(2)) = h2(F (−2)) = 1; and as h1(F (−2)) = 0 we also have h0(IZ(2)) = 0. 

From (23) we only need to show that h0(IC(2)) = 1; the only other possibility is h0(IC(2)) = 2.
Suppose that h0(IC(2)) = 2. Since degC = 5, then H0(IC(2)) is spanned by ff1 and ff2 for some 

linear polynomials f, f1, f2 ∈ H0(OP3(1)). First we claim that this would imply that C contains a planar 
subcurve of degree 4 which is impossible, due to Lemma 8. Therefore h0(IC(2)) = 1 and C is ACM which 
concludes the proof.

Now we prove the claim. We have two cases:

(i) {f, f1, f2} is linearly independent then C is the union of a plane quartic C ′ and the line L = {f1 =
f2 = 0};

(ii) {f, f1, f2} is linearly dependent, so we may assume f2 = f ; then C is a curve in the double plane 
defined by f2.

In the second case, owing to [17, Proposition 2.1], we have

0 −→ IY (−H) −→ IC −→ IV/H(−P ) −→ 0,

where V ⊂ Y ⊂ P ⊂ H = {f = 0}, for curves Y and P and a 0-dimensional subscheme V . Moreover, 
degC = deg Y + degP and P is the largest curve contained in C ∩H. Also, Y is the residual intersection 
of C and H hence it must be the line {f = f1 = 0}. Then P is a plane quartic contained in C. �

Among these distributions we find logarithmic foliations in L(1, 1, 2), which is singular at a union of two 
conics and a line (plus two points); in particular, that unique quadric from the statement of Proposition 17
is reducible. It is not hard to find non-integrable distributions singular at a smooth curve contained in a 
smooth quadric.

Finally, the only possible spectrum of a μ-semistable sheaf F with c1(F ) = 0, c2(F ) = 1 and c3(F ) = 2
is {−1}.

5. Distributions with c2(TD) = 2

If D is a degree two distribution with c2(TD) = 2 then the bound in (12) implies c3(TD) = 0, 2 or 4. From 
Theorem 5 we know that TD is μ-stable except for the case c3(TD) = 4 where it can be strictly μ-semistable.

The existence of degree 2 codimension one distributions D such that c2(TD) = 2 and c3(TD) = 0 or 4
was established in [2, Theorem 9.5] and [2, Section 11.5], respectively. We describe them here for the sake 
of completeness.

If c3(TD) = 0 then TD is an instanton bundle of charge two. Indeed, any μ-stable bundle with these Chern 
classes satisfies h1(TD(−2)) = 0, see [14, Lemma 9.4]. The singular scheme Sing(D) is a curve C of degree 4
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and genus −1. The Hilbert scheme H(4, −1) has three irreducible components, described in [23, Proposition 
6.1]. Since TD is an instanton, we know that h0(IC(2)) = h1(TD(−2)) = 0; hence C can only be the disjoint 
union of a line and a twisted cubic (or some degeneration of that). We note that as h1(TD(−1)) = 2 the 
only possible spectrum is {0, 0}.

Example 18. Consider the curve C defined by

IC = (z2 − yw, yz − xw, y2 − xz) ∩ (x,w).

Using its syzygies we could find the 1-form

ω =(xz2 − xyw + y2w − xzw + yzw + z2w − xw2 − yw2)dx

+ (−xyz + xz2 + x2w − xyw + yzw + z2w − xw2 − yw2)dy

+ (xy2 − x2z − xyz + x2w − y2w + xzw − yzw + xw2)dz

+ (−xyz − 2xz2 + x2w + 2xyw + y2w − xzw)dw

which is singular precisely at C. Thus TD is an instanton bundle of charge two.

If c3(TD) = 4 then Sing(D) is composed by 4 points and a curve C of degree 4 and genus 1. Any such curve 
is (some degeneration of) an elliptic quartic curve, see [23]. In particular, h0(IC(2)) = 2 and there exists 
a unique pencil of quadrics containing C. If C is general, this pencil defines a degree two rational foliation 
in R(2, 2); then Sing0(D) is composed by the vertices of the cones appearing in this pencil. Moreover, TD

is stable in this case. Conversely, any stable sheaf with these Chern classes can be realized as the tangent 
sheaf of a distribution that, in general, is not integrable.

Proposition 19. Let F be a μ-stable rank two reflexive sheaf on P 3 with (c1(F ), c2(F ), c3(F )) = (0, 2, 4). 
Then there exists a distribution D such that TD = F . Moreover, Sing1(D) is a, possibly degenerated, elliptic 
quartic.

Proof. Owing to [5, Table 2.12.2] and Castelnuovo–Mumford criterion, F (1) is globally generated. Then, 
due to Lemma 12, there exists a codimension one distribution of degree 2 whose tangent sheaf is precisely 
F . The assertion about the singular scheme follows from our previous discussion. �

We note that we can also find distributions with TD strictly μ-semistable.

Example 20. Consider the curve C given by the ideal

IC = (w2 − (y − x)z, z2 − xy)

and the double point Ip1 = (x, y2, w). Using the syzygies we find the 1-form

ω =(−xy2 + xz2 − xyw + xzw − yzw + z2w + zw2 + w3)dx

+ (x2y − xz2 + xzw − yzw + w3)dy + (−x2z + xyz − xw2)dz

+ (x2y − x2z + y2z − xz2 − xw2 − yw2)dw

singular at the prescribed singular scheme and also at the double point given by Ip2 = (y + w, 2x − z −
w, (z + w)2). Computing the kernel of ω we see that TD has a free resolution
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0 −→ OP3(−4) −→ OP3(−3)⊕4 −→ OP3 ⊕OP3(−2)⊕4 −→ TD −→ 0.

In particular, h0(TD) = 1 and TD is strictly μ-semistable. It is also not hard to find a degree one foliation 
by curves tangent to this distribution.

We note that, from Remark 2, the only possible spectrum for a μ-semistable sheaf F such that c1(F ) = 0, 
c2(F ) = 2 and c3(f) = 4 is {−1, −1}.

Now consider the case c3(TD) = 2. Then the singular scheme is composed by 2 points and a curve of 
degree 4 and genus 0. The Hilbert scheme H(4, 0) has two irreducible components, whose generic points are 
given by either a rational quartic curve, or a disjoint union of a plane cubic and a line. We now argue that 
the second case does not occur.

The homogeneous ideal of a disjoint union of a plane cubic and a line is a product IC = (h, f)(h1, h2)
where h, h1 and h2 have degree 1 and f has degree 3. Then (IC)≤3 = (hh1, hh2) and, due to Lemma 8, 
Sing(D) would have codimension one.

For C a rational quartic curve there exist distributions; we will now provide an example.

Example 21. Fix the rational quartic curve given by

IC = (yz − xw, z3 − yw2, xz2 − y2w, y3 − x2z),

and the point (1 : 0 : 0 : 1). Using the syzygies we find

ω = (2xz2 − z3 − 2y2w + yw2)dx

+ (−2y2z + 2xz2 + 2yz2 + 2xyw − 2y2w − 2xzw)dy

+ (2y3 − 2x2z − 2xyz − 2y2z + xz2 + 2x2w + 2xyw − y2w + 2yzw − 2xw2)dz

+ (2y3 − 2x2z + y2z − 2yz2 − xyw + 2xzw)dw

which is singular at the prescribed scheme and at the point (1 : 1 : 0 : 2). Therefore TD = kerω has the 
desired Chern classes.

Also, from Remark 2, we see that the only possible spectrum for a μ-semistable sheaf F such that 
c1(F ) = 0, c2(F ) = 2 and c3(F ) = 2 is {−1, 0}.

6. Distributions with c2(TD) = 3

In this case, we know that TD is μ-stable, so that c3(TD) ∈ {0, 2, 4, 6, 8}. We start by recalling the case 
c3(TD) = 8, which is discussed in [2, Section 11.6]. Next we will describe the cases c3(TD) < 8.

A general stable rank 2 reflexive sheaf F such that c1(F ) = 0, c2(F ) = 3 and c3(F ) = 8 arises as the 
tangent sheaf of degree two distribution. This is due to F (1) being globally generated, see [5, Lemma 3.8], 
and Lemma 12. The singular scheme is composed by 8 points and a curve of degree 3 and genus 1, which can 
only be a plane cubic, see [22, Proposition 3.1]. Furthermore, {−2, −1, −1} is the only possible spectrum 
for such sheaves.

Among these distributions we find rational foliations in R(1, 3). These are given by pencils of cubics 
generated by a triple plane and a general cubic surface, so that they intersect in codimension two. For a 
given plane cubic curve C there exists a unique pencil of cubic surfaces whose base locus is C; thus we have 
a unique rational foliation for a general C. The 0-dimensional part of the singular scheme is the vertex of 
the unique cone in this pencil.
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6.1. Case 2 ≤ c3(TD) ≤ 6

Consider R(0, 3, 2l) the moduli space of stable rank two reflexive sheaves F on P 3 satisfying c1(F ) = 0, 
c2(F ) = 3 and c3(F ) = 2l. We begin by noting that when l > 0, Chang proved in [5] that the moduli space 
R(0, 3, 2l) is irreducible and contains a nonempty open subset

R0(0, 3, 2l) =
{
[F ] | h1(F (1)) = 0

}
,

for which we can prove the following result.

Proposition 22. Let l ∈ {1, 2, 3}. Then every stable rank 2 reflexive sheaf F with Chern classes 
(c1(F ), c2(F ), c3(F )) = (0, 3, 2l) satisfying h1(F (1)) = 0 admits a monomorphism F ↪→ TP 3.

Proof. Applying Hom(F, · ) to the Euler sequence and using that h1(F (1)) = 0 we get

0 −→ H0(F (1))⊕4 −→ Hom(F,TP 3) −→ H1(F ) −→ 0,

so that hom(F, TP 3) = 4h0(F (1)) + h1(F ). Consulting the cohomology tables [5, Tables 3.7.1, 3.4.1 and 
3.5.1], we get that h0(F (1)) = l−1 and h1(F ) = 3 − l, thus hom(F, TP 3) = 3l−1 > 0. Therefore, the result 
follows from a direct application of Lemma 13. �

It is not clear if every such sheaf can be realized as the tangent sheaf of a distribution; i.e. it is not clear 
if for any given [F ] ∈ R0(0, 3, 2l) there exist monomorphisms F ↪→ TP 3 with torsion free cokernel. For the 
moment, we can show that this is true generically. Indeed, we only need to provide an example to show that 
an every sheaf in an open subset of R0(0, 3, 2l) can be realized as tangent sheaves of distributions.

Example 23. If c3(TD) = 6, any such distribution must be singular at a curve C of degree 3 and genus 0, 
plus six points. According to [26, Lemma 1], any such curve is a, possibly degenerated, twisted cubic. Then 
let C be given by

IC = (−y2 + xz,−yz + xw,−z2 + yw)

and add the points (0 : 1 : 0 : 0), (0 : 0 : 1 : 0) and (1 : 1 : −1 : 1). We can get the 1-form

ω = (−y2z + yz2 + xyw − y2w + yzw − z2w − xw2 + yw2)dx

+ (xyz + yz2 − x2w − xzw + z2w − yw2)dy

+ (−xyz − y2z + x2w + xyw + 2y2w − 2xzw + 4yzw − 4xw2)dz

+ (xy2 − x2z − xyz − 2y2z + 3xz2 − 5yz2 + x2w − xyw + y2w + 4xzw)dw

which is singular at the prescribed scheme and also at the points (3 : 0 : 1 : 0), (1 : −7 : 5 : −7) and 
(9 : −31 : 24 : −33). Therefore TD = kerω has the desired Chern classes.

Example 24. For c3(TD) = 4 we must have C = Sing1(D) a degree 3 curve of genus −1. Then C must be 
extremal, owing to [21, Theorem 4.1]; this means that C must contain a conic, possibly degenerated. So let 
us fix C a disjoint union of a conic and a line, given by

IC = (x, y) ∩ (w, z2 − xy);

then we choose the points (1 : 1 : 1 : 1), (4 : 1 : 2 : 1) and (1 : 4 : 2 : 1). We get a 1-form
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ω = (−xy2 + yz2 − 45xyw + 45y2w + xzw − 82yzw + 70xw2 + 11yw2)dx

+ (x2y − xz2 + 45x2w − 45xyw − 134xzw + 53yzw + 115xw2 − 34yw2)dy

+ (−x2w + 216xyw − 53y2w − 211xw2 + 49yw2)dz

+ (−70x2w − 126xyw + 34y2w + 211xzw − 49yzw)dw

that also vanishes at the point (289 : 1225 : −595 : −3299). Therefore, the sheaf TD = kerω has the desired 
Chern classes.

Example 25. If c3(TD) = 2 then C = Sing1(D) is a degree 3 curve of genus −2. Due to [22, Proposition 3.4], 
we know that one of the following holds:

(i) C is composed by three skew lines, possibly degenerated;
(ii) C is the union of a double line of genus −3 and a reduced line.

Now recall that, by Corollary 9, Sing(D) cannot contain a double line of genus −3; Thus C falls in the first 
case. So fix C given by

IC = (x, y) ∩ (z, w) ∩ (x− z, y − w)

and add the point P = (1 : −1 : 1 : 1). We can compute the 1-form

ω = (xyz + y2z + yz2 + xyw − y2w − 2xzw − 4yzw + 2xw2 + yw2)dx

+ (−x2z − xyz + xz2 + yz2 − x2w + xyw + xzw − yzw)dy

+ (−2xyz − y2z + x2w + xyw − y2w + xzw + yw2)dz

+ (x2z + 2xyz + 2y2z − xz2 − 2x2w − xyw − yzw)dw

that is singular at C ∪ {P, Q} where Q = (1 : −2 : 15 : 5). Therefore TD = kerω has the desired Chern 
classes.

Now we will show that the special sheaves in R(0, 3, 2l) \R0(0, 3, 2l) cannot be realized as tangent sheaves 
of distributions.

Proposition 26. Fix an integer l ∈ {1, 2, 3} and let D be a distribution such that [TD ] ∈ R(0, 3, 2l) then 
h1(TD(1)) = 0.

Proof. Recall that Lemma 1 implies h1(TD(1)) = h1(ωC(1)) = h1(IC(−1)), where C = Sing1(D), for any 
distribution of degree 2. Then we only need to show that one of these other cohomologies vanish.

If l = 3 then C is a, possibly degenerated, twisted cubic. In particular, C is ACM hence h1(IC(−1)) = 0.
If l = 2 then C is extremal. As degC = 3 and pa(C) = −1, we have that h1(IC(l)) = 0 for l ≤ −1, see 

[21].
If l = 1, we know from Example 25 that C is the disjoint union of three lines, possibly degenerated. From 

the proof of [22, Proposition 3.4] we have that h1(IC(−1)) = 0. �
Corollary 27. Let l ∈ {1, 2, 3}. If [F ] ∈ R(0, 3, 2l) \R0(0, 3, 2l) then there does not exist distribution with F
as the tangent sheaf.
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Table 4
Cohomology table for TD with c2(TD) = 3 and c3(TD) =
0.

−2 −1 0 1 l ≥ 2
h0(TD(l)) 0 0 0 0 1

3 l
3 + 2l2 + 2

3 l − 4
h1(TD(l)) 0 3 4 1 0
h2(TD(l)) 0 0 0 0 0
h3(TD(l)) 0 0 0 0 0

Despite that we do not have distributions, many of these special sheaves admit monomorphisms to TP 3. 
For instance, using [5, Table 3.5.1] we see that for any [F ] ∈ R(0, 3, 6) \ R0(0, 3, 6) we get h0(F (1)) = 3
hence, due to Lemma 13, there exists a monomorphism F ↪→ TP 3. Therefore the cokernel of any such 
monomorphism has torsion.

Finally, we note that since [TD ] ∈ R0(0, 3, 2l), the spectra are completely determined. It is {−1, 0, 0} for 
l = 1; {−1, −1, 0} for l = 2; and {−1, −1, −1} for l = 3, see [5, Tables 3.7.1, 3.4.1 and 3.5.1].

6.2. Case c3(TD) = 0

Let us finally consider codimension one distributions such that TD is a locally free sheaf with c2(TD) = 3; 
hence C = Sing(D) is a curve of degree 3 and genus −3. From [22, Proposition 3.5] we know that either

(i) C is the union of a double line of genus −4 and a reduced line;
(ii) C is a disjoint union of a double line of genus −2 with another line.

Corollary 9 implies that the first case cannot occur, so C belongs to the second one. Owing to [22, Proposition 
3.3], in fact to its proof, any such curve C admits a free resolution

0 −→ OP3(−5)⊕3 −→ OP3(−4)⊕9 −→ OP3(−3)⊕7 −→ IC −→ 0,

and satisfies h2(IC(l)) = 2h1(P 1, OP1(l)) + h1(P 1, OP1(l + 1)). With this information one can compute 
hi(IC(l)) for every i and l. Therefore, using Lemma 1 and the exact sequence

0 −→ TD −→ TP 3 −→ IC(4) −→ 0

we can prescribe the cohomology for TD as in Table 4. Note that the complement of this table can be 
computed via Serre duality. In particular, TD is described by the next result.

Theorem 28. Let E be stable rank two vector bundle on P 3 with c1(E) = 0 and c2(E) = 3. Then E is the 
tangent sheaf of a distribution if and only if it is a generic instanton bundle E of charge 3 with a unique 
jumping line of order 3.

Recall that a line Y ⊂ P 3 is said to be a jumping line of order k ≥ 1 for E if E|Y = OY (−k) ⊕OY (k). 
According to [12, Section 1], generic instanton bundles of charge 3 admit at most one jumping line of order 
3.

Proof. First suppose that there exists D such that E = TD . From Table 4 we have that E is an instanton 
bundle with natural cohomology, i.e., for every l at most one h1(E(l)) does not vanish, see [16]. Due to 
[12, Lemme 1.1], either E has a unique jumping line of order three or the map ξ : H1(E) ⊗H0(OP3(1)) →
H1(E(1)), given by multiplication, is a nondegenerate pairing. We will prove that the later cannot occur.
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Tensorizing the Euler sequence with E we get

0 −→ H0(E ⊗ TP 3) −→ H1(E) ζ−→ H1(E(1)) ⊗H0(OP3(1))∨ −→ H1(E ⊗ TP 3)

and it follows that ζ is an isomorphism if and only if ξ is nondegenerate. By hypothesis, h0(E ⊗ TP 3) =
hom(E, TP 3) 	= 0 and ζ cannot be an isomorphism, whence E has a unique jumping line of order 3.

Now we prove the converse. Suppose that E is a generic instanton bundle of charge 3, its cohomology 
being given by Table 4, and suppose that E has a unique jumping line of order 3. From our previous 
argument, there exists φ : E → TP 3 which is injective, due to Lemma 13. In fact, owing to the proof of [12, 
Lemme 1.1], the map ζ has rank two, hence hom(E, TP 3) = 2. To conclude we need to prove that cokerφ
is a torsion free sheaf.

Suppose, by contradiction, that cokerφ has torsion and let F be the saturated distribution; then

0 −→ E
β−→ TF −→ P −→ 0. (24)

According to Lemma 14, P is a pure sheaf of dimension two, deg(F ) ≤ 1 and hom(TF , TP 3) ≤
hom(E, TP 3) = 2. From Table 3 we see that F must fall in one of two cases that we will analyze now.

First, deg(F ) = 1 and c2(TF ) = 3 and c3(TF ) = 5. In this case, Sing(F ) is a non-planar zero-dimensional 
subscheme of length 5; and P is supported on a (reduced) plane. Dualizing the sequence (24) we get

Ext1(P,OP3) −→ Ext1(TF ,OP3) −→ 0.

Thus, Sing(F ) must be contained in Supp(P ), which is absurd.
The second case is: deg(F ) = 0 and c2(TF ) = 2 and c3(TF ) = 0. In this case, TF = N(1), where N is a 

null correlation bundle.
Consider G(1, 3) ⊂ P 5 the Grassmannian of lines in P 3 and let T ⊂ G(1, 3) be the curve of jumping lines 

of order at least 2 for E. Let H ⊂ P 5 a hyperplane such that H ∩G(1, 3) is the set of jumping lines for N . 
Also consider X ⊂ G(1, 3) the Fano variety of lines in SuppP .

Owing to [12, 2.2], the moduli space of instanton bundles of charge 3 with a jumping line of order 3
is birational to the Hilbert scheme of rational quintic curves in P̌ 3. Assume that E is general so that it 
corresponds to a smooth rational quintic Γ ⊂ P̌ 3 not contained in a quadric. Under this assumption Γ has 
a unique 4-secant line which is precisely Ľ, for L the jumping line of order 3 of E. According to [12, 3.4.2], 
T parameterizes the trisecant lines for Γ hence T is an integral curve not contained in X. Also T is the 
intersection of 7 quadrics hence it cannot be contained in H. We conclude that T \ (H ∪X) 	= ∅, which we 
will use this to get a contradiction.

Let L be a line in P 3 corresponding to [L] ∈ T \ (H ∪X); as L 	⊂ SuppP we have that Tor1(P, OL) = 0. 
Restricting (24) to L we get

0 −→ OL(2) ⊕OL(−2) −→ OL(1)⊕2 −→ P |L −→ 0,

which is an absurd, since Hom(OL(2), OL(1)) = 0. �
Remark 29. We complete this section by observing that for distributions D as above, the two lines of 
Cred = Sing1(D)red are jumping lines for TD : the double line of C is supported on the unique jumping line 
of order 3 for TD , while the reduced line of C is a jumping line of order 2. Indeed, let L1 denote the support 
of the double line of C and L2 its the reduced line; dualizing the sequences

0 −→ OL1(1) ⊕OL2 −→ OC −→ OL1 −→ 0,

0 −→ TD −→ TP 3 −→ IC(4) −→ 0,
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we obtain the composition of epimorphisms

TD −−↠ ωC −−↠ OL1(−3) ⊕OL2(−2),

which can only exist if L1 and L2 are jumping lines for TD of orders 3 and 2, respectively.

Recall that isomorphism classes of codimension one distributions D of degree d on P 3 whose tangent 
sheaves have Chern classes c2(TD) = c2 and c3(TD)) = c3 are parameterized by a quasi-projective variety 
denoted by D(d, c2, c3), see [2]. Some of these moduli spaces have been explicitly described in [2, Section 11]
and [8], using different techniques. The results obtained in this section provide us with a detailed description 
of D(2, 3, 0).

Proposition 30. The moduli space D(2, 3, 0) of codimension one distributions D of degree 2 such that 
c2(TD) = 3 and c3(TD) = 0 is irreducible of dimension 21.

Proof. Let B(3) denote the moduli space of stable rank 2 locally free sheaves E with c1(E) = 0 and 
c2(E) = 3. If [D ] ∈ D(2, 3, 0), then Theorem 5 implies that [TD ] ∈ B(3), thus [2, Lemma 2.5] yields a 
forgetful morphism � : D(2, 3, 0) → B(3).

Let I1(3) denote the space of instanton bundles with a unique jumping line of order 3, which was shown 
to be an irreducible quasi-projective variety of dimension 20 in [12, 1.4], and let J denote the open subset 
of I1(3) consisting of instanton bundles corresponding to a smooth rational quintic as in [12, 2.2]. Following 
the proof of Theorem 28, we note that J ⊆ im(�) ⊆ I1(3).

Furthermore, the fibre of � over [E] ∈ im(�) is precisely the set of monomorphisms φ : E → TP 3 whose 
cokernel is torsion free, so it is an open subset of P Hom(E, TP 3). However, as we saw in the proof of 
Theorem 28, if [E] ∈ J , then every φ ∈ Hom(E, TP 3) is injective and has torsion free cokernel, thus in 
fact �−1([E]) = P Hom(E, TP 3) � P 1 whenever [E] ∈ J . Since hom(E, TP 3) = 2 for every [E] ∈ I1(3) it 
follows that dim�−1([E]) = 1 for every E ∈ im(�). The conclusion is then an immediate consequence of 
the Theorem on the Dimension of Fibres. �
7. Distributions with c2(TD) = 4

Let D be a degree two distribution such that c2(TD) = 4. Then Theorem 5 implies that TD is stable and, 
due to (12), c3(TD) ∈ {0, 2, 4, 6, 8, 10, 12, 14}. In fact, we can prove that c3(TD) ∈ {6, 8, 10}.

First note that C = Sing1(D) is a curve of degree 2 and, in particular, pa(C) ≤ 0, see [22, Corollary 1.6]. 
Thus (4) implies that

c3(TD) = 10 + 2pa(C) ≤ 10.

On the other hand, [22, Corollary 1.6] also says that any degree two curve of genus less than −1 is a double 
line. Due to Corollary 9, we must have pa(C) ≥ −2, whence

c3(TD) ≥ 6.

Before we show the existence of such distributions, we make a few remarks on the cohomology of the 
possible tangent sheaves.

Lemma 31. If TD is the tangent sheaf of a distribution D of degree 2 such that c2(TD) = 4 and c3(TD)) = 2l, 
then
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h0(TD(1)) =
{

0, l = 3, 4
1, l = 5

.

Proof. From Lemma 1, we have that h0(TD(1)) = h0(ωC(1)) = h1(OC(−1)), where C = Sing1(D); we will 
compute h1(OC(−1)). From (4) we get deg(C) = 2 and pa(C) = l − 5.

For l ≤ 4, it follows that

0 −→ OL1(3 − l) −→ OC(−1) −→ OL2(−1) −→ 0

where L1 and L2 are reduced lines and L1 	= L2 only if l = 4, see [22]. It is then clear that h1(OC(−1)) = 0.
For l = 5 the curve C is a conic (not necessarily irreducible nor reduced) whence

0 −→ OP3(−4) −→ OP3(−3) ⊕OP3(−2) −→ IC(−1) −→ 0

and it follows that h1(OC(−1)) = h2(IC(−1)) = 1. �
7.1. Case c3(TD) = 6

In this case we have that Sing(D) is the union of a double line C of genus −2 with 6 points. We will 
show that these distributions exist with the following example.

Example 32. Consider the double structure C on the line {x = y = 0} given by the ideal

IC = (x2, xy, y2, x(z2 − w2) − yzw)

and fix the points (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (1 : 1 : 1 : 1) and (−1 : 1 : −1 : 1). From them we can compute 
the following 1-form

ω =(−xy2 + xyz + y2z + 2xz2 + 2xyw − y2w − 2yzw − 2xw2)dx

+ (x2y + x2z + xyz + xz2 − 2x2w − yzw − xw2)dy

+ (−2x2y − 2xy2 − 2x2z − xyz + x2w + 4xyw + 2y2w)dz

+ (xy2 − x2z − 2xyz − y2z + 2x2w + xyw)dw,

which is singular at the prescribed scheme and also at (38 : −19 : 14 : −4) and (9 : −27 : 17 : 13).

Let {k1, k2, k3, k4} be the spectrum of TD for a distribution D with c2(TD) = 4 and c3(TD) = 6. 
In Lemma 33 below, we will show that h2(TD(−1)) = 0 hence Remark 2 implies that ki ≥ −1. Since 
k1 + k2 + k3 + k4 = −3, the only possible spectrum is

{−1,−1,−1, 0}.

Lemma 33. If D is a codimension one distribution on P 3 of degree 2 such that (c2(TD), c3(TD)) = (4, 6), 
then h2(TD(−1)) = 0.

Proof. From Lemma 1 and the Hirzebruch-Riemann-Roch Theorem, we know that h2(TD(−2)) = 3 and 
h2(TD(−1)) ≤ 1. Let us assume, by contradiction, that h2(TD(−1)) = 1. Let F := TD to simplify notation.

For any hyperplane H = {h = 0} ⊂ P 3 we have the exact sequence

0 −→ F (−2) ·h−→ F (−1) −→ FH(−1) −→ 0.
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Taking the long exact sequence of cohomology and dualizing it we can extract the following:

H2(FH(−1))∨ −→ H2(F (−1))∨ ·h−→ H2(F (−2))∨.

Thus h2(FH(−1)) 	= 0 if and only if h annihilates H2(F (−1))∨. On the other hand, h2(FH(−1)) 	= 0 if and 
only if H is an unstable plane of order 2 for F , see [15, Section 9]. To see that such unstable planes exist, 
we take the multiplication map

H0(OP3(1)) ⊗H2(F (−1))∨ −→ H2(F (−2))∨.

Since h2(F (−1)) = 1 and h2(F (−2)) = 3, the kernel of the map above is nontrivial.
Let H be an unstable plane of order 2 for F . We then have a reduction step, see [15, Proposition 9.1],

0 −→ F ′ −→ F −→ IW/H(−2) −→ 0,

where F ′ is a rank 2 reflexive sheaf and W is a 0-dimensional subscheme of H. Thus c1(F ′) = −1 and 
c2(F ′) = 2. Moreover, h0(F ′) = h0(F ) = 0 hence F ′ is stable and c3(F ′) ∈ {0, 2, 4}.

Note that h0(F (1)) = 0, due to Lemma 31. However, we get a contradiction since h0(F ′(1)) > 0. This 
last fact is due to [18] if c3(F ′) = 0, [5, Table 2.3.1] if c3(F ′) = 2 and [15, Lemma 9.6] if c3(F ′) = 4. �
7.2. Case c3(TD) = 8

For D a distribution of degree two with c2(TD) = 4 and c3(TD) = 8 we have that Sing(D) is a curve C
of degree 2 and genus −1 plus 8 points. In particular C is either a pair of skew lines or a double line. We 
will show that such distributions exist using an auxiliary foliation.

Let N be a null correlation bundle, and let σ ∈ H0(N(1)) such that C := (σ)0 consists of the union of 
two disjoint lines. Let G be a generic foliation by curves of degree 3 given by the exact sequence

G : 0 −→ N(−3) −→ Ω1
P3 −→ IW (2) −→ 0,

so that W is irreducible; such foliations exist by [7, Proposition 8.3]. As deg(G ) = 3 and W is irreducible, 
we may apply Proposition 6 to conclude that the distribution D induced by (G , σ) satisfies Sing1(D) = C. 
Moreover, it follows from (18) that c2(TD) = 4 and c3(TD) = 8.

The next step is to determine the possible spectra of the tangent sheaf TD , and we proceed as in the previ-
ous subsection. Let {k1, k2, k3, k4} be the spectrum of TD . In Lemma 34 below, we show that h2(TD(−1)) = 0
hence ki ≥ −1. As k1 + k2 + k3 + k4 = −4 we see that the only possible spectrum is

{−1,−1,−1,−1}

Lemma 34. If D is a codimension one distribution on P 3 of degree 2 such that (c2(TD), c3(TD)) = (4, 8), 
then

0 −→ TP 3(−4)⊕2 −→ OP3(−2)⊕8 −→ TD −→ 0;

in particular, h2(TD(−1)) = 0.

Proof. From Lemma 1 and noting that C is a curve of degree 2 and genus −1, we get that h1(TD(1)) =
h2(TD) = h3(TD(−1)) = 0 and h2(TD(−1)) ≤ 1. In particular, TD(2) is globally generated due to the 
Castelnuovo–Mumford criterion; in addition, h0(TD(2)) = χ(TD(2)) = 8. Let E(2) be the kernel of the 
evaluation of global sections, then
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0 −→ E −→ OP2(−2)⊕8 −→ TD −→ 0. (25)

Since TD is reflexive, we have that Extp(E, OP3) � Extp+1(TD , OP3)) = 0 for p ≥ 1, thus E must be locally 
free; computing its cohomologies we also see that E(3) is globally generated and, due to its Chern classes, 
we get

0 −→ OP3(−4)⊕2 −→ OP2(−3)⊕8 −→ E −→ 0.

Therefore TD has a resolution

0 −→ OP3(−4)⊕2 A−→ OP2(−3)⊕8 B−→ OP2(−2)⊕8 −→ TD −→ 0 (26)

where A and B are matrices of linear homogeneous polynomials.
Note that the above resolution allows us to compute

H2(TD(−1)) = Ext1(TD ,OP3(−3)) = ker
(
H0(OP3)⊕8 AT ·−→ H0(OP3(1))⊕2

)
where AT is the transpose of A. We may write A = (aij) with aij =

∑3
k=0 a

k
ijxk then we define a pencil of 

4 × 8 matrices C(t) = (cij(t)) where cij(t) = aij1 + aij2t. We can assume that C(t) is in Kronecker normal 
form, see [10, Chapter XII], so that we only need to analyse few possibilities for A, up to linear change of 
coordinates and left action of GL(8, C). In fact, since h2(TD(−1)) ≤ 1, we have only two possibilities:

AT =
[
x0 0 x1 0 x2 0 x3 0
0 x0 0 x1 0 x2 0 x3

]
,

[
x0 0 x1 0 x2 x3 0 0
0 x0 0 x1 0 x2 x3 0

]
.

In the first case we rearrange the columns

AT =
[
x0 x1 x2 x3 0 0 0 0
0 0 0 0 x0 x1 x2 x3

]
so that it is clear that

E = coker
(
A : OP3(−4)⊕2 −→ OP2(−3)⊕8) = TP 3(−4)⊕2.

In particular, h2(TD(−1)) = 2h1(TP 3(−5)) = 0.
Next we show that the second case cannot happen. Since the columns of BT are linear syzygies for the 

rows of AT , we can compute them explicitly and it follows that, for the second case, up to the right action 
of GL(8, C),

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y 0 x 0 0 0 0 ∗
0 −y 0 x 0 0 0 ∗
0 0 −z 0 y 0 0 ∗
−z 0 0 0 x 0 0 ∗
0 0 −w −z 0 y 0 ∗

−w −z 0 0 0 x 0 ∗
0 0 0 −w 0 0 y ∗
0 −w 0 0 0 0 x ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the (∗) are unknown linear polynomials. Note that B has generic rank 6 and that B has rank ≤ 5
along the line {x = y = 0}. Thus the cokernel of B : OP2(−3)⊕8 → OP2(−2)⊕8 is not locally free around 
any point of the line {x = y = 0}; in particular, cokerB cannot be reflexive, which TD is. Therefore the 
second case cannot occur. �
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7.3. Case c3(TD) = 10

A distribution D in this case is singular at a conic plus 10 points. We may show that such distributions 
exist using an auxiliary foliation by curves.

Start with a generic foliation by curves of degree 2 of the form

G : 0 −→ OP3(−2) ⊕OP3(−3) −→ Ω1
P3 −→ IW (1) −→ 0, (27)

with W being a smooth and irreducible curve of degree 5 and genus 1. Since N∗
G (4) = OP3(2) ⊕OP3(1), we 

can find σ ∈ H0(N∗
G (4)) such that C = (σ)0 is a conic disjoint from W . Therefore, Proposition 6 guarantees 

that the induced codimension one distribution D is such that Sing1(D) = C provided η ∈ H0(ωZ(2)) is non 
zero; the formulas in display (4) yield c2(TD) = 4 and c3(TD)) = 10. We only need to show that η 	= 0.

Assume by contradiction that η = 0, so that the long exact sequence in display (14) breaks into two parts

0 −→ OP3(−1) −→ F ∗ −→ OP3(1) −→ 0;

0 −→ ωW (3) −→ OZ(4) −→ ωC(5) −→ 0.

Using that ωW = OW and ωC = OC(−1) we conclude that

0 −→ OW (−1) −→ OZ −→ OC −→ 0

hence Z = W ∪C and W ∩C 	= ∅, which is absurd. The next step is to determine the spectrum of the tangent 
sheaf. Let D be a distribution of degree 2 satisfying c2(TD) = 4 and c3(TD)) = 10 and let {k1, k2, k3, k4} be 
the spectrum of TD . First we claim that h1(TD(−1)) = 0, so that k1 ≤ −1. It follows that ki ≥ −2; indeed 
as k1 + k2 + k3 + k4 = −5 we could not have {−3, −2, −1} contained in the spectrum. Therefore, the only 
possible spectrum is

{−2,−1,−1,−1}.

Now we prove our claim.

Lemma 35. If TD is the tangent sheaf of a codimension one distribution D of degree 2 with (c2(TD), c3(TD)) =
(4, 10), then h1(TD(−1)) = 0.

Proof. By Lemma 31, h0(TD(1)) = 1, so let σ ∈ H0(TD(1)) be a nontrivial section and let X := (σ)0 be its 
vanishing locus. We have then the following commutative diagram:

0 0

OP3(−1)

σ

OP3(−1)

0 TD

φ
TP 3 IZ(4) 0

0 IX(1) G IZ(4) 0

0 0
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where Z = Sing(D) is a conic C plus 10 points and G is the cokernel of φ ◦ σ. From the first column from 
the left we have h1(TD(−1)) = h1(IX); we will compute h1(IX).

Dualizing the second column from the left we get a foliation by curves

0 −→ G∗ −→ Ω1
P3 −→ IW (1) −→ 0 (28)

where W ⊃ X; and dualizing the bottom row we get

0 −→ OP3(−4) −→ G∗ −→ OP3(−1) ζ−→ ωC −→ · · ·

where ζ ∈ H0(ωC(1)). Note that as C is a conic, ωC = OC(−1) and also note that ζ is surjective; otherwise 
ζ = 0 and G∗ would not admit an injective map to Ω1

P3 .
In particular, we get

0 −→ OP3(−4) −→ G∗ −→ IC(−1) −→ 0

and the only possibility is G∗ = OP3(−2) ⊕ OP3(−3). It follows that W has pure dimension one and by 
degree reasons X = W . Thus (28) gives as a resolution for IX from which we get

h1(TD(−1)) = h1(IX) = 0. �
8. Distributions with c2(TD) = 5

If D is a distribution of degree two such that c2(TD) = 5, then Sing1(D) is a curve of degree 1, i.e., a 
reduced line. Thus c3(TD) = 14, owing to (4). These distributions do exist and, in fact, we can prove a more 
general result.

Proposition 36. For each d ≥ 2 and any line L ⊂ P 3, there exists a codimension one distribution D of degree 
d whose singular scheme consists of L plus d3+2d2−d points, so that (c2(TD), c3(TD)) = (d2+1, d3+2d2−d).

In particular, taking d = 2 in the statement above implies that there exists a codimension one distribution 
D of degree 2 such that (c2(TD), c3(TD)) = (5, 14).

Proof. The starting point is a foliation by curves of the form

G : 0 −→ OP3(−d− 1)⊕2 φ−→ Ω1
P3 −→ IW (2d− 2) −→ 0; (29)

note that deg(G ) = 2d − 1 ≥ 3, so W must be connected by [7, Proposition 4.3]. By taking a generic 
morphism φ, Ottaviani’s Bertini-type Theorem [25, Teorema 2.8] implies that we can assume W to be 
smooth, so W is an irreducible curve.

Since N∗
G = OP3(−d − 1)⊕2, we can find σ ∈ H0(N∗

G (d + 2)) so that (σ)0 = L, for any given line L. We 
then apply Proposition 6 to the pair (G , σ) we just described. Note that for d ≥ 2 we have deg(G ) ≥ d + 1
and Remark 7 implies η 	= 0; since W is irreducible, dim coker η = 0.

The induced distribution D will have degree d and Sing1(D) = L; the Chern classes for TD follow directly 
from (17). �
Remark 37. There exist distributions as in the statement of Proposition 36 also for d = 0 or 1, but the proof 
above does not apply to these cases: when d = 0, there is no morphism OP3(−1)⊕2 → Ω1

P3 ; when d = 1, 
the singular scheme W is not connected.
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To conclude this section we compute the possible spectra for the tangent sheaf of a codimension one 
distribution of degree 2 with c2(TD) = 5. Let {k1, . . . , k5} be the spectrum of TD ; note that k1+· · ·+k5 = −7
and ki ≥ −3 due to Lemma 3. We can prove, see Lemma 38 below, that h1(TD(−1)) = 0. Hence ki ≤ −1
for every i and the only possible spectrum is

{−2,−2,−1,−1,−1}.

Lemma 38. If D is a codimension one distribution on P 3 of degree 2 such that (c2(TD), c3(TD)) = (5, 14), 
then h1(TD(−1)) = 0.

Proof. Due to Lemma 1, h0(TD(1)) = h1(TD(2)) = h2(TD(2)) = h3(TD(2)) = 0; hence h0(TD(2)) = 7, by 
Hirzebruch–Riemann–Roch Theorem. Then a general section σ ∈ H0(TD(2)) induces an exact sequence

0 −→ OP3(−4) −→ F (−2) σ∨
−→ IY −→ 0,

where Y is a Cohen–Macaulay curve of degree 9 and (arithmetic) genus 8. Moreover,

• h0(IY (p)) = 0 for p ≤ 3;
• h2(IY (p)) = 0 for p ≥ 3;
• h1(IY (p)) = 0 for p /∈ {1, 2}, h1(IY (1)) ≤ 1 and 1 ≤ h1(IY (2)) ≤ 2.

Take a hyperplane section Γ = Y ∩ H. As Y has pure dimension 1, for any H = {h = 0} such that 
dim Γ = 0 we have a short exact sequence

0 −→ IY (−1) ·h−→ IY −→ IΓ/H −→ 0, (30)

where IΓ/H ⊂ OH is the ideal sheaf of Γ in H � P 2.
First we note that h0(IΓ/H(2)) = 0. Indeed, h0(IY (2)) = 0 implies that

h0(IΓ/H(2)) ≤ h1(IY (1)) ≤ 1

and h0(IΓ/H(2)) = 1 would imply h0(IΓ/H(3)) ≥ 3. However, h0(IΓ/H(3)) ≤ 2 since h0(IY (3)) =
h1(IY (3)) = 0.

We will now show that h1(IY (1)) = 0. Let us assume, by contradiction, that h1(IY (1)) > 0, hence 
h1(IY (1)) = 1. From the sequence (30), we have that

H0(IΓ/H(2)) = 0 −→ H1(IY (1)) ·h−→ H1(IY (2)),

hence the multiplication with h is injective whenever {h = 0} ∩ Y is 0-dimensional. Fix a generator v ∈
H1(IY (1)) \ {0} and consider the map

φ : H0(OP3(1)) → H1(IY (2)); φ(h) = hv.

Note that dim kerφ = 3, since φ 	= 0 and h1(IY (2)) = 1.
Let W ⊂ PH0(OP3(1)) be the Zariski closed subset defined by

W = {H ∈ PH0(OP3(1)) | dimH ∩ Y = 1}.

In particular we have that P (kerφ) ⊂ W , hence dimW ≥ 2. We will see that this is absurd, concluding the 
proof.
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Given a hyperplane H, we have H ∩ Y has dimension 1 if and only if H contains some irreducible 
component of Yred. Then let Yred = Y1 ∪ Y2 ∪ · · · ∪ Yr be a decomposition into irreducible components and 
define

Wi = {H ∈ PH0(OP3(1)) | Yi ⊂ H}.

Note that W =
⋃r

i=1 Wi and Wi 	= ∅ if and only if Yi is a plane curve, and dimWi = 1 only if Yi is a line. 
Therefore dimW ≤ 1. �
9. Distributions with c2(TD) = 6

The first line of Table 1 refers to the distributions with c2(TD) = 6. These are the generic distributions
of degree 2, that is, those distributions whose singular scheme is 0-dimensional. In particular, c3(TD) = 20. 
The subset of PH0(OP3(4)) parameterizing isomorphism classes of generic distributions of degree two is 
Zariski open. One can easily find an example of such a distribution.

Example 39. Let D be the distribution given by the following 1-form, inspired by Jouanolou’s examples [20, 
p. 160],

ω = (x2y − w3)dx + (y2z − x3)dy + (z2w − y3)dz + (w2x− z3)dw.

Its singular scheme is the reduced set of points {(ξ : ξ−2 : ξ7 : 1) | ξ20 = 1}.

Generic distributions of degree two are completely determined by its singular scheme, see [8, Corollary 
4.7]; and they are never integrable, due to the dimension of the singular scheme.

It only remains for us to determine the spectrum of the tangent sheaf. Let D be a generic distribution 
and let {k1, . . . , k6} be the spectrum of TD . Since Sing(D) has codimension three, Ext1(IZ , OP3) = 0 and 
dualizing the exact sequence in display (1) we obtain

0 −→ OP3(−4) −→ Ω1
P3 −→ TD −→ 0

from which it follows that h1(TD(−1)) = 0 and h2(TD(1)) = 0 and h2(TD) = 1. Due to (6), we have 
−3 ≤ ki ≤ −1, for every i, and −3 occurs once in the spectrum. Since k1 + · · · + k6 = −10, an easy 
computation of integer partitions shows that the spectrum is {−3, −2, −2, −1, −1, −1}.
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