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We investigate three cases regarding asymptotic associate primes. First, assume 
(A, m) is an excellent Cohen–Macaulay (CM) non-regular local ring, and M =
SyzA1 (L) for some maximal CM A-module L which is free on the punctured 
spectrum. Let I be a normal ideal. In this case, we examine when m /∈ Ass(M/InM)
for all n � 0. We give sufficient evidence to show that this occurs rarely. Next, 
assume that (A, m) is excellent Gorenstein non-regular isolated singularity, and M
is a CM A-module with projdimA(M) = ∞ and dim(M) = dim(A) − 1. Let I be a 
normal ideal with analytic spread l(I) < dim(A). In this case, we investigate when 
m /∈ Ass TorA1 (M, A/In) for all n � 0. We give sufficient evidence to show that 
this also occurs rarely. Finally, suppose A is a local complete intersection ring. For 
finitely generated A-modules M and N , we show that if TorAi (M, N) �= 0 for some 
i > dim(A), then there exists a non-empty finite subset A of Spec(A) such that for 
every p ∈ A, at least one of the following holds true: (i) p ∈ Ass

(
TorA2i(M,N)

)
for 

all i � 0; (ii) p ∈ Ass
(
TorA2i+1(M,N)

)
for all i � 0. We also analyze the asymptotic 

behavior of TorAi (M, A/In) for i, n � 0 in the case when I is principal or I has a 
principal reduction generated by a regular element.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we investigate three cases regarding asymptotic associate primes. We will introduce it one 
by one.

I: Let (A, m) be a Noetherian local ring of dimension d, and let M be a finitely generated A-module. 
By a result of Brodmann [3], there exists n0 such that the set of associate primes AssA(M/InM) =
AssA(M/In0M) for all n � n0. We denote this eventual constant set by Ass∞I (M).
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A natural question is when does m ∈ Ass∞I (M), or the opposite m /∈ Ass∞I (M)? In general, this question 
is hopeless to resolve. So we will try to make few assumptions which are quite general but still amenable to 
answer our question.

(I.1) We first assume that (A, m) is an excellent Cohen–Macaulay local ring with infinite residue field. 
We note that this assumption is quite general.

(I.2) We also assume that M is maximal Cohen–Macaulay (MCM). In fact in the study of modules over 
Cohen–Macaulay rings the class of MCM modules is the most natural class to investigate. To keep things 
interesting we also assume M is not free. In particular we are assuming A is also not regular.

We note that in general the answer to the question on when does m ∈ Ass∞I (A) is not known. However, 
by results of Ratliff, McAdam, a positive answer is known when I is normal, i.e., In is integrally closed for 
all n � 1. In this case, it is known that m ∈ Ass∞I (A) if and only if l(I), the analytic spread of I is equal to 
d = dimA; see [14, 4.1]. So our third assumption is

(I.3) I is a normal ideal of height � 2.
Before proceeding further, we want to remark that in analytically unramified local rings (i.e., its com-

pletion is reduced), there exist plenty of normal ideals. In fact, for any ideal I, it is not terribly difficult to 
prove that for all n � 0, the ideal In is normal (where J denotes the integral closure of an ideal J).

Finally, we note that as we are only interested in the question on whether m ∈ Ass∞I (M) or not, it is 
convenient to assume

(I.4) M is free on the punctured spectrum, i.e., MP is free for every prime ideal P �= m.
We note that (I.4) is automatic if A is an isolated singularity, i.e., AP is regular for every prime P �= m. 

In general (even when A is not an isolated singularity), any sufficiently high syzygy of a finite length module 
(of infinite projective dimension) will be free on the punctured spectrum.

Remark 1.1. As discussed above, our hypotheses are satisfied by a large class of rings, modules and ideals.

Before stating our results, we need to introduce few notations. Let GI(A) =
⊕

n�0 I
n/In+1 be the 

associated graded ring of A with respect to I. Let GI(A)+ =
⊕

n�1 I
n/In+1 be its irrelevant ideal. If M is 

an A-module, then GI(M) =
⊕

n�0 I
nM/In+1M is the associated graded module of M with respect to I

(and considered as an GI(A)-module).
Our first result is

Theorem 1.2. With assumptions as in I.1, I.2, I.3 and I.4, suppose that d � 3, and that M = SyzA1 (L) for 
some MCM A-module L. We have that

if m /∈ Ass∞I (M), then grade(GIn(A)+, GIn(M)) � 2 for all n � 0.

We note that the assumption M = SyzA1 (L) for an MCM A-module L is automatically satisfied if A is 
Gorenstein.

We now describe the significance of Theorem 1.2. The third author of this paper has worked extensively 
on associated graded rings and modules. He feels that the condition grade(GIn(A)+, GIn(M)) � 2 for all 
n � 0 is quite special. In ‘most cases’ we will have only grade(GIn(A)+, GIn(M)) = 1 for all n � 0. So 
Theorem 1.2 implies that in ‘most cases’ we should have m ∈ Ass∞I (M).

By a result of Melkersson and Schenzel [15, Theorem 1], it is known that for a finitely generated A-module 

E, the set AssA
(
TorA1 (E,A/In)

)
is constant for all n � 0. We denote this stable value by T∞

1 (I, E). We note 

that if L is a (non-free) MCM A-module which is free on the punctured spectrum of A, then TorA1 (L, A/In)
has finite length for all n � 1. In this case, m /∈ T∞

1 (I, L) if and only if TorA1 (L, A/In) = 0 for all n � 0. 
If m /∈ Ass∞I (A) (this holds if I is normal and l(I) < d), then it is easy to see that TorA1 (L, A/In) = 0
for all n � 0 if and only if m /∈ Ass∞I (SyzA1 (L)). If the latter holds, then by Theorem 1.2, we will have 
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grade(GIn(A)+, GIn(SyzA1 (L)) � 2 for all n � 0. Thus another significance of Theorem 1.2 is that it suggests 
that in ‘most cases’ if I is a normal ideal with height � 2 and l(I) < d, then for a non-free MCM module 
L, we should have TorA1 (L, A/In) �= 0 for all n � 0.

II: In the previous subsection, we consider T∞
1 (I, M) when M is MCM and locally free on the punctured 

spectrum. In this subsection, we consider the case when M is Cohen–Macaulay of dimension d −1. A trivial 
case to consider is when projdimA(M) is finite. Then it is easy to see that if m /∈ Ass∞I (A), then m /∈
T∞

1 (I, M).
If projective dimension of M is infinite, then we are unable to analyze T∞

1 (I, M) for arbitrary Cohen–
Macaulay rings. However, we have made progress in this question when A is an isolated Gorenstein 
singularity.

In general, when a local ring (R, n) is Gorenstein, and D is a finitely generated R-module, there exists an 
MCM approximation of D, i.e., an exact sequence s : 0 → Y → X → D → 0, where X is an MCM R-module 
and projdimR(Y ) < ∞. It is known that if s′ : 0 → Y ′ → X ′ → D → 0 is another MCM approximation of 
D, then X and X ′ are stably isomorphic, i.e., there exist finitely generated free R-modules F, G such that 
X ⊕ F ∼= X ′ ⊕ G. It is clear that X is free if and only if projdimR(D) < ∞. Thus if projdimR(D) = ∞, 
then SyzR1 (X) is an invariant of D.

Our second result is

Theorem 1.3 (= 4.6). Let (A, m) be an excellent Gorenstein local ring of dimension d � 3. Suppose A
has isolated singularity. Let I be a normal ideal of A with height(I) � 2 and l(I) < d. Let M be a 
Cohen–Macaulay A-module of dimension d − 1 and projdimA(M) = ∞. Let s : 0 → Y → X → M → 0 be 
an MCM approximation of M . Set N := SyzA1 (X). Then the following statements are equivalent:

1. m /∈ T∞
1 (I, M) (i.e., m /∈ AssA(TorA1 (M, A/In)) for all n � 0).

2. m /∈ Ass∞I (N) (equivalently, depth(N/InN) � 1 for all n � 0).

Furthermore, if this holds true, then grade(GIn(A)+, GIn(N)) � 2 for all n � 0.

As per our discussion after Theorem 1.2, it follows that in ‘most cases’ we should have m ∈
AssA(TorA1 (M, A/In)) for all n � 0.

IIIα: Let (A, m) be a local complete intersection ring of codimension c. Let M and N be finitely generated 
A-modules. Set

E(M,N) :=
⊕
i�0

ExtiA(M,N), and T (M,N) :=
⊕
i�0

TorAi (M,N).

It is well-known that E(M, N) ⊗A Â and T (M, N) ⊗A Â are modules over a ring of cohomology operators 
S := Â[ξ1, . . . , ξc], where Â is the m-adic completion of A. Moreover, E(M, N) ⊗A Â is a finitely generated 
graded S-module. But the S-module T (M, N) ⊗A Â is very rarely finitely generated. However, by a result 
of Gulliksen [10, Theorem 3.1], if TorAi (M, N) has finite length for all i � 0 (say from i � i0), then the 
S-submodule

T�i0(M,N) ⊗A Â :=
⊕
i�i0

TorÂi
(
M̂, N̂

)
is *Artinian.

By standard arguments, for each l = 0, 1, it follows that AssA(Ext2i+l
A (M, N)) is a constant set for all 

i � 0. However, we do not have a similar result for Tor. By a result of Avramov and Buchweitz (Theorem 5.5), 
the case when TorAi (M, N) = 0 for all i � 0 is well-understood. Our third result is that
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Theorem 1.4 (= 5.10). Let A be a local complete intersection ring. Let M and N be finitely generated 
A-modules. Assume that TorAi (M, N) �= 0 for some i > dim(A). Then there exists a non-empty finite subset 
A of Spec(A) such that for every p ∈ A, at least one of the following statements holds true:

1. p ∈ AssA
(
TorA2i(M,N)

)
for all i � 0;

2. p ∈ AssA
(
TorA2i+1(M,N)

)
for all i � 0.

IIIβ: In [9, Corollary 4.3], the first and the third author proved that if (A, m) is a local complete inter-
section ring, I is an ideal of A, and M, N are finitely generated A-modules, then for every l = 0, 1, the set 
AssA(Ext2i+l

A (M, N/InN)) is constant for all i, n � 0. We do not have a similar result for Tor. It follows 
from [9, Theorem 6.1] that complexity of N/InN is stable for all n � 0. Thus, by results of Avramov and 
Buchweitz, the case when TorAi (M, N/InN) = 0 for all i, n � 0 is well-understood. Our final result is

Theorem 1.5 (= 5.15). Let A be a local complete intersection ring. Let M be a finitely generated A-module, 
and I be an ideal of A. Suppose either I is principal or I has a principal reduction generated by an A-regular 
element. Then there exist i0 and n0 such that either TorAi (M, N/InN) = 0 for all i � i0 and n � n0, or 
there is a non-empty finite subset A of Spec(A) such that for every p ∈ A, at least one of the following 
statements holds true:

1. p ∈ AssA
(
TorA2i(M,A/In)

)
for all i � i0 and n � n0;

2. p ∈ AssA
(
TorA2i+1(M,A/In)

)
for all i � i0 and n � n0.

Techniques used to prove our results: To prove Theorems 1.4 and 1.5, we use the well-known technique 
of Eisenbud operators over resolutions of modules over complete complete-intersection rings. We also use 
results of Gulliksen and Avramov–Buchweitz stated above.

However, to prove Theorems 1.2 and 1.3, we use a new technique in the study of asymptotic primes, i.e., 
we investigate the function

ξIM (n) := grade(GIn(A)+, GIn(M)).

Note that by a result of Elias [8, Proposition 2.2], we have that depth(GIn(A)) is constant for all n � 0
(and a similar argument works for modules). However, the function ξIM (when dim(A/I) > 0) has not been 
investigated before, neither in the study of blow-up algebra’s or with the connection with associate primes. 
Regarding ξIM , we prove two results: The first is

Theorem 1.6 (= 3.9). Let (A, m) be a Noetherian local ring. Let I be an ideal of A, and M be a finitely 
generated A-module such that grade(I, M) = g > 0. Then either grade(GIn(A)+, GIn(M)) = 1 for all 
n � 0, or

grade(GIn(A)+, GIn(M)) � 2 for all n � 0.

Our second result in this direction is

Theorem 1.7 (= 3.10). Let (A, m) be a Cohen–Macaulay local ring, and I be an ideal of A such that 
height(I) � dim(A) − 2. Let M be an MCM A-module. Then grade(GIn(A)+, GIn(M)) is constant for 
all n � 0.
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Although he does not have an example, the third author feels that ξIM may not be constant for n � 0 if 
dim(A/I) � 3.

Remark 1.8. In [12, Theorem 3.4], Huckaba and Marley proved that if A is Cohen–Macaulay of dimension 
� 2, and if I is a normal ideal with grade(I) � 1, then depth(GIn(A)) � 2 for all n � 0. A crucial ingredient 
for the proofs of our results is to compute grade(GIn(A)+, GIn(A)) for all n � 0 when I is normal. So we 
prove the following result.

Theorem 1.9 (= 3.4). Let A be an excellent Cohen–Macaulay local ring. Let I be a normal ideal of A such 
that grade(I) � 2. Then grade(GIn(A)+, GIn(A)) � 2 for all n � 0.

We now describe in brief the contents of this paper. In Section 2, we discuss a few preliminar-
ies on grade and local cohomology that we need. In Section 3, we investigate the function ξIM (n) :=
grade(GIn(A)+, GIn(M)) and prove Theorems 1.6, 1.7 and 1.9. In Section 4, we prove Theorems 1.2 and 
1.3. Finally, in Section 5, we prove Theorems 1.4 and 1.5.

2. Preliminaries on grade and local cohomology

Throughout this article, all rings are assumed to be commutative Noetherian rings with identity. Through-
out, let (A, m) be a local ring of dimension d with infinite residue field, and M be a finitely generated 
A-module. Let I be an ideal of A (which need not be m-primary). If p ∈ M is non-zero, and j is the 
largest integer such that p ∈ IjM , then p∗ denotes the image of p in IjM/Ij+1M , and let 0∗ = 0. 
Set R(I) :=

⊕
n�0 I

ntn, the Rees ring, and R̂(I) :=
⊕

n∈Z
Intn is the extended Rees ring of A with 

respect to I, where In = A for every n � 0. Set R(I, M) :=
⊕

n�0 I
nMtn, the Rees module, and 

R̂(I, M) :=
⊕

n∈Z
InMtn is the extended Rees Module of M with respect to I. Let GI(A) :=

⊕
n�0 I

n/In+1

be the associated graded ring of A with respect to I, and GI(M) :=
⊕

n�0 I
nM/In+1M be the associated 

graded module of M with respect to I. Throughout this article, we denote the ideal 
⊕

n�1 I
ntn of R(I) by 

R+, and the ideal 
⊕

n�1 I
n/In+1 of GI(A) by G+.

2.1. Set LI(M) :=
⊕

n�0 M/In+1M . The A-module LI(M) can be given an R(I)-module structure as 
follows. The Rees ring R(I) is a subring of R̂(I), and R̂(I) is a subring of S := A[t, t−1]. So S is an 
R(I)-module. Therefore M [t, t−1] =

⊕
n∈Z

Mtn = M ⊗A S is an R(I)-module. The exact sequence

0 −→ R̂(I,M) −→ M [t, t−1] −→ LI(M)(−1) −→ 0 (1)

defines an R(I)-module structure on LI(M)(−1), and hence on LI(M).

The following result is well-known and easy to prove.

Lemma 2.2. Let R =
⊕

i�0 Ri be a graded ring. Let E be a graded R-module (need not be finitely generated). 
Then the following statements hold true:

1. If En = 0 for all n � 0, and there is an injective graded homomorphism E(−1) ↪→ E, then E = 0.
2. If En = 0 for all n 
 0, and there is an injective graded homomorphism E ↪→ E(−1), then E = 0.

2.3. Let R =
⊕

i�0 Ri be a graded ring. Let E be a graded R-module. Let l be a positive integer. The lth 
Veronese subring of R is defined by R<l> :=

⊕
n�0 Rnl, and the lth Veronese submodule of E is defined to 

be E<l> :=
⊕

n∈Z
Enl. It can be observed that E<l> is a graded R<l>-module.
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Remark 2.4.

1. LI(M)(−1) behaves well with respect to the Veronese functor. It can be easily checked that

LI(M)(−1)<l> = LIl

(M)(−1).

2. [12, Proposition 2.5] Veronese functor commutes with local cohomology: Let J be a homogeneous ideal 
of R. Then, for every i � 0, we have

(
Hi

J(E)
)<l> ∼= Hi

J<l>(E<l>) as graded R<l>-modules.

Although, in general, LI(M) is not finitely generated as an R(I)-module, but it has the following vanishing 
property.

Lemma 2.5. Suppose grade(I, M) = g > 0. Then, for every 0 � i � g− 1, Hi
R+(LI(M))n = 0 for all n � 0.

Proof. Since grade(I, M) = g > 0, there exists an M -regular sequence x1, . . . , xg in I. It can be observed 
that x1t, . . . , xgt ∈ R(I)1 becomes an M [t, t−1]-regular sequence. So Hi

R+(M [t, t−1]) = 0 for 0 � i � g − 1. 
Therefore, in view of the short exact sequence (1) and using the corresponding long exact sequence in local 
cohomology, we get that

Hi
R+(LI(M)(−1)) ∼= Hi+1

R+ (R̂(I,M)) for 0 � i � g − 2, and (2)

Hg−1
R+ (LI(M)(−1)) ⊆ Hg

R+(R̂(I,M)). (3)

Set U :=
⊕

n<0 Mtn. Since U is R+ torsion, we have H0
R+(U) = U and Hi

R+
(U) = 0 for all i � 1. 

Considering the short exact sequence of R(I)-modules

0 −→ R(I,M) −→ R̂(I,M) −→
⊕
n<0

Mtn −→ 0,

the corresponding long exact sequence in local cohomology yields the exact sequence

0 −→ U −→ H1
R+

(R(I,M)) −→ H1
R+(R̂(I,M)) −→ 0, (4)

and Hi
R+

(R(I,M)) ∼= Hi
R+

(R̂(I,M)) for i � 2. (5)

It is well-known that for each i � 0, Hi
R+

(R(I, M))n = 0 for all n � 0. Therefore, in view of (4) and (5), 
for each i � 0, Hi

R+
(R̂(I, M))n = 0 for all n � 0. Hence the lemma follows from (2) and (3). �

2.6. The Ratliff–Rush closure of M with respect to I is defined to be

ĨM :=
⋃
m�1

(Im+1M :M Im).

It is shown in [16, Proposition 2.2.(iv)] that if grade(I, M) > 0, then ĨnM = InM for all n � 0. This 
motivates the following definition:

ρI(M) := min{n : ĨiM = IiM for all i � n}.

We call ρI(M) the Ratliff–Rush number of M with respect to I.
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2.7. Let I = (x1, . . . , xm). Set S := A[X1, . . . , Xm] with degA = 0 and deg/, Xi = 1 for i = 1, . . . , m. Then 
S =

⊕
n�0 Sn, where Sn is the collection of all homogeneous polynomials of degree n. So A = S0. We denote 

the ideal 
⊕

n�1 Sn of S by S+. We have a surjective homogeneous homomorphism of A-algebras, namely 
ϕ : S → R(I), where ϕ(Xi) = xit. We also have the natural map ψ : R(I) → GI(A). Note that

ϕ(S+) = R+, ψ(R+) = G+ and ψ ◦ ϕ(S+) = G+.

By graded independence theorem ([5, 13.1.6]), it does not matter which ring we use to compute local 
cohomology. So now onwards, we simply use Hi(−) instead of Hi

R+
(−) or Hi

G+
(−).

2.8. The natural map 0 → InM/In+1M → M/In+1M → M/InM → 0 induces the first fundamental exact 
sequence (as in [18, (5)]) of R(I)-modules:

0 −→ GI(M) −→ LI(M) −→ LI(M)(−1) −→ 0. (6)

2.9. Let x be an M -superficial element with respect to I. Set N = M/xM . For every n � 1, we have an 
exact sequence of A-modules:

0 −→ (In+1M :M x)
InM

−→ M

InM

ψn−→ M

In+1M
−→ N

In+1N
−→ 0,

where ψn(m + InM) = xm + In+1M for m ∈ M . These sequences induce the second fundamental exact 
sequence (as in [18, 6.2]) of R(I)-modules:

0 −→ BI(x,M) −→ LI(M)(−1) Ψxt−→ LI(M) ρ−→ LI(N) −→ 0, (7)

where Ψxt is multiplication by xt ∈ R(I)1, and

BI(x,M) :=
⊕
n�0

(In+1M :M x)/InM.

2.10. It is shown in [18, Proposition 4.7] that if grade(I, M) > 0, then

H0
R+(LI(M)) ∼=

ρI(M)−1⊕
i=0

Ĩi+1M

Ii+1M
.

2.11. Let x ∈ I � I2. If x∗ is GI(M)-regular, then GI(M)/x∗GI(M) ∼= GI(M/xM) (the proof in [17, 
Theorem 7] generalizes in this context).

We now show that grade(G+, GI(M)) is always bounded by grade(I, M).

Lemma 2.12. We have that grade(G+, GI(M)) � grade(I, M).

Proof. We prove the result by induction on g := grade(I, M). Let us first consider the case g = 0. If possible, 
suppose grade(G+, GI(M)) � 1. Then there is a GI(M)-regular element u = x + I2 ∈ G1 for some x ∈ I. 
Since grade(I, M) = 0, x cannot be M -regular, i.e., there exists a �= 0 in M such that xa = 0. By Krull’s 
Intersection Theorem, there exists c � 0 such that a ∈ IcM � Ic+1M . Then a∗ �= 0 in IcM/Ic+1M , but 
ua∗ = xa + Ic+2M = 0 yields that a∗ = 0, which is a contradiction. Therefore grade(G+, GI(M)) = 0.

We assume the result for g = l − 1, and prove it for g = l (� 1). If possible, suppose that the result is 
not true for g = l, i.e., grade(I, M) = l and grade(G+, GI(M)) � l + 1. Then there exists a GI(M)-regular 
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sequence u1, . . . , ul+1 ∈ G1, where ui = xi+I2 for some xi ∈ I, 1 � i � l+1. By applying a similar procedure 
as above, one obtains that x1 is M -regular. We note that grade(I, M/x1M) = l − 1, but u2, . . . , ul+1 is 
regular on GI(M)/x∗

1GI(M) ∼= GI(M/x1M); see (2.11). This contradicts our induction hypothesis. �
The result below gives a relationship between the first few local cohomologies of LI(M) and that of 

GI(M).

Theorem 2.13. Suppose grade(I, M) = g > 0. Then, for s � g−1, we have Hi(LI(M)) = 0 for all 0 � i � s

if and only if Hi(GI(M)) = 0 for all 0 � i � s.

Proof. In view of the short exact sequence (6) and the corresponding long exact sequence in local cohomol-
ogy, it follows that if Hi(LI(M)) = 0 for i = 0, . . . , s, then Hi(GI(M)) = 0 for i = 0, . . . , s. We now prove 
the converse part by using induction on s. For s = 0, let us assume that H0(GI(M)) = 0. Then (6) yields 
an injective graded homomorphism H0(LI(M)) ↪→ H0(LI(M))(−1). Hence, in view of Lemma 2.2.(ii), we 
obtain that H0(LI(M)) = 0.

We now assume the result for s = l − 1, and prove it for s = l, where l � 1. Let Hi(GI(M)) = 0 for 
0 � i � l. So grade(G+, GI(M)) � l + 1. Then there is x ∈ I � I2 such that x∗ is GI(M)-regular. Hence it 
can be easily shown that (In+1M :M x) = InM for all n � 0. In particular, we have BI(x, M) = 0 and x is 
M -superficial. Set N := M/xM . Note that GI(M)/x∗GI(M) ∼= GI(N) (see (2.11)). So grade(G+, GI(N)) �
l, and hence Hi(GI(N)) = 0 for 0 � i � l− 1. Therefore, by induction hypothesis, we have Hj(LI(N)) = 0
for 0 � j � l − 1. Since BI(x, M) = 0, the short exact sequence (7) and the corresponding long exact 
sequence in local cohomology provide us the exact sequences:

0 −→ Hi(LI(M))(−1) −→ Hi(LI(M)) for 0 � i � l. (8)

In view of Lemma 2.12, grade(I, M) � grade(G+, GI(M)) � l+1. Hence, by Lemma 2.5, for every 0 � i � l, 
Hi(LI(M))n = 0 for all n � 0. Therefore it follows from (8) and Lemma 2.2(i) that Hi(LI(M)) = 0 for all 
0 � i � l. �

As a consequence of Theorem 2.13, we obtain the following characterization of grade(G+, GI(M)) in 
terms of local cohomology of LI(M).

Corollary 2.14. Suppose grade(I, M) = g > 0. Then

grade(G+, GI(M)) = min{i : Hi(LI(M)) �= 0, where 0 � i � g}.

Proof. It is well-known that

grade(G+, GI(M)) = min{i : Hi
G+

(GI(M)) �= 0}.

By Lemma 2.12, we have grade(G+, GI(M)) � g. Set

α := min{i : Hi(LI(M)) �= 0, where 0 � i � g}.

By considering (6), it can be easily observed that Hi(LI(M)) �= 0 for some i with 0 � i �
grade(G+, GI(M)) (� g). So α � grade(G+, GI(M)). Hence, by virtue of Theorem 2.13, it follows that 
α = grade(G+, GI(M)). �
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3. Asymptotic grade for associated graded modules

In the present section, we explore the asymptotic behavior of the associated graded modules for powers 
of an ideal. We particularly study its grade with respect to the irrelevant ideals of associated graded rings.

Throughout this section, we work with the following hypothesis, but we do not need Cohen–Macaulay 
assumption everywhere.

Hypothesis 3.1. Let (A, m) be a Cohen–Macaulay local ring with infinite residue field, and M be a Cohen–
Macaulay A-module. Let I be an ideal of A such that grade(I, M) = g > 0.

3.2 (A few invariants). In our study, we use the following invariants.

1. ξI(M) := min{g, i : Hi(LI(M))−1 �= 0, or Hi(LI(M))j �= 0 for infinitely many j < 0, where i varies in
0 � i � g − 1}. Note that 1 � ξI(M) � g.

2. The amplitude of M with respect to I is defined to be

ampI(M) := max{|n| : Hi(LI(M))n−1 �= 0 for some 0 � i � ξI(M) − 1}.

It follows from (i) and Lemma 2.5 that ampI(M) < ∞.
3. Let N be a graded module (not necessarily finitely generated). Define

end(N) := sup{n ∈ Z : Nn �= 0}.

4. By Lemma 2.5, for every 0 � i � g − 1, Hi
R+(LI(M))n = 0 for all n � 0. So we set

bIi (M) := end
(
Hi

R+(LI(M))
)

for every 0 � i � g − 1.

We start by showing a special property of the first local cohomology of LI(M).

Lemma 3.3. For a fixed integer c < 0, the following conditions are equivalent:

1. H1(LI(M))c = 0.
2. H1(LI(M))j = 0 for all j � c.

Proof. We only need to prove (i) ⇒ (ii). Suppose H1(LI(M))c = 0. Let x be an M -superficial element 
with respect to I. Then (In+1M :M x) = InM for every n � 0, i.e., BI(x, M) is G+ torsion. Therefore 
H0(BI(x, M)) = BI(x, M), and Hi(BI(x, M)) = 0 for all i � 1. Hence, by splitting (7) into two short 
exact sequences, and considering the corresponding long exact sequences, one obtains the following exact 
sequence:

0 → BI(x,M) −→ H0(LI(M))(−1) −→ H0(LI(M)) −→ H0(LI(N)) (9)

−→ H1(LI(M))(−1) −→ H1(LI(M)) −→ H1(LI(N)),

where N = M/xM . Therefore, for every n < 0, since H0(LI(N))n = 0, we have the following exact sequence:

0 −→ H1(LI(M))n−1 −→ H1(LI(M))n.

Hence, since H1(LI(M))c = 0, it follows that H1(LI(M))j = 0 for all j � c. �
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In [12, Theorem 3.4], Huckaba and Marley proved that if A is Cohen–Macaulay with dim(A) � 2, 
and I is a normal ideal with grade(I) � 1, then depth(GIn(A)) � 2 for all n � 0. A similar result for 
grade(GIn(A)+, GIn(A)) is shown here.

Theorem 3.4. Let I be a normal ideal of A with grade(I) � 2. Also assume that A is excellent. Then

grade(GIn(A)+, GIn(A)) � 2 for all n � 0.

Proof. Set u := max{bI0(A), bI1(A)} + 2. Let l � u. We write Hi
R+

(LI(A)) =
⊕

n∈Z
V i
n as it is a graded 

R(I)-module. It can be observed that V i
nl−1 = 0 for all n � 1 and i = 0, 1. We note that

Hi
R(Il)+

(
LIl

(A)
)

(−1) ∼= Hi
R(Il)+

(
LIl

(A)(−1)
)

∼= Hi
(R+)<l>

((
LI(A)(−1)

)<l>
)

[by Remark 2.4.(i)] (10)

∼=
(
Hi

R+

(
LI(A)(−1)

))<l>

[by Remark 2.4.(ii)]

∼=
⊕
n∈Z

V i
nl−1.

Therefore, for every i ∈ {0, 1}, since V i
nl−1 = 0 for all n � 1, we have

Hi
R(Il)+(LIl

(A))n = 0, i.e., Hi
R(K)+

(
LK(A)

)
n

= 0 for all n � 0, (11)

where K := I l. In particular, it follows that H0
R(K)+(LK(A)) = 0. We now show that H1

R(K)+(LK(A)) = 0. 
Note that K is integrally closed. Therefore, by virtue of [11, Theorem 2.1], after a flat extension, there exists 
a superficial element x ∈ K such that the ideal J := K/(x) is integrally closed in B := A/(x). In view of a 
sequence like (9), by applying (11), we obtain that H0

R(K)+(LK(B))n = 0 for all n � 1. Hence, by 2.10, we 

have H0
R(K)+(LK(B)) ∼= J̃/J = 0 as J is integrally closed; see [19, 2.3.3]. Therefore, for every n, a sequence 

like (9) yields the following exact sequence:

0 −→ H1
R(K)+(LK(A))n−1 −→ H1

R(K)+(LK(A))n. (12)

Since H1
R(K)+(LK(A))n = 0 for all n � 0, it can be proved by repeatedly applying (12) that 

H1
R(K)+(LK(A))n = 0 for all n, and hence H1

R(K)+(LK(A)) = 0. Thus, by virtue of Corollary 2.14, we 
have that grade(GIl(A)+, GIl(A)) � 2, and this holds true for every l � u, which completes the proof of 
the theorem. �
Remark 3.5. We have used [11, Theorem 2.1] crucially in the proof above. This is the only place where we 
need that the ring is excellent.

Since grade(In) = grade(I) for every n � 1, as an immediate consequence of Theorem 3.4 and 
Lemma 2.12, one obtains the following result.

Corollary 3.6. Let I be a normal ideal of A with grade(I) = 2. Also assume that A is excellent. Then

grade(GIn(A)+, GIn(A)) = 2 for all n � 0.

The following theorem gives an asymptotic lower bound of grade of associated graded modules for powers 
of an ideal.
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Theorem 3.7. For each l > ampI(M), grade(GIl(A)+, GIl(M)) � ξI(M).

Proof. Set Ei := Hi(LI(M)(−1)), and u := ξI(M). Fix an arbitrary l > ampI(M). Also fix i with 0 �
i � u − 1. Then, for n �= 0, we have Ei

nl = Hi(LI(M))nl−1 = 0 as |n|l � l > ampI(M). Also Ei
0 =

Hi(LI(M))−1 = 0 since 0 � i � ξI(M) − 1. Hence (Ei)<l> =
⊕

n∈Z
Ei

nl = 0. So, by Remark 2.4 (as in 
(10)), it follows that

Hi
R(Il)+

(
LIl

(M)(−1)
)

=
(
Hi

R+

(
LI(M)(−1)

))<l>

= 0. (13)

Therefore Hi
R(Il)+

(
LIl(M)

)
= 0 for all 0 � i � u − 1. Hence, by virtue of Corollary 2.14, 

grade(GIl(A)+, GIl(M)) � u = ξI(M) for all l > ampI(M). �
The following corollary shows that how the vanishing of a single component of certain local cohomology 

plays a crucial role in the study of grade of asymptotic associated graded modules.

Corollary 3.8. The following conditions are equivalent:

1. H1(LI(M))−1 = 0.
2. grade(GIl(A)+, GIl(M)) � 2 for all l > ampI(M).
3. grade(GIl(A)+, GIl(M)) � 2 for some l � 1.

Proof. (i) ⇒ (ii): Let H1(LI(M))−1 = 0. So, by Lemma 3.3, H1(LI(M))j = 0 for all j � −1. Therefore, since 
ξI(M) � 1 (always), it follows that ξI(M) � 2. Hence, in view of Theorem 3.7, grade(GIl(A)+, GIl(M)) � 2
for all l > ampI(M).

(ii) ⇒ (iii): It holds trivially.
(iii) ⇒ (i): Suppose grade(GIl(A)+, GIl(M)) � 2 for some l � 1. Then it follows from Corollary 2.14

that H1
R(Il)+

(
LIl(M)

)
= 0. Therefore, as in (13), we obtain that Hi

R+

(
LI(M)(−1)

)<l> = 0, and hence its 
0th component provides us H1(LI(M))−1 = 0. �

As a consequence, we obtain the following asymptotic behavior of associated graded modules for powers 
of an ideal.

Corollary 3.9. Exactly one of the following alternatives must hold true:

1. grade(GIn(A)+, GIn(M)) = 1 for all n > ampI(M).
2. grade(GIn(A)+, GIn(M)) � 2 for all n > ampI(M).

Proof. Since ξI(M) � 1, by virtue of Theorem 3.7, grade(GIn(A)+, GIn(M)) � 1 for all n > ampI(M). 
Hence the result follows from Corollary 3.8. �

Here we prove our main result of this section.

Theorem 3.10. With Hypothesis 3.1, suppose height(I) � dim(A) − 2. Then

grade(GIl(A)+, GIl(M)) = ξI(M) for every l > ampI(M).

Proof. Set u := ξI(M). By virtue of Theorem 3.7, grade(GIl(A)+, GIl(M)) � u for every l > ampI(M). If 
possible, suppose that grade(GIl(A)+, GIl(M)) > u for some l > ampI(M). Then, in view of Corollary 2.14, 
Hu

l

(
LIl(M)

)
= 0. Thus, as in (13), we obtain that Hu

R

(
LI(M)(−1)

)<l> = 0, and hence
R(I )+ +
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Hu(LI(M))nl−1 = 0 for all n ∈ Z. (14)

We note that u < grade(GIl(A)+, GIl(M)) � g; see Lemma 2.12.
The long exact sequence corresponding to (6) provides an exact sequence:

Hu−1 (LI(M)
)
(−1) → Hu(GI(M)) → Hu(LI(M)) → Hu

(
LI(M)

)
(−1). (15)

Since u = ξI(M), it follows from the definition of ξI(M) that Hu−1(LI(M))n = 0 for all n 
 0. Therefore 
(14) and (15) yield that Hu(GI(M))nl−1 = 0 for all n 
 0. Hence, since Hu(GI(M)) is tame (due to [4, 
Lemma 4.3]), there exists some c < 0 such that Hu(GI(M))j = 0 for all j � c. (Note that dim(A/I) �
dim(A) − height(I) � 2, and GI(M) is a finitely generated graded GI(A)-module.)

Since Hu(GI(M))j = 0 for all j � c, (15) produces an exact sequence

0 −→ Hu(LI(M))j −→ Hu(LI(M))j−1 for every j � c. (16)

Therefore, if m, n � c are integers such that m � n, then Hu(LI(M))n can be considered as a submodule 
of Hu(LI(M))m. Using this fact and (14), one can prove that Hu(LI(M))j = 0 for all j � n′l, where n′

is a fixed integer such that n′l � c. Thus we have Hu(LI(M))j = 0 for all j 
 0, and Hu(LI(M))−1 = 0
by (14). This contradicts that u = ξI(M) < g. Therefore grade(GIl(A)+, GIl(M)) = ξI(M) for every 
l > ampI(M). �
4. On the sets Ass∞I (M) and T∞

1 (I, M)

Let (A, m) be a local ring. Let I be an ideal of A, and M be a finitely generated A-module. By a result 
of Brodmann [3], there exists n0 such that AssA(M/InM) = AssA(M/In0M) for all n � n0. The eventual 
constant set (i.e., AssA(M/In0M)) is denoted by Ass∞I (M). In [15, Theorem 1], Melkersson and Schenzel 
generalized Brodmann’s result by proving that for every fixed i � 0, the set AssA

(
TorAi (M,A/In)

)
is 

constant for all n � 0. We denote this stable value by T∞
i (I, M). Note that Ass∞I (M) is nothing but 

T∞
0 (I, M). In this section, we mainly study the question that when does m ∈ Ass∞I (M) (resp. T∞

1 (I, M))? 
Our first result in this direction is regarding the set Ass∞I (M).

Theorem 4.1. Let (A, m) be a Cohen–Macaulay local, non-regular ring, and L be an MCM A-module. Suppose 
M = SyzA1 (L) (�= 0), and MP is free for every P ∈ Spec(A) � {m}. Let I be an ideal of A such that 
grade(GIn(A)+, GIn(A)) � 2 for all n � 0.

If m /∈ Ass∞I (M), then grade(GIn(A)+, GIn(M)) � 2 for every n > ampI(M).

Proof. Since L is an MCM A-module, every A-regular element is L-regular. By virtue of Lemma 2.12, from 
the given hypotheses, it follows that grade(I, A) > 0, and hence grade(I, L) > 0. So, by Corollary 3.9, 
grade(GIn(A)+, GIn(L)) � 1 for all n � 0. Therefore, in view of Corollary 2.14, we obtain that

H0
R(In)+

(
LIn

(L)
)

= 0 for all n � 0. (17)

Note that M is an MCM A-module. So as above grade(I, M) > 0.
We have a short exact sequence

0 −→ M −→ F −→ L −→ 0, (18)

where F is a free A-module. For every n, by applying (A/In) ⊗A − on (18), we obtain an exact sequence:
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0 −→ TorA1 (A/In, L) −→ M/InM −→ F/InF −→ L/InL −→ 0. (19)

For every P ∈ Spec(A) � {m}, since MP is free, we get that LP is free, and hence TorA1 (A/In, L)P = 0. 
So AssA

(
TorA1 (A/In, L)

)
⊆ {m} for every n. Therefore, since m /∈ Ass∞I (M), in view of (19), it can be 

deduced that AssA
(
TorA1 (A/In, L)

)
= φ (empty set) for all n � 0, and hence there is c′ � 1 such that 

TorA1 (A/In, L) = 0 for every n � c′. Thus (19) yields an exact sequence:

0 −→ M/InM −→ F/InF −→ L/InL −→ 0 (20)

for every n � c′. In particular, for every n � c′, we have short exact sequences:

0 −→ M/InkM −→ F/InkF −→ L/InkL −→ 0

for all k � 1, which induce an exact sequence of R(I)-modules:

0 −→ LIn

(M)(−1) −→ LIn

(F )(−1) −→ LIn

(L)(−1) −→ 0. (21)

The corresponding long exact sequence of local cohomology modules yields

0 −→ H0
R(In)+

(
LIn

(M)
)
−→ H0

R(In)+

(
LIn

(F )
)
−→ H0

R(In)+

(
LIn

(L)
)

(22)

−→ H1
R(In)+

(
LIn

(M)
)
−→ H1

R(In)+

(
LIn

(F )
)
.

Since grade(GIn(A)+, GIn(A)) � 2 for all n � 0, by virtue of Corollary 2.14, we get that Hi
R(In)+

(
LIn(A)

)
=

0 for i = 0, 1, and for all n � 0. Therefore

H0
R(In)+

(
LIn

(F )
)

= 0 = H1
R(In)+

(
LIn

(F )
)

for all n � 0. (23)

It follows from (17), (22) and (23) that

H0
R(In)+

(
LIn

(M)
)

= 0 = H1
R(In)+

(
LIn

(M)
)

for all n � 0.

Hence, in view of Corollaries 2.14 and 3.8, grade(GIn(A)+, GIn(M)) � 2 for every n > ampI(M), which 
completes the proof of the theorem. �

We now give

Proof of Theorem 1.2. This follows from Theorem 4.1 and Theorem 3.4. �
The following result gives a variation of Theorem 4.1.

Theorem 4.2. Let (A, m) be a Cohen–Macaulay local ring of dimension d � 3. Set M := SyzA1 (L) for some 
MCM A-module L. Let I be a locally complete intersection ideal of A with height(I) = d − 1, the analytic 
spread l(I) = d, and grade(GIn(A)+, GIn(A)) � 2 for all n � 0. We have that

if m /∈ Ass∞I (M), then grade(GIn(A)+, GIn(M)) � 2 for every n > ampI(M).

Remark 4.3. See [13, 2.2] for cases when the hypotheses on the ideal I are satisfied.
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Proof of Theorem 4.2. We claim that TorA1 (A/In, L) has finite length for all n � 0. To show this, consider 
P ∈ Spec(A) � {m}. If LP is free, then TorA1 (A/In, L)P = 0. So we may assume that LP is not free. If 
I � P , then also TorA1 (A/In, L)P = 0 for every n � 1. So we assume that I ⊆ P . Since height(I) = d − 1
and P �= m, we have height(P ) = d − 1, and hence P is minimal over I. (So there are finitely many such 
prime ideals.) Note that IP is a PAP -primary ideal of AP . Since I is locally complete intersection, IP is 
generated by an AP -regular sequence of length d − 1. Therefore, in view of [17, Remark 20], we obtain that 
TorA1 (A/In, L)P = 0 for all n � 0. Hence TorA1 (A/In, L) has finite length for all n � 0. Now, along with 
the same arguments as in the proof of Theorem 4.1, it follows that grade(GIn(A)+, GIn(M)) � 2 for every 
n > ampI(M). �
4.4 (MCM approximations and an invariant of modules). Let (A, m) be a Gorenstein local ring. Consider 
a finitely generated A-module M . By virtue of [1, Theorem A], there is an MCM approximation of M , 
i.e., a short exact sequence s : 0 → Y → X → M → 0 of A-modules, where X is MCM and Y has finite 
injective dimension (equivalently, Y has finite projective dimension since A is Gorenstein). We say that X
is an MCM approximation of M . In view of [1, Theorem B], if s′ : 0 → Y ′ → X ′ → M → 0 is another 
MCM approximation of M , then X and X ′ are stably isomorphic, i.e., there exist finitely generated free 
A-modules F and G such that X ⊕ F ∼= X ′ ⊕ G, and hence SyzA1 (X) ∼= SyzA1 (X ′). Thus SyzA1 (X) is an 
invariant of M . Note that SyzA1 (X) = 0 if and only if projdimA(M) is finite.

We use the following lemma to prove our result on T∞
1 (I, M).

Lemma 4.5. Let (A, m) be a Gorenstein local ring of dimension d. Suppose A has isolated singularity. Let I
be a normal ideal of A such that l(I) < d. Let M be a Cohen–Macaulay A-module of dimension d − 1, and 
projdimA(M) = ∞. Let XM be an MCM approximation of M . Then the following statements are equivalent:

1. m /∈ T∞
1 (I, M) (i.e., m /∈ AssA(TorA1 (M, A/In)) for all n � 0).

2. TorA1 (XM , A/In) = 0 for all n � 0.

Proof. Since XM is an MCM approximation of M , and depth(M) � d − 1, there is a short exact sequence 
0 → F → XM → M → 0, where F is a free A-module. The corresponding long exact sequences of 
Tor-modules yield an exact sequence

0 −→ TorA1 (XM , A/In) −→ TorA1 (M,A/In) −→ (24)

F/InF −→ XM/InXM −→ M/InM −→ 0 for every n � 1.

(i) ⇒ (ii): Since A has isolated singularity, it follows that (XM )P is free AP -module for every P ∈
Spec(A) � {m}. So TorA1 (XM , A/In) has finite length, and hence AssA

(
TorA1 (XM , A/In)

)
⊆ {m} for every 

n � 1. Therefore, since m /∈ T∞
1 (I, M), in view of (24), we obtain that AssA

(
TorA1 (XM , A/In)

)
= φ for all 

n � 0, which implies that TorA1 (XM , A/In) = 0 for all n � 0.
(ii) ⇒ (i): Since I is normal, and l(I) < d, by virtue of [14, Proposition 4.1], we have m /∈ Ass∞I (A). In 

view of (24), since TorA1 (XM , A/In) = 0 for all n � 0, it follows that T∞
1 (I, M) ⊆ Ass∞I (A), and hence 

m /∈ T∞
1 (I, M). �

The following theorem provides us a necessary and sufficient condition for ‘m ∈ T∞
1 (I, M)’ on certain 

class of ideals and modules over a Gorenstein local ring.

Theorem 4.6. Let (A, m) be an excellent Gorenstein local ring of dimension d. Suppose A has isolated 
singularity. Let I be a normal ideal of A with height(I) � 2 and l(I) < d. Let M be a Cohen–Macaulay 
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A-module of dimension d − 1 and projdimA(M) = ∞. Let XM be an MCM approximation of M . Set 
N := SyzA1 (XM ). Then the following statements are equivalent:

1. m /∈ T∞
1 (I, M) (i.e., m /∈ AssA(TorA1 (M, A/In)) for all n � 0).

2. m /∈ Ass∞I (N) (equivalently, depth(N/InN) � 1 for all n � 0).

Furthermore, if this holds true, then grade(GIn(A)+, GIn(N)) � 2 for every n > ampI(N).

Proof. Note that N = SyzA1 (XM ) is a non-zero module. We have an exact sequence 0 → N → G → XM → 0, 
where G is a free A-module. The corresponding long exact sequences of Tor-modules yield an exact sequence 
(for every n � 1):

0 −→ TorA1 (XM , A/In) −→ N/InN −→ G/InG −→ XM/InXM −→ 0. (25)

(i) ⇒ (ii): Since m /∈ T∞
1 (I, M), by virtue of Lemma 4.5, TorA1 (XM , A/In) = 0 for all n � 0. Hence (25)

yields that Ass∞I (N) ⊆ Ass∞I (G) = Ass∞I (A). Therefore, since m /∈ Ass∞I (A) (due to [14, Proposition 4.1]), 
we obtain that m /∈ Ass∞I (N).

(ii) ⇒ (i): Since A has isolated singularity, as in the proof of Lemma 4.5, it follows that
AssA

(
TorA1 (XM , A/In)

)
⊆ {m} for every n � 1. Thus, since m /∈ Ass∞I (N), in view of (25), it can be 

observed that AssA
(
TorA1 (XM , A/In)

)
= φ for all n � 0. Equivalently, TorA1 (XM , A/In) = 0 for all n � 0. 

Hence the implication follows from Lemma 4.5.
Since height(I) � 2, we have grade(GIn(A)+, GIn(A)) � 2 for all n � 0; see Theorem 3.4. So the last 

assertion follows from Theorem 4.1. �
5. Asymptotic prime divisors over complete intersections

Let A be a local complete intersection, and M be a finitely generated A-module. Suppose either I is a 
principal ideal or I has a principal reduction generated by an A-regular element. In this section, we analyze 
the asymptotic stability of certain associated prime ideals of Tor-modules TorAi (M, A/In) if both i and n
tend to ∞.

5.1. Module structure on Tor

We first discuss the graded module structure on direct sum of Tor-modules which we are going to use in 
order to prove our main results on asymptotic prime divisors of Tor-modules.

Let Q be a ring, and f = f1, . . . , fc be a Q-regular sequence. Set A := Q/(f). Let M and N be finitely 
generated A-modules.

5.1. Let F : · · · → Fn → · · · → F1 → F0 → 0 be a free resolution of M by finitely generated free 
A-modules. Let

t′j : F −→ F(−2), 1 � j � c

be the Eisenbud operators defined by f = f1, . . . , fc; see [7, Section 1]. In view of [7, Corollary 1.4], the 
chain maps t′j are determined uniquely up to homotopy. In particular, they induce well-defined maps

tj : TorAi (M,N) −→ TorAi−2(M,N)
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(for all i ∈ Z and j = 1, . . . , c) on the homology of F ⊗A N . In [7, Corollary 1.5], it is shown that the chain 
maps t′j (1 � j � c) commute up to homotopy. Thus

TorA� (M,N) :=
⊕
i∈Z

TorA−i(M,N)

turns into a Z-graded S := A[t1, . . . , tc]-module, where S is the N-graded polynomial ring over A in the 
operators tj defined by f with deg(tj) = 2 for all j = 1, . . . , c. Here note that for every i ∈ Z, the ith 
component of TorA� (M, N) is TorA−i(M, N). This structure depends only on f , are natural in both module 
arguments and commute with the connecting maps induced by short exact sequences.

5.2. Stability of primes in AssA
(
TorAi (M,N)

)

Here we study the asymptotic stability of certain associated prime ideals of Tor-modules TorAi (M, N), 
(i � 0), where M and N are finitely generated modules over a local complete intersection ring A (see 
Corollary 5.10).

We denote the collection of all minimal prime ideals in the support of M by MinA(M) (or simply by 
Min(M)). It is well-known that Min(M) ⊆ AssA(M) ⊆ Supp(M). Recall that a local ring (A, m) is called a 
complete intersection ring if its m-adic completion Â = Q/(f), where Q is a complete regular local ring and 
f = f1, . . . , fc is a Q-regular sequence. To prove our results, we may assume that A is complete because of 
the following well-known fact on associate primes:

Lemma 5.2. For an A-module M , we have

AssA(M) =
{
q ∩A : q ∈ AssÂ

(
M ⊗A Â

)}
.

It is now enough to prove our result with the following hypothesis:

Hypothesis 5.3. Let A = Q/(f1, . . . , fc), where Q is a regular local ring, and f1, . . . , fc is a Q-regular 
sequence. Let M and N be finitely generated A-modules.

We show our result with the following more general hypothesis:

Hypothesis 5.4. Let A = Q/a, where Q is a regular ring of finite Krull dimension, and a ⊆ Q is an ideal 
such that aq ⊆ Qq is generated by a Qq-regular sequence for every q ∈ Var(a). Let M and N be finitely 
generated A-modules.

It should be noticed that a ring A satisfies Hypothesis 5.3 implies that A satisfies Hypothesis 5.4. With 
the Hypothesis 5.4, we have the following well-known bounds for complete intersection dimension and 
complexity:

CI-dimA(M) = max{CI-dimAm
(Mm) : m ∈ Max(A)} [by definition]

� max{dim(Am) : m ∈ Max(A)} [see, e.g., [2, 4.1.5]]

= dim(A);

cxA(M) = max{cxAm
(Mm) : m ∈ Max(A)} [by definition]

� max{codim(Am) : m ∈ Max(A)} [see, e.g., [2, 1.4]]

� dim(Q).
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Therefore, by [2, Theorem 4.9], we have the following result:

Theorem 5.5. With the Hypothesis 5.4, the following statements are equivalent:

1. TorAi (M, N) = 0 for dim(Q) + 1 consecutive values of i > dim(A);
2. TorAi (M, N) = 0 for all i � 0;
3. TorAi (M, N) = 0 for all i > dim(A).

Let us recall the following asymptotic behavior of Tor-modules.

Lemma 5.6 ([10, Theorem 3.1]). With the Hypothesis 5.3, if λA

(
TorAi (M,N)

)
is finite for all i � 0 (where 

λA(−) is the length function), then
⊕
i�0

TorA−i(M,N) is a *Artinian graded A[t1, . . . , tc]-module,

where deg(tj) = 2 for all j = 1, . . . , c.

As a consequence of this lemma, we obtain the following result:

Proposition 5.7. Let A be a local complete intersection ring. Let M and N be finitely generated A-modules. 
If λA

(
TorAi (M,N)

)
is finite for all sufficiently large integer i, then we have that

λA

(
TorA2i(M,N)

)
and λA

(
TorA2i+1(M,N)

)

are given by polynomials in i over Q for all sufficiently large integer i.

Proof. Without loss of generality, we may assume that A is complete. Then the proposition follows from 
Lemmas 5.6 and 5.8. �

The following result is a consequence of the graded version of Matlis duality and the Hilbert–Serre 
Theorem. It might be known for the experts. But we give a proof here for the reader’s convenience.

Lemma 5.8. Let (A, m) be a complete local ring. Let L =
⊕

i∈Z
Li be a *Artinian graded A[t1, . . . , tc]-module, 

where deg(tj) = 2 for all 1 � j � c, and λA(Li) is finite for all i 
 0. Then λA(L−2i) and λA(L−2i−1) are 
given by polynomials in i over Q for all sufficiently large i.

Proof. We use the graded Matlis duality. Let us recall the following definitions: *complete from [6, p. 142]; 
*local from [6, p. 139]; and *Hom(−, −) from [6, p. 33]. Note that A[t1, . . . , tc] is a Noetherian *complete 
*local ring. We set E := EA(A/m), the injective hull of A/m. Also set L∨ := *Hom(L, E). Notice that 
(L∨)i = HomA(L−i, E) for all i ∈ Z.

Since A[t1, . . . , tc] is a Noetherian *complete *local ring, by virtue of Matlis duality for graded modules 
([6, 3.6.17]), we obtain that L∨ is a finitely generated graded A[t1, . . . , tc]-module. Let i0 be such that 
λA(L−i) is finite for all i � i0. Hence

λA ((L∨)i) = λA (HomA(L−i, E)) = λA(L−i) (26)

is finite for all i � i0; see, e.g., [6, 3.2.12]. Since 
⊕

i�i0
(L∨)i is a graded A[t1, . . . , tc]-submodule of L∨, we have 

that 
⊕

(L∨)i is a finitely generated graded module over A[t1, . . . , tc]. Therefore, by the Hilbert–Serre 
i�i0
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Theorem, we obtain that λA ((L∨)2i) and λA ((L∨)2i+1) are given by polynomials in i over Q for all i � 0, 
and hence the lemma follows from (26). �

We are now in a position to prove our main result of this section.

Theorem 5.9. With the Hypothesis 5.4, exactly one of the following alternatives must hold:

1. TorAi (M, N) = 0 for all i > dim(A);
2. There exists a non-empty finite subset A of Spec(A) such that for every p ∈ A, at least one of the 

following statements holds true:
(a) p ∈ Min

(
TorA2i(M,N)

)
for all i � 0;

(b) p ∈ Min
(
TorA2i+1(M,N)

)
for all i � 0.

Proof. We set

B :=
⋃{

Supp
(
TorAi (M,N)

)
: dim(A) < i � dim(A) + dim(Q) + 1

}
.

If B = φ (empty set), then TorAi (M, N) = 0 for all dim(A) < i � dim(A) + dim(Q) + 1, and hence, by 
virtue of Theorem 5.5, we get that TorAi (M, N) = 0 for all i > dim(A). So we may assume that B �= φ. In 
this case, we prove that the statement (2) holds true. We denote the collection of minimal primes in B by 
A, i.e.,

A := {p ∈ B : q ∈ Spec(A) and q � p ⇒ q /∈ B} . (27)

Clearly, A is a non-empty finite subset of Spec(A). We claim that A satisfies statement (2) in the theorem. 
To prove this claim, let us fix an arbitrary p ∈ A.

If q ∈ Spec(A) be such that q � p, then q /∈ B, i.e., TorAq

i (Mq, Nq) = 0 for all dim(A) < i � dim(A) +
dim(Q) + 1, and hence, in view of Theorem 5.5, we obtain that TorAq

i (Mq, Nq) = 0 for all i > dim(A). 
Therefore

Supp
(
TorAp

i (Mp, Np)
)
⊆ {pAp} for all i > dim(A), (28)

which gives

λAp

(
TorAp

i (Mp, Np)
)

is finite for all i > dim(A). (29)

Since Ap satisfies Hypothesis 5.3, by Proposition 5.7, there are polynomials P1(z) and P2(z) in z over Q
such that

λAp

(
TorAp

2i (Mp, Np)
)

= P1(i) for all i � 0; (30)

λAp

(
TorAp

2i+1(Mp, Np)
)

= P2(i) for all i � 0. (31)

We now show that both P1(z) and P2(z) cannot be zero polynomials. If this is not the case, then we have

TorAp

i (Mp, Np) = 0 for all i � 0,

which yields (by Theorem 5.5) that
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TorAp

i (Mp, Np) = 0 for all i > dim(A),

i.e., p /∈ B, and hence p /∈ A, which is a contradiction. Therefore at least one of P1 and P2 must be a 
non-zero polynomial.

Assume that P1 is a non-zero polynomial. Then P1 may have only finitely many roots. Therefore P1(i) �= 0
for all i � 0, which yields TorAp

2i (Mp, Np) �= 0 for all i � 0. So, in view of (28), we obtain that

Supp
(
TorAp

i (Mp, Np)
)

= {pAp} for all i � 0,

which implies that p ∈ Min
(
TorA2i(M,N)

)
for all i � 0.

Similarly, if P2 is a non-zero polynomial, then we have that

p ∈ Min
(
TorA2i+1(M,N)

)
for all i � 0.

This completes the proof of the theorem. �
As a corollary of this theorem, we obtain the following result on associate primes.

Corollary 5.10. Let A be a local complete intersection ring. Let M and N be finitely generated A-modules. 
Then exactly one of the following alternatives must hold:

1. TorAi (M, N) = 0 for all i > dim(A);
2. There exists a non-empty finite subset A of Spec(A) such that for every p ∈ A, at least one of the 

following statements holds true:
(a) p ∈ AssA

(
TorA2i(M,N)

)
for all i � 0;

(b) p ∈ AssA
(
TorA2i+1(M,N)

)
for all i � 0.

Proof. For every finitely generated A-module D, we have MinA(D) ⊆ AssA(D). Therefore, if A is complete, 
then the corollary follows from Theorem 5.9. Now the general case can be deduced by using Lemma 5.2. �

Here we give an example which shows that both statements (i) and (ii) in the assertion (2) of Corollary 5.10
might not hold together.

Example 5.11. Let Q = k[[u, x]] be a ring of formal power series in variables u and x over a field k. We 
set A := Q/(ux) and M = N := Q/(u). Clearly, A is a local complete intersection ring, and M , N
are A-modules. Then, for every i � 1, we have that TorA2i(M, N) = 0 and TorA2i−1(M, N) ∼= k; see [2, 
Example 4.3]. So, for all i � 1, we obtain that

AssA
(
TorA2i(M,N)

)
= φ and

AssA
(
TorA2i−1(M,N)

)
= AssA(k) = {(u, x)/(ux)}.

5.3. Stability of primes in AssA
(
TorAi (M,A/In)

)

We now study the asymptotic stability of certain associated prime ideals of Tor-modules TorAi (M, A/In), 
(i, n � 0), where M is a finitely generated module over a local complete intersection ring A, and either I is 
a principal ideal or I has a principal reduction generated by an A-regular element (see Corollary 5.15). We 
start with the following lemma which we use in order to prove our result when I is a principal ideal.
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Lemma 5.12. Let A be a ring, and M be an A-module. Fix an element a ∈ A. Then there exist an ideal J
of A and a positive integer n0 such that

TorAi+2
(
M,A/(an)

) ∼= TorAi (M,J) for all i � 1 and n � n0.

Proof. For every integer n � 1, we consider the following short exact sequence:

0 → (0 :A an) → A → (an) → 0,

which yields the following isomorphisms:

TorAi+1
(
M, (an)

) ∼= TorAi
(
M, (0 :A an)

)
for all i � 1. (32)

For every n � 1, the short exact sequence 0 → (an) → A → A/(an) → 0 gives

TorAi+1
(
M,A/(an)

) ∼= TorAi
(
M, (an)

)
for all i � 1. (33)

Thus (32) and (33) together yield

TorAi+2
(
M,A/(an)

) ∼= TorAi
(
M, (0 :A an)

)
for all i � 1. (34)

Since A is a Noetherian ring, the ascending chain of ideals
(
0 :A a

)
⊆

(
0 :A a2) ⊆ (

0 :A a3) ⊆ · · ·

will stabilize somewhere, i.e., there exists a positive integer n0 such that
(
0 :A an

)
=

(
0 :A an0

)
for all n � n0. (35)

Then the lemma follows from (34) and (35) by setting J := (0 :A an0). �
Here is another lemma which we use in order to prove our result when I has a principal reduction 

generated by an A-regular element.

Lemma 5.13. Let A be a ring. Let I be an ideal of A having a principal reduction generated by an A-regular 
element. Then there exist an ideal J of A and a positive integer n0 such that

TorAi
(
M,A/In

) ∼= TorAi (M,A/J) for all i � 2 and n � n0.

Proof. Since I has a principal reduction generated by an A-regular element, there exist an A-regular element 
y and a positive integer n0 such that

In+1 = yIn for all n � n0.

Then it can be shown that for every n � n0, we obtain a short exact sequence:

0 −→ A/In
y·−→ A/In+1 −→ A/(y) −→ 0. (36)

Now note that TorAi
(
M, A/(y)

)
= 0 for all i � 2. Therefore the short exact sequence (36) yields

TorAi
(
M,A/In

) ∼= TorAi
(
M,A/In+1) for all i � 2 and n � n0.

Hence the lemma follows by setting J := In0 . �
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Now we can achieve one of the main goals of this article.

Theorem 5.14. Let A be as in Hypothesis 5.4. Let M be a finitely generated A-module, and I be an ideal 
of A. Suppose either I is principal or I has a principal reduction generated by an A-regular element. Then 
there exist positive integers i0 and n0 such that exactly one of the following alternatives must hold:

1. TorAi (M, A/In) = 0 for all i � i0 and n � n0;
2. There exists a non-empty finite subset A of Spec(A) such that for every p ∈ A, at least one of the 

following statements holds true:
(a) p ∈ Min

(
TorA2i(M,A/In)

)
for all i � i0 and n � n0;

(b) p ∈ Min
(
TorA2i+1(M,A/In)

)
for all i � i0 and n � n0.

Proof. If I is a principal ideal, then the result follows from Theorem 5.9 and Lemma 5.12. In another case, 
i.e., when I has a principal reduction generated by an A-regular element, then we use Theorem 5.9 and 
Lemma 5.13 to get the desired result of the theorem. �

As an immediate corollary of this theorem, we obtain the following:

Corollary 5.15. Let A be a local complete intersection ring. Let M be a finitely generated A-module, and 
I be an ideal of A. Suppose either I is principal or I has a principal reduction generated by an A-regular 
element. Then there exist positive integers i0 and n0 such that exactly one of the following alternatives must 
hold:

1. TorAi (M, A/In) = 0 for all i � i0 and n � n0;
2. There exists a non-empty finite subset A of Spec(A) such that for every p ∈ A, at least one of the 

following statements holds true:
(a) p ∈ AssA

(
TorA2i(M,A/In)

)
for all i � i0 and n � n0;

(b) p ∈ AssA
(
TorA2i+1(M,A/In)

)
for all i � i0 and n � n0.

Proof. Since MinA(D) ⊆ AssA(D) for every finitely generated A-module D, the corollary follows from 
Theorem 5.14 when A is complete.

Now note that if I is principal, then so is its completion Î. Also note that if I has a principal reduction 
generated by an A-regular element, then Î has a principal reduction generated by an Â-regular element. It 
is well-known that

TorAi (M,A/In) ⊗A Â ∼= TorÂi
(
M̂, Â/(Î)

n
)

for all i, n � 0.

Therefore the general case can be easily deduced by using Lemma 5.2. �
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