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regarded as a quantum deformation of U(g). We also provide explicit formulas for 
the commutation relations among the generators of Uq(g).
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0. Introduction

The quantum Borcherds-Bozec algebras were introduced by Bozec in his research of perverse sheaves 
theory for quivers with loops [1–3]. They can be treated as a further generalization of quantum generalized 
Kac-Moody algebras. Even though they use the same Borcherds-Cartan data, the constructions of the 
quantum groups are quite different.

More precisely, the quantum Borcherds-Bozec algebras have more generators and defining relations than 
quantum generalized Kac-Moody algebras. For each simple root αi with imaginary index, there are infinitely 
many generators eil, fil (l ∈ Z>0) whose degrees are lαi and −lαi, respectively. Bozec deals with these 
generators by treating them as similar positions as divided powers θ(l)

i in Lusztig algebras.
Geometric approach to the half parts of quantum groups can be traced back to Lusztig’s work [15]. In 

[16], Lusztig constructed the canonical bases for the half parts of the quantized enveloping algebras of Kac-
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Moody algebras. The canonical bases correspond to certain simple perverse sheaves on representation space 
of quivers without loops. By allowing quivers to have edge loops, in [9], Kang and Schiffmann generalized 
Lusztig’s work to quantum generalized Kac-Moody algebras, while in this case, the canonical bases corre-
spond to certain semisimple perverse sheaves rather than simple perverse sheaves. (See also [12].) Motivated 
by the results for quivers with one vertex and multiple loops in [17], Bozec considered the general definition 
of Lusztig sheaves for arbitrary quivers, possibly carrying loops, and constructed the canonical bases for the 
half parts of quantum Borcherds-Bozec algebras in terms of simple perverse sheaves [1,2].

In [2], Bozec studied the crystal basis theory for quantum Borcherds-Bozec algebras. He defined the notion 
of Kashiwara operators and generalized crystals. He also proved several critical results, which provides 
an important framework for Kashiwara’s grand-loop argument (cf. [10]). He also provided a geometric 
construction of the crystal for the negative half of quantum Borcherds-Bozec algebras based on the theory 
of perverse sheaves associated to quivers with loops (cf. [7,11]), and a geometric realization of generalized 
crystals for the integrable highest weight representations via Nakajima’s quiver varieties (cf. [8,18]).

For a Kac-Moody algebra g, Lusztig showed that the integrable highest weight module L over U(g) can 
be deformed to those integrable highest weight module L over Uq(g) in such a way that the dimensions of 
weight spaces are invariant under the deformation (cf. [14]). Let A = Q[q, q−1] be the Laurent polynomial 
rings. Lusztig constructed a A -subalgebra UA of Uq(g) generated by divided powers and k±i , and defined a 
UA -submodule LA of L. He proved that F0 ⊗A LA is isomorphic to L as U(g)-modules, where F0 = A /I

and I is the ideal of A generated by (q − 1).
In [4, Chapter 3], Hong and Kang modified Lusztig’s approach, and showed that the Uq(g) is a deformation 

of U(g) as a Hopf algebra. Moreover, a highest weight U(g)-module admits a deformation to a highest weight 
Uq(g)-module. They used the A1-form of Uq(g) and highest weight Uq(g)-module, where A1 is the localization 
of Q[q] at the ideal (q − 1). We can see that A = Q[q, q−1] ⊆ A1.

In this paper, we study the classical limit theory of quantum Borcherds-Bozec algebras. We first review 
some basic notions of Borcherds-Bozec algebras and quantum Borcherds-Bozec algebras. For their represen-
tation theory, the readers may refer to [5,6]. As we show in Appendix, the commutation relations between 
eil and fjk are rather complicated. For the aim of classical limit, we need another set of generators. Thanks 
to Bozec, there exists an alternative set of primitive generators in Uq(g), denoted by sil and til, which satisfy 
a simpler set of commutation relations

siltjk − tjksil = δijδlkτil(Kl
i −K−l

i )

for some constants τil ∈ Q(q). Using Lusztig’s approach, we prove that these generators also satisfy the 
Serre-type relations (cf. [13, Chapter 1]).

In Section 3, we define the A1-form of quantum Borcherds-Bozec algebras and their highest weight 
representations. We show that the triangular decomposition of Uq(g) carries over to A1-form. In Section 4, 
we study the process of taking the limit q → 1. Let U1 = Q ⊗A1 UA1 be a Q-algebra, where UA1 is the 
A1-form of Uq(g). We prove that the classical limit U1 of Uq(g) is isomorphic to the universal enveloping 
algebra U(g) as Hopf algebras, and when we take the classical limit, the Verma module and highest weight 
modules of Uq(g) tend to those Verma module and highest weight modules of U(g), respectively. Finally, we 
provide the concrete commutation relations between the generators eil and fjk of Uq(g) in Appendix. They 
have an interesting combinatorial structure.
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1. Borcherds-Bozec algebras

Let I be an index set possibly countably infinite. An integer-valued matrix A = (aij)i,j∈I is called an 
even symmetrizable Borcherds-Cartan matrix if it satisfies the following conditions:

(i) aii = 2, 0, −2, −4, . . .,
(ii) aij ∈ Z≤0 for i �= j,
(iii) there is a diagonal matrix D = diag(ri ∈ Z>0 | i ∈ I) such that DA is symmetric.

Set Ire := {i ∈ I | aii = 2}, the set of real indices and I im := {i ∈ I | aii ≤ 0}, the set of imaginary 
indices. We denote by I iso := {i ∈ I | aii = 0} the set of isotropic indices.

A Borcherds-Cartan datum consists of

(a) an even symmetrizable Borcherds-Cartan matrix A = (aij)i,j∈I ,
(b) a free abelian group P∨ =

(⊕
i∈I Zhi

)
⊕

(⊕
i∈I Zdi

)
, the dual weight lattice,

(c) h = Q ⊗Z P∨, the Cartan subalgebra,
(d) P = {λ ∈ h∗ | λ(P∨) ⊆ Z}, the weight lattice,
(e) Π∨ = {hi ∈ P∨ | i ∈ I}, the set of simple coroots,
(f) Π = {αi ∈ P | i ∈ I}, the set of simple roots, which is linearly independent over Q and satisfies

αj(hi) = aij , αj(di) = δij for all i, j ∈ I,

(g) for each i ∈ I, there is an element Λi ∈ P such that

Λi(hj) = δij , Λi(dj) = 0 for all i, j ∈ I.

The Λi(i ∈ I) are called the fundamental weights.

We denote by

P+ := {λ ∈ P | λ(hi) ≥ 0 for all i ∈ I}

the set of dominant integral weights. The free abelian group Q :=
⊕

i∈I Zαi is called the root lattice. Set 
Q+ =

∑
i∈I Z≥0αi and Q− = −Q+. For β =

∑
kiαi ∈ Q+, we define its hight to be ht(β) :=

∑
ki.

There is a non-degenerate symmetric bilinear form ( , ) on h∗ satisfying

(αi, λ) = riλ(hi) for all λ ∈ h∗,

and therefore we have

(αi, αj) = riaij = rjaji for all i, j ∈ I.

For i ∈ Ire, we define the simple reflection ωi ∈ GL(h∗) by

ωi(λ) = λ− λ(hi)αi for λ ∈ h∗.

The subgroup W of GL(h∗) generated by ωi (i ∈ Ire) is called the Weyl group of g. One can easily verify 
that the symmetric bilinear form ( , ) is W -invariant.

Let I∞ := (Ire × {1}) ∪ (I im × Z>0). For simplicity, we will often write i for (i, 1) if i ∈ Ire.
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Definition 1.1. The Borcherds-Bozec algebra g associated with a Borcherds-Cartan datum (A, P, Π, P∨, Π∨)
is the Lie algebra over Q generated by the elements eil, fil ((i, l) ∈ I∞) and h with defining relations

[h, h′] = 0 for h, h′ ∈ h,

[eik, fjl] = k δij δkl hi for i, j ∈ I, k, l ∈ Z>0,

[h, ejl] = lαj(h)ejl, [h, fjl] = −lαj(h)fjl,

(adei)1−laij (ejl) = 0 for i ∈ Ire, i �= (j, l),

(adfi)1−laij (fjl) = 0 for i ∈ Ire, i �= (j, l),

[eik, ejl] = [fik, fjl] = 0 for aij = 0.

(1.1)

Let U(g) be the universal enveloping algebra of g. Since we have the following equations in U(g)

(adx)m(y) =
m∑

k=0

(−1)k
(
m

k

)
xm−kyxk for x, y ∈ U(g),m ∈ Z≥0,

we obtain the presentation of U(g) with generators and relations given below.

Proposition 1.2. The universal enveloping algebra U(g) of g is an associative algebra over Q with unity 
generated by eil, fil ((i, l) ∈ I∞) and h subject to the following defining relations

hh′ = h′h for h, h′ ∈ h,

eikfjl − fjleik = k δij δkl hi for i, j ∈ I, k, l ∈ Z>0,

hejl − ejlh = lαj(h)ejl, hfjl − fjlh = −lαj(h)fjl,
1−laij∑
k=0

(−1)k
(

1 − laij
k

)
ei

1−laij−kejl e
k
i = 0 for i ∈ Ire, i �= (j, l),

1−laij∑
k=0

(−1)k
(

1 − laij
k

)
fi

1−laij−kfjl f
k
i = 0 for i ∈ Ire, i �= (j, l),

eikejl − ejleik = fikfjl − fjlfik = 0 for aij = 0.

(1.2)

The universal enveloping algebra U(g) has a Hopf algebra structure given by

Δ(x) = x⊗ 1 + 1 ⊗ x,

ε(x) = 0,

S(x) = −x for x ∈ g,

(1.3)

where Δ : U(g) → U(g) ⊗ U(g) is the comultiplication, ε : U(g) → Q is the counit, and S : U(g) → U(g) is 
the antipode.

Furthermore, by the Poincaré-Brikhoff-Witt Theorem, the universal enveloping algebra also has the 
triangular decomposition

U(g) ∼= U−(g) ⊗ U0(g) ⊗ U+(g), (1.4)

where U+(g) (resp. U0(g) and U−(g)) is the subalgebra of U(g) generated by the elements eil (resp. h and 
fil) for (i, l) ∈ I∞.
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In [5], Kang studied the representation theory of the Borcherds-Bozec algebras. We quote some results 
that we will use later.

Proposition 1.3. [5]

(a) Let λ ∈ P+ and V (λ) = U(g)vλ be the irreducible highest weight g-module. Then we have

f
λ(hi)+1
i vλ = 0 for i ∈ Ire,

fil vλ = 0 for (i, l) ∈ I∞ with λ(hi) = 0.
(1.5)

(b) Every highest weight g-module with highest weight λ ∈ P+ satisfying (1.5) is isomorphic to V (λ).

2. Quantum Borcherds-Bozec algebras

Let q be an indeterminate and set

qi = qri , q(i) = q
(αi,αi)

2 .

Note that qi = q(i) if i ∈ Ire. For each i ∈ Ire and n ∈ Z≥0, we define

[n]i = qni − q−n
i

qi − q−1
i

, [n]i! =
n∏

k=1

[k]i,
[
n
k

]
i

= [n]i!
[k]i![n− k]i!

Let F = Q(q) 〈fil | (i, l) ∈ I∞〉 be the free associative algebra over Q(q) generated by the symbols fil
for (i, l) ∈ I∞. By setting degfil = −lαi, F becomes a Q−-graded algebra. For a homogeneous element u
in F , we denote by |u| the degree of u, and for any A ⊆ Q−, set FA = {x ∈ F | |x| ∈ A}.

We define a twisted multiplication on F ⊗ F by

(x1 ⊗ x2)(y1 ⊗ y2) = q−(|x2|,|y1|)x1y1 ⊗ x2y2,

and equip F with a co-multiplication δ defined by

δ(fil) =
∑

m+n=l

q−mn
(i) fim ⊗ fin for (i, l) ∈ I∞.

Here, we understand fi0 = 1 and fil = 0 if l < 0.

Proposition 2.1. [1,2] For any family ν = (νil)(i,l)∈I∞ of non-zero elements in Q(q), there exists a symmetric 
bilinear form ( , )L : F × F → Q(q) such that

(a) (x, y)L = 0 if |x| �= |y|,
(b) (1, 1)L = 1,
(c) (fil, fil)L = νil for all (i, l) ∈ I∞,
(d) (x, yz)L = (δ(x), y ⊗ z)L for all x, y, z ∈ F .

Here, (x1 ⊗ x2, y1 ⊗ y2)L = (x1, y1)L(x2, y2)L for any x1, x2, y1, y2 ∈ F .

From now on, we assume that

νil ∈ 1 + qZ≥0[[q]] for all (i, l) ∈ I∞. (2.1)
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Then, the bilinear form ( , )L is non-degenerate on F (i) =
⊕

l≥1 F−lαi
for i ∈ I im\I iso.

Let Û be the associative algebra over Q(q) with 1 generated by the elements qh (h ∈ P∨) and eil, fil
((i, l) ∈ I∞) with defining relations

q0 = 1, qhqh
′
= qh+h′

for h, h′ ∈ P∨

qhejlq
−h = qlαj(h)ejl, qhfjlq

−h = q−lαj(h)fjl for h ∈ P∨, (j, l) ∈ I∞,

1−laij∑
k=0

(−1)k
[
1 − laij

k

]
i

ei
1−laij−kejle

k
i = 0 for i ∈ Ire, i �= (j, l),

1−laij∑
k=0

(−1)k
[
1 − laij

k

]
i

fi
1−laij−kfjlf

k
i = 0 for i ∈ Ire, i �= (j, l),

eikejl − ejleik = fikfjl − fjlfik = 0 for aij = 0.

(2.2)

We extend the grading by setting |qh| = 0 and |eil| = lαi.
The algebra Û is endowed with the co-multiplication Δ : Û → Û ⊗ Û given by

Δ(qh) = qh ⊗ qh,

Δ(eil) =
∑

m+n=l

qmn
(i) eim ⊗K−m

i ein,

Δ(fil) =
∑

m+n=l

q−mn
(i) fimKn

i ⊗ fin,

(2.3)

where Ki = qhi
i , i ∈ I.

Let Û≤0 be the subalgebra of Û generated by fil and qh, for all (i, l) ∈ I∞ and h ∈ P∨, and Û+ be 
the subalgebra generated by eil for all (i, l) ∈ I∞. In [1], Bozec showed that one can extended ( , )L to a 
symmetric bilinear form ( , )L on Û satisfying

(qh, 1)L = 1, (qh, fil)L = 0,

(qh,Kj)L = q−αj(h),

(x, y)L = (ω(x), ω(y))L for all x, y ∈ Û+,

(2.4)

where ω : Û → Û is the involution defined by

ω(qh) = q−h, ω(eil) = fil, ω(fil) = eil for h ∈ P∨, (i, l) ∈ I∞.

For any x ∈ Û , we shall use the Sweedler’s notation, and write

Δ(x) =
∑

x(1) ⊗ x(2).

Following the Drinfeld double process, we define Ũ as the quotient of Û by the relations∑
(a(1), b(2))Lω(b(1))a(2) =

∑
(a(2), b(1))La(1)ω(b(2)) for all a, b ∈ Û≤0. (2.5)

Definition 2.2. Given a Borcherds-Cartan datum (A, P, Π, P∨, Π∨), the quantum Borcherds-Bozec algebra
Uq(g) is defined to be the quotient algebra of Ũ by the radical of ( , )L restricted to Ũ− × Ũ+.
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Let U+ (resp. U−) be the subalgebra of Uq(g) generated by eil (resp. fil) for all (i, l) ∈ I∞. We shall 
denote by U0 the subalgebra of Uq(g) generated by qh for all h ∈ P∨. It is easy to see that qh (h ∈ P∨) is 
a Q(q)-basis of U0.

In [6], Kang and Kim showed that the co-multiplication Δ : Û → Û ⊗ Û passes down to Uq(g) and 
therefore, Uq(g) becomes a Hopf algebra. They also proved the quantum Borcherds-Bozec algebra has a 
triangular decomposition.

Theorem 2.3. [6] The quantum Borcherds-Bozec algebra Uq(g) has the following triangular decomposition:

Uq(g) ∼= U− ⊗ U0 ⊗ U+. (2.6)

By the defining relation (2.5), we obtain complicated commutation relations between eil and fjk for 
(i, l), (j, k) ∈ I∞. We shall derive explicit formulas for these complicated commutation relations in Appendix 
A. But, as we already see in (1.2), the commutation relations in the universal enveloping algebra U(g) of 
Borcherds-Bozec algebra g are rather simple

eikfjl − fjleik = k δij δkl hi for i, j ∈ I, k, l ∈ Z>0. (2.7)

Thanks to Bozec, there exists another set of generators in Uq(g) called primitive generators. They satisfy a 
simpler set of commutation relations, and we shall prove that these generators also satisfy all the defining 
relations of Uq(g) described in (2.2).

We denote by Cl (resp. Pl) the set of compositions (resp. partitions) of l, and denote by η : Uq(g) → Uq(g)
the Q-algebra homomorphism defined by

η(eil) = eil, η(fil) = fil, η(qh) = q−h, η(q) = q−1 for h ∈ P∨, (i, l) ∈ I∞. (2.8)

As usual, let S : Uq(g) → Uq(g) and ε : Uq(g) → Q(q) be the antipode and the counit of Uq(g), respectively. 
Then, we have the following proposition.

Proposition 2.4. [1,2] For any i ∈ I im and l ≥ 1, there exist unique elements til ∈ U−
−lαi

and sil = ω(til)
such that

(1) Q(q) 〈fil | l ≥ 1〉 = Q(q) 〈til | l ≥ 1〉 and Q(q) 〈eil | l ≥ 1〉 = Q(q) 〈sil | l ≥ 1〉,
(2) (til, z)L = 0 for all z ∈ Q(q) 〈fi1, · · · , fil−1〉, (sil, z)L = 0 for all z ∈ Q(q) 〈ei1, · · · , eil−1〉,
(3) til − fil ∈ Q(q) 〈fik | k < l〉 and sil − eil ∈ Q(q) 〈eik | k < l〉,
(4) η(til) = til, η(sil) = sil,
(5) δ(til) = til ⊗ 1 + 1 ⊗ til, δ(sil) = sil ⊗ 1 + 1 ⊗ sil,
(6) Δ(til) = til ⊗ 1 + Kl

i ⊗ til, Δ(sil) = sil ⊗K−l
i + 1 ⊗ sil,

(7) S(til) = −K−l
i til, S(sil) = −silK

l
i .

If we set τil = (til, til)L = (sil, sil)L, we have the following commutation relations in Uq(g)

siltjk − tjksil = δijδlkτil(Kl
i −K−l

i ). (2.9)

Assume that i ∈ I im and let c = (c1, · · · , cm) be an element in Cl or in Pl. We set

ti,c =
m∏

ticj and si,c =
m∏

sicj .

j=1 j=1
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Notice that {ti,c | c ∈ Cl} is a basis of U−
−lαi

.
For any i ∈ I iso and c, c′ ∈ Pl, if c �= c′, then by induction, we have

(ti,c, ti,c′)L = (si,c, si,c′)L = 0.

For any i ∈ I im\I iso and c, c′ ∈ Cl, if the partitions obtained by rearranging c and c′ are not equal, then 
we have

(ti,c, ti,c′)L = (si,c, si,c′)L = 0.

For each i ∈ Ire, we also use the notation ti1 and si1. Here we set

ti1 = fi1, si1 = ei1.

Sometimes, we simply write ti (resp. si) instead of ti1 (resp. si1) in this case. By mimicking Definition 1.2.13
in [13], we have the following definition.

Definition 2.5. For every (i, l) ∈ I∞, we define linear maps e′i,l, e′′i,l : U− → U− by

e′i,l(1) = 0, e′i,l(tjk) = δijδlk and e′i,l(xy) = e′i,l(x)y + ql(|x|,αi)xe′i,l(y) (2.10)

e′′i,l(1) = 0, e′′i,l(tjk) = δijδlk and e′′i,l(xy) = ql(|y|,αi)e′′i,l(x)y + xe′′i,l(y) (2.11)

for any homogeneous elements x, y in U−.

Proposition 2.6.

(a) For any x, y ∈ U−, we have

(tily, x)L = τil(y, e′i,l(x))L and (ytil, x)L = τil(y, e′′i,l(x))L

(b) The maps e′i,l and e′′i,l preserve the radical of ( , )L.
(c) Let x ∈ U−, we have

(i) If e′i,l(x) = 0 for all (i, l) ∈ I∞, then x = 0.
(ii) If e′′i,l(x) = 0 for all (i, l) ∈ I∞, then x = 0.

Proof. (a) For any homogeneous element x ∈ U−. We first show that

δ(x) = til ⊗ e′i,l(x) +
∑

w 	=(i,l)

tw ⊗ yw, (2.12)

where tw = t(j1,l1) · · · t(jr,lr) if w = (j1, l1)...(jr, lr) is a word in I∞, and yw are elements in U−.
Since e′i,l is a linear map, it is enough to check (2.12) by assuming that x is a monomial in tjk. Fix 

(i, l) ∈ I∞. We show it by induction on the number of til that appears in x. If x doesn’t contain til, then 
e′i,l(x) = 0 and there is no term of the form til ⊗ −. Now assume that x contains til, then we can write 
x = x1tilx2 for some monomials x1, x2 such that x1 doesn’t contain til. So we have

e′i,l(x) = e′i,l(x1tilx2) = ql(|x1|,αi)x1e
′
i,l(tilx2) = ql(|x1|,αi)x1[x2 + ql(−lαi,αi)tile

′
i,l(x2)]. (2.13)

On the other hand
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δ(x) = δ(x1)(til ⊗ 1 + 1 ⊗ til)δ(x2). (2.14)

By induction hypothesis, the term til ⊗− only appears in

(1 ⊗ x1)(til ⊗ 1)(1 ⊗ x2) + (1 ⊗ x1)(1 ⊗ til)(til ⊗ e′i,l(x2)), (2.15)

which is equal to

til ⊗ q(|x1|,lαi)x1x2 + til ⊗ q−(|x1|−lαi,−lαi)x1tile
′
i,l(x2)

= til ⊗ ql(|x1|,αi)x1[x2 + q−l(lαi,αi)tile
′
i,l(x2)].

(2.16)

This shows (2.12).
Similarly, we can show that

δ(x) = e′′i,l(x) ⊗ til +
∑

w 	=(i,l)

zw ⊗ tw. (2.17)

Since e′i,l and e′′i,l are linear maps, Equations (2.12) and (2.17) hold for any x, y ∈ U−.
For any c ∈ Cil, we have (til, tic)L = δ(l),cτil. Thus

(tily, x)L = τil(y, e′i,l(x))L and (ytil, x)L = τil(y, e′′i,l(x))L (2.18)

for any x, y ∈ U−.
(b) Since τil = (til, til)L �= 0, our assertion follows.
(c) Note that each monomial ends with some tjk’s. By (a), if e′′i,l(x) = 0 for all (i, l) ∈ I∞, then x belongs 

to the radial of ( , )L, which is equal to 0 in U−. �
For any i ∈ Ire and n ∈ N, we set

t
(n)
i = tni

[n]i!
.

By a similar argument as [13, 1.4.2], we have the following Lemma.

Lemma 2.7. We have

δ(t(n)
i ) =

∑
p+p′=n

q−pp′

i t
(p)
i ⊗ t

(p′)
i (2.19)

for any i ∈ Ire and n ∈ N.

Proposition 2.8. For any i ∈ Ire, (j, l) ∈ I∞, and i �= (j, l), we have∑
p+p′=1−laij

(−1)pt(p)i tjlt
(p′)
i = 0

in Uq(g).

Proof. If i ∈ Ire, we have aij = 2(αi,αj)
(αi,αi) . Set

Ri,(j,l) =
∑
′

(−1)pt(p)i tjlt
(p′)
i .
p+p =1−laij
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By (2.6), we only need to show that e′′μ(Ri,(j,l)) = 0 for all μ ∈ I∞. It is clear that

e′′μ(Ri,(j,l)) = 0 if μ �= i, (j, l).

By the definition of e′′i , we have

e′′i (t(p)i tjlt
(p′)
i ) = q(αi,−p′αi)e′′i (t(p)i tjl)t(p

′)
i + t

(p)
i tjle

′′
i (t(p

′)
i )

= q−p′(αi,αi)q−(αi,lαj)q
(1−p)
i t

(p−1)
i tjlt

(p′)
i + q

(1−p′)
i t

(p)
i tjlt

(p′−1)
i .

(2.20)

Thus

e′′i (Ri,(j,l)) =
∑

p+p′=1−laij

(−1)pq−p′(αi,αi)q−(αi,lαj)q
(1−p)
i t

(p−1)
i tjlt

(p′)
i

+
∑

p+p′=1−laij

(−1)pq(1−p′)
i t

(p)
i tjlt

(p′−1)
i

=
∑

0≤p≤1−laij

(−1)pq−(1−laij−p)(αi,αi)q−(αi,lαj)q
(1−p)
i t

(p−1)
i tjlt

(1−laij−p)
i

+
∑

0≤p≤1−laij

(−1)pq(laij+p)
i t

(p)
i tjlt

(−laij−p)
i .

(2.21)

The coefficient of t(p)i tjlt
(−laij−p)
i in the first sum of (2.21) is

(−1)p+1q−(−laij−p)(αi,αi)q−(αi,lαj)q−p
i

= (−1)p+1q
(l 2(αi,αj)

(αi,αi)
+p)(αi,αi)−l(αi,αj)+(−p) (αi,αi)

2

= (−1)p+1ql(αi,αj)+p
(αi,αi)

2

= (−1)p+1q
(laij+p)
i .

(2.22)

Hence, we have e′′i (Ri,(j,l)) = 0.
By the definition of e′′jl, we have

e′′jl(t
(p)
i tjlt

(p′)
i ) = q−l(αj ,p

′αi)e′′jl(t
(p)
i tjl)t(p

′)
i = q−l(αj ,p

′αi)t
(p)
i t

(p′)
i . (2.23)

So

e′′jl(Ri,(j,l)) =
∑

0≤p′≤1−laij

(−1)(1−laij−p′)q−l(αj ,p
′αi)t

(1−laij−p′)
i t

(p′)
i . (2.24)

By [13, 1.3.4], we obtain

∑
0≤p′≤1−l

2(αi,αj)
(αi,αi)

(−1)(1−l
2(αi,αj)
(αi,αi)

−p′)
q−l(αj ,p

′αi)
[
1 − l

2(αi,αj)
(αi,αi)
p′

]
i

= 0.

Hence, we get e′′jl(Ri,(j,l)) = 0. This finishes the proof. �
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By the above arguments, we have primitive generators til ((i, l) ∈ I∞) in U− of degree −lαi and sil
((i, l) ∈ I∞) in U+ of degree lαi satisfying

siltjk − tjksil = δijδlkτil(Kl
i −K−l

i ),
1−laij∑
k=0

(−1)k
[
1 − laij

k

]
i

ti
1−laij−ktjlt

k
i = 0 for i ∈ Ire, i �= (j, l).

(2.25)

By using the involution ω, we get

1−laij∑
k=0

(−1)k
[
1 − laij

k

]
i

si
1−laij−ksjls

k
i = 0 for i ∈ Ire, i �= (j, l). (2.26)

Since til (resp. sil) can be written as a homogeneous polynomial of fik (resp. eik) for k ≤ l, we have

qhtjlq
−h = q−lαj(h)tjl, qhsjlq

−h = qlαj(h)sjl for h ∈ P∨, (j, l) ∈ I∞, (2.27)

and

[tik, tjl] = [sik, sjl] = 0 for aij = 0. (2.28)

3. A1-form of the quantum Borcherds-Bozec algebras

We consider the localization of Q[q] at the ideal (q − 1):

A1 = {f(q) ∈ Q(q) | f is regular at q = 1}
= {g/h | g, h ∈ Q[q], h(1) �= 0}

(3.1)

Let J1 be the unique maximal ideal of the local ring A1, which is generated by (q − 1). Then we have an 
isomorphism of fields

A1/J1
∼−→ Q, f(q) + J1 �→ f(1).

Note that, for i ∈ Ire, [n]i and 
[
n
k

]
i

are elements of Z[q, q−1] ⊆ A1. For any h ∈ P∨, n ∈ Z, we formally 

define

(qh;n)q = qhqn − 1
q − 1 ∈ U0.

Definition 3.1. We define the A1-form, denote by UA1 of the quantum Borcherds-Bozec algebra Uq(g) to 
be the A1-subalgebra generated by the elements sil, Til, qh and (qh; 0)q, for all (i, l) ∈ I∞ and h ∈ P∨, 
where

Til = 1
τil

1
q2
i − 1 til for (i, l) ∈ I∞. (3.2)

Let U+
A1

(resp. U−
A1

) be the A1-subalgebra of UA1 generated by the elements sil (resp. Til) for (i, l) ∈ I∞, 
and U0 be the subalgebra of UA1 generated by qh and (qh; 0)q for (h ∈ P∨).
A1
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Lemma 3.2.

(a) (qh; n)q ∈ U0
A1

for all n ∈ Z and h ∈ P∨.

(b) Kl
i −K−l

i

q2
i − 1 ∈ U0

A1
.

Proof. It is straightforward to check that

(qh;n)q = qn(qh; 0)q + qn − 1
q − 1 ,

Kl
i −K−l

i

q2
i − 1 = q − 1

q2
i − 1(1 + K−l

i )K
l
i − 1
q − 1 .

(3.3)

The lemma follows. �
The next proposition shows that the triangular decomposition (2.6) of Uq(g) carries over to its A1-form.

Proposition 3.3. We have a natural isomorphism of A1-modules

UA1
∼= U−

A1
⊗ U0

A1
⊗ U+

A1
(3.4)

induced from the triangular decomposition of Uq(g).

Proof. Consider the canonical isomorphism ϕ : Uq(g)
∼−→ U− ⊗U0 ⊗U+ given by multiplication. By (2.25)

and (2.27), we have the following commutation relations

sil(qh; 0)q = (qh;−lαi(h))qsil,

(qh; 0)qTil = Til(qh;−lαi(h))q,

silTjk − Tjksil = δijδlk
Kl

i −K−l
i

q2
i − 1 .

(3.5)

Combining with (3.2), the image of ϕ lies inside U−
A1

⊗ U0
A1

⊗ U+
A1

. �
The representation theory of quantum Borcherds-Bozec algebras has been studied by Kang and Kim in 

[6]. In the following sections, we shall use some notions defined in [6], which are similar to those in classical 
representation theory of quantum groups.

Fix λ ∈ P , let V q be a highest weight Uq(g)-module with highest weight λ and highest weight vector vλ. 
Then we have the A1-form for the highest weight modules.

Definition 3.4. The A1-form of V q is defined to be the UA1 -module VA1 = UA1vλ.

By the definition of highest weight module and VA1 , it is easy to see that VA1 = U−
A1

vλ. The highest 
weight Uq(g)-module V q has the weight space decomposition

V q =
⊕
μ≤λ

V q
μ , (3.6)

where V q
μ = {v ∈ V q | qhv = qμ(h)v for all h ∈ P∨}. For each μ ∈ P , we define the weight space

(VA1)μ = VA1 ∩ V q
μ . The following proposition shows that VA1 also has the weight space decomposition.
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Proposition 3.5. VA1 =
⊕

μ≤λ(VA1)μ.

Proof. The proof is the same as [4, Proposition 3.3.6]. �
Proposition 3.6. For each μ ∈ P , the weight space (VA1)μ is a free A1-module with rankA1(VA1)μ =
dimQ(q)V

q
μ .

Proof. We first show that (VA1)μ is finite generated as an A1-module. Note that VA1 = U−
A1

vλ and every 
element in U−

A1
is a polynomial of Til with coefficients in A1. Assume that λ = μ +α for some α ∈ Q+. Then 

for each v ∈ A1 with weight μ, v must be a VA1-linear combination of {Ti1l1 · · ·Tiplpvλ | l1αl1 +· · · lpαlp = α}, 
which is a finite set.

Let {Tζvλ} be a Q(q)-basis of V q
μ , where Tζ are monomials in Til. The set {Tζvλ} is certainly contained 

in (VA1)μ and is also A1-linearly independent. So we have rankA1(VA1)μ ≥ dimQ(q)V
q
μ . Let {u1, · · · , up} be 

an A1-linearly independent subset of (VA1)μ. Consider a Q(q)-linear dependence relation

c1(q)u1 + · · · + cp(q)up = 0, ck(q) ∈ Q(q) for k = 1, · · · , p.

Multiplying some powers of (q−1) if needed, we may assume that all ck(q) ∈ A1, which implies that ck(q) =
0 for all k = 1, · · · , p. Hence u1, · · · , up are linearly independent over Q(q) and rankA1(VA1)μ ≤ dimQ(q)V

q
μ . 

This finishes the proof. �
Corollary 3.7. The Q(q)-linear map ϕ : Q(q) ⊗A1 VA1 → V q given by c ⊗ v �→ cv is an isomorphism.

4. Classical limit of quantum Borcherds-Bozec algebras

Define the Q-linear vector spaces

U1 = (A1/J1) ⊗A1 UA1
∼= UA1/J1UA1 ,

V 1 = (A1/J1) ⊗A1 VA1
∼= VA1/J1VA1 .

(4.1)

Then V 1 is naturally a U1-module. Consider the natural maps

UA1 → U1 = UA1/J1UA1 ,

VA1 → V 1 = VA1/J1VA1 .
(4.2)

The passage under these maps is referred to as taking the classical limit. We will denote by x the image of 
x under the classical limit. Notice that q is mapped to 1 under these maps.

For each μ ∈ P , set V 1
μ = (A1/J1) ⊗A1 (VA1)μ. Then we have

Proposition 4.1.

(a) V 1 =
⊕

μ≤λ V
1
μ .

(b) For each μ ∈ P , dimQV
1
μ = rankA1(VA1)μ = dimQ(q)V

q
μ .

Denote by h ∈ U1 the classical limit of the element (qh; 0)q ∈ UA1 . As in [4], we have the following lemma.

Lemma 4.2.

(i) For all h ∈ P∨, we have qh = 1.
(ii) For any h, h′ ∈ P∨, h + h′ = h + h′. Hence, we have nh = nh for n ∈ Z.
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Define the subalgebras U0
1 = Q ⊗ U0

A1
and U±

1 = Q ⊗ U±
A1

. The next theorem shows that we can define 
a surjective homomorphism from the universal enveloping algebra U(g) to U1, and as a U(g)-module, V 1 is 
a highest weight module with highest weight λ ∈ P and highest weight vector vλ.

Theorem 4.3.

(a) The elements sil, T il ((i, l) ∈ I∞) and h (h ∈ P∨) satisfy the defining relations of U(g). Hence there 
exists a surjective Q-algebra homomorphism ψ : U(g) → U1 sending eil to sil, fil to T il, and h to h. In 
particular, the U1-module V 1 has a U(g)-module structure.

(b) For each μ ∈ P , h ∈ P∨, the element h acts on V 1
μ as scalar multiplication by μ(h). So V 1

μ is the 
μ-weight space of the U(g)-module V 1.

(c) As a U(g)-module, V 1 is a highest weight module with highest weight λ ∈ P and highest weight vector 
vλ.

Proof. (a) Since 
Kl

i −K−l
i

q2
i − 1 = q − 1

q2
i − 1(1 + K−l

i )K
l
i − 1
q − 1 , when we take classical limit, we get

Kl
i −K−l

i

q2
i − 1 = 1

2ri
· 2 · lrihi = lhi.

By (2.25), we have the following equation in U1

silT jk − T jksil = δijδlklhi,

and it is the same as the commutation relations in U(g).
Since

qhsjl = qlαj(h)sjlq
h, qhTjl = q−lαj(h)Tjlq

h for h ∈ P∨, (j, l) ∈ I∞,

we have 
qh − 1
q − 1 sil = sil

qlαi(h)qh − 1
q − 1 and

qh − 1
q − 1 sil − sil

qh − 1
q − 1 = sil

qlαi(h) − 1
q − 1 qh. (4.3)

Thus hsil − silh = lαi(h)sil. Similarly, we have

h T il − T ilh = −lαi(h)T il.

It is easy to check the commutation relations

[T ik, T jl] = [sik, sjl] = 0 for aij = 0. (4.4)

For i ∈ Ire, we have

[n]i = n and
[
n
k

]
i

=
(
n

k

)
.

Hence the remaining Serre relations follow.
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(b) For v ∈ (VA1)μ and h ∈ P∨, we have (qh; 0)qv = qμ(h)−1

q − 1 v. Hence when we take the classical limit, 

we obtain hv = μ(h)v.
(c) As a U(g)-module, by (2), we have hvλ = hvλ = λ(h)vλ in V 1 for all h ∈ P∨. For each (i, l) ∈ I∞, 

silvλ is zero. Therefore, V 1 = U−
1 vλ = U−(g)vλ and hence V 1 is a highest weight module with highest 

weight λ ∈ P and highest weight vector vλ. �
Combining Proposition 4.1 (b) and Theorem 4.3 (b), we have chV 1 = chV q. For a dominant integral 

weight λ ∈ P+, the irreducible highest weight Uq(g)-module V q(λ) has the following property.

Proposition 4.4. [6] Let λ ∈ P+ and V q(λ) be the irreducible highest weight module with highest weight λ
and highest weight vector vλ. Then the following statements hold.

(a) If i ∈ Ire, then fλ(hi)+1
i vλ = 0.

(b) If i ∈ I im and λ(hi) = 0, then fikvλ = 0 for all k > 0.

We now conclude that the classical limit of the irreducible highest weight Uq(g)-module V q(λ) is isomor-
phic to the irreducible highest U(g)-module V (λ).

Theorem 4.5. If λ ∈ P+ and V q is the irreducible highest weight Uq(g)-module V q(λ) with highest weight λ, 
then V 1 is isomorphic to the irreducible highest weight module V (λ) over U(g) with highest weight λ.

Proof. By Proposition 4.4, if i ∈ Ire, then Tλ(hi)+1
i vλ = 0; if i ∈ I im and λ(hi) = 0, then Tikvλ = 0 for all 

k > 0. Therefore, V 1 is a highest weight Uq(g)-module with highest weight λ and highest weight vector vλ
satisfying:

(a) If i ∈ Ire, then fλ(hi)+1
i vλ = T

λ(hi)+1
i vλ = 0.

(b) If i ∈ I im and λ(hi) = 0, then fikvλ = T ikvλ = 0 for all k > 0.

Hence V 1 ∼= V (λ) by Proposition 1.3. �
By Proposition 4.1 (b), the character of V q(λ) is the same as the character of V (λ), which is given by 

(see, [5,3])

chV (λ) =
∑

w∈W ε(w)ew(λ+ρ)−ρw(Sλ)∏
α∈Δ+

(1 − e−α)dim gα

=
∑

w∈W

∑
s∈Fλ

ε(w)ε(s)ew(λ+ρ−s)−ρ∏
α∈Δ+

(1 − e−α)dim gα
.

(4.5)

Theorem 4.6. The classical limit U1 of Uq(g) is isomorphic to the universal enveloping algebra U(g) as 
Q-algebras.

Proof. By Theorem 4.3 (a), we already have an epimorphism ψ : U(g) � U1 sending eil, fil, h to sil, T il, h, 
respectively. So it is sufficient to show that ψ is injective.

We first show that the restriction ψ0 of ψ to U0(g) is an isomorphism of U0(g) onto U0
1 . Note that ψ0

is certainly surjective. Since χ = {hi | i ∈ I} ∪ {di | i ∈ I} is a Z-basis of the free Z-lattice P∨, it is also 
a Q-basis of the Cartan subalgebra h. Thus any element of U0(g) may be written as a polynomial in χ. 
Suppose g ∈ Kerψ0. Then, for each λ ∈ P , we have
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0 = ψ0(g) · vλ = λ(g)vλ,

where vλ is a highest weight vector of a highest weight Uq(g)-module of highest weight λ and λ(g) denotes 
the polynomial in {λ(x) | x ∈ χ} corresponding to g. Hence, we have λ(g) = 0 for every λ ∈ P . Since we 
may take any integer value for λ(x) (x ∈ χ), g must be zero, which implies that ψ0 is injective.

Next, we show that the restriction of ψ to U−(g), denoted by ψ−, is an isomorphism of U−(g) onto U−
1 . 

Suppose Kerψ− �= 0, and take a non-zero element u =
∑

aζfζ ∈ Kerψ−, where aζ ∈ Q and fζ are monomials 
in fil’s (i, l) ∈ I∞. Let N be the maximal length of the monomials fζ in the expression of u and choose 
a dominant integral weight λ ∈ P+ such that λ(hi) > N for all i ∈ I. The kernel of the U−(g)-module 
homomorphism ϕ : U−(g) → V 1 given by x �→ ψ(x) · vλ is the left ideal of U−(g) generated by fλ(hi)+1

i

for i ∈ Ire and fil for i ∈ I im with λ(hi) = 0. Because of the choice of λ, it is generated by fλ(hi)+1
i for all 

i ∈ Ire.
Therefore, u =

∑
aζfζ /∈ Kerϕ. That is, ψ−(u) · vλ = ψ(u) · vλ �= 0, which is a contradiction. Hence, 

Kerψ− = 0 and U−(g) is isomorphic to U−
1 .

Similarly, we have U+(g) ∼= U+
1 . Hence, by the triangular decomposition, we have the linear isomorphisms

U(g) ∼= U−(g) ⊗ U0(g) ⊗ U+(g) ∼= U−
1 ⊗ U0

1 ⊗ U+
1

∼= U1,

where the last isomorphism follows from Proposition 3.3. It is easy to see that this isomorphism is actually 
an algebra isomorphism. �

We now show that U1 inherits a Hopf algebra structure from that of Uq(g). It suffices to show that UA1

inherits the Hopf algebra structure from that of Uq(g). Since

Δ(Til) = Til ⊗ 1 + Kl
i ⊗ Til, Δ(sil) = sil ⊗K−l

i + 1 ⊗ sil,

Δ(qh) = qh ⊗ qh,

S(Til) = −K−l
i Til, S(sil) = −silK

l
i , S(qh) = q−h,

ε(Til) = ε(sil) = 0, ε(qh) = 1,

(4.6)

we have

Δ((qh; 0)q) = qh ⊗ qh − 1 ⊗ 1
q − 1 = (qh; 0)q ⊗ 1 + qh ⊗ (qh; 0)q,

S((qh; 0)q) = (q−h; 0)q,

ε((qh; 0)q) = 0.

(4.7)

Hence the maps Δ: UA1 → UA1 ⊗ UA1 , ε : UA1 → A1, and S : UA1 → UA1 are all well-defined and UA1

inherits a Hopf algebra structure from that of Uq(g).
Let us show that the Hopf algebra structure of U1 coincides with that of U(g) under the isomorphism we 

have been considering. Taking the classical limit of the equations in (4.6) and in (4.7), we have

Δ(T il) = T il ⊗ 1 + 1 ⊗ T il, Δ(sil) = sil ⊗ 1 + 1 ⊗ sil, Δ(h) = h⊗ 1 + 1 ⊗ h,

S(T il) = −T il, S(sil) = −sil, S(h) = −h,

ε(T il) = ε(sil) = ε(h) = 0.

(4.8)

This coincides with (1.3). Therefore, we have the following corollary.
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Corollary 4.7. The classical limit U1 of Uq(g) inherits a Hopf algebra structure from that of Uq(g) so that 
U1 and U(g) are isomorphic as Hopf algebras over Q.

Since U−(g) ∼= U−
1 , by the same argument in [4, Theorem 3.4.10], we have the following theorem when 

we take the classical limit on the Verma module over Uq(g).

Theorem 4.8. [4] If λ ∈ P and V q is the Verma module Mq(λ) over Uq(g) with highest weight λ, then its 
classical limit V 1 is isomorphic to the Verma module M(λ) over U(g) with highest weight λ.

Appendix A

We shall provide an explicit commutation relations for eik and fjl, for (i, k), (j, l) ∈ I∞ in Uq(g). Recall 
that, we have the co-multiplication formulas

Δ(fil) =
∑

m+n=l

q−mn
(i) fimKn

i ⊗ fin.

Then, the defining relation (2.5) yields the following lemma.

Lemma A.1. [6] For any i, j ∈ I and k, l ∈ Z>0, we have

(a) If i �= j, then eik and fjl are commutative.
(b) If i = j, we have the following relations in Uq(g) for all k, l > 0∑

m+n=k
n+s=l

q
n(m−s)
(i) νineisfimK−n

i =
∑

m+n=k
n+s=l

q
−n(m−s)
(i) νinfimeisK

n
i . (A.1)

Since

Kn
i eimK−n

i = q2nm
(i) eim,

Kn
i fimK−n

i = q−2nm
(i) fim,

we can modify the equations (A.1) as the following form∑
m+n=k
n+s=l

q
n(s−m)
(i) νinK

−n
i eisfim =

∑
m+n=k
n+s=l

q
n(m−s)
(i) νinK

n
i fimeis. (A.2)

If i ∈ Ire, then k = l = 1 and m = s, so there are only one commutation relation in this case

eifi + νi1K
−1
i = fiei + νi1Ki. (A.3)

If i ∈ I im (we omit the notation “i” in this case for simplicity), we first assume that k = l. By (A.2), we 
have

k = l = 1, e1f1 + ν1K
−1 = f1e1 + ν1K,

k = l = 2, e2f2 + ν1K
−1e1f1 + ν2K

−2 = f2e2 + ν1Kf1e1 + ν2K
2,

· · ·
k = l = n, enfn + ν1K

−1en−1fn−1 + · · · + νn−1K
1−ne1f1 + νnK

−n

= f e + ν Kf e + · · · + ν Kn−1f e + ν Kn.

(A.4)
n n 1 n−1 n−1 n−1 1 1 n
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By direct calculation, we can write enfn − fnen in the following way

enfn − fnen = α1fn−1en−1 + α2fn−2en−2 + · · · + αn−1f1e1 + αn,

where

α1 = ν1(K −K−1),

α2 = ν2(K2 −K−2) − ν1K
−1α1 = ν2(K2 −K−2) − ν2

1K
−1(K −K−1),

α3 = ν3(K3 −K−3) − ν1K
−1α2 − ν2K

−2α1

= ν3(K3 −K−3) − ν1ν2K
−1(K2 −K−2) + (ν3

1 − ν1ν2)K−2(K −K−1),

· · ·
αn = νn(Kn −K−n) − ν1K

−1αn−1 − ν2K
−2αn−2 − · · · − νn−1K

−(n−1)α1.

(A.5)

If m ∈ N and c = (c1, · · · , cd) is a composition of m (i.e. c ∈ Cm), then we set νc =
∏d

k=1 νk and ‖c‖ = d.
By induction, we have

enfn =
n∑

p=1

{
p∑

r=1

[
νrϑp−rK

r−p(Kr −K−r)
]}

fn−pen−p + fnen, (A.6)

where ϑm =
∑

c∈Cm
(−1)‖c‖νc. For example, ϑ4 = ν4

1 − 3ν2
1ν2 + 2ν1ν3 + ν2

2 − ν4.
Next, we assume that k − l = t, then m − s = t. By (A.2), we have

l∑
n=0

q−nt
(i) νnK

−nel−nfk−n =
l∑

n=0
qnt(i)νnK

nfk−nel−n.

Hence, we have

elfk + q−t
(i)ν1K

−1el−1fk−1 + · · · + q
−(l−1)t
(i) νl−1K

−(l−1)e1ft+1 + q−lt
(i) νlK

−lft

= fkel + qt(i)ν1Kfk−1el−1 + · · · + q
(l−1)t
(i) νl−1K

(l−1)ft+1e1 + qlt(i)νlK
lft.

We substitute K by qt(i)K in formula (A.6) and obtain

elfk =
l∑

p=1

{
p∑

r=1

[
νrϑp−r(qt(i)K)r−p((qt(i)K)r − (qt(i)K)−r)

]}
fk−pel−p + fkel. (A.7)

Finally, we assume that l − k = t, then s −m = t. By (A.2), we get

k∑
n=0

qnt(i)νnK
−nel−nfk−n =

k∑
n=0

q−nt
(i) νnK

nfk−nel−n.

Hence, we have

elfk + qt(i)ν1K
−1el−1fk−1 + · · · + q

(l−1)t
(i) νl−1K

−(l−1)et+1f1 + qlt(i)νlK
−let

= fkel + q−t
(i)ν1Kfk−1el−1 + · · · + q

−(l−1)t
(i) νl−1K

(l−1)f1et+1 + q−lt
(i) νlK

let.

We substitute K by q−tK in formula (A.6) and obtain
(i)
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elfk =
k∑

p=1

{
p∑

r=1

[
νrϑp−r(q−t

(i)K)r−p((q−t
(i)K)r − (q−t

(i)K)−r)
]}

fk−pel−p + fkel. (A.8)

Combining Formulas (A.6), (A.7), and (A.8), we have the following statement.

Proposition A.2. For i ∈ I im, we have the following commutation relations for all k, l > 0

eilfik − fikeil =
min{k,l}∑

p=1

{
p∑

r=1

[
νirϑi,p−r(qk−l

(i) Ki)r−p((qk−l
(i) Ki)r − (qk−l

(i) Ki)−r)
]}

fi,k−pei,l−p,

where ϑi,p−r =
∑

c∈Cp−r
(−1)‖c‖νi,c.
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