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In this paper we investigate blocks of symmetric groups of weight 2 over fields of 
odd characteristic p. We develop an algorithm that relates the quivers of two such 
blocks forming a (2 : 1)-pair, as introduced by Scopes. We then apply the algorithm 
to blocks whose p-cores are hook partitions, in order to explicitly determine the 
quivers of these blocks. As a consequence we conclude that two p-blocks B1 and 
B2 of symmetric groups of weight 2 whose p-cores are hook partitions are Morita 
equivalent if and only if B2 or its conjugate block is in the same Scopes class as B1.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study p-blocks of symmetric groups Sn over F , where F is an algebraically closed field 
of characteristic p > 0. As is well known, each such block is parametrized by its (p-)weight w � 0 and its 
(p-)core, the latter being a partition of n − pw. It was proved by Scopes in [17] that there are only finitely 
many Morita equivalence classes of p-blocks for symmetric groups with any given weight. More precisely, 
given a non-negative integer w, there is a minimal list of p-blocks of symmetric groups of weight w, described 
in terms of p-cores, such that every block of weight w is Morita equivalent to one of the blocks in this list; 
see [14, 3.10]. This list has size 1

2p
( 2p
p−1

)
+ 1

2
(�pw/2�

�p/2�
)
), and it has recently been conjectured by Sambale in 

[16] that when w = 2, no two blocks in this list are Morita equivalent. (Sambale’s Conjecture is stated for 
p-blocks over Z, and he has verified his conjecture computationally, for p � 11.)

Here we now focus on p-blocks of symmetric groups of weight w = 2, over F , for p � 3. Our aim is to 
give a precise graph-theoretic description of the (Gabriel or Ext-) quivers of such blocks, provided their 
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p-cores are hook partitions. Since Morita equivalent blocks have isomorphic quivers, we shall also gain more 
evidence for Sambale’s Conjecture. The case p = 3 is somewhat special, as we shall explain in 4.8. Therefore, 
we shall mostly consider the case where p � 5.

By work of Scopes [18], Richards [14], Chuang–Tan [2], Martin [10,11], and others, much is known about 
the structure of weight-2 blocks in odd characteristic. In particular, Scopes [18] has shown that, for every 
p-block B of weight w = 2 in the minimal list mentioned above, there is a finite sequence of blocks of weight 
2 starting with the principal block of FS2p such that two consecutive blocks in the sequence are related 
by what is called a (2 : 1)-pair. Scopes has also shown that, whenever (B, B̄) is a (2 : 1)-pair of weight-2 
blocks of FSn and FSn−1, respectively, a substantial part of the representation theory of B can already be 
determined from that of B̄; in particular, the quivers of B and B̄ almost coincide, except for one vertex and 
its adjacent edges. Exploiting this, she has further shown that, for every block B of FSn of weight 2 and 
all simple B-modules S and T , the dimension Ext1B(S, T ) is at most 1. Since simple modules of symmetric 
groups are self-dual (see [9, (7.1.14)]), one also has Ext1B(S, T ) ∼= Ext1B(T, S). Hence, if Ext1B(S, T ) �= {0}, 
then one usually simply connects S and T by a single edge.

Improvements of Scopes’s results due to Richards [14] and Chuang–Tan [2] lead to a general description 
of the quiver of any such weight-2 block. We now turn this into a combinatorial algorithm, which is the 
content of Theorem 3.9. With this, we obtain our first main result of this paper:

Theorem 1.1. Let p � 5, and let Bk,l(n, p) be a block of FSn of p-weight 2 and p-core (k, 1l), for some 
k, l ∈ N0. With the graphs defined in Appendix C, the Ext-quiver of Bk,l(n, p) is isomorphic, as an undirected 
graph, to

(a) Q0,0(p), if k = l = 0,
(b) Qk,l(p), if 1 � k + l � p − 1,
(c) Qk−1,l−1(p), if p + 1 � k + l � 2p − 1.

In fact, in Section 4, we shall prove a more detailed version of this statement. To do so, we start with the 
quiver of the principal block of FS2p, which has already been known by work of Martin [10]. In Appendix B
we shall give an elementary and self-contained proof of this result in the case p � 5. Our most important 
ingredient here will be the decomposition matrix of the principal block of FS2p, a precise description of the 
Loewy structures of the Specht modules in this block, and the results of Chuang–Tan [2]. The quiver of the 
principal block of FS2p at hand, we shall then be able to apply Theorem 3.9, which gives an algorithm that 
describes how the quivers of two blocks labelled by hook partitions and forming a (2 : 1)-pair are related. 
In principle, using this algorithm, one can compute the quiver of an arbitrary block of weight 2. However, 
the number of quivers one has to consider increases with the prime, so that finding a general description 
seems to be rather difficult. We expect that Sambale’s Conjecture might follow if one knew the precise graph 
structure of the quivers of all weight-2 blocks.

Note that, in the notation of Theorem 1.1, the blocks Bk,0(n, p), for k ∈ {0, . . . , p − 1} are principal 
blocks. It should be emphasized that the quivers of these have already been computed by Martin [10,11], 
although the graphs are not all drawn correctly there, since they are not bipartite as they should be, by [2].

The information on the quivers provided by Theorem 1.1 is sufficient to distinguish Morita equivalence 
classes of blocks of weight w = 2 whose cores are hook partitions. The following result is a direct consequence 
of Proposition 4.7, which shows that, for such blocks, there are only the known Morita equivalences, that 
is, the isomorphism between a block and its conjugate, and the Scopes equivalences.

Theorem 1.2. Let p � 5 be a prime. Then there are precisely (p − 1)p/2 + 1 Morita equivalence classes of 
p-blocks of symmetric groups of p-weight 2 whose p-cores are hook partitions. Representatives of these are 
labelled by those p-core partitions (k, 1l) satisfying one of the following conditions:
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(a) k = l = 0, or
(b) k > l and 1 � k + l � p − 1, or
(c) k > l and p + 1 < k + l � 2p − 1.

We shall give a proof of Proposition 4.7 at the end of Section 4, by applying Proposition C.1. The 
arguments will be completely graph-theoretic.

A remark on the cases p ∈ {2, 3} seems to be in order. There are five Scopes equivalence classes of 
3-blocks of symmetric groups of weight 2. Their structure is completely understood, and their quivers easily 
determined. We shall present them in 4.8. The case p = 2 is not covered by [18], and behaves differently. 
However, by [17], every 2-block of a symmetric group of weight 2 is Morita equivalent to FS4, or to the 
principal block of FS5. Both are well known, and their quivers can be found in [5, Appendix D(2B), D(2A)].

The present paper is organized as follows: In Section 2 we summarize background on representations of 
symmetric groups and fix some general notation. Section 3 recalls relevant results on blocks of weight 2 from 
[18], [14], and [2]. Furthermore, we establish Theorem 3.9, which will be the key ingredient in our inductive 
proof of Theorem 1.1 in Section 4.

In Section 4 we prove our above main results on blocks whose cores are hook partitions, that is, The-
orems 1.1 and 1.2. In the Appendix, we collect some useful abacus combinatorics that is used extensively 
throughout this paper. Furthermore, for convenience, we discuss the principal blocks of FS2p and FS2p+1
and their quivers. The results presented in Appendix B are not new, but not too easily available in the 
literature. In the last part of the appendix, we introduce the graphs appearing in Theorem 1.1, and prove 
the combinatorial details for Theorem 1.2.

In the proof of Theorem 4.1 and in the Appendix there are diagrams with colours. For the interpretation, 
we refer to the web version of this article.

Acknowledgements: We are grateful to the Mathematical Institute of the University of Oxford and the 
Department of Mathematics of the University of Eichstätt-Ingolstadt for their kind hospitality during mutual 
visits. Moreover, we gratefully acknowledge financial support through a Scheme 4 grant of the London 
Mathematical Society and a proFOR+ grant of the University of Eichstätt-Ingolstadt. Lastly, we should 
like to thank Tommy Hofmann and David Craven for their help with TikZ, and the referee for their careful 
reading of an earlier version of the manuscript.

2. Notation and preliminaries

Throughout this section, let F be an algebraically closed field of characteristic p > 0. Whenever G
is a finite group, by an FG-module we understand a finitely generated left FG-module. For background 
on general representation theory of finite groups we refer to [12], for the standard notation and results 
concerning representations of symmetric groups we refer to [8,9].

2.1. General notation. (a) Suppose that M and N are FG-modules. If N is isomorphic to a direct summand 
of M , we write N | M .

If N and M have the same composition factors, that is, represent the same element in the Grothendieck 
group of FG, then we write M ∼ N . If M and N have no common composition factor, then we say that 
M and N are disjoint. For every simple FG-module D, we denote by [M : D] the multiplicity of D as a 
composition factor of M .

The F -linear dual of M will be denoted by M∗.
(b) Let G be a finite group and H � G. Let further B be a block of FG and b a block of FH. We have 

the usual (block) restriction and (block) induction functors

ResGH : FG− mod → FH − mod , IndG
H : FH − mod → FG− mod ,



4 S. Danz, K. Erdmann / Journal of Pure and Applied Algebra 226 (2022) 106817
ResBb : B − mod → b− mod , IndB
b : b− mod → B − mod .

For ease of notation, we shall also write M ↓b:= ResBb (M) := b · ResGH(M) and N ↑B := IndB
b (N) :=

B · IndG
H(N), for every B-module M and every b-module N .

(c) If M is an FG-module and i � 0, then we denote the ith radical of M by Radi(M) and the ith socle 
of M by Soci(M). Moreover, we denote by Hd(M) := M/ Rad(M) the head of M .

Suppose that M has Loewy length l � 1 with Loewy layers Radi−1(M)/ Radi(M) ∼= Di1 ⊕ · · · ⊕ Diri , 
for i ∈ {1, . . . , l}, r1, . . . , rl ∈ N and simple FG-modules Di1, . . . , Diri . Then we write

M ≈
D11 ⊕ · · · ⊕D1r1

...
Dl1 ⊕ · · · ⊕Dlrl

, (1)

and say that M has Loewy structure (1).

2.2. The Ext-quiver. Suppose that G is a finite group and that A is the group algebra FG or a block 
of FG. Let further D1, . . . , Dr be representatives of the isomorphism classes of simple A-modules with 
projective covers P1, . . . , Pr. The Ext-quiver of A is the directed graph with vertices D1, . . . , Dr, and, for 
i, j ∈ {1, . . . , r}, the number of arrows from Di to Dj equals

[Rad(Pi)/Rad2(Pi)) : Dj ] = dimF (Ext1A(Di, Dj)) = [Soc2(Pj))/ Soc(Pj) : Di];

see, [5, I.6.3].
Recall that, for i, j ∈ {1, . . . , r}, one also has Ext1A(Di, Dj) ∼= Ext1A(D∗

j , D
∗
i ). We want to apply this 

when A is a block of a group algebra of a symmetric group. For these, all simple modules are self-dual (see 
[(7.1.14)][9]), so that we shall simply connect Di and Dj by dimF (Ext1A(Di, Dj)) undirected edges, for all 
i, j ∈ {1, . . . , r}. In fact for a block A of weight w = 2 in characteristic p > 2, the dimension of Ext1A(Di, Dj)
is at most 1, by [18].

2.3. Partitions, modules and blocks of FSn. (a) We write μ 
 n, for every partition μ of n, and λ 
p n, 
for every p-regular partition λ of n. By μ′ we denote the conjugate of μ, that is, the Young diagram of μ′

is the transposed of the Young diagram of μ. Recall that if μ is p-regular, then μ′ is p-restricted.
As usual, the dominance ordering on partitions of n will be denoted by �, the lexicographic ordering on 

partitions of n by �.
(b) The Specht FSn-module labelled by μ 
 n and the simple FSn-module labelled by λ 
p n will be 

denoted by Sμ and Dλ, respectively. Recall that Dλ is self-dual.
Suppose that p � 3. Then, for every p-regular partition λ of n we denote by m(λ) its Mullineux conjugate, 

that is, the p-regular partition of n such that Dm(λ) ∼= Dλ ⊗ sgn. Recall from [8, Theorem 8.15] that one 
has Sλ′ ∼= (Sλ ⊗ sgn)∗; in particular, the socle of Sλ′ is isomorphic to Dm(λ).

(c) Given a block B of FSn, we denote by κB its p-core and by wB its p-weight. As well, for every 
partition λ 
 n, we denote by κλ and wλ its p-core and its p-weight, respectively. We say that λ belongs to
B (or B contains λ), if κλ = κB .

Conversely, if κ is some p-core partition and w � 0 is an integer, then FS|κ|+pw has a block with p-core 
κ and p-weight w.

2.4. Specht filtrations. An FSn-module M is said to admit a Specht filtration if there are a series of FSn-
submodules

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mr ⊂ Mr+1 = M
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and partitions ρ1, . . . , ρr+1 of n such that Mi/Mi−1 ∼= Sρi , for i ∈ {1, . . . , r + 1}. In general, M may have 
several Specht filtrations. Moreover, if p ∈ {2, 3}, then the number of factors isomorphic to a given Specht 
FSn-module Sλ may depend on the chosen filtration; this has been shown by Hemmer and Nakano in [7]. 
If, however, p � 5, then, by [7] again, the number of factors isomorphic to a Specht FSn-module Sλ is the 
same for every Specht filtration of M ; we shall denote this multiplicity by (M : Sλ).

Every projective FSn-module admits a Specht filtration; this is well known, see for example [4, (2.6)], 
or [6, (6.1)]. If p � 5 and if λ is a p-regular partition of n, then one has (Pλ : Sλ) = 1. Moreover, if μ �= λ

is any partition of n such that (Pλ : Sμ) > 0, then μ � λ, by Brauer Reciprocity.

2.5. Abacus displays. Throughout this article, we shall employ some standard combinatorial methods to 
identify partitions with suitable abacus displays; see [9, Section 2.7] and [18].

(a) Given a partition λ = (λ1, . . . , λs) of n and any integer t � s, we can display λ on an abacus 
Γλ := Γλ,t with p runners and t beads, one at each of the positions βi := λi − i + t, for i ∈ {1, . . . , s} and 
βi := −i + t if i > s. Here we label the positions from left to right, then top to bottom, starting with 0. 
In accordance with [18], we label the runners of a fixed abacus from 1, . . . , p. Then the places on runner i
represent the non-negative integers with residue i − 1 modulo p.

Note that, given any abacus display Γλ of λ, one can easily read off λ as follows: for each bead on the 
abacus, count the number of gaps preceding the bead. Then this number of gaps equals the corresponding 
part of λ. For instance, if p = 3, then the following abaci represent the partition λ = (6, 33, 22):

Γλ,6: 

− − •
• − •
• • −
− − •

and Γλ,7: 

• − −
• • −
• • •
− − −
•

This also illustrates the effect of varying the total number of beads on Γλ: inserting a bead at position 0 
of a given abacus Γλ,s and moving every other bead to the next position gives an abacus display Γλ,s+1.

Recall further that moving a bead on some runner of Γλ one position up corresponds to removing a rim 
p-hook from the Young diagram [λ], while moving a bead from some runner of Γλ one position to the left 
(respectively, to the right) corresponds to removing (respectively, adding) a node to [λ]. This describes the
branching rules. Moving all beads on all runners as far up as possible, one obtains an abacus display of the 
p-core κλ.

Lastly, suppose that B is any block of FSn and ΓκB
is any abacus display of κB and suppose further 

that there are k > 0 more beads on some runner i > 1 than on runner i − 1 of ΓκB
. One may interchange 

runners i and i − 1 to get an abacus display of κB̄, where B̄ is a block of FSn−k with wB̄ = wB =: w; in 
this case one says that (B, B̄) is a (w : k)-pair. In the above example we get, for instance, κλ = κB = (3, 1), 
and the block B of FS19 forms a (5 : 2)-pair with the block B̄ of FS17 with κB̄ = (2).

As Scopes has shown in [17], if k � w, then B and B̄ are Morita equivalent; the particular Morita 
equivalence between B and B̄ established in [17] is called Scopes equivalence. Moreover, she proved that for 
a fixed w, there is a finite list of blocks B̄ such that every other block can be obtained from some block 
in this list by a sequence of (w : k) pairs, for some k � w. We shall come back to the notion of Scopes 
equivalence later in 3.6 and 3.7.

(b) In this paper we shall focus on partitions and blocks of weight 2. To this end, we recall one last bit of 
notation from [18]. Suppose that λ = (λ1, . . . , λr) is a partition of n of p-weight 2. As above, let Γλ := Γλ,s

be an abacus display of λ, for some s � r. Suppose that, for i ∈ {1, . . . , p} we have mi beads on runner i of 
Γλ. Then we shall say that we represent λ on an [m1, . . . , mp]-abacus.
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For λ of weight 2, there are exactly two beads that can be moved up on their respective runner in Γλ, 
and there are three possible constellations:

(i) There is a bead on some runner i that can be moved two positions up. Then we denote λ by 〈i〉.
(ii) There are 1 � i < j � p such that there is a movable bead on runner i and a movable bead on 

runner j. Then we denote λ by 〈j, i〉 or 〈i, j〉.
(i) There is some runner i that has a gap followed by two consecutive beads. Thus one can first move 

the upper bead one position up, then the lower bead. In this case, we denote λ by 〈i, i〉.

Note that this labelling depends on the fixed choice of an abacus. We shall always state clearly which 
abacus is used.

3. Blocks of weight two

Throughout this section, let p � 3 be a prime and let F be an algebraically closed field of characteristic 
p. We begin by recalling some crucial notation from [14, Section 4] and [2, Section 2].

3.1. Colours and ∂-values. Suppose that λ is a partition of n with p-weight 2 and p-core κ = (κ1, . . . , κt).
(a) One can remove exactly two rim p-hooks from [λ] to obtain [κ]. Although there is, in general, not 

a unique way to do so, the absolute value of the difference in the leg lengths of the two rim hooks is well 
defined, and is denoted by ∂(λ); see [14, Lemma 4.1].

(b) Consider the hook diagram Hλ of λ. Since λ has p-weight 2, there are exactly two entries in Hλ that 
are divisible by p; see [9, 2.7.40]. There are two possibilities for these entries: either both are equal to p, or 
one equals p and the other equals 2p. Suppose further that ∂(λ) = 0. If Hλ has two entries equal to p, then 
the leg lengths of the corresponding hooks differ by 1; see [14, p. 397]. If the larger leg length is even, one 
calls λ black, otherwise white. If Hλ has an entry equal to 2p and if the leg length of the corresponding hook 
has residue 0 or 3 modulo 4, then one also calls λ black, otherwise white.

(c) If λ is p-restricted, then there is a (p-regular) partition λ+ of n that is the lexicographically smallest 
partition with the following properties: λ+ > λ, λ+ has p-core κ, p-weight 2 as well as the same ∂-value and 
(if ∂(λ) = 0) the same colour as λ. As well, if λ is p-restricted, then λ′ is p-regular, and one has λ+ = m(λ′). 
If λ is not p-restricted, then λ+ does not exist; see [2, Remarks 2.1].

If λ is p-regular, then there is a (p-restricted) partition λ− of n that is the lexicographically largest 
partition with the following properties: λ− < λ, λ− has p-core κ, p-weight 2 as well as the same ∂-value and 
(if ∂(λ) = 0) the same colour as λ. Moreover, one then has λ− = m(λ)′. If λ is not p-regular, then λ− does 
not exist; see [2, Remarks 2.1].

Next we recall from [18, Section 3] some properties of (2 : 1)-pairs of blocks that will be fundamental 
later in this article.

3.2. Exceptional partitions of (2 : 1)-pairs. Suppose that B is a block of FSn of weight 2 with κB =
(κ1, . . . , κt) where κt �= 0. Furthermore, let B̄ be a block of FSn−1 of weight 2 such that (B, B̄) is a 
(2 : 1)-pair. Let s � t. As in 2.5, we display κB , κB̄ as well as all partitions of B and B̄, respectively, on an 
[m1, . . . , mp]-abacus with 2p +s beads. For ease of notation we identify partitions with their abacus displays 
as explained in 2.5. With a suitable choice of s, there is a unique i ∈ {2, . . . , p} such that κB̄ is obtained 
from κB by interchanging the ith and the (i − 1)st runner. Following [18, Definition 3.1, Definition 3.2], we 
consider the following partitions of B and B̄, respectively:

α := α(B, B̄) := 〈i, i〉 , β := β(B, B̄) := 〈i, i− 1〉 , γ := γ(B, B̄) := 〈i− 1〉 ,
ᾱ := ᾱ(B, B̄) := 〈i〉 , β̄ := β̄(B, B̄) := 〈i, i− 1〉 , γ̄ := γ̄(B, B̄) := 〈i− 1, i− 1〉 .
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From now on we shall refer to α, β and γ as the exceptional partitions of B (with respect to the pair 
(B, B̄)). Analogously, we shall call ᾱ, β̄ and γ̄ the exceptional partitions of B̄ (with respect to the pair 
(B, B̄)). Every partition of B and B̄, respectively, that is not exceptional will be called good (with respect 
to the pair (B, B̄)). A B-module (respectively, B̄-module) will be called good if all its composition factors 
are labelled by good partitions.

By [18, Lemma 3.5], one has a bijection Φ := Φ(B, B̄) between the set of good partitions of B and the set 
of good partitions of B̄ that preserves the lexicographic ordering as well as p-regularity and p-singularity. 
Given a good partition λ of B, one obtains Φ(λ) by interchanging the ith and (i −1)st runner of the abacus. 
We shall often denote Φ(λ) by λ̄, for every good partition of B, and Φ−1(μ) by μ̂, for every good partition 
μ of B̄.

It should be emphasized that neither the exceptional partitions of B and B̄ nor the bijection Φ depends 
on the chosen abacus displays.

Remark 3.3. Suppose that B and B̄ are blocks of FSn and FSn−1, respectively, of weight 2 that form a 
(2 : 1)-pair. Moreover, let κB = (κ1, . . . , κt) with κt �= 0. As in 3.2, we display κB , κB̄ and all partitions 
of B and B̄ on an abacus with s + 2p beads, for a fixed s � t. Suppose that κB̄ is obtained from κB by 
swapping runners i and i − 1. Again in the notation of 3.2, we consider the ith and (i − 1)st runner of the 
abaci displaying the exceptional partitions of B and B̄. Then we have the following constellations, where, 
in each case, l1, l2, r1, r2 are understood to be the numbers of beads in the respective parts of the abacus 
under consideration, as shown in the diagrams below.

ᾱ = 〈i〉:

· · · · · · • • · · · · · ·

· · · · · ·
...

... · · · · · ·
· · · · · · • • · · · · · ·
· · · · · · • − r1

l1 • − r2
l2 − • · · · · · ·

, 

β̄ = 〈i− 1, i〉:

· · · · · · • • · · · · · ·

· · · · · ·
...

... · · · · · ·
· · · · · · • • · · · · · ·
· · · · · · • − r1

l1 − • r2
l2 • − · · · · · ·

,

γ̄ = 〈i− 1, i− 1〉:

· · · · · · • • · · · · · ·

· · · · · ·
...

... · · · · · ·
· · · · · · • • · · · · · ·
· · · · · · − • r1

l1 • − r2
l2 • − · · · · · ·

, 

α = 〈i, i〉:

· · · · · · • • · · · · · ·

· · · · · ·
...

... · · · · · ·
· · · · · · • • · · · · · ·
· · · · · · • − r1

l1 − • r2
l2 − • · · · · · ·

,

β = 〈i− 1, i〉:

· · · · · · • • · · · · · ·

· · · · · ·
...

... · · · · · ·
· · · · · · • • · · · · · ·
· · · · · · − • r1

l1 • − r2
l2 − • · · · · · ·

, 

γ = 〈i− 1〉:

· · · · · · • • · · · · · ·

· · · · · ·
...

... · · · · · ·
· · · · · · • • · · · · · ·
· · · · · · − • r1

l1 − • r2
l • − · · · · · ·

.

2
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Note that we have l1 � l2 and r1 � r2, since none of the above partitions has a movable bead on any 
runner different from i and i − 1.

For our subsequent considerations, in particular those in Theorem 3.9, it will turn out to be useful to 
distinguish the following cases:

(1) l1 + r1 = 0 = l2 + r2;
(2) 0 = l2 + r2 < l1 + r1 < p − 2;
(3) 0 = l2 + r2 < l1 + r1 = p − 2;
(4) 0 < l2 + r2 < l1 + r1 = p − 2;
(5) l2 + r2 = p − 2 = l1 + r1;
(6) 0 < l2 + r2 � l1 + r1 < p − 2.

Observe that case (3) occurs precisely when B is the principal block of FS2p+1, which has p-core (1), 
and when B̄ is the principal block of FS2p, which has p-core ∅. In this case, we further have β = (p +1, 1p)
and α = (p +1, 2, 1p−2). By [8, Theorem 23.7], Sβ is simple, and by [18, Lemma 4.3], one has [Sβ : Dα] �= 0. 
Thus Sβ ∼= Dα, in this case.

The next lemma shows in which of the six cases of Remark 3.3 the exceptional partitions of a (2 : 1)-pair 
of weight-2 blocks are p-regular or p-restricted. We also record the ∂-values of the partitions in question. 
The result is an easy consequence of the abacus combinatorics in Appendix A, and will be important for 
our proof of Theorem 1.1.

Lemma 3.4. Retain the hypotheses and notation as in Remark 3.3. Moreover, set d := l1 + r1− l2− r2. Then 
one has the following

partition p-regular p-restricted ∂

ᾱ (1), (2), (3), (4), (5), (6) d + 1
(4), (5), (6)

β̄ (1), (2), (3), (2), (3), (4), d

(4), (6). (5), (6)
γ̄ (1), (2), (6) (1), (2), (3), d + 1

(4), (5), (6)
α (1), (2), (3), (2), (3), (4) d

(4), (5), (6) (5), (6)
β (1), (2), (6) (4), (5), (6) d + 1
γ (1), (2), (3), (1), (2), (3), d

(4), (6) (4), (5), (6)

In particular, one has ∂(β) = ∂(ᾱ) = ∂(γ̄) > 0. Furthermore, ∂(β̄) = ∂(α) = ∂(γ) = 0 if and only if 
l1 = l2 and r1 = r2; in this case, β̄, α and γ have the same colour, which is black if and only if l2 + r2 is 
odd.

Proof. We represent the respective partitions on an abacus with s + 2p beads as before. The assertions 
concerning p-regularity and p-restrictedness then follow from 2.5(a). Note that part of this already appears 
in [18, Lemma 4.4]. The assertions concerning ∂-values and colours are immediate from A.1 and A.3. �
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Lemma 3.5. Suppose that B and B̄ are blocks of FSn and FSn−1, respectively, with wB = 2 = wB̄ that 
form a (2 : 1)-pair. If λ is a good partition of B and Φ(λ) its corresponding good partition of B̄, then ∂(λ) =
∂(Φ(λ)). If ∂(λ) = ∂(Φ(λ)) = 0, then λ and Φ(λ) have the same colour. Moreover, if ∂(β̄) = 0 = ∂(γ), then 
also the exceptional partitions β̄ and γ have the same colour.

Proof. Suppose that κB = (κ1, . . . , κt), for some t � 1, κt � 1. For convenience, we set λ̄ := Φ(λ). We 
consider an abacus display Γλ of λ and an [m1, . . . , mp]-abacus display Γλ̄ of λ̄ with s + 2p beads, for some 
s � t, such that Γλ̄ is obtained from Γλ by swapping runners i and i − 1, where i ∈ {2, . . . , p}.

We first observe the following: suppose that there is a runner j �= i of Γλ such that there is a bead in 
row x on runner j and a gap in some row y < x on runner j. Then the same holds for Γλ̄. Moreover, the 
number of beads passed when moving the bead to position (y, j) in Γλ equals the number of beads passed 
when moving the bead to position (y, j) in Γλ̄.

Next, in the notation of 2.5(b), there are three possibilities: λ = 〈j〉, λ = 〈j, j〉 or λ = 〈k, j〉, for some 
j, k ∈ {1, . . . , p}, j < k. If j, k /∈ {i, i − 1}, then, in each of the three possible cases, the assertion of the 
lemma is an easy consequence of the abacus combinatorics in A.3 and our above observation. Thus, since 
λ /∈ {α, β, γ} = {〈i, i〉, 〈i − 1, i〉, 〈i − 1〉}, it remains to treat the following four cases, where we draw runners 
i − 1 and i, and where i − 1 �= l �= i. As well, a, b, c, d are the numbers of beads in the respective parts of 
the abacus.

case λ λ̄

(a) 〈i− 1, i− 1〉 〈i, i〉
· · · • • · · ·
...

...
...

...
· · · • • · · ·
· · · − • c

a • • d

b • • · · ·

· · · • • · · ·
...

...
...

...
· · · • • · · ·
· · · • − c

a • • d

b • • · · ·
(b) 〈i〉 〈i− 1〉

· · · • • · · ·
...

...
...

...
· · · • • · · ·
· · · − − c

a − − d

b − • · · ·

· · · • • · · ·
...

...
...

...
· · · • • · · ·
· · · − − c

a − − d

b • − · · ·
(c) 〈i− 1, l〉 〈i, l〉

· · · • • · · ·
...

...
...

...
· · · • • c

a − • d

b • • · · ·

· · · • • · · ·
...

...
...

...
· · · • • c

a • − d

b • • · · ·
(d) 〈i, l〉 〈i− 1, l〉

· · · • • · · ·
...

...
...

...
· · · • • c

a − − d

b − • · · ·

· · · • • · · ·
...

...
...

...
· · · • • c

a − − d

b • − · · ·
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We use A.1. In case (a), we thus get ∂(λ) = |(a + c + 1) − (b + d + 1)| = ∂(λ̄). The hook diagram of λ
and λ̄, respectively, has an entry equal to 2p. If ∂(λ) = 0, then the leg length of the 2p-hook of λ and λ̄ is 
a + b + c + d + 3, so that λ and λ̄ have the same colour, by 3.1.

In case (b), we get ∂(λ) = |(b + d) − (a + c)| = ∂(λ̄). The hook diagram of λ and λ̄, respectively, has an 
entry equal to 2p. If ∂(λ) = 0, then the leg length of the 2p-hook of λ and λ̄ is a + b + c + d. So λ and λ̄
have the same colour, by 3.1.

In case (c), λ and λ̄ both have a movable bead on runner l. The number m of beads passed when moving 
this bead one position up is the same for λ and λ̄, by our initial observation. Moreover, the hook diagrams 
of λ and λ̄ have two entries equal to p. The leg lengths of the corresponding hooks are b + d + 1 and m, 
both for λ and λ̄. As for the ∂-values, we may first move the bead on runner i − 1 of Γλ one position up. 
The leg length of the corresponding (rim) p-hook equals b + d + 1. Then we move the movable bead on 
runner l one position up. The leg length of the corresponding (rim) p-hook equals m′, for some m′ � 0. So 
we have ∂(λ) = |(b + d +1) −m′|. On the other hand, we first move the bead on runner i of Γλ̄ one position 
up. The leg length of the corresponding (rim) p-hook equals b + d + 1. Then we move the movable bead 
on runner l one position up. The leg length of the corresponding rim p-hook equals m′ again. Thus also 
∂(λ̄) = |(b + d + 1) −m′|. Hence we have ∂(λ) = ∂(λ̄) and if ∂(λ) = 0, then λ and λ̄ have the same colour.

In case (d), λ and λ̄ both have a movable bead on runner l. The number m of beads passed when moving 
this bead one position up is the same for λ and λ̄, by our initial observation. Moreover, the hook diagrams 
of λ and λ̄ have two entries equal to p. The leg length of the corresponding rim p-hook equals b + d. Then 
we move the bead on runner l one position up, and the leg lengths of the corresponding hooks are b + d and 
m, both for λ and λ̄. To determine the ∂-values, we proceed as in case (3), that is, here we first move the 
bead on runner i and then the bead on runner l of Γλ one position up. Analogously, we first move the bead 
on runner i − 1 and then the bead on runner l of Γλ̄ one position up. Then there is some m′ � 0 such that 
∂(λ) = |(b + d) −m′| = ∂(λ̄) and if ∂(λ) = 0, then λ and λ̄ have the same colour.

The assertion concerning β̄ and γ has been established in Lemma 3.4. This completes the proof of the 
lemma. �

3.6. Scopes equivalences and ∂-values. Suppose that k � 2 and that B and B̄ are blocks of FSn and 
FSn−k, respectively, of weight 2 such that (B, B̄) is a (2 : k)-pair. Let κB = (κ1, . . . , κt), and display 
κB , κB̄ as well as all partitions of B and B̄ on an [m1, . . . , mp]-abacus with s + 2p beads, for some s � t. 
By [17], we may choose s such that there is some i > 1 such that ΓB has k more beads on runner i than on 
runner i − 1, and ΓB̄ is obtained by interchanging runners i and i − 1 of ΓB . Moreover, by [17], the blocks 
B and B̄ are Morita equivalent. Thus, in particular, there is a bijection between the isomorphism classes 
of simple B-modules and the isomorphism classes of simple B̄-modules. As Scopes has also shown in [17], 
this bijection can be described combinatorially. More precisely, there is a bijection, say Ψ, between the set 
of partitions of B and the set of partitions of B̄ that preserves p-regularity and the lexicographic ordering. 
Whenever λ is a partition of B with abacus display Γλ, one obtains ΓΨ(λ) by interchanging runners i and 
i − 1. If λ is p-regular, then the simple B̄-module DΨ(λ) is the Morita correspondent of Dλ.

We should like to emphasize that, for every partition λ of B, whenever there is some bead on runner 
i − 1 of Γλ, there is also a bead on runner i in the same row. This is due to the fact that k � 2. With this, 
the arguments used in the proof of Lemma 3.5, easily generalize and show that ∂(λ) = ∂(Ψ(λ)), for every 
partition λ of B. Moreover, if ∂(λ) = 0, then λ and Ψ(λ) have the same colour.

3.7. Partial Scopes equivalences and Ext-quivers. Suppose that B and B̄ are blocks of FSn and FSn−1, 
respectively, of weight 2 such that (B, B̄) is a (2 : 1)-pair. As in 3.2, we denote by ᾱ, β̄, ̄γ and α, β, γ the 
exceptional partitions of B and B̄, respectively. Moreover, retain the notation fixed in 3.2.
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Furthermore, consider the pair of exact, two-sided adjoint functors

ResBB̄ : B − mod → B̄ − mod ,M �→ M ↓B̄ ,

IndB
B̄ : B̄ − mod → B − mod , N �→ N ↑B

as in 2.1(b).
Whenever λ is a good partition of B and μ is a good partition of B̄, we have Sλ ↓B̄∼= SΦ(λ) and 

Sμ ↑B∼= SΦ−1(μ), by [18, Lemma 3.3]. Moreover, whenever λ is a good p-regular partition of B and μ is 
a good p-regular partition of B̄, by [18, Corollary 3.7], we have Dλ ↓B̄∼= DΦ(λ) and Dμ ↑B∼= DΦ−1(μ). 
Moreover, by Lemma 3.4 and [18, Remark 4.4], we also know that γ̄ is p-regular if and only if β is. If so, 
then Dβ ↓B̄∼= Dγ̄ and Dγ̄ ↑B∼= Dβ . We set Φ(β) := γ̄, in this case. Analogously, γ is p-regular if and only 
if β̄ is. If so, then Dγ ↓B̄∼= Dβ̄ and Dβ̄ ↑B∼= Dγ . We set Φ(γ) := β̄, in this case.

Next let M be the full subcategory of B − mod whose objects do not have any composition factor 
isomorphic to Dα. Analogously, let N be the full subcategory of B̄ − mod whose objects do not have any 
composition factor isomorphic to Dᾱ. It is well known that the restriction of the functors ResBB̄ and IndB

B̄

yield an equivalence between the categories M and N ; for some further explanations see, for instance, [3, 
Section 4]. On the combinatorial level, this equivalence entails the following bijection, which generalizes the 
map Φ in 3.2 and which we denote by Φ as well:

Φ : {λ 
p n : Dλ ∈ M} → {μ 
p n− 1 : Dμ ∈ N} .

It should be emphasized, however, that this latter bijection now preserves the lexicographic ordering only 
on good partitions, since we always have ᾱ > β̄ > γ̄ as well as α > β > γ.

By [18, Theorem I], the dimension of the Ext-space of any pair of simple B-modules (respectively, B̄-
modules) is either 0 or 1. So, since block restriction and block induction are exact functors, for any pair of 
simple modules Dλ1 and Dλ2 of M, we get an F -vector space isomorphism

Ext1B(Dλ1 , Dλ2) ∼= Ext1M(Dλ1 , Dλ2) ∼= Ext1N (DΦ(λ1), DΦ(λ2))
∼= Ext1B̄(DΦ(λ1), DΦ(λ2)) .

Consequently, suppose we already know the Ext-quiver of B̄. In order to determine the Ext-quiver of B, 
we may in fact proceed as follows: first remove ᾱ and all edges connected to ᾱ, and replace every partition 
μ �= ᾱ of B̄ by Φ−1(μ). Then determine those p-regular partitions λ of B such that Ext1B(Dλ, Dα) �= {0}; 
recall that the latter Ext-space is at most 1-dimensional. This yields the edges connected to α. To this end, 
we record the following lemma.

Lemma 3.8. Suppose that B and B̄ are blocks of FSn and FSn−1, respectively, of weight 2 such that (B, B̄)
is a (2 : 1)-pair.

(a) Let μ be a p-regular partition of n − 1 with p-core κB̄. Then Ext1B̄(Dμ, Dᾱ) �= {0} if and only if
(i) either μ = β̄,
(ii) or μ > ᾱ, [Sᾱ : Dμ] �= 0 and |∂(ᾱ) − ∂(μ)| = 1.

(b) Let λ be a p-regular partition of n with p-core κB. Then Ext1B(Dλ, Dα) �= {0} if and only if
(i) either λ = β,
(ii) or λ > α, [Sα : Dλ] �= 0 and |∂(α) − ∂(λ)| = 1.

Proof. (a) Suppose first that ᾱ � μ. Then, by [2, Theorem 6.1], we have Ext1B̄(Dμ, Dᾱ) �= {0} if and 
only if [Sμ : Dᾱ] �= 0 and |∂(ᾱ) − ∂(μ)| = 1. By [18, Lemma 4.3], we further know that the only Specht 
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FSn−1-modules with a composition factor isomorphic to Dᾱ are Sᾱ, Sβ̄ and Sγ̄ . Since, by Lemma 3.4, we 
have ∂(γ̄) = ∂(ᾱ) = ∂(β̄) + 1, we deduce that Ext1B̄(Dμ, Dᾱ) �= {0} if and only if μ = β̄ and β̄ is p-regular.

So we may suppose that μ > ᾱ. By [2, Theorem 6.1] again, we deduce that Ext1B̄(Dμ, Dᾱ) �= {0} if and 
only if μ satisfies condition (ii).

Analogously one obtains assertion (b), also by [2, Theorem 6.1], [18, Lemma 4.3] and Lemma 3.4. �
Let (B, B̄) be a (2 : 1)-pair of blocks of FSn and FSn−1, respectively, of weight 2. Suppose that 

κB = (κ1, . . . , κt). As in Section 3, we display κB , κB̄ as well as all partitions of B and B̄ on a fixed 
[m1, . . . , mp]-abacus with s + 2p beads, where s � t. As in 3.2, we denote by ᾱ, β̄, ̄γ, α, β, γ the exceptional 
partitions associated to the (2 : 1)-pair (B, B̄). Lastly, recall the notation introduced in Remark 3.3 and 
3.1. The main aim of the next theorem is to give detailed information on the Loewy structures of the 
Specht modules of B and B̄, respectively, labelled by the exceptional partitions. This will be the crucial 
ingredient for our inductive proof of Theorem 1.1. It will turn out that this heavily depends on whether the 
exceptional partitions are p-regular or p-restricted. To this end, we shall again distinguish the cases (1)–(6) 
as in Remark 3.3. For ease of notation, in Theorem 3.9 below, we shall often identify simple B-modules and 
simple B̄-modules with their labelling partitions.

We expect the Loewy structures of the Specht modules treated in Theorem 3.9 to be known, but we have 
not seen them in print so far.

Theorem 3.9. With the above notation, the Specht FSn−1-modules Sα, Sβ and Sγ and the Specht FSn-
modules Sᾱ, Sβ̄ and Sγ̄ , respectively, have the following Loewy structures.

case Sᾱ Sβ̄ Sγ̄ Sα Sβ Sγ

(1)
ᾱ
Z̄

β̄
ᾱ⊕ Ȳ

γ̄
β̄ ⊕ Z̄
ᾱ

α
Y

β
α⊕ Z

γ
β ⊕ Y
α

(2)
ᾱ

β̄+ ⊕ Z̄
β̄

ᾱ⊕ Ȳ
β̄+

γ̄
β̄ ⊕ Z̄
ᾱ

α
Y
α+

β
α⊕ Z

γ
β ⊕ Y
α

(3)
ᾱ
β̄+

β̄
ᾱ⊕ Ȳ
β̄+

β̄
ᾱ

α
Y
α+

α
γ
Y
α

(4)
ᾱ

β̄+ ⊕ Z̄
ᾱ+

β̄
ᾱ⊕ Ȳ
β̄+

β̄ ⊕ Z̄
ᾱ

α
β+ ⊕ Y
α+

α⊕ Z
β+

γ
Y
α

(5)
ᾱ

β̄+ ⊕ Z̄
ᾱ+

ᾱ⊕ Ȳ
β̄+

Z̄
ᾱ

α
β+ ⊕ Y
α+

α⊕ Z
β+

Y
α

(6)
ᾱ

β̄+ ⊕ Z̄
ᾱ+

β̄
ᾱ⊕ Ȳ
β̄+

γ̄
β̄ ⊕ Z̄
ᾱ

α
β+ ⊕ Y
α+

β
α⊕ Z
β+

γ
β ⊕ Y
α

Here Ȳ and Z̄ are good semisimple B̄-modules, and Y and Z are good semisimple B-modules. Let d :=
∂(α). If Dμ is a composition factor of Ȳ and Dρ is a composition factor of Z̄, then ∂(μ) ∈ {d − 1, d + 1}
and ∂(ρ) ∈ {d, d + 2}. Moreover, Y ∼= Ȳ ↑B and Z ∼= Z̄ ↑B. If Dλ is a composition factor of Y and Dν is a 
composition factor of Z, then ∂(λ) ∈ {d − 1, d + 1} and ∂(ν) ∈ {d, d + 2}.
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The partition ᾱ+ exists if and only if β+ does; if so, then both partitions are good and ᾱ+ = Φ(β+). The 
partition β̄+ exists if and only if α+ does; if so, then both partitions are good and β̄+ = Φ(α+). In the cases
(4), (5) and (6), one also has [Ȳ : Dᾱ+ ] = 0.

3.10. Strategy of proof. Before proving Theorem 3.9, we shall collect a number of important properties of 
the blocks B and B̄ and their modules that we shall use extensively.

(a) By [18, Theorem I], every principal indecomposable B-module (respectively, B̄-module) has Loewy 
length 5 and is stable, that is, its Loewy and socle series coincide. Moreover, all Specht modules in B
and B̄, respectively, are multiplicity-free. The Ext1-space between any two simple B-modules (respectively, 
simple B̄-modules) is at most one-dimensional, and there are no self-extensions of any simple B-module 
(respectively, simple B̄-module).

As well, by [18, Remark 4.4], the projective cover Pα of Dα has a Specht filtration with quotients, from 
top to bottom, isomorphic to Sα, Sβ and Sγ . Analogously, the projective cover P ᾱ of Dᾱ has a Specht 
filtration with quotients, from top to bottom, isomorphic to Sᾱ, Sβ̄ and Sγ̄ .

(b) By [2, Theorem 6.1], the Ext-quiver of B is bipartite; more precisely, if Dλ and Dμ are simple B-
modules with Ext1B(Dλ, Dμ) �= {0}, then ∂(λ) ∈ {∂(μ) − 1, ∂(μ) + 1}. The analogous statement holds for 
B̄.

(c) By [2, Proposition 6.2], every Specht module Sλ in B (respectively, in B̄) has Loewy length at most 
3, and has Loewy length 3 if and only if λ is both p-regular and p-restricted.

(d) By [18, Lemma 3.3], one has

(Sᾱ) ↑B∼ Sα ⊕ Sβ , (Sβ̄) ↑B∼ Sα ⊕ Sγ , (Sγ̄) ↑B∼ Sβ ⊕ Sγ .

(e) Our general strategy towards proving the assertions of Theorem 3.9 will be as follows: with (a)-(c), 
we shall already deduce the Loewy lengths and most of the Loewy structure of the Specht modules in 
question. Part (d) will then provide us with systems of linear equations from which we shall obtain the 
claimed connections between the composition factors of the exceptional Specht B̄-modules and those of the 
exceptional Specht B-modules.

Proof. (of Theorem 3.9) We prove the assertions case by case, starting with case (6), which is in some sense 
the most general one. Throughout this proof, let d := ∂(α) = ∂(β̄). Recall from (1) in 2.1 our notation for 
Loewy structures.

Case (6): By Lemma 3.4, we know that all exceptional partitions of B and B̄, respectively, are both 
p-regular and p-restricted. By 3.10(c), the Specht modules labelled by the exceptional partitions must, thus, 
have Loewy length 3. We examine Sᾱ, Sβ̄ and Sγ̄ first. By 2.3(a) and 3.1, we know that Soc(Sᾱ) ∼= Dᾱ+ , 
Soc(Sβ̄) ∼= Dβ̄+ and Soc(Sγ̄) ∼= Dγ̄+ . Hence

Sᾱ ≈
Dᾱ

H ᾱ

Dᾱ+
, Sβ̄ ≈

Dβ̄

H β̄

Dβ̄+

, Sγ̄ ≈
Dγ̄

H γ̄

Dγ̄+
,

for non-zero semisimple B̄-modules H ᾱ, H β̄ and H γ̄ . By 3.10(a), the projective cover P ᾱ of Dᾱ has a 
Specht filtration with quotients, from top to bottom, isomorphic to Sᾱ, Sβ̄ and Sγ̄ . Hence, in particular, 
Dγ̄+ ∼= Soc(Sγ̄) ∼= Soc(P ᾱ) ∼= Dᾱ and γ̄+ = ᾱ. Since P ᾱ is stable, we further deduce that Dγ̄ is isomorphic 
to a submodule of Rad2(P ᾱ)/ Rad3(P ᾱ), and H γ̄ is isomorphic to a submodule of Rad3(P ᾱ)/ Rad4(P ᾱ). 
Analogously, we conclude that H ᾱ is isomorphic to a submodule of the second Loewy layer and Dᾱ+ is 
isomorphic to a submodule of the third Loewy layer of P ᾱ. Next, by [2, Theorem 6.1] and Lemma 3.8, 
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we know that dim(Ext1B̄(Dᾱ, Dβ̄)) = 1 and [Sβ̄ : Dᾱ] = 1. Since Sβ̄ is multiplicity-free, this implies 
H β̄ ∼= Dᾱ ⊕ Ȳ , for some good semisimple B̄-module Ȳ . Again using the fact that the quiver of B̄ is 
bipartite, we so far get

P ᾱ ≈

Dᾱ

H ᾱ ⊕Dβ̄

Dᾱ+ ⊕H β̄ ⊕Dγ̄

Dβ̄+ ⊕H γ̄

Dγ̄+

≈

Dᾱ

H ᾱ ⊕Dβ̄

Dᾱ+ ⊕Dᾱ ⊕ Ȳ ⊕Dγ̄

Dβ̄+ ⊕H γ̄

Dᾱ

. (2)

By [18, Lemma 4.3], [Sγ̄ : Dβ̄ ] = 1 = [Sγ̄ : Dᾱ], thus H γ̄ ∼= Dβ̄ ⊕ Z̄, for some good semisimple B̄-module 
Z̄. The assertion concerning the ∂-values of the composition factors of Ȳ and Z̄ follows from [2, Theorem 
6.1(3)]. Since P ᾱ is stable, this now gives H ᾱ ∼= Dβ̄+ ⊕ Z̄. Since all Specht B̄-modules are multiplicity-free, 
we also see that ᾱ+ and β̄+ are good.

It remains to show that [Ȳ : Dᾱ+ ] = 0. Assume not, so that [Sβ̄ : Dᾱ+ ] = 1 and ᾱ+ � β̄. Furthermore, 
by (2), we get Ext1B̄(Dβ̄ , Dᾱ+) �= {0} implying ᾱ+ � β̄ � ᾱ, by [2, Theorem 6.1(3)], a contradiction, since 
ᾱ � β̄. This completes the proof concerning the Loewy structure of Sᾱ, Sβ̄ and Sγ̄ , and gives

Sᾱ ≈
α

β̄+ ⊕ Z̄
ᾱ+

, Sβ̄ ≈
β̄

ᾱ⊕ Ȳ
β̄+

, Sγ̄ ≈
γ̄

β̄ ⊕ Z̄
ᾱ

. (3)

Next we consider Sα, Sβ and Sγ , still in the case (6). By 3.10(a), the projective cover Pα of Dα has a 
Specht filtration with quotients, from top to bottom, isomorphic to Sα, Sβ and Sγ . The above arguments 
now work completely analogously and give

Sα ≈
α

β+ ⊕R
α+

, Sβ ≈
β

α⊕ T
β+

, Sγ ≈
γ

β ⊕R
α

, (4)

for good semisimple B-modules R and T that are disjoint. Moreover, α+, β+ are good, and [T : Dα+ ] = 0. 
Every composition factor of R is labelled by a p-regular partition with ∂-value d −1 or d +1, every composition 
factor of T is labelled by a p-regular partition with ∂-value d or d + 2. To complete the proof of case (6), 
we need to show that

R ∼= Y , T ∼= Z , (Dᾱ+) ↑B∼= Dβ+ , (Dβ̄+) ↑B∼= Dα+ . (5)

To this end, we exploit the partial Scopes equivalence between B and B̄ given by block restriction and block 
induction, as explained in 3.7. We set Y := Ȳ ↑B and Z := Z̄ ↑B . By 3.7, we know that Dβ̄ ↑B∼= Dγ and 
Dγ̄ ↑B∼= Dβ . Therefore, with 3.10(d), we obtain the following

Sα ⊕ Sβ ∼ (Sᾱ) ↑B∼ (Dᾱ) ↑B ⊕(Dβ̄+) ↑B ⊕Z ⊕ (Dᾱ+) ↑B (6)

Sα ⊕ Sγ ∼ (Sβ̄) ↑B∼ Dγ ⊕ (Dᾱ) ↑B ⊕(Dβ̄+) ↑B ⊕Y (7)

Sβ ⊕ Sγ ∼ (Sγ̄) ↑B∼ Dβ ⊕Dγ ⊕ Z ⊕ (Dᾱ) ↑B . (8)

To exploit these identities, recall from Lemma 3.4 that ∂(ᾱ) = d + 1 = ∂(γ̄) = ∂(β) and ∂(β̄) = d = ∂(α) =
∂(γ). By 3.1, we have ∂(θ) = ∂(θ+), for every p-restricted partition θ belonging to B or B̄. By Lemma 3.5, 
we also know that ∂(μ) = ∂(Φ−1(μ)), for every good p-regular partition of B̄.
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Subtracting (6) from (7) (in the Grothendieck group) and using (4), we get

T ⊕ Y ⊕Dβ+ ∼ R⊕ Z ⊕ (Dᾱ+) ↑B .

As we have proved above, Z̄ ⊕Dᾱ+ and Ȳ are disjoint and good. Thus the same holds for Z ⊕ (Dᾱ+) ↑B
and Y . As well, R and T ⊕Dβ+ are disjoint. Therefore, we must have T ⊕Dβ+ ∼ Z⊕ (Dᾱ+) ↑B and R ∼= Y . 
Comparing the ∂-values, we deduce Dβ+ ∼= (Dᾱ+) ↑B and T ∼= Z. It remains to show that (Dβ̄+) ↑B∼= Dα+ . 
Subtracting (7) from (8) (in the Grothendieck group) and using what we have just proved about Sβ, we 
get Sα ∼ Dα ⊕ Dβ+ ⊕ R ⊕ (Dβ̄+) ↑B . On the other hand, by (4), Sα ∼ Dα ⊕ Dβ+ ⊕ R ⊕ Dα+ , hence 
(Dβ̄+) ↑B∼= Dα+ and Φ(α+) = β̄+.

This completes the proof of the assertion of the theorem in the case (6).

Case (2): By Lemma 3.4, the partitions ᾱ and β are p-regular and not p-restricted. The remaining 
exceptional partitions are both p-regular and p-restricted. Using 3.10 and arguing as in the proof of case 
(6) above, we this time deduce

Sᾱ ≈
ᾱ

β̄+ ⊕ Z̄ , Sβ̄ ≈
β̄

ᾱ⊕ Ȳ
β̄+

, Sγ̄ ≈
γ̄

β̄ ⊕ Z̄
ᾱ

(9)

as well as

Sα ≈
α
R
α+

, Sβ ≈
β

α⊕ T , Sγ ≈
γ

β ⊕R
α

. (10)

Here Ȳ and Z̄ are good, semisimple and disjoint. Moreover, β̄+ is good. The assertion concerning ∂-values 
follows from [2, Theorem 6.1(3)]. As well, R and T are good, semisimple and disjoint, and α+ is good. Every 
composition factor of R is labelled by a p-regular partition with ∂-value d − 1 or d + 1, every composition 
factor of T is labelled by a p-regular partition with ∂-value d or d + 2.

In the following, set Y := Ȳ ↑B , Z := Z̄ ↑B and Dλ := (Dβ̄+) ↑B . Again we have (Dβ̄) ↑B∼= Dγ and 
(Dγ̄) ↑B∼= Dβ It remains to show that Y ∼ R, Z ∼ T and Φ(α+) = β̄+. From 3.10(c) and (10) we get

Sα ⊕ Sβ ∼ (Sᾱ) ↑B∼ (Dᾱ) ↑B ⊕(Dβ̄+) ↑B ⊕Z (11)

Sα ⊕ Sγ ∼ (Sβ̄) ↑B∼ Dγ ⊕ (Dᾱ) ↑B ⊕Y ⊕ (Dβ̄+) ↑B (12)

Sβ ⊕ Sγ ∼ (Sγ̄) ↑B∼ Dβ ⊕Dγ ⊕ Z ⊕ (Dᾱ) ↑B . (13)

Subtracting (11) from (12) in the Grothendieck group and using (9) and (10), we see that Y ⊕ T ∼ R⊕ Z. 
Since Ȳ and Z̄ are disjoint, so are Y and Z. Since also R and T are disjoint, we must have T ∼ Z and 
Y ∼ R. Lastly, we subtract (12) from (13). Together with what we have just shown and (4) this gives 
Dα+ ⊕ Y ∼ Dβ ⊕ Z ∼ (Dβ̄+) ↑B ⊕Y , thus Dα+ ∼= (Dβ̄+) ↑B and Φ(α+) = β̄+.

Case (4): By Lemma 3.4, the partitions β and γ̄ are p-restricted, but not p-regular. The remaining 
exceptional partitions are both p-regular and p-restricted. From 3.10(a)-(c) we get

Sᾱ ≈
ᾱ

β̄+ ⊕ Z̄
ᾱ+

, Sβ̄ ≈
β̄

ᾱ⊕ Ȳ
β̄+

, Sγ̄ ≈ β̄ ⊕ Z̄
ᾱ

(14)

and
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Sα ≈
α

R⊕ β+
α+

, Sβ ≈ α⊕ T
β+

, Sγ ≈
γ
R
α
. (15)

Here Ȳ and Z̄, R and T are good and semisimple. Moreover, ᾱ+, β̄+, α+ and β+ are good. As in the proof 
of case (6) above, we see that [Ȳ : Dᾱ+ ] = 0. The assertion concerning the ∂-values of the composition 
factors of Ȳ and Z̄ follows from [2, Theorem 6.1(3)]. Since Sγ has Loewy length 3, we further have R �= {0}. 
Let λ := Φ−1(β̄+), μ := Φ−1(ᾱ+), Y := Ȳ ↑B and Z := Z̄ ↑B . Then from 3.10(d) we get

Sα ⊕ Sβ ∼ (Sᾱ) ↑B∼ (Dᾱ) ↑B ⊕Dλ ⊕Dμ ⊕ Z (16)

Sα ⊕ Sγ ∼ (Sβ̄) ↑B∼ Dγ ⊕ (Dᾱ) ↑B ⊕Y ⊕Dλ (17)

Sβ ⊕ Sγ ∼ (Sγ̄) ↑B∼ Dγ ⊕ Z ⊕ (Dᾱ) ↑B . (18)

We subtract (16) from (17) and use (14) and (15) to get Y ⊕ T ⊕Dβ+ ∼ R⊕ Z ⊕Dμ. By Lemma 3.4 and 
Lemma 3.5, we have ∂(β+) = d +1 = ∂(μ). By [2, Theorem 6.1(3)] and Lemma 3.4 again, every composition 
factor of R has a labelling partition with ∂-value d −1 or d +1; every composition factor of T has a labelling 
partition with ∂-value d or d +2. This implies Z ∼= T and Y ⊕Dβ+ ∼ R⊕Dμ. Next, consider the difference 
(18)-(17). Together with (15) this gives T⊕Y ⊕Dλ ∼ Z⊕R⊕Dα+ , hence Y ⊕Dλ ∼ R⊕Dα+ . By comparing 
∂-values, we deduce Y ∼= R and λ = α, and then also β+ = μ. This completes the proof in the case (4).

Case (1): In this case, by Lemma 3.4, the partitions ᾱ, β̄, α and β are p-regular and not p-restricted, 
while γ̄ and γ are both p-regular and p-restricted. With 3.10(a)-(c) we deduce

Sᾱ ≈
ᾱ
Z̄ , Sβ̄ ≈

β̄
ᾱ⊕ Ȳ , Sγ̄ ≈

γ̄
β̄ ⊕ Z̄
ᾱ

(19)

and

Sα ≈
α
R , Sβ ≈

β
α⊕ T , Sγ ≈

γ
β ⊕R
α

. (20)

Here Ȳ , Z̄, R and T are semisimple and good. The assertion concerning the ∂-values of the composition 
factors of Ȳ and Z̄ follows from [2, Theorem 6.1(3)] and the Loewy structure of P ᾱ. From [2, Theorem 
6.1(3)], Lemma 3.4 and the Loewy structure of Pα we further deduce that every composition factor of R
has a labelling partition with ∂-value d − 1 or d + 1; every composition factor of T has a labelling partition 
with ∂-value d or d + 2. Let Y := Ȳ ↑B and Z := Z̄ ↑B . With 3.10(d) we this time have

Sα ⊕ Sβ ∼ (Sᾱ) ↑B∼ (Dᾱ) ↑B ⊕Z (21)

Sα ⊕ Sγ ∼ (Sβ̄) ↑B∼ Dγ ⊕ (Dᾱ) ↑B ⊕Y (22)

Sβ ⊕ Sγ ∼ (Sγ̄) ↑B∼ Dβ ⊕Dγ ⊕ Z ⊕ (Dᾱ) ↑B . (23)

Considering the difference (22)-(21) and (20) we see that Y ⊕ T ∼ R ⊕ Z. Comparing the ∂-values of the 
composition factors of Y , Z, R and T , this forces T ∼= Z and Y ∼= R.

Case (3): By Lemma 3.4, we know that ᾱ is p-regular and not p-restricted, β̄, α and γ are both p-regular 
and p-restricted, γ̄ is p-restricted and not p-regular, and γ is both p-regular and p-restricted. Recall from 
Remark 3.3 that Sβ ∼= Dα. Together with 3.10(a)-(c) we get
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Sᾱ ≈
ᾱ

β̄+ ⊕ Z̄ , Sβ̄ ≈
β̄

ᾱ⊕ Ȳ
β̄+

, Sγ̄ ≈ β̄ ⊕ Z̄
ᾱ

(24)

and

Sα ≈
α
R
α+

, Sβ ≈ α , Sγ ≈
γ
R
α
. (25)

Here Ȳ , Z̄ and R are good and semisimple. As well, β̄+ and α+ are good. The assertion concerning the 
∂-values of the composition factors of Ȳ and Z̄ follows from [2, Theorem 6.1(3)] and the Loewy structure 
of P ᾱ. From [2, Theorem 6.1(3)], Lemma 3.4 and the Loewy structure of Pα we further deduce that every 
composition factor of R has a labelling partition with ∂-value d − 1 or d + 1. Observe also that R �= {0}, 
since Sα has Loewy length 3, by 3.10(c). Let Y := Ȳ ↑B and Z := Z̄ ↑B , and let λ := Φ−1(β̄+). Then 
3.10(d) gives

Sα ⊕ Sβ ∼ (Sᾱ) ↑B∼ (Dᾱ) ↑B ⊕Z ⊕Dλ (26)

Sα ⊕ Sγ ∼ (Sβ̄) ↑B∼ Dγ ⊕ (Dᾱ) ↑B ⊕Y ⊕Dλ (27)

Sβ ⊕ Sγ ∼ (Sγ̄) ↑B∼ Dγ ⊕ Z ⊕ (Dᾱ) ↑B . (28)

Considering the difference (27)-(26) and (25), we see that Y ∼ Z ⊕ R. Comparing ∂-values, we further 
deduce that Z = {0} and Y ∼= R; in particular, also Z̄ = {0}. Next we consider the difference (28)-(26) and 
(25), which yields λ = ᾱ+.

Case (5): By Lemma 3.4, the partitions ᾱ and α are p-regular and p-restricted, while β̄, γ̄, β and γ are 
p-restricted and not p-regular. From 3.10(a)-(c) we get

Sᾱ ≈
ᾱ

β̄+ ⊕ Z̄
ᾱ+

, Sβ̄ ≈ ᾱ⊕ Ȳ
β̄+

, Sγ̄ ≈ Z̄
ᾱ

(29)

and

Sα ≈
α

R⊕ β+
α+

, Sβ ≈ α⊕ T
β+

, Sγ ≈ R
α
. (30)

Here Ȳ Z̄, R and T are good and semisimple and disjoint. Moreover, ᾱ+, β̄+, α+ and β+ are good. The 
assertion concerning the ∂-values of the composition factors of Ȳ and Z̄ follows from [2, Theorem 6.1(3)]
and the Loewy structure of P ᾱ. From [2, Theorem 6.1(3)], Lemma 3.4 and the Loewy structure of Pα we 
further deduce that every composition factor of R has a labelling partition with ∂-value d −1 or d +1; every 
composition factor of T has a labelling partition with ∂-value d or d + 2. Let Y := Ȳ ↑B and Z := Z̄ ↑B . 
Let further λ := Φ−1(β̄+) and μ := Φ−1(ᾱ+). From 3.10(d) we obtain

Sα ⊕ Sβ ∼ (Sᾱ) ↑B∼ (Dᾱ) ↑B ⊕Z ⊕Dλ ⊕Dμ (31)

Sα ⊕ Sγ ∼ (Sβ̄) ↑B∼ (Dᾱ) ↑B ⊕Y ⊕Dλ (32)

Sβ ⊕ Sγ ∼ (Sγ̄) ↑B∼ Z ⊕ (Dᾱ) ↑B . (33)

We consider the difference (32)-(31) and (30) to get Y ⊕T ⊕ β+ ∼ R⊕Z ⊕Dμ. So, comparing ∂-values, we 
get T ∼= Z and Y ⊕Dβ+ ∼ R ⊕Dμ. Next we consider the difference (31)-(33) and (30) to get Dλ ⊕Dμ ∼
Dβ+ ⊕Dα+ . Again comparing ∂-values, this gives α+ = λ, β+ = μ and then also Y ∼= R.
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To show that [Ȳ : Dᾱ+ ] = 0, we cannot argue as in cases (4) and (6), since β̄ is not p-regular. However, 
we now see that if [Ȳ : Dᾱ+ ] > 0, then we would also have [Y : Dβ+ ] > 0 and [Sα : Dβ+ ] > 1, which is 
impossible, since every Specht module in B is multiplicity-free.

This completes the proof of the theorem. �
4. Proofs of Theorem 1.1 and Theorem 1.2

From now on, let p � 5, for the remainder of this section. Our aim is to prove Theorem 1.1 and Theo-
rem 1.2. To this end we shall start by applying the results from Section 3 to the case of blocks whose p-cores 
are hook partitions, that is, are of the form (k, 1l), for some k, l ∈ N0. Note that a hook partition (k, 1l) is 
a p-core if and only if either 0 � k + l � p − 1, or p + 1 � k + l � 2p − 1, 0 � k < p + 1 and 0 � l < p. To 
simplify the notation, we shall denote the block B(k,1l)(2, p) by Bk,l.

While Theorem 1.1 is stated in terms of undirected graphs, we restate and prove a more detailed version 
here:

Theorem 4.1. Let p � 5, and let Bk,l be a block of FSn of p-weight 2 and p-core (k, 1l), for some k, l ∈ N0. 
With the graphs defined in Appendix C, the Ext-quiver of Bk,l equals

(a) Q0,0(p), if k = l = 0,
(b) Qk,l(p), if 1 � k + l � p − 1,
(c) Qk−1,l−1(p), if p + 1 � k + l � 2p − 1,

where the vertices in row i � 0, from top to bottom, are labelled by the p-regular partitions of Bk,l with 
∂-value i and the total ordering on the vertices is the lexicographic ordering on partitions.

In preparation of the proof of Theorem 4.1, we next collect a number of properties of (2 : 1)-pairs of 
weight-2 blocks labelled by hook partitions.

Proposition 4.2. Let k, l ∈ N0 be such that (k, 1l) is a p-core partition. Moreover, let n := k + l + 2p, and 
let B be the block Bk,l of FSn.

(a) Let k > 1. If 1 � k + l � p − 1 or p + 2 � k + l � 2p − 1, then B forms a (2 : 1)-pair with the block 
Bk−1,l of FSn−1.

(b) Let l � 1. If 1 � k + l � p − 1 or p + 2 � k + l � 2p − 1, then B forms a (2 : 1)-pair with the block 
Bk,l−1 of FSn−1.

(c) Suppose that also (k′, 1l′) is a p-core partition, for k′, l′ ∈ N0 with k′ + l′ = k + l − 2. Then B forms a 
(2 : 2)-pair with the block Bk′,l′ of FSn−2 if and only if k + l = p + 1, k = k′ + 1 and l = l′ + 1.

Proof. In order to prove the first half of (a) and the first half of (b), suppose that 1 � k + l � p − 1. We 
display (k, 1l) on an abacus with l + 1 + 2p beads. Then the last row of the abacus is

− • · · · • − · · · − • − · · · −
︸ ︷︷ ︸ ︸ ︷︷ ︸

l k − 1

Swapping runners l + 1 + k and l + k, the assertion of (a) follows in this case. Swapping runners 2 and 
1, the assertion of (b) follows in this case.

For the second half of (a) and (b), suppose now that p + 1 � k + l � 2p − 1. We also display (k, 1l) on 
an abacus with l + 1 + 2p beads. Note that we must have 2 � k � p and 1 < l � p − 1, since k + l � p + 2
and (k, 1l) is a p-core. We consider the last two rows of this abacus:
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l y

︷ ︸︸ ︷
︷ ︸︸ ︷

− • · · · • • • · · · • − · · · −
− − · · · − • − · · · − − · · · −
︸ ︷︷ ︸

x

Here x + y + 1 = k and x � 2. So assertion (a) follows by swapping runners x and x + 1, and assertion 
(b) follows by swapping runners 1 and 2.

As for assertion (c), first note that Bk,l can only form a (2 : 2)-pair with the block Bk−1,l−1, since the 
core (k′, 1l′) is obtained from (k, 1l) by removing two nodes of the same p-residue.

Next we show that, whenever k + l = p + 1, the block B forms a (2 : 2)-pair with Bk−1,l−1. So let 
k + l = p + 1. Note that then we necessarily have k > 1 and l � 1. The last two rows of the abacus display 
of (k, 1l) with l + 1 + 2p beads are

l

︷ ︸︸ ︷
− • • · · · • − · · · −
− • − · · · − − · · · −

We swap the first two runners and get

l − 1
︷ ︸︸ ︷

• − • · · · • − · · · −
• − − · · · − − · · · −

This is the abacus display of the partition (p − (l − 1) − 1, 1l−1) = (k − 1, 1l−1).
To complete the proof of (c), it remains to verify that, whenever 2 � k+ l � p −1 or p +3 � k+ l � 2p −1, 

the block B cannot form a (2 : 2)-pair with Bk−1,l−1, provided the partition (k − 1, 1l−1) exists and is a 
p-core. So suppose it does, and suppose that B and Bk−1,l−1 form a (2 : 2)-pair. Then k � 2, l � 1, and the 
two removable nodes of (k, 1l) must have the same p-residue. Hence k − 1 ≡ p − l (mod p) and k + l ≡ 1
(mod p), a contradiction. �

Note that, for k � 3, there cannot be any (2 : k)-pair of blocks of p-weight 2 whose p-cores are hook 
partitions. Thus, as an immediate consequence of Proposition 4.2(c), we have

Corollary 4.3. There are precisely (p − 1)2 + 1 Scopes classes of p-blocks of symmetric groups of p-weight 2
whose p-cores are hook partitions. Representatives of these are given by the blocks Bk,l, where

(i) either 0 � k + l � p − 1,
(ii) or p + 2 � k + l � 2p − 1, 0 � k < p + 1 and 0 � l < p.

The next corollary is a consequence of Lemma 3.4.

Corollary 4.4. Let k, l ∈ N0 be such that (k, 1l) is a p-core partition. Moreover, let n := k + l + 2p, and 
let B be the block Bk,l of FSn. Display all partitions under considerations on an [m1, . . . , mp]-abacus with 
l + 1 + 2p beads. With the notation as in Lemma 3.4, one has the following:
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(a) Suppose that 1 � k + l � p − 1 and k > 1, so that B forms a (2 : 1)-pair with the block B̄ := Bk−1,l

of FSn−1. Then l1 = l, l2 = 0, r2 = 0 and r1 = p − k − l − 1; in particular, d = p − k − 1 and 
l1 + r1 = p − k − 1 < p − 2. Moreover, one has

ᾱ β̄ γ̄ α β γ

p-regular � � � � � �
p-restricted − k < p− 1 � k < p− 1 − �

(b) Suppose that 1 � k+ l � p −1, k � 1 and l � 1, so that B forms a (2 : 1)-pair with the block B̄ := Bk,l−1

of FSn−1. Then l1 = l2 = 0, r1 = p − 2, and r2 = l; in particular, d = p − 2 − l, l1 + r1 = p − 2 and 
l2 + r2 = l. Moreover,

ᾱ β̄ γ̄ α β γ

p-regular � l < p− 2 − � − l < p− 2
p-restricted � � � � � �

(c) Suppose that p +2 � k+ l � 2p − 1 and k > 1, so that B forms a (2 : 1)-pair with the block B̄ := Bk−1,l

of FSn−1. Then l1 = l, l2 = 0, r2 = 0 and r1 = p − k; in particular, d = p − k and l1 + r1 = p − k and 
l2 + r2 = 0. Moreover,

ᾱ β̄ γ̄ α β γ

p-regular � � � � � �
p-restricted − 2 < k < p � 2 < k < p − �

(d) Suppose that p + 2 � k + l � 2p − 1, k � 1 and l � 1, so that B forms a (2 : 1)-pair with the block 
B̄ := Bk,l−1 of FSn−1. Then l1 = l2 = 0, r1 = p − 2, and r2 = l − 1; in particular, d = p − 1 − l, 
l1 + r1 = p − 2 and l2 + r2 = l − 1. Moreover,

ᾱ β̄ γ̄ α β γ

p-regular � l < p− 1 − � − l < p− 1
p-restricted � � � � � �

Proof. Under the assumptions of (a), we are in case (2) of Remark 3.3 if k < p − 1, and in case (1) if 
k = p − 1 (and l = 0). Under the assumptions of (b), we are in case (4) of Remark 3.3 if l < p − 2, and 
in case (5) if l = p − 2 (and k = 1). Under the assumptions of (c), we are in case (1) if k = p, and in case 
(2) if 2 < k < p; note that k = 2 is not possible. Lastly, under the assumptions of (d), we are in case (4) if 
l < p − 1, and in case (5) if l = p − 1. Hence, the assertions follow form Lemma 3.4. �

Lemma 4.5. Let k, l ∈ N0 be such that (k, 1l) is a p-core partition. Moreover, let n := k + l + 2p, and let B
be the block Bk,l of FSn.

(a) Suppose that k > 1, so that B forms a (2 : 1)-pair with the block B̄ := Bk−1,l of FSn−1. Then 
ᾱ := ᾱ(B, B̄) is the lexicographically largest partition of B̄ with ∂-value ∂(ᾱ).

(b) Suppose that k � 1 and l � 1, so that B forms a (2 : 1)-pair with the block B̄ := Bk,l−1 of FSn−1. 
Then ᾱ := ᾱ(B, B̄) is the lexicographically smallest p-regular partition of B̄ with ∂-value ∂(ᾱ).
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Proof. (a) Assume that there is a partition μ of n − 1 with p-core (k − 1, 1l), ∂(μ) = ∂(ᾱ) and ᾱ < μ. 
Then we may choose μ to be the lexicographically smallest such partition. By [2, Remark 2.1], this forces 
μ = (ᾱ)+ and ᾱ to be p-restricted. But this contradicts Corollary 4.4(a) and (c).

(b) Assume that there is a p-regular partition μ of n −1 with p-core (k, 1l−1), ∂(ᾱ) = ∂(μ) and μ < ᾱ. Then 
we may choose μ to be the lexicographically largest such partition. Then [2, Remark 2.1] gives μ = (ᾱ)−. 
But, by 3.1 and Theorem 3.9, we know that μ = (ᾱ)− = γ̄ and γ̄ is not p-regular, by Corollary 4.4 (b) and 
(d), a contradiction. �
4.6. Strategy of proof. We are now in the position to prove Theorem 4.1. Our most important ingredients 
will be the results concerning the Ext-quivers of the principal blocks of FS2p and FS2p+1 in Appendix B
together with Theorem 3.9. The notation used throughout the proof will thus be chosen in accordance with 
that fixed in Theorem 3.9. As well, whenever (B, B̄) is a (2 : 1)-pair of blocks of weight 2 and μ is a good 
partition of B̄, we denote the corresponding good partition Φ−1(μ) by μ̂, as in 3.2.

In the proof of Theorem 4.1 below, we shall argue by induction on k + l, and give full details in the case 
where k + l � p − 1. In doing so, we shall consider the following subcases:

• k = l = 0, or k = 1 and l = 0, when Bk,l is the principal block of FS2p or the principal block of 
FS2p+1; these are covered by Theorem B.9;

• 1 < k � p − 3, when we are in case (2) of Theorem 3.9;
• k = 1 and 1 � l < p − 3, when we are case (4) of Theorem 3.9;
• k = p − 1 and l = 0, when we are in case (1) of Theorem 3.9;
• k = 1 and p − 3 � l � p − 2, when we are in case (4) and (5), respectively, of Theorem 3.9.

The assertion in the case where p + 1 � k + l, can then be obtained completely analogously, so that 
we shall leave the details to the reader. Moreover, we should like to emphasize that, for all p-cores (k, 1l)
with k � 1, the blocks Bk,l and Bl+1,k−1 are isomorphic via tensoring with the sign representation, since 
(l + 1, 1k−1) = (k, 1l)′. In particular, the Ext-quivers of Bk,l and Bl+1,k−1 are isomorphic as undirected 
graphs. Hence, if we were only interested in the structure of the Ext-quivers as undirected graphs, we would 
only need to examine half of the blocks. Since, however, we also want to give more detailed information on the 
lexicographic ordering and the ∂-values of the p-regular partitions in the blocks occurring in Theorem 4.1, 
we shall treat all blocks via our inductive arguments.

Proof. (of Theorem 4.1) In the following, set B := Bk,l and κ := κB := (k, 1l). We argue by induction on 
k + l, and suppose first that k + l � p − 1. If k = l = 0, then B is the principal block of FS2p, which 
has Ext-quiver Q0,0(p), by Theorem B.9. If k + l = 1, then B is the principal block of FS2p+1, which 
has Ext-quiver Q1,0(p), by Theorem B.9. Thus, from now on we may suppose that k + l > 1. Suppose, 
moreover, that 1 < k � p − 3. Then B forms a (2 : 1)-pair with the block B̄ := Bk−1,l, by Proposition 4.2. 
By induction, B̄ has Ext-quiver Qk−1,l(p). By Corollary 4.4 and Lemma 4.5, we know that ᾱ is the largest 
partition of n − 1 with p-core κB̄ and ∂-value p − k. By 3.7, it now suffices to consider the following part of 
the quiver of B̄, whose vertices lie on those rows with ∂-values p − k − 2, p − k − 1, p − k and p − k + 1.

β̄+

μ

β̄

ᾱ γ̄

•
•

•
•
••

•

•
•
•

••

We identify the labels of the red vertices. To do so, we use Corollary 4.4 and Theorem 3.9. First, by 
Corollary 4.4, γ̄ and β̄ are p-regular. By Theorem 3.9, we then know that ᾱ = γ̄+, so that γ̄ is the vertex 
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to the right of ᾱ. Moreover, by Theorem 3.9, γ̄ is connected to β̄, and ∂(β̄) = ∂(γ̄) − 1, by Corollary 4.4. 
Since, by Lemma 3.8, β̄ is also connected to ᾱ, this identifies the positions of β̄ and β̄+. By induction, we 
also know that μ > β̄. Hence, by [2, Theorem 6.1], we must have [Sβ̄ : Dμ] �= 0, and then Ȳ ∼= Dμ, in the 
notation of Theorem 3.9. This then also forces Z̄ = {0}, so that β̄ is the only common neighbour of ᾱ and 
γ̄. So, by Corollary 4.4, Theorem 3.9 and 3.7, we deduce the following information on the corresponding 
part of the quiver of B, whose vertices again lie in rows with ∂-values p −k−2, p −k−1, p −k and p −k+1:

α+

μ̂

α

β

γ
•

•
•

••
•

•
•

•
•

Here Dμ̂ ∼= Y . Since, by Corollary 4.4, β is not p-restricted, β+ does not exist, so that α is only connected 
to μ̂ and β, by Lemma 3.8 and Theorem 3.9; in particular, we have μ̂ > α as well as β > γ. This shows that 
B has quiver Qk,l(p).

Next suppose that k = 1 and 1 � l < p − 3. Then, by Proposition 4.2, B forms a (2 : 1)-pair with the 
block B̄ := Bk,l−1. By induction, B̄ has quiver Qk,l−1(p). By Corollary 4.4 and Lemma 4.5, ᾱ is the smallest 
p-regular partition of n − 1 with p-core κB̄ and ∂-value p − 1 − l. So, by 3.7, we only need to consider the 
following part of the quiver of B̄, whose vertices lie in rows with ∂-values p − l − 3, p − l − 2, p − l − 1 and 
p − l:

μ ρ

β̄

ᾱ
ᾱ+

•
•

•
•

•

• •
•
•

Again we determine the labels of the red vertices. By Corollary 4.4, γ̄ is p-singular, while β̄ is p-regular 
and p-restricted, so that β̄+ exists. By Theorem 3.9 and Lemma 3.8, ᾱ is connected to β̄ and β̄+. This 
identifies these two vertices. Moreover, by induction, we know that μ > β̄, so that Dμ ∼= Ȳ and Z̄ = {0}. 
So, by Corollary 4.4, Theorem 3.9 and 3.7, we deduce the following information on the corresponding part 
of the quiver of B, whose vertices again lie in rows with ∂-values p − l − 3, p − l − 2, p − l − 1 and p − l:

α+

μ̂ ρ̂

γ

α

β+

•
•

•
•

•
•

•
•
•

Here Dμ̂ ∼= Y . Since, by Corollary 4.4, β is p-singular, Lemma 3.8 and Theorem 3.9 imply that β+ and μ̂
are the only neighbours of α. Since [Sα : Dμ̂] �= 0 �= [Sα : Dβ+ ], we must have β+ > α and μ̂ > α. Moreover, 
since [Sρ : Dβ̄ ] �= 0, also [Sρ̂ : Dγ ] �= 0 and γ > ρ̂. Consequently, B has quiver Qk,l(p).

Next consider the case where k = p − 2 and 0 � l � 1. Then, by Proposition 4.2, B forms a (2 : 1)-
pair with the block B̄ := Bp−3,l, which has quiver Qp−3,l(p), by induction. Again, by Corollary 4.4 and 
Lemma 4.5, ᾱ is the largest p-regular partition of n − 1 with p-core κB̄ and ∂-value 2. By 3.7, we need to 
consider the following part of the quiver of B̄, whose vertices lie in rows with ∂-values 0, 1, 2 and 3:
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β̄+

μ ρ

β̄

γ̄ᾱ

•
••
•

• •
•
•

By Corollary 4.4, β̄ is p-regular and p-restricted, so that β̄+ exists. As well, γ̄ is p-regular and p-restricted, 
and γ̄+ = ᾱ, by Theorem 3.9. So, by Theorem 3.9 and Lemma 3.8, ᾱ is only connected to β̄ and β̄+, which 
identifies the positions of β̄, β̄+ and γ̄. By induction, we further have μ > β̄ and ρ > β̄. From Theorem 3.9
and [2, Theorem 6.1], we thus deduce that Ȳ ∼= Dμ ⊕Dρ and Z̄ = {0}. Thus, by Theorem 3.9 and 3.7 we 
obtain the corresponding part of the quiver of B, where again the vertices drawn lie in rows with ∂-values 
0, 1, 2 and 3:

ᾱ+

μ̂ ρ̂

γ

β

α

•
•• •
•

•
•

•
•

Here, by Theorem 3.9, we have Y ∼= Dμ̂ ⊕Dρ̂. Since, by Corollary 4.4, β is not p-restricted, β+ does not 
exist. Hence, by Lemma 3.8 and Theorem 3.9, α is only connected to β, μ̂ and ρ̂. The information on the 
lexicographic order is again obtained from Theorem 3.9 and [2, Theorem 6.1]. This shows that B has quiver 
Qk,l(p).

If k = p −1, then l = 0. By Proposition 4.2, B forms a (2 : 1)-pair with the block B̄ := Bp−2,0. The latter 
has quiver Qp−2,0(p), by induction. By Corollary 4.4 and Lemma 4.5, ᾱ is the largest p-regular partition of 
n −1 with p-core κB̄ and ∂-value 1. By 3.7, we consider the following part of the quiver of B̄, whose vertices 
lie in rows with ∂-values 0, 1, 2 and 3:

ᾱ

μ β̄

γ̄

•
••

•
•
• •

•

By Corollary 4.4, γ̄ is both p-regular and p-restricted, so that γ̄+ exists. By Theorem 3.9, we get ᾱ = γ̄+. 
By Corollary 4.4, we further know that ∂(β̄) = 0, and β̄ is p-regular and not p-restricted, so that β̄+ does 
not exist. More precisely, we have β̄ = (2(p − 1), p, 1). Hence β̄ is white, and is thus the largest p-regular 
white partition with p-core κB̄. This identifies the positions of ᾱ, γ̄ and β̄. The remaining red vertex belongs 
to the p-regular (black) partition μ with Z̄ ∼= Dμ. Since all other vertices connected to β̄ are smaller than 
β̄, Theorem 3.9 also implies Ȳ = {0}.

By Corollary 4.4, β is p-regular and not p-restricted, so that β+ is not defined. Moreover, we have 
α = (2(p − 1) + 1, p) = 〈p, p〉 with ∂(α) = 0, and α is white. By Lemma 3.8 and Theorem 3.9, we deduce 
that α is only connected to β. As for the lexicographic ordering, we have μ = (3p − 2) = 〈p − 1〉, since this 
is the lexicographically largest (white) partition in B̄. Thus μ̂ = (3p − 1) = 〈p〉; in particular, μ̂ > α. Note 
also that μ̂ satisfies Z ∼= Dμ̂. This now gives the corresponding part of the quiver of B.

αμ̂ γ

β

•
•
• •

•
• •

•
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The remaining information on the lexicographic order is again obtained from Theorem 3.9 and [2, The-
orem 6.1]. This shows that B has quiver Qk,l(p).

To complete the case k + l � p − 1, it remains to treat the blocks with p-cores κ1,p−3 and κ1,p−2. So let 
first k = 1 and l = p − 3. By Proposition 4.2, B forms a (2 : 1)-pair with B̄ := B1,p−4, which has quiver 
Q1,p−4(p), by induction. By Lemma 4.5 and Corollary 4.4, ᾱ is the smallest p-regular partition of n −1 with 
p-core (1p−3) and ∂-value 2. By 3.7, we thus have to consider the following part of the quiver of B̄, whose 
vertices belong to the rows with ∂-values 0, 1, 2 and 3:

β̄+

μ ρ

β̄

ᾱ+
ᾱ

•
••
•

•••
•

By Corollary 4.4, γ̄ is p-singular, while ᾱ and β̄ are both p-regular and p-restricted. Thus ᾱ+ and β̄+

exist. As well, ∂(β̄) = 1. This identifies the positions of ᾱ, β̄, ᾱ+ and β̄+. By Theorem 3.9 and [2], we further 
deduce that Ȳ ∼= Dμ ⊕Dρ and Z̄ = {0}.

By Corollary 4.4, γ is p-regular and p-restricted, and by Theorem 3.9, we have γ+ = α with ∂-value 1. 
So from Theorem 3.9 we deduce the following information on the corresponding part of the quiver of B:

α+

μ̂ ρ̂

γ

β+

α

•
••
•

•
••

•

Here Y ∼= Dμ̂ ⊕ Dρ̂. By Lemma 3.8, we also conclude that ρ̂, μ̂ and β+ are the only neighbours of α. 
Thus B has quiver Q1,p−3(p). The information concerning the lexicographic ordering follows again from 
Theorem 3.9 and [2, Theorem 6.1].

Now let k = 1 and l = p − 2. Then B forms a (2 : 1)-pair with B̄ := B1,p−3, which has quiver Q1,p−3(p), 
as we have just seen. By Corollary 4.4, we know that β̄ and γ̄ are p-singular, but β̄ is p-restricted, so that 
β̄+ exists. Moreover, ᾱ is both p-regular and p-restricted, so that ᾱ+ exists. As well, ᾱ has ∂-value 1 and 
is, by Lemma 4.5, the smallest p-regular partition of n − 1 with p-core (1p−2) and ∂-value 1. We also get 
β̄ = (2p, 1p−2), which has ∂-value 0 and is black; in particular, also β̄+ is black. This gives the following 
relevant part of the quiver of B̄, which lies in the rows with ∂-values 0, 1, 2 and 3:

β̄+ ρ

ᾱ
ᾱ+

•
••
•

•
••

•

By Theorem 3.9, we have Dρ ∼= Z̄. Note that α = (3, 2p−1, 1p−2) = 〈2, 2〉, which has ∂-value 0 and is 
black. Displaying all partitions of B on a [2, 3p−1]-abacus, we deduce that the p-regular partitions of B with 
∂-value 0 are precisely 〈p〉, 〈m, m − 1〉, for m ∈ {3, . . . , p}, and 〈2, 2〉 = α. Hence α is the lexicographically 
smallest p-regular partition of B with ∂-value 0. With 3.7, Lemma 3.8 and Theorem 3.9, we get the following 
information on the corresponding part of the quiver of B:
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α+ ρ̂
α

β+

•
•

•
•

•

••
•

Here Dρ̂ ∼= Z. It remains to verify that α is only connected to β+. This is not immediate at this stage, 
since we do not know Ȳ and Y . However, from [1], we deduce that the Mullineux conjugate partition of α
is (2(p − 1) + 1, p). We have seen above that this partition has, in the quiver of its block Bp−1,0, only one 
neighbour. Therefore, α also has only one neighbour, which must be β+. This completes the proof in the 
case k = 1 and l = p − 2, showing that B then has quiver Q1,p−2(p).

To summarize, we have now proven Theorem 1.1 in the case where k + l � p − 1. Next suppose that 
k + l = p + 1. Then Bk,l is Scopes equivalent to Bk−1,l−1, by Proposition 4.2. By induction Bk−1,l−1 has 
quiver Qk−1,l−1(p). Since the Scopes equivalence preserves the lexicographic ordering as well as ∂-values 
and colours of the corresponding partitions, we deduce that also Bk,l has quiver Qk−1,l−1(p), as claimed.

Lastly, we need to treat the case where p + 2 � k + l � 2p − 1. To show that Bk,l then has quiver 
Qk−1,l−1(p), we again argue by induction on k + l. Since the arguments used in the case 2 � k + l � p − 1
above translate almost literally, we leave the details to the reader. �

As a consequence of Theorem 4.1 and Proposition C.1, we now also get the following result, which 
immediately implies Theorem 1.2.

Proposition 4.7. Let p � 5, and let k, k′, l, l′ ∈ N0 be such that (k, 1l) and (k′, 1l′) are p-cores. Then the 
blocks Bk,l and Bk′,l′ are Morita equivalent if and only if one of the following cases occurs:

(i) (k, 1l) = (k′, 1l′);
(ii) (k, 1l)′ = (k′, 1l′);
(iii) k + l = p − 1, k′ + l′ = p + 1, (k, 1l) = (k′ − 1, 1l′−1);
(iv) k + l = p − 1, k′ + l′ = p + 1, (k, 1l)′ = (k′ − 1, 1l′−1).

Proof. If (k, 1l)′ = (k′, 1l′), then Bk′,l′ is isomorphic, hence Morita equivalent, to Bk,l, an isomorphism being 
given by tensoring with the sign representation. If k + l = p − 1, k′ + l′ = p + 1 and (k, 1l) = (k′ − 1, 1l′−1), 
then Bk,l and Bk′,l′ are Scopes, hence Morita, equivalent, by Proposition 4.2(c).

So, conversely, suppose that Bk,l is Morita equivalent to Bk′,l′ . Then the Ext-quivers of Bk,l and Bk′,l′

are isomorphic as undirected graphs. We distinguish three cases. If k + l � p − 1 and k′ + l′ � p − 1, then 
Bk,l has Ext-quiver Qk,l(p) and Bk′,l′ has Ext-quiver Qk′,l′(p), by Theorem 4.1. By Proposition C.1, we 
must have (k, l) = (k′, l′) or (k′, l′) = (l + 1, k − 1). In the latter case, (k′, 1l′) = (k, l)′.

If p + 1 � k + l � 2p − 1 and p + 1 � k′ + l′ � 2p − 1, then Bk,l has Ext-quiver Qk−1,l−1(p) and 
Bk′,l′ has Ext-quiver Qk−1′,l−1′(p), by Theorem 4.1. Thus Proposition C.1 again implies (k, l) = (k′, l′), or 
(k′, 1l′) = (k, l)′.

Lastly, suppose that 0 � k+l � p −1 and p +1 � k′+l′ � 2p −1. Then Bk,l has Ext-quiver Qk,l(p) and Bk′,l′

has Ext-quiver Qk−1′,l−1′(p), by Theorem 4.1. So this time Proposition C.1 implies (k, l) = (k′ − 1, l′ − 1)
or (k, l) = (l′, k′ − 2); in particular, k + l = p − 1 and k′ − l′ = p + 1. If (k, l) = (l′, k′ − 2), then 
(k, 1l)′ = (k′ − 1, 1l′−1)′.

This completes the proof of the proposition. �
4.8. The case p = 3. To conclude this section, we now also consider the case p = 3. By [17], there are 
five Scopes classes of blocks of weight 2, representatives of these being given by the blocks with 3-cores
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∅, (1), (2), (12), and (3, 12). Note that all of these cores are hook partitions. The decomposition numbers of 
these blocks are well known; see [9]. As well, the Loewy structures of the respective Specht modules can 
easily be determined. Recall further that Theorem 3.9 also holds for p = 3. Thus, examining the principal 
blocks of FS6 and FS7 and then arguing inductively as in the proof of Theorem 4.1, we see that the 
Ext-quivers of these five blocks are as drawn below. Here, as before, we order partitions with respect to 
their ∂-values, and the partitions with the same ∂-values with respect to the lexicographic ordering, from 
left to right. Again, an arrow λ → μ in the quivers indicates that λ > μ and Ext1(Dλ, Dμ) �= {0}.

∅ (1) (2) (12) (3, 12)
b w•

••
•

•

b w•
•• •
•
•

wb w•
•
• •

•

b w
b•

•
•

•
• b w w b•

•
•
•
•

•
•

The blocks with 3-cores (2) and (12), respectively, are isomorphic via tensoring with the sign representa-
tion, and their quivers are isomorphic as undirected graphs. The above table also shows that the quivers of 
the blocks labelled by ∅, (1), (2) and (3, 12) are pairwise non-isomorphic as undirected graphs. In particular, 
these partitions parametrize the four Morita equivalence classes of 3-blocks of symmetric groups of weight 2.

Appendix A. Abacus combinatorics

The purpose of this short section is to collect some useful abacus combinatorics that we use repeatedly in 
this article. Most of this is well known to the experts and can easily be verified. We, therefore, omit most of 
the details, but present some illustrating examples. Throughout this section, let p be a prime. Our notation 
will be chosen in accordance with Section 2.

A.1. Hook lengths and abacus displays. Suppose that λ is a partition of n with p-core κ = (κ1, . . . , κt) and 
p-weight w. We display λ on an abacus with p runners, labelled from 1 to p. We denote this abacus by Γλ. 
By [9, 2.7.13], there is a bijection between the entries in the hook diagram of λ divisible by p and the set 
of pairs ((r, i), (s, i)) such that there is a bead on runner i in row r and a gap on runner i in row s < r of 
Γλ. The entry in the hook diagram of λ then equals p(r − s). Moreover, one can also read off that the leg 
length l of the hook in question equals the number of beads passed when moving the bead from position 
(r, i) to position (s, i).

Example A.2. Suppose that p = 3 and λ = (6, 33, 22). Then λ has p-core κ = (3, 1) and p-weight 5. We 
consider the abacus display Γλ with six beads as well as the hook diagram Hλ of λ:

Γλ: 

− − •
• − •
• • −
− − •

Hλ: 11 10 7 3 2 1
7 6 3
6 5 2
5 4 1
3 2
2 1

So there are five entries in Hλ that are divisible by 3. We record, on the one hand, their positions in 
Hλ, the lengths (hl) as well as the leg lengths (ll) of the corresponding hooks and, on the other hand, the 
respective pairs of positions in Γλ under the above-mentioned bijection:
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position in Hλ hl ll pair of positions in Γλ

(1, 4) 3 0 ((4, 3), (3, 3))

(2, 2) 6 4 ((3, 2), (1, 2))

(2, 3) 3 2 ((3, 2), (2, 2))

(3, 1) 6 4 ((3, 1), (1, 1))

(5, 1) 3 1 ((2, 1), (1, 1))

A.3. Colours and ∂-values of weight-2 partitions. Suppose now that p � 3 and that λ = (λ1, . . . , λs) is 
a partition of n with p-core κ = (κ1, . . . , κt) and p-weight 2. Recall from 3.1 the definition of ∂(λ). We 
consider an [m1, . . . , mp]-abacus display Γλ of λ with at least 2p + t beads. In the notation of 2.5, there are 
three possibilities: λ = 〈i〉, λ = 〈i, i〉, or λ = 〈i, j〉, for some 1 � i < j � p. One of our next aims is to show 
how to determine the colour of λ in the case ∂(λ) = 0, using the abacus display Γλ. This information was 
needed, for instance, in the proof of Lemma 3.4.

Suppose that λ = 〈i〉. Then A.1 shows that Hλ has an entry equal to 2p, and the leg length of the 
corresponding hook equals the number of beads passed when moving the (unique) movable bead on runner 
i two positions up. Moreover, Hλ has an entry equal to p. The leg length of the corresponding hook equals 
the number of beads passed when moving the movable bead on runner i one position up.

If λ = 〈i, i〉, then, by A.1, Hλ also has an entry equal to 2p. The leg length of the corresponding hook 
equals the number of beads passed when putting the lower of the two movable beads on runner i two 
positions up. As well, Hλ has an entry equal to p. The leg length of the corresponding hook equals the 
number of beads passed when moving the upper of the two movable beads on runner i one position up.

Lastly, suppose that λ = 〈i, j〉, for some i < j. By A.1, Hλ then has two entries equal to p. The hook 
lengths of the corresponding hooks equal the number of beads passed when moving the movable bead on 
runner i (respectively, the movable bead on runner j) one position up.

From now on, suppose, in addition, that ∂(λ) = 0. Suppose, moreover, that the movable beads lie in 
positions (x, i) and (y, j) of Γλ. If x < y, then we consider rows x − 1, . . . , y of Γλ:

· · · − m1 • r1
l1 • · · · • · · ·
...

...
...

...
...

· · · − · · · • · · ·
· · · − · · · − r2
l2 − m2 • · · ·

Here as well as in all subsequent abacus displays, m, m1, m2, l1, l2, r1, r2, l, r are the numbers of beads in 
the respective parts of Γλ, as shown in the diagrams. Since λ has weight 2, we must have m1 � m2, l1 � l2
and r1 � r2. But then, by A.1 we get that ∂(λ) = |(l1 + r1 +m1 + 1) − (l2 +m2 + r2)| > 0, a contradiction.

If x > y + 1, then rows y − 1, . . . , x of Γλ have shape

· · · • · · · − r1
l1 • m1 • · · ·
· · · • · · · − · · ·
...

...
...

...
...

· · · • · · · − · · ·
· · · − m2 − r2
l • · · · − · · ·
2
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Thus, we get ∂(λ) = |(m1 + l1 + r1 + 1) − (l2 + r2 + m2)| > 0, again a contradiction.
If x = y + 1, then rows x − 2, x − 1, x of Γλ have shape

· · · • · · · − r1
l1 − m • r2
l2 • · · · − · · ·

We get ∂(λ) = |(l1 + r1 + m) − (l2 + m2 + m + 1)|, thus l1 + r1 = l2 + m2 + 1.
Lastly, if the movable bead on runner i lies in the same row x as the movable bead on runner j, then we 

consider rows x and x − 1 of Γλ:

· · · − m1 − r

l • m2 • · · ·

Note that still m1 � m2, since there is no movable bead on any runner different from i and j. So there 
are two ways to obtain [κ] from [λ], depending on which bead is moved first. If we move the bead on runner 
i first, then from A.1 we get 0 = ∂(λ) = |(l + r + m1) − (l + r + m2)|, thus m1 = m2. Analogously, also in 
the case that we first move the bead on runner j, we get 0 = ∂(λ) = |(l + r + m2 + 1) − (l + r + m1 + 1)|, 
thus m1 = m2.

Example A.4. To illustrate the combinatorics in A.3, we consider p = 3 and the principal block of FS7 with 
3-core (1). Moreover, we consider a [2, 3, 2]-abacus, for every partition of this block.

(a) For λ = (5, 2) = 〈3〉, we have

Γλ: 

• • •
• • −
− • −
− − •

Hλ: 6 5 3 2 1
2 1

The leg length of the hook of length 6 is 1, the leg length of the hook of length 3 is 0. Moving the red 
bead on runner 3 one position up, we do not pass any bead, moving this bead two positions up we pass one 
bead.

(b) For λ = (22, 13) = 〈3, 3〉, we have

Γλ: 
• • −
• • •
− • •

Hλ: 6 2
5 1
3
2
1

The hook of length 6 has leg length 4, the hook of length 3 has leg length 2. Moving the blue bead two 
positions up we pass four beads, moving the red bead one position up we pass two beads.

(c) For λ = (4, 3) = 〈3, 2〉, we have

Γλ: 

• • •
• • −
− − •
− • −

Hλ: 5 4 3 1
3 2 1
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The hook of length 3 corresponding to the red entry in Hλ has leg length 1, the hook of length 3 
corresponding to the blue entry in Hλ has leg length 0. Moreover, ∂(λ) = 0 and, since the larger leg length 
of the hooks just mentioned is odd, λ is white. Moving the red bead one position up we pass one bead, 
moving the blue bead one position up we do not pass any bead.

(d) For λ = (23, 1) = 〈3, 1〉, we have

Γλ: 
• • •
− • −
• • •

Hλ: 5 3
4 2
3 1
1

The hook of length 3 corresponding to the red entry in Hλ has leg length 1, the hook of length 3 
corresponding to the blue entry in Hλ has leg length 2. Moreover, ∂(λ) = 0 and, since the larger leg length 
of the hooks just mentioned is even, λ is black. Moving the red bead one position up we pass one bead, 
moving the blue bead one position up we pass two beads.

Appendix B. The principal p-blocks of S2p and S2p+1

Let p � 5 be a prime. In the following we shall show that the principal block B0,0 := B∅ of FS2p has 
Ext-quiver Q0,0,(p), and the principal block B1,0 := B(1) of FS2p+1 has Ext-quiver Q1,0(p). We should also 
like to emphasize that the structure of the Ext-quivers of B0,0 and B1,0 can be deduced from [18] and [2]. 
As well, these quivers appear in work of Martin [10,11].

We shall give an elementary, self-contained proof here, the most important information being given by 
the decomposition matrix of B0,0. The latter has been used in several publications, such as [10,18], that refer 
to the book [15], which, however, does not provide too many details. We shall, thus, give a brief account in 
the form we shall use it. Our strategy will then be to induce indecomposable projective FS2p−1-modules 
to FS2p.

B.1. Abacus labelling and order on partitions. Consider the principal block B0,0 of FS2p. We display the 
p-core ∅ of B0,0 as well as all partitions of B0,0 on a [2p]-abacus. As in 2.5(b) we identify partitions with 
their respective abacus displays.

(a) With the above notation, the lexicographic ordering on partitions translates as follows:
(i) For all p � j > i � 1 and p � a � b � 1, we have 〈j〉 > 〈i〉 > 〈a, b〉.
(ii) For all p � j > i � 1 and p � j′ > i′ � 1, we have

〈j, i〉 > 〈j′, i′〉 ⇔ j > j′ , or j = j′ and i > i′ .

This leaves to determine the positions of the partitions 〈i, i〉 with respect to the lexicographic ordering.
(iii) For all p � i � 3, we have 〈i, 1〉 > 〈i, i〉 > 〈i − 1, i − 2〉 and 〈2, 1〉 > 〈2, 2〉 > 〈1, 1〉.

(b) The total number of partitions of B0,0 equals 2p +
(
p
2
)
, of which 

(
p+1
2
)
− 1 are p-regular. Moreover, 

the following p + 1 partitions are p-singular:

〈2, 1〉 and 〈j, j〉 , for 1 � j � p . (34)

All partitions in (34) are p-restricted.

We now start to induce indecomposable projective FS2p−1-modules to B0,0.
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B.2. Inducing from a block of FS2p−1 of weight 0. Consider the block B(p,1p−1) of FS2p−1 of weight 0. It 
has a unique simple module (up to isomorphism), namely D(p,1p−1) ∼= S(p,1p−1) ∼= P (p,1p−1). The induced 
module IndS2p

S2p−1
(P (p,1p−1)) is of course also projective and, by the Branching Rules, it admits a Specht 

filtration whose Specht quotients are labelled by those partitions of 2p that are obtained by adding a node 
to (p, 1p−1). Thus IndS2p

S2p−1
(P (p,1p−1)) has a Specht filtration with quotients labelled by (p +1, 1p−1), (p, 1p)

and (p, 2, 1p−2). All of these partitions belong to B0,0, so that

IndS2p
S2p−1

(P (p,1p−1)) = P (p,1p−1) ↑B0,0 .

Now assume that P := P (p,1p−1) ↑B0,0 was decomposable. Then this module would have an indecompos-
able (projective) direct summand isomorphic to one of the Specht modules labelled by (p +1, 1p−1), (p, 1p), 
or (p, 2, 1p−2). But such a Specht module would then be simple and projective, which is not possible in 
a block of weight greater than 0. Note that this argument uses the hypothesis p � 5, so that, by [7] the 
multiplicity of a Specht module in any Specht filtration of P is unique. Alternatively, one could also examine 
the endomorphism algebra of P .

Hence P must be indecomposable. The labels of its Specht quotients with respect to the [2p]-abacus are:

(p + 1, 1p−1) = 〈1〉, (p, 2, 1p−2) = 〈p, 1〉, (p, 1p) = 〈p, p〉 .

Recall from 2.4, that if Sμ is isomorphic to a subquotient of any Specht filtration of Pλ, then μ = λ or 
λ > μ. Given the Specht quotients of P , this shows that

P = P (p,1p−1) ↑B0,0∼= P (p+1,1p−1) = P 〈1〉 .

B.3. Inducing from a block of FS2p−1 of weight 1. (a) We discuss first an appropriate parametrization of 
the partitions in blocks of FS2p−1 of weight 1 that are relevant for our investigations, so that we end up 
with our fixed labelling. For B0,0 we have previously used the [2p]-abacus; we have numbered the runners 
as 1, 2, . . . , p from left to right, and used this to parametrize the partitions.

We can also represent all partitions in B0,0 on the [3a, 2p−a]-abacus, for any 1 � a < p. More precisely, 
starting with the [2p]-abacus, we insert one bead at each of the positions 1, 2, . . . , a, and then shift all other 
beads and gaps by a places. This means that a gap on runner i in the [2p]-abacus is now on the (i + a)th 
runner (taking i +a modulo p). For example, a gap on runner 1 of the [2p]-abacus becomes a gap on runner 
1 + a of the [3a, 2p−a]-abacus. We label the runners of the new abacus cyclically, so that the rightmost 
runner has label p − a, that is, the labels of the runners of this new abacus are

(p− a + 1, p− a + 2, . . . , p, 1, 2, . . . , p− a).

Then a gap on the runner labelled with j comes from a gap that is on runner j of the [2p]-abacus. We use 
this observation in the following.

(b) Now we need to determine which blocks B of FS2p−1 of weight 1 contain a Specht module Sλ with 
Sλ ↑B0,0 �= {0}. Equivalently, such a block B satisfies Sμ ↓B �= {0}, for some Specht module Sμ in B0,0. Thus, 
let Sμ be a Specht module in B0,0 and represent μ on the [2p]-abacus. To obtain the (uniquely determined) 
multiplicity of a Specht FS2p−1-module in any Specht filtration of Sμ ↓S2p−1 , we distinguish three cases: 
suppose first that any gap occurs on some runner j with 2 � j � p − 1. Then any bead which can be moved 
one place to the left occurs on some runner i with 2 � i � p and can be moved to runner i − 1. In each 
case, the corresponding Specht quotient Sλ of Sμ ↓S2p−1 belongs to a block whose p-core is represented on 
the [2k, 3, 1, 2l]-abacus, for some k, l ∈ {0, . . . , p} with k + l = p − 2. These are precisely the hook partitions 
of p − 1.
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Second, suppose that there is a gap on runner 1, that is μ = 〈1〉 or μ = 〈1, i〉, for some i ∈ {1, . . . , p}. 
If μ = 〈1, 2〉 = (2p), then Sμ ↓S2p−1

∼= S(2p−1,1), which belongs to the block labelled by the hook partition 

(2, 1p−3) of p − 1.
If μ = 〈1, 1〉 = (12p), then Sμ ↓S2p−1

∼= S(12p−1), which belongs to the block labelled by the hook partition 

(1p−1) of p − 1.
If μ = 〈1〉 = (p + 1, 1p−1), then Sμ ↓S2p−1 has a Specht quotient isomorphic to S(p+1,1p−2) in the block 

with p-core (1p−1), and a Specht quotient isomorphic to S(p,1p−1) in the block of weight 0.
If μ = 〈1, i〉 with i � 3, then the Young diagram of μ has three removable nodes, which correspond to 

beads on runners 2 and i and i + 1 (when i < p). Moving the bead one place to the left in each case yields 
a partition in a weight-1 block labelled by a hook partition, as we have just seen above. Let i = p, so that 
〈1, p〉 = (p, 2, 1p−2), then the restriction to S2p−1 has a Specht quotient labelled by the partition (p, 1p−1)
of 2p − 1 belonging to the block of weight 0, which has to be the case not yet covered.

Third, suppose there is a gap on runner p with μ not yet considered, then μ = 〈i, p〉 for 2 � i � p or 
μ = 〈p〉.

If μ = 〈i, p〉 for 2 � i < p −1 then the Young diagram has three removable nodes. The abacus presentation 

yields three beads which can be moved by one place to the left and in each case the corresponding Specht 
quotient of the restriction lies in a weight-1 block labelled by a hook partition.

If μ = 〈p − 1, p〉 = (p2) there is only one removable node, and the restriction is isomorphic to a Specht 
module in a block whose core is a hook partition, similarly for μ = 〈p〉 = (2p).

Let 〈p, p〉 = (p, 1p), its restriction to S2p−1 has Specht quotients labelled by (p − 1, 1p), in the block with 

core (p − 1), and (p, 1p−1), in a block of weight 0.
To summarize, we now know that, whenever, Sλ is a Specht FS2p−1-module in a block of weight 1 with 

Sλ ↑B0,0 �= {0}, then the p-core of the corresponding block is one of the p − 1 hook partitions of p − 1. 
Therefore, for s ∈ {2, . . . , p}, we from now on denote the block of FS2p−1 with p-core (s − 1, 1p−s) by Bs. 
The p-core as well as all partitions of Bs will be represented on a [4, 2, 3p−2, 2s−2]-abacus. As above, we 

label the runners of this abacus from left to right, by s − 1, s, s +1, . . . , p, 1, 2, . . . , s − 2. Thus, in particular, 
for s < p, the rightmost runner with three beads has label p.

With this notation, the partitions of Bs are obtained by moving exactly one bead on some runner i of 
the [4, 2, 3p−2, 2s−2]-abacus of (s − 1, 1p−s) one position down; we shall denote the resulting partition by 

〈i〉 (when s is fixed). Then, for a fixed s ∈ {1, . . . , p}, and with B.1, we obtain the following lexicographic 

ordering on the partitions of Bs:

(i) 〈1〉 = 〈s − 1〉 > 〈p〉 > 〈p − 1〉 > · · · > 〈3〉 > 〈2〉 , for s = 2;
(ii) 〈s − 1〉 > 〈p〉 > 〈p − 1〉 > · · · > 〈s + 1〉 > 〈s − 2〉 > · · · 〈1〉 > 〈s〉 , for 3 � s < p;
(iii) 〈p − 1〉 > 〈p − 2〉 > · · · > 〈1〉 > 〈p〉 , for s = p.

(c) For s ∈ {2, . . . , p}, the decomposition matrix of Bs is well known from the theory of blocks with cyclic 

defect groups. Thus, by Brauer Reciprocity and 2.4, one also knows the Specht factors occurring in any 

Specht filtration of any indecomposable projective Bs-module. More precisely, for every p-regular partition 

λ of Bs, one has Pλ ∼ Sλ⊕Sλ̃, where λ̃ denotes the lexicographically next smaller partition of Bs. So, with 

(i)-(iii) above, this gives the following information that will be crucial for the proof of Theorem B.4 below:
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s = 2 3 � s � p− 1 s = p

P 〈s−1〉 ∼ S〈s−1〉 ⊕ S〈p〉 P 〈s−1〉 ∼ S〈s−1〉 ⊕ S〈s−2〉 P 〈s−1〉 ∼ S〈s−1〉 ⊕ S〈s−2〉

P 〈p〉 ∼ S〈p〉 ⊕ S〈p−1〉 P 〈p〉 ∼ S〈p〉 ⊕ S〈p−1〉 P 〈s−2〉 ∼ S〈s−2〉 ⊕ S〈s−3〉

...
...

...
... P 〈s+1〉 ∼ S〈s+1〉 ⊕ S〈s−2〉 ...
...

...
...

P 〈3〉 ∼ S〈3〉 ⊕ S〈2〉 P 〈1〉 ∼ S〈1〉 ⊕ S〈s〉 P 〈1〉 ∼ S〈1〉 ⊕ S〈s〉

(d) By the Branching Theorem [8, Theorem 9.2], whenever s ∈ {2, . . . , p} and i ∈ {1, . . . , p}, the FS2p-
module IndS2p

S2p−1
(S〈i〉) has a Specht filtration. The Specht factors occurring in any such filtration are unique 

up to isomorphism, since p � 5, and their labelling partitions are obtained by moving a bead on some runner 
of 〈i〉 one position to the right. In particular, the block component S〈i〉 ↑B0,0 has a Specht filtration, and the 
Specht factors occurring are labelled by those partitions that are obtained by moving a bead from runner 
s − 1 of 〈i〉 to runner s. Thus, for each s ∈ {2, . . . , p}, we get

S〈j〉 ↑B0,0∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S〈s−1〉 ⊕ S〈s〉 , if j = s− 1 ,
S〈s−1,s−1〉 ⊕ S〈s,s〉 , if j = s ,

S〈i,s−1〉 ⊕ S〈i,s〉 , if s < j � p ,

S〈s−1,i〉 ⊕ S〈s,i〉 , if 1 � j < s− 1 .

Alternatively, one may use arguments as in [4, (2.6)], which also work when p = 3.

Theorem B.4. Up to isomorphism there are 
(
p+1
2
)
−2 indecomposable projective B0,0-modules that are induced 

from a block of FS2p−1 of weight 1. Their labelling partitions in [2p]-abacus notation and their Specht factors 
are as follows

(a) P 〈p〉 ∼ S〈p〉 ⊕ S〈p−1〉 ⊕ S〈p,p−2〉 ⊕ S〈p−1,p−2〉;
(b) P 〈s〉 ∼ S〈s〉 ⊕ S〈s−1〉 ⊕ S〈p,s〉 ⊕ S〈p,s−1〉, for s ∈ {2, . . . , p − 1};
(c) P 〈s,1〉 ∼ S〈s,1〉 ⊕ S〈s−1,1〉 ⊕ S〈s,s〉 ⊕ S〈s−1,s−1〉, for s ∈ {3, . . . , p};
(d) P 〈s+1,s〉 ∼ S〈s+1,s〉 ⊕ S〈s+1,s−1〉 ⊕ S〈s,s−2〉 ⊕ S〈s−1,s−2〉, for s ∈ {3, . . . , p − 1};
(e) P 〈3,2〉 ∼ S〈3,2〉 ⊕ S〈3,1〉 ⊕ S〈2,2〉 ⊕ S〈1,1〉;
(f) P 〈r,s〉 ∼ S〈r,s〉 ⊕ S〈r−1,s〉 ⊕ S〈r,s−1〉 ⊕ S〈r−1,s−1〉, for p � r > s > 1 and r − s > 1.

Proof. Since FS2p ∼= IndS2p
S2p−1

(FS2p−1), every indecomposable projective FS2p-module is isomorphic to 
a direct summand of the induction of some indecomposable projective FS2p−1-module. As we have seen in 
B.2, P 〈1〉 is the unique indecomposable projective B0,0-module that is induced from a block of FS2p−1 of 
weight 0; moreover, it has precisely three Specht factors.

By B.3 (c), (d), we obtain precisely x :=
(
p+1
2
)
− 2 pairwise non-isomorphic projective B0,0-modules 

R1, . . . , Rx that are obtained by inducing the indecomposable FS2p−1-modules in blocks of weight 1 to 
B0,0. Furthermore, each of these block inductions has precisely four pairwise non-isomorphic Specht factors; 
the lexicographically largest labelling partition λi of Ri is always p-regular, and λi �= λj , for i �= j. Note 
that P 〈1〉 cannot be isomorphic to a direct summand of any Ri, since otherwise there would be a projective 
B0,0-module with only one Specht factor, which is impossible in a block of weight 2.
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We may suppose that λ1 > λ2 > · · · > λx. We show that Ri
∼= Pλi , for i ∈ {1, . . . , x}. To do so, we first 

show that

Ri
∼= Pλi ⊕Qi , (35)

where Qi is a direct sum of indecomposable projective B0,0-modules whose labelling partitions belong to 
{λi+1, . . . , λx}. So let i ∈ {1, . . . , x}. There is a p-regular partition μ ∈ {λ1, . . . , λx} with Pμ | Ri and 
(Pμ : Sλi) = 1. Thus μ � λi, by 2.4. Since (Pμ : Sμ) = 1, we also have (Ri : Sμ) �= 0, hence λi � μ

and then μ = λi. If ρ �= λi is a p-regular partition of B0,0 with P ρ | Ri, then also ρ ∈ {λ1, . . . , λx}. Since 
(P ρ : Sρ) = 1, also (Ri : Sρ) �= 0, so that we must have λi > ρ and ρ ∈ {λi+1, . . . , λx}.

This proves (35). Now we show that Qi = {0}, for i ∈ {1, . . . , x}. To do so, we argue by reverse induction 
on i. For i = x, the assertion if clearly true. So let i < x, and assume that Qi �= {0}. Then, by (35), we 
would have Pλj | Qi | Ri, for some j > i. But, by induction, Pλj ∼= Rj . Since both Rj and Ri have precisely 
four Specht factors, this would imply Ri

∼= Rj , a contradiction.
Now the assertion of the theorem follows from B.3 (c), (d). �
To summarize, by B.2 and Theorem B.4, we have completely determined the columns of the decomposition 

matrix of the block B0,0. From this information, it is now straightforward to read off the rows of the 
decomposition matrix of B0,0, that is, the decomposition numbers of B0,0, as well. In Corollary B.6 below, 
we shall in fact write down the Loewy structures of the Specht modules in B0,0. Before doing so, we mention 
one last bit of information concerning the ∂-values and colours of the partitions of B0,0, which is immediate 
from A.3.

Lemma B.5. Identifying every partition of B0,0 with its [2p]-abacus, the partitions of B0,0 have the following 
∂-values:

∂ p-regular p-singular

0 (black) 〈p〉 〈2, 1〉
〈i + 1, i〉, i ∈ {2, . . . , p− 1} odd

0 (white) 〈i + 1, i〉, i ∈ {2, . . . , p− 1} even 〈1, 1〉
1 〈p− 1〉 〈2, 2〉

〈i + 2, i〉, i ∈ {1, . . . , p− 2}
2 〈p− 2〉 〈3, 3〉

〈i + 3, i〉, i ∈ {1, . . . , p− 3}
d ∈ {3, . . . , p− 2} 〈p− d〉 〈d + 1, d + 1〉

〈i + d + 1, i〉, i ∈ {1, . . . , p− d− 1}
p− 1 〈1〉 〈p, p〉

Corollary B.6. Identifying every partition of B0,0 with its [2p]-abacus, the Specht modules in B0,0 have the 
following Loewy structures:

(a) For i ∈ {1, . . . , p − 1}, one has S〈i〉 ≈ D〈i〉

D〈i+1〉 . Moreover, S〈p〉 ∼= D〈p〉.

(b) For i ∈ {3, . . . , p − 1}, one has S〈i,i〉 ≈ D〈i,1〉

D〈i+1,1〉 . Moreover,

S〈p,p〉 ≈ D〈p,1〉
〈1〉 , S〈2,2〉 ≈ D〈3,2〉

〈3,1〉 , and S〈1,1〉 ∼= D〈3,2〉.

D D
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(c) For 1 � i < j � p with j − i � 3, one has

S〈j,i〉 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D〈j,i〉

D〈j,i+1〉 ⊕D〈j+1,i〉

D〈j+1,i+1〉
if j �= p ,

D〈p,i〉

D〈p,i+1〉 ⊕D〈i〉

D〈i+1〉
if j = p .

(d) For 1 � i < j � p with j − i = 2, one has

S〈j,i〉 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D〈j,i〉

D〈j,i+1〉 ⊕D〈j+1,i〉 ⊕D〈j+1,i+1〉

D〈j+1,i+2〉
if j �= p ,

D〈p,p−2〉

D〈p,p−1〉 ⊕D〈p〉 ⊕D〈p−2〉

D〈p−1〉
if j = p .

(e) For 1 � i < j � p with j − i = 1, one has

S〈j,i〉 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D〈j,i〉

D〈j+1,i〉

D〈j+2,i+2〉
if i /∈ {1, p− 2, p− 1} ,

D〈p−1,p−2〉

D〈p,p−2〉

D〈p〉
if i = p− 2 ,

D〈p,p−1〉

D〈p−1〉 if i = p− 1 ,

D〈3,1〉

D〈4,3〉 if i = 1 .

Proof. By Theorem B.4 and B.2, we know the columns of the decomposition matrix of B0,0. Given these, 
it is straightforward to determine the rows of this decomposition matrix, that is, the composition factors of 
the Specht modules in B0,0. In particular, we see that S〈p〉 ∼= D〈p〉 and S〈1,1〉 ∼= D〈3,2〉.

Next, by [2, Proposition 6.2], a Specht module Sλ in B0,0 has Loewy length at most 3, and has Loewy 
length 3 if and only if λ is both p-regular and p-restricted. If so, Sλ has head isomorphic to Dλ, by [8, 
Corollary 12.2] and socle isomorphic to Dλ+ , by 2.3(b) and 3.1(c). Since λ+ has the same ∂-value and, if 
∂(λ) = 0, the same colour as λ, we deduce the Loewy structures of the Specht modules in (c) and (d) as 
well as those of S〈i+1,i〉 with i ∈ {2, . . . , p − 2} from Lemma B.5.

If λ is a p-regular partition of B0,0 such that Sλ has exactly two composition factors, then Sλ is of course 
uniserial with head isomorphic to Dλ.

Hence, it remains to establish the Loewy structures of the Specht modules labelled by the p-singular 
partitions 〈i, i〉 with i ∈ {2, . . . , p}, and 〈2, 1〉, respectively. By 2.3, we know that, whenever λ is p-restricted, 
Sλ has socle isomorphic to Dm(λ′), and m(λ′) = λ+, by 3.1(b). Since λ+ has the same ∂ value and, 
if ∂(λ) = 0, the same colour as λ, Lemma B.5 implies Soc(S〈i,i〉) ∼= D〈i+1,1〉, for i ∈ {2, . . . , p − 1}, 
Soc(S〈p,p〉) ∼= D〈1〉, and Soc(S〈2,1〉) ∼= D〈4,3〉.

This completes the proof of the corollary. �
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Remark B.7. We emphasize that the partitions treated in part (a) and (b) of Corollary B.6 are precisely 
the hook partitions of B0,0, so that these assertions also follow from Peel’s results in [13].

We are now in the position to describe how the Ext-quiver of B0,0 is encoded in the decomposition matrix 
of B0,0, using general information from [18,14,2]. As already mentioned at the beginning of this section, 
this quiver was first computed by Martin [10]. Although Richards’ work had not yet been available at that 
time, Martin’s way to draw the quiver is the same that we shall now describe.

B.8. The Ext-quiver of B0,0. (a) We draw a quiver with p rows, which we label by 0, 1, . . . , p − 1, from top 
to bottom. In row i ∈ {0, . . . , p − 1} we draw a vertex for each p-regular partition of B0,0 that has ∂-value 
i. We order the partitions in row i ∈ {1, . . . , p − 1} with respect to the lexicographic ordering >, from left 
to right. In row 0, the leftmost vertex corresponds to the partition 〈p〉, which is the largest black partition. 
Next we draw 〈p, p − 1〉, which is the largest white partition. From then on, black and white partitions 
alternate in decreasing lexicographic ordering, from left to right.

(b) Let λ be a p-regular partition of B0,0 corresponding to a vertex in row i of the quiver we have just 
drawn, that is, ∂(λ) = i. By [2, Theorem 6.1], λ can only be connected to a vertex μ that lies in row i − 1
or in row i + 1. Moreover, if μ is a vertex in row i − 1 or i + 1, then μ and λ are connected if and only if 
one of the following holds:

(i) λ > μ and [Sμ : Dλ] = 1, or
(ii) μ > λ and [Sλ : Dμ] = 1.

In case (i) we draw an arrow λ → μ, in case (ii) we draw an arrow μ → λ. Thus, representing every 
partition of B0,0 on a [2p]-abacus and invoking Corollary B.6 and Lemma B.5, we obtain the following 
quiver, which equals Q0,0(p) in Appendix C, with respect to the lexicographic ordering on partitions:

〈p〉 〈p, p − 1〉 〈5, 4〉 〈4, 3〉 〈3, 2〉

〈p − 1〉
〈p, p − 2〉

〈4, 2〉 〈3, 1〉

〈p − 2〉
〈p, p − 3〉

〈5, 2〉 〈4, 1〉

〈p − 3〉 〈5, 1〉

〈3〉
〈p, 2〉

〈p − 1, 1〉

〈2〉 〈p, 1〉

〈1〉

• • • · · · • • •
• • • · · · • • •

• • · · · • •
• · · · · · •

· · · ·
• • •

• •
•

Theorem B.9. Let p � 5. The principal block B0,0 of FS2p has Ext-quiver Q0,0(p) shown in (36), and 
the principal block B1,0 of FS2p+1 has Ext-quiver Q1,0(p) shown in (37), with respect to the lexicographic 
ordering on partitions.

Proof. The assertion concerning B0,0 has just been proved in B.8.
We now consider the block B1,0, which forms a (2 : 1)-pair with B0,0, by Proposition 4.2. We represent 

all partitions of B1,0 on a [2, 3, 2p−2]-abacus, and all partitions of B0,0 on a [3, 2p−1]-abacus. As usual, we 
denote the exceptional partitions of B0,0 and B1,0 by ᾱ, β̄, γ̄ and α, β, γ, respectively. By Corollary 4.4 and 
Lemma 4.5, we know that ᾱ is the largest partition of 2p in B0,0 with ∂-value p − 1. So, by 3.7, it suffices 
to consider the last three rows of Q0,0, whose vertices have ∂-values p − 1, p − 2 and p − 3. This gives
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β̄+

μ

β̄

ᾱ

•
•

•
•

• •

We need to identify the red vertices. By Corollary 4.4 (in case (3)), γ̄ is p-singular, while β̄ is both 
p-regular and p-restricted. So β̄+ exists. Moreover, ∂(β̄) = ∂(β̄+) = p − 2. By Theorem 3.9, β̄ and β̄+ are 
connected to ᾱ. This identifies β̄ and β̄+. Since μ > β̄, we must have [Sβ̄ : Dμ] �= 0, by [2, Theorem 6.1], 
thus Dμ ∼= Ȳ , in the notation of Theorem 3.9.

Now, by 3.7, Corollary 4.4 and Theorem 3.9 again, we obtain the following information on the rows of 
the quiver of B1,0 whose vertices have ∂-values p − 2 and p − 3:

α+

μ̂

γ
α

•
•

••
• •

Here Dμ̂ ∼= Y . By Corollary 4.4, β is p-singular. Hence, by Lemma 3.8 and Theorem 3.9, α is only 
connected to Dμ̂. Since [Sα : Dμ̂] �= 0, we have μ̂ > α. This proves, that B1,0 has quiver Q1,0(p). �
Appendix C. The quivers

Suppose that n ∈ N with n � 5. First we construct a quiver Q0,0(n) with n rows, and n − 1 vertices in 
the top row that has the following shape:

b w b w b w

• > • > • · · · • > • > •
• • • · · · • • •

• • · · · · · • •
• · · · •

• · •
• • •

• •
•

(36)

The rows are labelled by 0, 1, . . . , n − 1, from top to bottom. The vertices in the top row are equipped 
with a colour, which is either white (w) or black (b). Moreover, we assume that there is a total ordering >
on the vertices of Q0,0(n) and that, whenever there is an arrow from vertex x to vertex y, we have x > y. In 
addition, the ordering on the vertices in a given row decreases from left to right. Unfortunately, the way our 
quivers are drawn, one can, in general, not read off how to compare a vertex in the top row with a vertex 
in one of the lower rows. For the applications to the main results of this paper this is irrelevant.

Next we modify the quiver Q0,0(n) to define Q1,0(n) as the following quiver with n − 1 rows, and n − 1
vertices in the top row. We call the part of Q1,0(n) consisting of the red and green vertices the left rim 
segment of Q1,0(n), and those part consisting of the blue vertices the right rim segment of Q1,0(n). Again 
we have a total ordering on the vertices of Q1,0(n).
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b w b w b w

• > • > • · · · • > • > •
• • • · · · • • •

• • · · · · · • •
• · · · •

• · •
• • •

• • •

(37)

Now, for (i, j) ∈ {1, . . . , n − 1} × {0, . . . , n − 2} with (i, j) �= (1, 0), we define the quiver Qi,j(n) that is 
obtained by modifying the left and right rim segments of Q1,0(n) in the following way:

left rim segment

rows n− 2 − i, . . . , n− 2, for i � n− 3

• •
• • •

•
•
• •

• •
•

rows 0, . . . , n− 2, for i = n− 2

b w
• •
• • •

• •
•

•
• •

• •
•

rows 0, . . . , n− 2, for i = n− 1

b w w
• • •

• •
• •

•
•
• •

• •
•
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right rim segment

rows n− 2 − j − 1, . . . , n− 2, for j < n− 3

• •
• • •
•

•
• •
•

rows 0, . . . , n− 2, for j = n− 3

b w
• •
• • •

• •
•

•
• •
•

rows 0, . . . , n− 2, for j = n− 2

b w b
• • •
• •

• •
•

•
• •
•

By Theorem 1.1 and Theorem 4.1, the above quivers appear as Ext-quivers of blocks of symmetric 
groups of weight 2 whose cores are hooks partitions. In Proposition 4.7 and Theorem 1.2, we characterize 
possible Morita equivalences between different such blocks. Since Morita equivalent blocks have isomorphic 
Ext-quivers, the following result is our key ingredient in the proof of Proposition 1.2.

Proposition C.1. Suppose that (i, j), (i′, j′) ∈ {(0, 0)} ∪ ({1, . . . , n − 1} × {0, . . . , n − 2}). Then Qi,j(n) is 
isomorphic to Qi,′j′(n), as an undirected graph, if and only if one of the following cases occurs:

(i) (i, j) = (i′, j′);
(ii) i = j′ + 1 and j = i′ − 1.
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Proof. The number of vertices with a given valency is invariant under a graph isomorphism. Moreover, we 
call a pair v �= w of vertices of any of the above graphs Qij(n) exceptional if v and w have valency at most 
2, and in addition have distance 2 in Qij(n). A graph isomorphism permutes exceptional pairs. Next we 
define the boundary of Qi,j(n) to be the full subgraph of Qi,j(n) whose vertices are precisely the vertices 
with valency at most 3. The boundary is also invariant under graph isomorphisms.

We fix n and write Qi,j instead of Qi,j(n). We note that Q0,0 and Q1,0 cannot be isomorphic to any of 
the other graphs, since they are the only graphs with no exceptional pair, or with two exceptional pairs 
sharing a vertex, respectively.

Note that in case (ii) the (undirected) graphs Qi,j and Qi,′j′ are clearly isomorphic, since Qi,j is then 
simply obtained by reflecting Qi′,j′ along the middle axis. Hence, we may from now on suppose that 2 � i +j, 
and show that Qi,j is not isomorphic to any graph Qi′,j′ with (i, j) �= (i′, j′) �= (i − 1, j + 1).

We first consider the case that Qi,j has a vertex of valency 1. Then i = n −1 or j = n −2. Since Qn−1,n−2
is the only graph with two vertices of valency 1, it is not isomorphic to any other graph under consideration. 
Therefore we may suppose that (i, j) �= (n − 1, n − 2). Then i = n − 1 and j ∈ {0, . . . , n − 3}, or j = n − 2
and i ∈ {1, . . . , n − 2}. For j ∈ {0, . . . , n − 3}, the graph Qn−1,j is isomorphic to Qj+1,n−2, as mentioned 
above.

Thus it suffices to show that if Qn−1,j is isomorphic to Qn−1,m, for j, m ∈ {0, . . . , n −3}, then j = m. Based 
on the diagrams, we describe the graph structure of the boundary of Qn−1,j. It has a unique exceptional 
pair, which is drawn in the right rim segment when j � 1, and when j = 0, one vertex is in the left rim 
segment and the other is the lowest vertex of the right rim segment. The vertices of the exceptional pair 
belong to two disjoint connected components of the boundary. When j = 0, one of these components is a 
line with n − 4 vertices, and one component is isomorphic to the Dynkin diagram Dn. For 1 � j < n − 3, 
one component is isomorphic to Dn−j . The other component is a tree branching at the vertex drawn in the 
lowest row in the left rim segment. One arm of this tree has n − 4 segments, one has just one segment, and 
the third has j segments. All other components of the boundary are isolated vertices. If j = n − 3, then the 
boundary of Qn−1,j is one connected component.

The boundary of Qn−1,m has a similar structure. A graph isomorphism restricts to a graph isomorphism 
of the boundaries, so that j = m.

The graph Qn−2,n−3 is the only graph with precisely two vertices of valency 2, hence cannot be isomorphic 
to any of the others.

Now we consider the case that i = n − 2 and j ∈ {0, . . . , n − 4}, or j = n − 3 and i ∈ {1, . . . , n − 3}. This 
covers those cases where Qi,j has precisely four vertices of valency 2.

Let j ∈ {0, . . . , n − 4}. Since Qn−2,j is isomorphic to Qj+1,n−3, it suffices to show if Qn−2,j is isomorphic 
to Qn−2,m, for m ∈ {0, . . . , n − 4}, then j = m. The graph Qn−2,j has a unique exceptional pair, which is 
drawn in the right rim segment when j � 1, and when j = 0, one vertex is in the left rim segment and the 
other is the lowest vertex of the right rim segment. The vertices of the exceptional pair belong to two disjoint 
connected components of the boundary. When j = 0, these components are a line with n − 1 segments, and 
one component isomorphic to the (Dynkin) diagram Dn. For j � 1, one component is isomorphic to Dn−j , 
and the other is a tree branching at the vertex drawn in the lowest row in the left rim segment. This tree 
has one arm with n − 1 segments, one arm with just one segment and one arm with j segments. All other 
components of the boundary are isolated vertices. The boundary of Qn−2,m has a similar structure. A graph 
isomorphism restricts to a graph isomorphism of the boundaries, so that j = m.

Now we consider the graphs Qi,j with i ∈ {1, . . . , n − 3} and j ∈ {0, . . . , n − 4}. These have precisely six 
vertices of valency 2. Since Qij is isomorphic to Qi−1,j+1, for i ∈ {1, . . . , n − 3} and j ∈ {0, . . . , n − 4}, it 
suffices to show that if Qi,j is isomorphic to Qi,m, for i ∈ {1, . . . , n − 3} and j, m ∈ {0, . . . , n − 4}, then 
j = m.

Suppose first that i > 1. The graph Qi,j has precisely two exceptional pairs. One of them is drawn in the 
left rim segment and the other is drawn in the right rim segment, for j � 1. For j = 0, one vertex is in the 
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left rim segment and the other is the lowest vertex of the right rim segment. The vertices of the exceptional 
pair belong to three disjoint connected components of the boundary. When j = 0, they are a line with i − 1
segments, then a component isomorphic to Dn−(i−1) and a component isomorphic to Dn.

When j � 1, the boundary of Qi,j has a component that is a tree branching at the vertex drawn in the 
lowest row in the left rim segment, whose arms have i − 1 segments, one segment and j segments respec-
tively. The other components of the boundary containing vertices from exceptional pairs are isomorphic 
to Dn−(i−1), and to Dn. The boundary of Qi,m has a similar structure. As before, if there is a graph iso-
morphism between Qi,j and Qi,m, then it restricts to an isomorphism of the boundaries, and we deduce 
j = m.

It remains to consider the graphs Q1,j, with j ∈ {1, . . . , n − 4}. Each of these has two exceptional pairs: 
one of them is drawn between the lowest two vertices in the left rim segment, and the other in the right rim 
segment. They belong to three disjoint connected components of the boundary: one is isomorphic to Dn, one 
is a line with j segments, and the third is a component isomorphic to Dn−j. Hence if m, j ∈ {1, . . . , n − 4}
and if Q1,j is isomorphic to Q1,m, then j = m. �
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