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1. Introduction

Throughout this manuscript R denotes a Noetherian ring of prime characteristic p. In characteristic zero, 
the log canonical threshold, lct(f), of a polynomial f with coefficients in a field, is an important invariant in 
birational geometry [3]. This number measures the singularities of f near to zero. In positive characteristic, 
the F -pure threshold of an element f ∈ R, denoted fpt(f), was defined by Takagi and Watanabe [24]. 
Roughly speaking, this measures the splitting order of f . It is defined by

fpt(f) = sup
{

a

pe
| the inclusion Rf

a
pe ⊆ R1/pe

is a split
}

for f ∈ R.
The F -pure threshold is considered as analogous to the log canonical threshold, and they share similar 

properties [24,19]. In particular, if f is an element in Z[x1, . . . , xn], then lim
p→∞

fpt(f mod p) = lct(f) [15,19].
In this work, we study a general form of the F -pure threshold called the Cartier threshold. Given a and 

J ideals in R, the Cartier threshold of a with respect to J is defined as ctJ(a) = lim
e→∞

bJa(pe)
pe , where

bJa (pe) = max{t ∈ N | at � Je} & Je = {f ∈ R | ϕ(f1/pe

) ∈ J, ∀ϕ ∈ HomR(R1/pe

, R)}.

These numbers have been studied in more depth in an upcoming work [8]. If we consider (R, m, K) a local 
ring or a standard graded K-algebra which is F -finite and F -pure, then ctm(a) = fpt(a).

In this manuscript, we focus on Stanley-Reisner rings. The combinatorial nature of these rings has been 
useful to study their structures in prime characteristic. For instance, in this case one can describe their 
algebras of Frobenius and Cartier operators [2,6]. In this work, we show that the Cartier threshold of a with 
respect to J in Stanley-Reisner rings is a rational number when J is a radical ideal.

Theorem A (see Theorem 5.15 and Corollary 5.16). Let a, J be two ideals in a Stanley-Reisner ring R, 
such that a ⊆ J , and J is a radical ideal. Then, the Cartier threshold of a with respect to J is a rational 
number.

In order to obtain Theorem A, we need to reduce the computation of ctJ(a) to the case where J is a 
monomial ideal. For this trick, we need to replace R by the completion of a suitable localization. Then, 
the problem is reduced to the regular case by taking a quotient with respect to the Cartier core (see 
Definition 4.12).

We now recall the definition of the F -thresholds. They are numbers obtained by comparing ordinary 
powers versus Frobenius powers. These were introduced in regular rings by Mustaţă, Takagi and Watanabe 
[19], and their existence, in the general case, was proved by De Stefani, Núñez-Betancourt and Pérez [9]. 
These are defined as cJ(a) = lim

e→∞
νJ
a (pe)
pe , where νJa (pe) = max{m ∈ N | am � J [pe]}, and a, J ⊆ R are 

ideals.
A recent line of research consists in understanding under which conditions the set of F -thresholds is a 

discrete set of rational numbers. This was proved by Blickle, Mustaţă, and Smith [5] for an F -finite regular 
ring. Although the F -threshold is a rational number in the regular case, this situation is unknown in general 
Noetherian rings. Trivedi [22] showed that, in general, the set of F -thresholds with respect to the maximal 
ideal in a local ring is not necessarily discrete. In this paper, we study the rationality of F -thresholds for 
Stanley-Reisner rings.

Theorem B (see Theorem 3.6). Let a, J be two ideals in a Stanley-Reisner ring R, such that a ⊆
√
J , and 

J is a monomial ideal. Then, the F -threshold of a with respect to J is a rational number.
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The key idea to prove Theorem B is to work modulo the minimal primes, which yields a regular ring. The 
result follows from comparing the F -thresholds of R versus these quotients. We point out that Theorem B
is a key component of the proof of Theorem A.

The Castelnuovo-Mumford regularity is an invariant that measures the complexity of the free resolution 
of a standard graded K-algebra (R, m, K). The growth of reg(R/J [pe]) has been intensively studied due 
to its relation to discreteness of F - jumping coefficients [18,17,27], localization of tight closure [16,14], 
and existence of the generalized Hilbert-Kunz multiplicity [7,25]. We recall that the Castelnuovo-Mumford 
regularity can be computed in terms of the a-invariants introduced by Goto and Watanabe [11]. In this 
manuscript, we provide a formula for the limits of reg(R/J [pe]).

Theorem C (see Theorem 6.7). Let J be a homogeneous ideal in a Stanley-Reisner ring R. Then,

lim
e→∞

reg(R/J [pe])
pe

= max
1≤i≤d
α∈A′

{ai(S/(Jα + J)) + |α|},

where A′ = {α ∈ Nn | 0 ≤ αi ≤ 1 for i = 1, . . . , n}, Jα = (I : xα), and d = max{dim(S/(Jα +J)) | α ∈ A′}. 
In particular, this limit is an integer number.

2. Stanley-Reisner rings

Throughout this section we use the following notation.

Notation 2.1. We denote S = K[x1, . . . , xn] with K an F -finite field of prime characteristic p. Let I be a 
squarefree monomial ideal of S. Let I =

⋂l
i=1 pi such that pi � pj for i �= j and p1, . . . , pl are generated by 

variables. We take R = S/I.

These rings have mild singularities, for instance, they are F -pure. They also have combinatorial structure 
given by simplicial complexes.

Suppose that a ⊆ R is an ideal. We abuse notation and denote the inverse image of a ⊆ R under the 
natural projection S −→ S/I by a ⊆ S.

We now characterize the ring of p-th roots of R in terms of ideal quotients.

Proposition 2.2. If q = pe, where e is a nonnegative integer, then

R1/q = S1/q/I1/q ∼=
⊕

1≤i≤s
α∈A

S/Jα(aixα)1/q,

with A = {α ∈ Nn | 0 ≤ αi ≤ q − 1 for i = 1, . . . , n}, B = {ai1/q | i = 1, . . . , s} is a base of K1/q as 
K-vector space, and Jα = (I : xα).

Proof. Each element r1/q ∈ S1/q can be written uniquely as

r1/q =
⊕

1≤i≤s
α∈A

ri,α(aixα)1/q,

where ri,α ∈ S. We take

ϕ : S1/q −→
⊕

1≤i≤s

S/Jα(aixα)1/q,
α∈A
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defined by

ϕ(r1/q) =
⊕

1≤i≤s
α∈A

(ri,α + Jα)(aixα)1/q.

We have that ϕ is a surjective S-linear morphism.
We claim that kerϕ = I1/q. First, we show kerϕ ⊆ I1/q. Let r1/q ∈ kerϕ. It is sufficient to consider r1/q =

xθ(aixα)1/q for some θ ∈ Nn, α ∈ A, and i ∈ {1, . . . , s}. Hence, 0 = ϕ(r1/q) = (xθ + Jα)(aixα)1/q. Thus, 
xθ ∈ Jα. This implies that aixα+θ ∈ I, and so, xθ/q(aixα)1/q ∈ I1/q. It follows that r1/q = xθ(aixα)1/q =
(xθ/q)q(aixα)1/q ∈ I1/q.

Now, we show I1/q ⊆ kerϕ. Let r1/q ∈ I1/q. It is enough to consider r1/q = xθ(aixα)1/qxβ/q with 
θ ∈ Nn, α ∈ A, i ∈ {1, . . . , s}, and xβ a generator of I. Since 0 ≤ αj ≤ q − 1 and 0 ≤ βj ≤ 1 for 
every 1 ≤ j ≤ n, there exists γ ∈ {0, 1}n such that α + β − qγ ∈ A. Let α′ = α + β − qγ. We note 
that xθ+γ(aixα′) ∈ I. As a consequence, xθ+γ ∈ Jα′ . Furthermore, r1/q = xθ+γ(aixα′)1/q. Subsequently, 
ϕ(r1/q) = (xθ+γ + Jα′)(aixα′)1/q = 0. Thus, r1/q ∈ kerϕ.

It follows,

R1/q ∼=
⊕

1≤i≤s
α∈A

S/Jα(aixα)1/q

as S-module. Therefore, they are isomorphic as R-modules. �
Remark 2.3. We follow Notation 2.1. Let q be a prime ideal of S. Suppose that p1, . . . , pr ⊆ q with r ≤ l, 
pj � q for r < j, and (x1, . . . , xu) =

∑r
i=1 pi.

Let ̃q0, . . . , ̃qt ∈ SpecSq be such that (x1, . . . , xu)Sq = q̃0 � q̃1 � . . . � q̃t. There exist q0, . . . , qt ∈ SpecS, 
where qi ⊆ q and qi = q̃i ∩ S. We have that

(0) � (x1) � (x1, x2) � . . . � (x1, . . . , xu) = q0 � q1 � . . . � qt ⊆ q

is a chain of prime ideals in S with length u + t, and so, u + t ≤ ht(q). Hence, t ≤ ht(q) − u. Then, 
dimSq/(x1, . . . , xu)Sq ≤ ht(q) − u. Therefore,

ht(q) − u = dimSq/(x1, . . . , xu)Sq.

In particular, if we take A = Ŝq, we have that

dimA− u = dimA/(x1, . . . , xu)A.

Since A is a complete regular local ring, A ∼= L[[x1, . . . , xu, y1, . . . , yt]], where K ⊆ L is a field extension. 
Moreover, we have that IA =

⋂l
i=1 piA is squarefree monomial ideal of A in variables x1, . . . , xu. We denote 

xθ = x1
θ1 · · ·xu

θuy1
θu+1 · · · ytθu+t . We take B = A/IA and m its maximal ideal.

Proposition 2.4. If q = pe, where e is a nonnegative integer, then

B1/q ∼=
⊕

1≤i≤s
α∈A

A/Jα(aixα)1/q,

with A = {α ∈ Nu+t | 0 ≤ αi ≤ q − 1 for i = 1, . . . , u + t}, B = {ai1/q | i = 1, . . . , s} is a base of L1/q as 
L-vector space, and Jα = (IA : xα).

Proof. The proof is analogous to Proposition 2.2. �
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3. F -Thresholds

The F -thresholds were introduced by Mustaţă, Takagi and Watanabe [19] for F -finite regular local rings 
of prime characteristic. Subsequently, in work with Huneke [13], they defined F -thresholds in general rings 
of positive characteristic, provided the limit exists. The existence of these invariants in the general case is 
proved in the work of De Stefani, Núñez-Betancourt and Pérez [9].

Our main goal is to describe the F -thresholds of Stanley-Reisner rings, when we have monomial ideals.

3.1. Definition and first properties

In this subsection R denotes a ring of prime characteristic p. We discuss properties related to F -thresholds.

Definition 3.1. Let R be a ring. Given a, J ideals inside R such that a ⊆
√
J , we define

νJa (pe) = max{m ∈ N | am � J [pe]}.

Lemma 3.2 ([9, Lemma 3.3]). Let R be a ring, and a, J ideals of R such that a ⊆
√
J . Then,

νJa (pe1+e2)
pe1+e2

− νJa (pe1)
pe1

≤ μ(a)
pe1

for every e1, e2 ∈ N.

Theorem 3.3 ([9, Theorem 3.4]). Let R be a ring, and a, J be two ideals in R such that a ⊆
√
J . Then, 

lim
e→∞

νJ
a (pe)
pe exists.

The previous theorem gives existence to the F -thresholds and we may define them.

Definition 3.4 ([9]). Let R be a ring. Given a, J ideals of R such that a ⊆
√
J , we define the F -threshold 

of a with respect to J by

cJ (a) = lim
e→∞

νJa (pe)
pe

.

Proposition 3.5 ([19, Proposition 2.7] & [13, Proposition 2.2]). Let R be a ring, and let a, I, J be ideals in 
R. Then, the following hold.

(1) If J ⊆ I, and a ⊆
√
J , then cI(a) ≤ cJ(a).

(2) If a ⊆
√
J , then cJ

[p](a) = p · cJ (a).

3.2. F -thresholds in Stanley-Reisner rings

In this subsection, we focus on Stanley-Reisner rings. We denote S = K[x1, . . . , xn] with K an F -finite 
field of prime characteristic p. Let I be a squarefree monomial ideal of S, and R = S/I.

Suppose that a ⊆ R is an ideal. We abuse notation and denote the inverse image of a ⊆ R under the 
natural projection S −→ S/I by a ⊆ S.

The following proposition is one of the main results of this paper, Theorem B. Using the fact that the 
quotient of R with each of its minimal prime ideals is a regular ring, we obtain a case where the F -threshold 
is a rational number.



6 W. Badilla-Céspedes / Journal of Pure and Applied Algebra 225 (2021) 106671
Theorem 3.6. Let a, J be ideals of R, with a ⊆
√
J , and J monomial. Let p1, . . . , pl be the minimal prime 

ideals of R. Then,

cJR(a) = max
{
c
JS/pi

S/pi
(aS/pi)

}
.

In particular, cJR(a) ∈ Q.

Proof. We know that I =
⋂l

i=1 pi. Moreover, each pi is generated by variables. We claim that cJR(a) ≥
max

{
c
JS/pi

S/pi
(aS/pi)

}
. Let e be a nonnegative integer. We take ti = ν

JS/pi

aS/pi
(pe). Then, atiS/pi � J [pe]S/pi. 

Hence, there exists r ∈ ati such that r − c /∈ pi for every c ∈ J [pe]. Thus, r − c /∈ I, and so r /∈ J [pe]. As a 
consequence, ati � J [pe].

We have that ti ≤ νJa (pe) for all i. Then, 
ν
JS/pi
aS/pi

(pe)
pe ≤ νJ

a (pe)
pe . Thus, cJS/pi

S/pi
(aS/pi) ≤ cJR(a). Therefore, 

cJR(a) ≥ max
{
c
JS/pi

S/pi
(aS/pi)

}
.

We now show that 
⋂l

i=1(J [pe] + pi) ⊆ J [pe] + I. We proceed by contradiction. Let s be a generator of ⋂l
i=1(J [pe] + pi) such that s /∈ J [pe] + I. Since J [pe] and each pi are monomial ideals, we have that every 

J [pe] +pi is a monomial ideal too. Hence, 
⋂l

i=1(J [pe] +pi) is a monomial ideal. We can take s as a monomial. 
Furthermore, s /∈ J [pe] and s /∈ I. Thus, there exists an i such that s /∈ pi. However, s ∈ J [pe] + pi. Since 
s is a monomial and pi is generated by variables, we conclude that s ∈ J [pe], we get a contradiction. Thus, 
s ∈ J [pe] + I.

We prove that cJR(a) ≤ max
{
c
JS/pi

S/pi
(aS/pi)

}
. Let e be a nonnegative integer. We take t = νJa (pe). Then, 

at � J [pe]. Hence, there exists r ∈ at such that r− c /∈ I for every c ∈ J [pe]. As a consequence, r /∈ J [pe] + I, 
and so r /∈

⋂l
i=1(J [pe] + pi). Hence, r /∈ J [pe] + pi for some i. It follows that atS/pi � J [pe]S/pi.

Consequently, we have t ≤ ν
JS/pi

aS/pi
(pe) for some i. Then, ν

J
a (pe)
pe ≤ max

{
ν
JS/pi
aS/pi

(pe)
pe

}
. Therefore, cJR(a) ≤

max
{
c
JS/pi

S/pi
(aS/pi)

}
. �

Remark 3.7. Given S̃ = K[[x1, . . . , xn]] with K an F -finite field of prime characteristic p. We take Ĩ as a 
squarefree monomial ideal of S̃, and R̃ = S̃/Ĩ, same as in Theorem 3.6. Let ã, J̃ be two ideals of R̃, with 

ã ⊆
√

J̃ , and J̃ monomial. Then, cJ̃
R̃
(ã) ∈ Q.

4. The ideal Je

In this section we introduce the Cartier core of an ideal. This is related to the Cartier operators. We also 
investigate the behavior of these ideals for Stanley-Reisner rings.

4.1. Cartier contraction

We begin this subsection introducing an ideal that allows the study of homomorphisms that do not give 
splittings.

Definition 4.1 ([1]). Let (R, m, K) be a local ring or a standard graded K-algebra, which is F -finite and 
F -pure. We define

Ie(R) = {f ∈ R | ϕ(f1/pe

) ∈ m, for all ϕ ∈ HomR(R1/pe

, R)},

where e ∈ N.
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Remark 4.2. The set Ie(R) is an ideal of R, and is called the e-th splitting ideal of R. Then, f /∈ Ie(R) if 
and only if ϕ(f1/pe) = 1 for some map ϕ ∈ HomR(R1/pe

, R).

The ideal Ie(R) is used to define the F -signature [26]. Smith and Van den Bergh in their work [21] showed 
existence of this invariant when the ring R is strongly F -regular and has finite Frobenius representation 
type. Later, Huneke and Leuschke [12] showed that this invariant exists if R is a complete local Gorenstein 
domain. For rings that are Gorenstein on the punctured spectrum, its existence was given by Yao [26]. 
Subsequently, Tucker [23] showed existence of the F -signature in R with full generality.

Definition 4.3 ([8]). Let R be an F -finite F -pure ring, and J be an ideal in R. We define the Cartier 
contraction as

Je = {f ∈ R | ϕ(f1/pe

) ∈ J, for all ϕ ∈ HomR(R1/pe

, R)},

for e ∈ N.

Remark 4.4. The set Je is an ideal of R. If (R, m, K) is a local ring or a standard graded K-algebra, and 
m = J , we have Ie(R) = Je.

Proposition 4.5. Let R be an F -finite F -pure ring, and J be an ideal of R. Then, for every e nonnegative 
integer J [pe] ⊆ Je ⊆ J .

Proof. First, we show the inclusion J [pe] ⊆ Je. Let x be an element of J . For every ϕ ∈ HomR(R1/pe

, R), 
ϕ((xpe)1/pe) = ϕ(x · 1) = xϕ(1) ∈ J . Therefore, xpe ∈ Je.

To show the other inclusion, we proceed by contrapositive. Let r /∈ J . Since R ⊆ R1/pe is an R-module 
split, we can take β ∈ HomR(R1/pe

, R) such that β|R = 1R. It follows that β((rpe)1/pe) = β(r) = r /∈ J . 
Hence, rpe

/∈ Je, and so, r /∈ Je. �
The equality Je = J holds under certain conditions. This is done in Proposition 4.9 below.
The following proposition shows that the construction of the ideals Je commutes with arbitrary intersec-

tions.

Proposition 4.6. Let R be an F -finite F -pure ring, and {Ji}i be a family of ideals in R. Then, (
⋂

i Ji)e =⋂
i(Ji)e for every e nonnegative integer.

Proof. For every ϕ ∈ HomR(R1/pe

, R), we have that

x ∈
(⋂

i

Ji

)
e

⇔ ϕ(x1/pe

) ∈
⋂
i

Ji

⇔ ϕ(x1/pe

) ∈ Ji for every i

⇔ x ∈ (Ji)e for every i

⇔ x ∈
⋂
i

(Ji)e. �

Proposition 4.7. Let R be an F -finite F -pure ring, and q be a prime ideal of R. Then qe is a q-primary ideal 
for every e ∈ N.



8 W. Badilla-Céspedes / Journal of Pure and Applied Algebra 225 (2021) 106671
Proof. We show that √qe = q. By Proposition 4.5, q[pe] ⊆ qe ⊆ q, and so,

q =
√
q =

√
q[pe] ⊆ √

qe ⊆
√
q = q.

We now show that qe is primary. Suppose that there exist a, b ∈ R such that a /∈ qe and b /∈ q. There is 
ϕ ∈ HomR(R1/pe

, R) satisfying ϕ(a1/pe) /∈ q. As q is a prime ideal, ϕ((bpe

a)1/pe) = ϕ(ba1/pe) = bϕ(a1/pe) /∈
q. Hence, bpe

a /∈ qe, and so, ab /∈ qe. Therefore, qe is a q-primary ideal of R. �
We now recall the definition of uniformly compatible. Our goal is to study the biggest uniformly com-

patible ideal contained in other given ideal.

Definition 4.8 ([20]). Let R be an F -finite ring, and J be an ideal of R. We say that J is uniformly F -
compatible if ϕ(J1/pe) ⊆ J for every e > 0 and every ϕ ∈ HomR(R1/pe

, R).

Proposition 4.9. Let R be an F -finite F -pure ring. Let J be an ideal of R. Then, Je = J for every e
nonnegative integer if and only if J is uniformly F -compatible.

Proof. We suppose that Je = J for every e ≥ 0. We have that ϕ(J1/pe) ⊆ J for every ϕ ∈ HomR(R1/pe

, R)
by Definition 4.3.

For the other direction, it is enough to see that J ⊆ Je for every e > 0. In fact, by Definition 4.8, 
ϕ(J1/pe) ⊆ J for all ϕ ∈ HomR(R1/pe

, R). Therefore, J ⊆ Je. �
Lemma 4.10. Let R be an F -finite F -pure ring. Let J be an ideal of R. Then, 

⋂
s∈N Js is uniformly F -

compatible.

Proof. We proceed by contradiction. We suppose that ϕ 
((⋂

s∈N Js
)1/pe)

�
⋂

s∈N Js for some e > 0 and 

ϕ ∈ HomR(R1/pe

, R), and so, we have an f ∈
⋂

s∈N Js such that ϕ(f1/pe) /∈
⋂

s∈N Js. Thus, ϕ(f1/pe) /∈ Js
for some s ∈ N. Consequently, there exists φ ∈ HomR(R1/ps

, R) such that φ(ϕ(f1/pe)1/ps) /∈ J .
If we take ψ : R1/pe+s −→ R1/ps such that ψ(r1/pe+s) = ϕ(r1/pe)1/ps , we have that ψ is R-linear. As a 

consequence, σ = φ ◦ ψ ∈ HomR(R1/pe+s

, R). Then,

σ(f1/pe+s

) = φ ◦ ψ(f1/pe+s

) = φ(ϕ(f1/pe

)1/p
s

) /∈ J.

Therefore, f /∈ Je+s, and we reach a contradiction. �
Proposition 4.11. Let R be an F -finite F -pure ring. Let J be an ideal of R. Then, 

⋂
s∈N Js is the biggest 

uniformly F -compatible ideal contained in J .

Proof. Let I ⊆ J be an uniformly F -compatible ideal. By Proposition 4.9, I = Ie ⊆ Je for every e ≥ 0. 
Therefore, I ⊆

⋂
s∈N Js. �

Motivated by the splitting prime ideal [1] and differential core [4], we introduce the Cartier core.

Definition 4.12. Let R be an F -finite F -pure ring. Given J an ideal of R, we define the Cartier core of J as 
P(J) =

⋂
s∈N Js.

Remark 4.13. Let (R, m, K) be a local ring or a standard graded K-algebra, and m = J . Then, the ideal 
P(J) coincides with the splitting prime of R, denoted P(R), and introduced by Aberbach and Enescu [1].
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In Proposition 4.15, we see a characterization of the Cartier core. This plays an important role in Sub-
section 4.2 to describe the ideal qe for Stanley-Reisner rings.

Remark 4.14. Let R be an F -finite F -pure ring, and J be an ideal of R. For every r ∈
√
P(J), rpe ∈ P(J)

for some e ∈ N. Since R ⊆ R1/pe is an R-module split, there exists β ∈ HomR(R1/pe

, R) such that β|R = 1R. 
Moreover, r = (rpe)1/pe ∈ (P(J))1/p

e

. Thus, r = β(r) ∈ P(J) by Lemma 4.10. Therefore, the Cartier core 
of J is a radical ideal.

Since Js+1 is not necessarily contained in Js, we need to show that 
⋂

s≥e Js is the Cartier core for any e.

Proposition 4.15. Let R be an F -finite F -pure ring, and J be an ideal of R. Then, P(J) =
⋂

s≥e Js for every 
nonnegative integer e.

Proof. We must show that 
⋂

s≥e Js ⊆ P(J). Let x ∈
⋂

s≥e Js. Thus x ∈ J by Proposition 4.5. Hence, 
xps ∈ J [ps] for every s ≤ e. As a consequence, xpe ∈ J [ps]. As xpe ∈

⋂
s≥e Js, we have that xpe ∈ P(J). 

Thus, x ∈
√
P(J). Therefore, x ∈ P(J) by Remark 4.14. �

4.2. The ideal qe in Stanley-Reisner rings

Throughout this subsection, we denote S = K[x1, . . . , xn] with K an F -finite field of prime characteristic 
p. Let I be a squarefree monomial ideal of S, R = S/I, and p1, . . . , pl are the minimal prime ideals of R. 
We want to compute the ideal qe, when q is a monomial prime ideal of R.

Lemma 4.16. Let J be a monomial ideal in R, and e be a nonnegative integer. Then, Je and P(J) are 
monomial ideals.

Proof. We note that R is Nn-graded, and R1/pe is 1
peNn-graded R-module. As R ⊆ R1/pe , we can view 

R as an 1
peNn-graded R-module. To show that Je is a monomial ideal, it suffices to prove that Je is a 

homogeneous ideal with the Nn grading. Let r = rα1 + · · ·+ rαt
∈ Je, with rαi

∈ R of degree αi ∈ Nn. Let 
ϕ ∈ HomR(R1/pe

, R). Since R1/pe is a finitely generated R-module, every homomorphism R1/pe −→ R is a 
finite sum of graded homomorphisms. Thus, we can take ϕ homogeneous of degree β ∈ 1

peNn. Then,

ϕ(r1/pe

) = ϕ(r1/pe

α1
) + · · · + ϕ(r1/pe

αt
) ∈ J,

and each ϕ(r1/pe

αi ) has degree 1
peαi + β. As J is a homogeneous ideal, ϕ(r1/pe

αi ) ∈ J . Then, rαi
∈ Je for all 

i ∈ {1, . . . , t}. Therefore, Je is a homogeneous ideal.
Since Je is a monomial ideal, P(J) is a monomial ideal because intersection of monomial ideals is mono-

mial. �
Proposition 4.17. Given q a monomial prime ideal of R, then qe = q[q] +P(q) for every e ∈ N, and q = pe.

Proof. We must show qe ⊆ q[q] +P(q). We proceed by contradiction. Let r be an element in qe. We suppose 
that r /∈ q[q]+P(q). From Lemma 4.16, qe is a monomial ideal of R. Then, we can take r = xβ , with β ∈ Nn.

Thus, xβ /∈ q[q], and xβ /∈ P(q). By Proposition 4.15, xβ /∈
⋂

s≥e qs, and so, there exists e′ ≥ e such that 
xβ /∈ qe′ .

Let A = {α ∈ Nn | 0 ≤ αi ≤ q − 1 for i = 1, . . . , n}, A′ = {α′ ∈ Nn | 0 ≤ α′
i ≤ pe

′ − 1 for i = 1, . . . , n}, 
B = {ai1/q | i = 1, . . . , s} be a base of K1/q as K-vector space, and B′ = {(a′i)1/p

e′ | i = 1, . . . , s′} be a base 

of K1/pe′ as K-vector space. We may suppose that a1 = a′1 = 1.
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Moreover, xβ/pe = xθxα/pe and xβ/pe′ = xθ′
xα′/pe′ , with θ, θ′ ∈ Nn, α ∈ A, and α′ ∈ A′. As pe′ ≥ pe, 

then αi ≤ α′
i and θi ≥ θ′i for every i. Thus, there exists τi ∈ N such that θi = θ′i + τi.

Furthermore, Jα = (I : xα) ⊆ (I : xα′) = Jα′ . Hence, we take a morphism

φ ∈ HomR((S/Jα)xα/pe

, (S/Jα′)xα′/pe′

)

such that φ(xα/pe) = xα′/pe′ .
Since xβ /∈ qe′ , there exists ψ ∈ HomR((S/Jα′)xα′/pe′

, R) such that ψ(xθ′
xα′/pe′ ) /∈ q by Proposition 2.2.

We have an R-linear map

ϕ : R1/q −→
⊕

1≤i≤s
α∈A

S/Jα(aixα)1/q

such that

ϕ(r1/q) =
⊕

1≤i≤s
α∈A

(ri,α + Jα)(aixα)1/q,

where

r1/q =
⊕

1≤i≤s
α∈A

ri,α(aixα)1/q.

Taking γ = ψ ◦ φ ◦ πα ◦ ϕ, we have γ ∈ HomR(R1/q, R), and γ(xβ/pe) = ψ(xθxα′/pe′ ) = ψ(xτxθ′
xα′/pe′ ) =

xτψ(xθ′
xα′/pe′ ).

In addition, xβ = xqθxα = xqτxqθ′
xα. As xβ /∈ q[q], we get that xτ /∈ q. Since xβ ∈ qe, it fol-

lows that xτψ(xθ′
xα′/pe′ ) = γ(xβ/pe) ∈ q. We get a contradiction, because q is a prime ideal in R, and 

xτ , ψ(xθ′
xα′/pe′ ) /∈ q. �

Proposition 4.18. Let e be a nonnegative integer, q = pe, R = R/P(q) with q a monomial prime ideal in R, 
and f ∈ R. Then, the following hold.

(1) If f ∈ qe, then f ∈ (q)e;
(2) f ∈ q

[q] if and only if f ∈ qe.

Proof. We show Part (1). We can assume that f a monomial, because qe and (q)e are monomial ideals by 
Lemma 4.16.

We have that f ∈ qe = q[q] + P(q) by Proposition 4.17. Since f is a monomial, it follows that f ∈ q[q] or 
f ∈ P(q). If f ∈ P(q), then f = 0 ∈ (q)e. Moreover, if f ∈ q[q], then f ∈ q

[q] ⊆ (q)e.
Now, we show Part (2). From Proposition 4.17, we see that

f ∈ q
[q] = q[q] ⇔ f − g ∈ P(q) for some g ∈ q[q]

⇔ f ∈ q[q] + P(q) = qe. �
Proposition 4.19. Suppose A as in Remark 2.3 and B = A/IA. Given q a monomial prime ideal of B, then 
qe = q[q] + P(q) for every e ∈ N, and q = pe.

Proof. The proof is analogous to Proposition 4.17. �
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Proposition 4.20. Suppose A as in Remark 2.3 and B = A/IA. Let e be a nonnegative integer, q = pe, 
B = B/P(q) with q a monomial prime ideal in B, and f ∈ B. Then, the following hold.

(1) If f ∈ qe, then f ∈ (q)e;
(2) f ∈ q

[q] if and only if f ∈ qe.

Proof. The proof is analogous to Proposition 4.18. �
5. Cartier threshold of a with respect to J

In this section we prove another one of our main results, Theorem A. In order to obtain this, we recall 
the definition of the Cartier threshold of a with respect to J . We give some properties of this and show 
that it is preserved under localization and completion. We study its relation with the F -thresholds. We also 
compare this number with its analog in R = R/P(J).

5.1. Definition and first properties

In this subsection R denotes a ring of prime characteristic p. We give properties related to Cartier 
thresholds.

Definition 5.1 ([8]). Let R be an F -finite F -pure ring. Given a, J two ideals in R such that a ⊆
√
J , we 

define

bJa (pe) = max{t ∈ N | at � Je}.

We define the Cartier threshold of a in R with respect to J by

ctJ(a) = lim
e→∞

bJa (pe)
pe

.

If (R, m, K) is a local ring or a standard graded K-algebra and m = J , the Cartier threshold ctJ(a)
coincides with the F -pure threshold fpt(a). When a = m, fpt(m) is denoted by fpt(R).

Using Proposition 4.6, it follows that ctJ(a) also commutes with arbitrary intersections.

Proposition 5.2. Let R be an F -finite F -pure ring. Let {qi}i be a family of ideals in R, and J =
⋂

i qi. Let 
a be an ideal in R such that a ⊆

√
J . Then, ctJ(a) = sup{ctqi

(a)}.

Proof. By Proposition 4.6, we have that Je =
⋂

i(qi)e for every nonnegative integer e. Then,

t ≥ bJa (pe) ⇔ at+1 ⊆ Je

⇔ at+1 ⊆ (qi)e for every i

⇔ t ≥ bqi
a (pe) for every i

⇔ t ≥ sup{bqi
a (pe)}.

Hence, b
J
a(pe)
pe = sup

{
b
qi
a (pe)
pe

}
. Therefore, ctJ(a) = sup{ctqi

(a)}. �
Since qe is a q-primary ideal by Proposition 4.7, we have that ctJ(a) is preserved under localization. This 

fact, we prove it in Proposition 5.4 below.
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Lemma 5.3. Let R be an F -finite F -pure ring, q be a prime ideal of R, and f ∈ R. Then, f1 ∈ Ie(Rq) if and 
only if f ∈ qe.

Proof. We focus on the first direction. Let ψ ∈ HomR(R1/pe

, R). Since (R1/pe)q ∼= Rq
1/pe

as Rq-module, 
ψq ∈ HomRq

(Rq
1/pe

, Rq), and so, ψ(f1/pe )
1 = ψq( f

1/pe

1 ) = ψq(( f1 )1/pe) ∈ qRq. Hence, as q is a prime ideal, 
ψ(f1/pe) ∈ q. Therefore, f ∈ qe.

We now show the other direction. Let ψ ∈ HomRq
(Rq

1/pe

, Rq). Since HomRq
(Rq

1/pe

, Rq) ∼= HomR(R1/pe

,

R)q, we have that ψ = 1
sϕq for some ϕ ∈ HomR(R1/pe

, R) and s ∈ R \ q. As a consequence, ψ(( f1 )1/pe) =
ψ( f

1/pe

1 ) = ϕ(f1/pe )
s ∈ qRq. Therefore, f1 ∈ Ie(Rq). �

Proposition 5.4. Let R be an F -finite F -pure ring. Let a, q be two ideals of R with q a prime ideal, and 
a ⊆ q. Then, ctq(a) = fpt(aRq).

Proof. By Lemma 5.3, we observe that,

bqa(pe) = max{t ∈ N | at � qe}
= max{t ∈ N | atRq � Ie(Rq)}
= max{t ∈ N | (aRq)t � Ie(Rq)}

= b
qRq

aRq
(pe).

Therefore, ctq(a) = fpt(aRq). �
Consider a local ring (R, m, K). Let a ⊆

√
J be two ideals of R. We claim that the Cartier threshold of 

a with respect to J does not vary under completion. To show this, we compare the ideal Je versus (JR̂)e.

Lemma 5.5. Let (R, m, K) be an F -finite F -pure local ring, f ∈ R, and J be an ideal in R. Then, f ∈ Je if 
and only if f ∈ (JR̂)e.

Proof. We suppose that f ∈ Je. Let ϕ ∈ HomR̂(R̂1/pe

, R̂). Since R is an F -finite ring and R̂1/pe ∼= R̂1/pe as 
R̂-module, we have

HomR̂(R̂1/pe

, R̂) ∼= HomR(R1/pe

, R)
∼= HomR(R1/pe

, R) ⊗R R̂.

Hence, ϕ =
∑n

i=1 ϕi ⊗ ri with ϕi ∈ HomR(R1/pe

, R) and ri ∈ R̂. Then, ϕ(f1/pe) =
∑n

i=1 riϕi(f1/pe). 
However, f ∈ Je, in consequence ϕi(f1/pe) ∈ J , thus ϕ(f1/pe) ∈ JR̂. Therefore, f ∈ (JR̂)e.

We now suppose that f ∈ (JR̂)e. Let ϕ ∈ HomR(R1/pe

, R). Since R̂1/pe ∼= R̂1/pe as R̂-module, we have 
ϕ̂ ∈ HomR̂(R̂1/pe

, R̂). Then, ϕ̂(f1/pe) ∈ JR̂, and so, ϕ(f1/pe) ∈ J . Therefore, f ∈ Je. �
Proposition 5.6. Suppose that (R, m, K) is an F -finite F -pure local ring. Let a, J be two ideals in R such 
that a ⊆

√
J . Then, ctJ(a) = ctJR̂(aR̂).

Proof. By Lemma 5.5, we observe that

bJa (pe) = max{t ∈ N | at � Je}
= max{t ∈ N | atR̂ � (JR̂)e}
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= max{t ∈ N | (aR̂)t � (JR̂)e}

= bJR̂
aR̂

(pe).

Therefore, ctJ (a) = ctJR̂(aR̂). �
Given J an ideal in R, we consider the ring R = R/P(J). Let a be an ideal in R such that a ⊆

√
J . 

Our goal is to compare the Cartier threshold of a with respect to J versus the Cartier threshold of a with 
respect to J .

Lemma 5.7. Let R be an F -finite F -pure ring, J be an ideal of R, R = R/P(J), and f ∈ R. Then, f ∈ (J)e
implies that f ∈ Je.

Proof. For every ϕ ∈ HomR(R1/pe

, R), we take ϕ : R
1/pe

−→ R such that ϕ(x1/pe) = ϕ(x1/pe). By 
Lemma 4.10, it follows that ϕ is well defined.

Since ϕ ∈ HomR(R1/pe

, R), it follows that ϕ ∈ HomR(R1/pe

, R). As f ∈ (J)e, then ϕ(f1/pe) = ϕ(f1/pe

) ∈
J . Hence, there exists y ∈ J such that ϕ(f1/pe) −y ∈ P(J) ⊆ J , and so ϕ(f1/pe) ∈ J . Therefore, f ∈ Je. �
Proposition 5.8. Let R be an F -finite F -pure ring. Let a, J be two ideals in R such that a ⊆

√
J , and 

R = R/P(J). Then, ctJ(a) ≤ ctJ(a). In particular, if (R, m, K) is a local ring or a standard graded K-
algebra, then fpt(a) ≤ fpt(a).

Proof. From Lemma 5.7, we have that

bJa (pe) = max{t ∈ N | at � Je}
≤ max{t ∈ N | at � (J)e}

= bJa (pe).

Therefore, ctJ (a) = lim
e→∞

bJa(pe)
pe ≤ lim

e→∞
bJa(pe)

pe = ctJ(a). �
5.2. Relation between cJ(a) and ctJ(a)

In this subsection we give a characterization of ctJ(a) using F -thresholds.

Remark 5.9. Suppose that R is an F -finite F -pure ring. Let a, J be two ideals in R such that a ⊆
√
J . Since 

J [pe] ⊆ Je, we have that

bJa (pe) = max{t ∈ N | at � Je}
≤ max{t ∈ N | at � J [pe]}
= νJa (pe).

Therefore, ctJ (a) ≤ cJ(a).

The following Remark relates F -pure rings and Frobenius powers.

Remark 5.10. Suppose that R is an F -pure ring. Let J be an ideal in R and r ∈ R. Then, rp ∈ J [p] if 
and only if r ∈ J [10]. Let a be ideals in R such that a ⊆

√
J . Then, we have that aνJ

a (pe) � J [pe]. As a 
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consequence, (aνJ
a (pe))[p] � J [pe+1]. Hence, ap·νJ

a (pe) � J [pe+1], and so, p · νJa (pe) ≤ νJa (pe+1). Therefore, the 

sequence 
{

νJ
a (pe)
pe

}
e≥0

is non-decreasing.

The following propositions are an extension of the work done by De Stefani, Núñez-Betancourt and Pérez 
[9, Theorem 4.6].

Proposition 5.11. Let R be an F -finite F -pure ring. Let J be an ideal in R. Then, J [p]
e ⊆ Je+1 for every 

e ∈ N.

Proof. Let f be an element in Je. Let ϕ ∈ HomR(R1/pe+1
, R). As R1/pe ⊆ R1/pe+1 , we have that ϕ|R1/pe ∈

HomR(R1/pe

, R). Thus, ϕ((fp)1/pe+1) = ϕ|R1/pe (f1/pe) ∈ J . Hence, fp ∈ Je+1, and so, J [p]
e ⊆ Je+1. �

Proposition 5.12. Let R be an F -finite F -pure ring, and a, J be two ideals in R such that a ⊆
√
J . The 

sequence 
{

cJe (a)
pe

}
e≥0

is non-increasing and bounded below by zero. In particular, its limit exists.

Proof. Let e be nonnegative integer, J [p]
e ⊆ Je+1. Thus, cJe+1(a) ≤ cJ

[p]
e (a) = p · cJe(a) by Proposition 3.5. 

Therefore, c
Je+1 (a)
pe+1 ≤ cJe (a)

pe . �
The following proposition gives us a relation between the Cartier thresholds and F -thresholds. Specifically, 

we can obtain the Cartier threshold as a limit F -thresholds.

Proposition 5.13. Let R be an F -finite F -pure ring. Let a, J be two ideals in R such that a ⊆
√
J . Then, 

ctJ(a) = lim
e→∞

cJe (a)
pe .

Proof. Let e be nonnegative integer. We note that

bJa (pe) = max{t ∈ N | a � Je}

= max{t ∈ N | a � J [p0]
e }

= νJe
a (p0).

For every nonnegative integer s, we have

νJe
a (ps)
ps

− νJe
a (p0)
p0 ≤ μ(a)

p0

by Lemma 3.2.
The sequence 

{
νJe
a (ps)
ps

}
s≥0

is non-decreasing by Remark 5.10. As a consequence,

0 ≤ νJe
a (ps)
ps

− νJe
a (p0) ≤ μ(a).

Thus,

0 ≤ νJe
a (ps)
ps

− bJa (pe) ≤ μ(a).

We take limit over s to get
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0 ≤ cJe(a) − bJa (pe) ≤ μ(a),

dividing by pe gives

0 ≤ cJe(a)
pe

− bJa (pe)
pe

≤ μ(a)
pe

.

Taking limit over e we conclude that

ctJ(a) = lim
e→∞

cJe(a)
pe

. �
Corollary 5.14. Let R be an F -finite F -pure ring. Let a, J be two ideals in R such that a ⊆

√
J . Then, 

ctJ(a) = cJ(a) if and only if cJe(a) = cJ
[pe](a) for every e ∈ N.

Proof. We focus on the first direction, it suffices to show cJ
[pe](a) ≤ cJe(a). As the sequence 

{
cJe (a)

pe

}
e≥0

is 

non-increasing and bounded below, it converges to its infimum. By Proposition 5.13, cJ(a) ≤ cJe (a)
pe . As a 

consequence, cJ [pe](a) = pe · cJ (a) ≤ cJe(a).

We now show the other direction, ctJ(a) = lim
e→∞

cJe (a)
pe = lim

e→∞
cJ

[pe]
(a)

pe = lim
e→∞

pe·cJ (a)
pe = cJ (a). �

5.3. Cartier thresholds in Stanley-Reisner rings

Throughout this subsection, we denote S = K[x1, . . . , xn] with K an F -finite field of prime characteristic 
p. Let I be a squarefree monomial ideal of S, R = S/I, and p1, . . . , pl are the minimal prime ideals of R.

Theorem 5.15. Suppose A as in Remark 2.3 and B = A/IA. Let a, q be two ideals in B with q a prime 
monomial ideal, such that a ⊆ q, and B = B/P(q). Then, the following hold:

(1) ctq(a) = ctq(a);
(2) ctq(a) = cq(a);
(3) ctq(a) is a rational number.

In particular, fpt(a) is a rational number.

Proof. We show Part (1). From Proposition 4.20 and Lemma 5.7, we have

bqa(pe) = max{t ∈ N | at � qe}

= max{t ∈ N | at � (q)e}

= bqa(p
e).

Therefore, ctq(a) = ctq(a).
Now, we show Part (2). We claim that cq(a) ≤ ctq(a). From Proposition 4.20, it follows that

νqa(pe) = max{t ∈ N | at � q
[q]}

≤ max{t ∈ N | at � qe}

= bqa(pe).
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Thus, cq(a) = lim
e→∞

νq

a
(pe)
pe ≤ lim

e→∞
bqa(pe)

pe = ctq(a).
By Part (1) and Remark 5.9, we have cq(a) ≤ ctq(a) = ctq(a) ≤ cq(a). Therefore, cq(a) = ctq(a).
We show Part (3). Since q is a monomial ideal, P(q) is also a monomial ideal by Lemma 4.16. In addition, 

P(q) is a radical ideal by Remark 4.14. Thus, P(q) is squarefree monomial ideal. Consequently, B is a power 
series ring modulo a squarefree monomial ideal. Since q is a monomial ideal in B, cq(a) is a rational number 
by Remark 3.7. Therefore, ctq(a) is a rational number by Part (2).

The last statement follows, since ctm(a) = fpt(a) and m is a monomial prime ideal in B. �
Since ctJ(a) is preserved under localization and completion, Theorem 5.15 allows us to obtain one of the 

main results of this work.

Corollary 5.16. Let a, J be two ideals in R with J radical ideal, such that a ⊆ J . Then, ctJ(a) is a rational 
number. In particular, fpt(a) is a rational number.

Proof. Let q ⊆ R be a prime ideal such that a ⊆ q. We have that ctq(a) = fpt(aR̂q) by Propositions 5.4
and 5.6. Thus, ctq(a) is a rational number by Theorem 5.15.

Since J is a radical ideal, we have that J =
⋂m

i=1 qi where q1, . . . , qm are the minimal prime ideals of J . 
From Proposition 5.2, ctJ (a) = max{ctqi

(a)}. Therefore, ctJ(a) is a rational number. �
6. a-Invariants and regularity

In this section we focus on standard graded K-algebras. We study the a-invariants and regularity in rings 
modulo Frobenius powers of an ideal. We also investigate their behavior with the Castelnuovo-Mumford 
regularity in Stanley-Reisner rings.

6.1. Definitions and property

Suppose that (R, m, K) is a standard graded K-algebra, and let I be a homogeneous ideal of R. We recall 
that if M is a graded R-module, its i-th local cohomology Hi

I(M) is a graded module. Moreover, if M is 
finitely generated, the module Hi

m(M) is Artinian. Therefore, one can define the following number.

Definition 6.1 ([11]). Let (R, m, K) be a standard graded K-algebra. Let M be an 1
peN-graded finitely 

generated R-module. If Hi
m(M) �= 0, we define the i-th a-invariant of M by

ai(M) = max
{
s ∈ 1

pe
Z | Hi

m(M)s �= 0
}
.

If Hi
m(M) = 0, we set ai(M) = −∞.

Definition 6.2. Let (R, m, K) be a standard graded K-algebra. Let M be an 1
peN-graded finitely generated 

R-module. We define the regularity of M by

reg(M) = max
i∈Z

{ai(M) + i}.

Next theorem gives us conditions for the regularity in rings modulo Frobenius power of ideals.

Theorem 6.3 ([9, Theorem 5.4]). Let (R, m, K) be a standard graded K-algebra that is F -finite and F -pure. 
Suppose that J is a homogeneous ideal of R. If there exists a constant C such that reg(R/J [pe]) ≤ Cpe for 
all e � 0, then
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lim
e→∞

reg(R/J [pe])
pe

exists, and it is bounded below by maxi∈N{ai(R/J)} + fpt(R).

6.2. Regularity in Stanley-Reisner rings

Throughout this subsection, we denote S = K[x1, . . . , xn] with K an F -finite field of prime characteristic 
p. Let I be a squarefree monomial ideal of S, R = S/I.

Definition 6.4. Let N ⊆ {1, . . . , n}. We define

xN =
∏
i∈N

xi.

Now, we define the support of an element in Nn.

Definition 6.5. Let α ∈ Nn. The support of α is defined by

Supp(α) = {i ∈ {1, . . . , n} | αi �= 0}.

Lemma 6.6. Given α ∈ Nn, then (I : xα) = (xSupp(λ)\Supp(α) | xλ minimal generator of I). In particular, if 
α, β ∈ Nn are such that Supp(α) = Supp(β), then (I : xα) = (I : xβ).

Proof. Since I is a monomial ideal, it follows that (I : xα) is a monomial ideal as well. We have 
(xSupp(λ)\Supp(α) | xλ minimal generator of I) ⊆ (I : xα). Indeed, for every xλ minimal generator of I, 
xSupp(λ)\Supp(α)xα ∈ I.

We show that (I : xα) ⊆ (xSupp(λ)\Supp(α) | xλ minimal generator of I). Let xθ be a generator of (I : xα). 
Thus xθxα ∈ I. Hence, xλ|xθxα for some xλ minimal generator of I. Then, Supp(λ) \ Supp(α) ⊆ Supp(θ), 
and so, xSupp(λ)\Supp(α)|xθ. Therefore, xθ ∈ (xSupp(λ)\Supp(α) | xλ minimal generator of I). �

Now, we prove Theorem C.

Theorem 6.7. Let J be a homogeneous ideal of R. Then,

lim
e→∞

reg(R/J [pe])
pe

= max
1≤i≤d
α∈A′

{ai(S/(Jα + J)) + |α|},

where A′ = {α ∈ Nn | 0 ≤ αi ≤ 1 for i = 1, . . . , n}, Jα = (I : xα), and d = max{dim(S/(Jα +J)) | α ∈ A′}. 
In particular, this limit is an integer number.

Proof. Without loss of generality, we can take K a perfect field. Let e be a nonnegative integer and A =
{α ∈ Nn | 0 ≤ αi ≤ pe − 1 for i = 1, . . . , n}. Then,

R1/pe ∼=
⊕
α∈A

(S/Jα)xα/pe

,

where Jα = (I : xα) by Proposition 2.2. Applying − ⊗R R/J , we obtain that

(R/J [pe])1/p
e ∼= R1/pe

/JR1/pe ∼=
⊕
α∈A

(S/(Jα + J))xα/pe

,
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and so

Hi
m((R/J [pe])1/p

e

) ∼=
⊕
α∈A

Hi
m((S/(Jα + J))xα/pe

).

Hence, we have

ai(R/J [pe])
pe

= ai((R/J [pe])1/p
e

)

= max
α∈A

{ai((S/(Jα + J))xα/pe

)}

= max
α∈A

{
ai(S/(Jα + J)) + |α|

pe

}
.

From Lemma 6.6, we have

ai(R/J [pe])
pe

= max
α∈A′

{
ai(S/(Jα + J)) + |α|(pe − 1)

pe

}
.

Thus,

lim
e→∞

reg(R/J [pe])
pe

= lim
e→∞

max
i∈Z

{
ai(R/J [pe])

pe
+ i

pe

}
= lim

e→∞
max
i∈Z

{
max
α∈A′

{ai(S/(Jα + J)) + |α|(pe − 1)
pe

} + i

pe

}
= lim

e→∞
max
1≤i≤d
α∈A′

{
ai(S/(Jα + J)) + |α|(pe − 1)

pe
+ i

pe

}

= max
1≤i≤d
α∈A′

{
lim
e→∞

ai(S/(Jα + J)) + |α|(pe − 1)
pe

+ i

pe

}
= max

1≤i≤d
α∈A′

{ai(S/(Jα + J)) + |α|}. �
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