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The notion of Hochschild homology of a dg algebra admits a natural dualization, the 
coHochschild homology of a dg coalgebra, introduced in [23] as a tool to study free 
loop spaces. In this article we prove “agreement” for coHochschild homology, i.e., 
that the coHochschild homology of a dg coalgebra C is isomorphic to the Hochschild 
homology of the dg category of appropriately compact C-comodules, from which 
Morita invariance of coHochschild homology follows. Generalizing the dg case, we 
define the topological coHochschild homology (coTHH) of coalgebra spectra, of 
which suspension spectra are the canonical examples, and show that coTHH of 
the suspension spectrum of a space X is equivalent to the suspension spectrum of 
the free loop space on X, as long as X is a nice enough space (for example, simply 
connected.) Based on this result and on a Quillen equivalence established in [24], 
we prove that “agreement” holds for coTHH as well.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

For any commutative ring k, the classical definition of Hochschild homology of k-algebras [33] admits a 
straightforward extension to differential graded (dg) k-algebras. In [37] McCarthy extended the definition of 
Hochschild homology in another direction, to k-exact categories, seen as k-algebras with many objects. As 
Keller showed in [29], there is a common refinement of these two extended definitions to dg categories, seen 
as dg algebras with many objects. This invariant of dg categories satisfies many useful properties, including 
“agreement” (the Hochschild homology of a dg algebra is isomorphic to that of the dg category of compact 
modules) [29, 2.4] and Morita invariance (a functor in the homotopy category of dg categories that induces 
an isomorphism between the subcategories of compact objects also induces an isomorphism on Hochschild 
homology) [47, 4.4].

The notion of Hochschild homology of a differential graded (dg) algebra admits a natural dualization, 
the coHochschild homology of a dg coalgebra, which was introduced by Hess, Parent, and Scott in [23], 
generalizing the non-differential notion of [13]. They showed in particular that the coHochschild homology 
of the chain coalgebra on a simply connected space X is isomorphic to the homology of the free loop space 
on X and that the coHochschild homology of a connected dg coalgebra C is isomorphic to the Hochschild 
homology of ΩC, the cobar construction on C.

In this article we establish further properties of coHochschild homology, analogous to the invariance 
properties of Hochschild homology recalled above. We first prove a sort of categorification of the relation 
between coHochschild homology of a connected dg coalgebra C and the Hochschild homology of ΩC, showing 
that there is a dg Quillen equivalence between the categories of C-comodules and of ΩC-modules (Propo-
sition 2.8). We can then establish an “agreement”-type result, stating that the coHochschild homology of a 
dg coalgebra C is isomorphic to the Hochschild homology of the dg category spanned by certain compact 
C-comodules (Proposition 2.12). Thanks to this agreement result, we can show as well that coHochschild 
homology is a Morita invariant (Proposition 2.23), using the notion of Morita equivalence of dg coalge-
bras formulated in [4], which extends that of Takeuchi [46] and which we recall here. Proving these results 
required us to provide criteria under which a dg Quillen equivalence of dg model categories induces a quasi-
equivalence of dg subcategories (Lemma 2.13); this technical result, which we were unable to find in the 
literature, may also be useful in other contexts.

The natural analogue of Hochschild homology for spectra, called topological Hochschild homology (THH), 
has proven to be an important and useful invariant of ring spectra, particularly because of its connection to 
K-theory via the Dennis trace. Blumberg and Mandell proved moreover that THH satisfies both “agreement,” 
in the sense that THH of a ring spectrum is equivalent to THH of the spectral category of appropriately 
compact R-modules, and Morita invariance [5]

We define here an analogue of coHochschild homology for spectra, which we call topological coHochschild 
homology (coTHH). We show that coTHH is homotopy invariant, as well as independent of the particular 
model category of spectra in which one works. We prove moreover that coTHH of the suspension spectrum 
Σ∞

+ X of a connected Kan complex X is equivalent to Σ∞
+ LX, the suspension spectrum of the free loop 

space on X, whenever X is EMSS-good, i.e., whenever π1X acts nilpotently on the integral homology of the 
based loop space on X (Theorem 3.7).

This equivalence was already known for simply connected spaces X, by work of Kuhn [31] and Malkiewicz 
[34], though they did not use the term coTHH. The extension of the equivalence to EMSS-good spaces 
is based on new results concerning total complexes of cosimplicial suspension spectra, such as the fact 
that Tot(Σ∞Y •) � Σ∞TotY • whenever the homology spectral sequence for a cosimplicial space Y • with 
coefficients in Z strongly converges (Corollary A.3). We also show that if X is an EMSS-good space, then 
the Anderson spectral sequence for homology with coefficients in Z for the cosimplicial space Map(S1

• , X)
strongly converges to H∗(LX; Z) (Proposition A.4).
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In [7], Bökstedt and Waldhausen proved that THH(Σ∞
+ ΩX) � Σ∞

+ LX for simply connected X. It follows 
thus from Theorem 3.7 that if X is simply connected, then THH(Σ∞

+ ΩX) � coTHH(Σ∞
+ X), analogous to the 

result for dg coalgebras established in [23]. Combining this result with the spectral Quillen equivalence be-
tween categories of Σ∞

+ ΩX-modules and of Σ∞
+ X-comodules established in [24] and with THH-agreement [5], 

we obtain coTHH-agreement for simply connected Kan complexes X: coTHH(Σ∞
+ X) is equivalent to THH 

of the spectral category of appropriately compact Σ∞
+ ΩX-modules (Corollary 3.11).

We do not consider Morita invariance for coalgebra spectra in this article, as the duality requirement of 
the framework in [4] is too strict to allow for interesting spectral examples. We expect that a meaningful 
formulation should be possible in the ∞-category context.

In parallel with writing this article, the second author collaborated with Bohmann, Gerhardt, Høgen-
haven, and Ziegenhagen on developing computational tools for coHochschild homology, in particular an 
analogue of the Bökstedt spectral sequence for topological Hochschild homology constructed by Angeltveit 
and Rognes [2]. For C a coalgebra spectrum, the E2-page of this spectral sequence is the associated graded 
of the classical coHochschild homology of the homology of C with coefficients in a field k, and the spectral 
sequence abuts to the k-homology of coTHH(C). If C is connected and cocommutative, then this is a spec-
tral sequence of coalgebras. In [6] the authors also proved a Hochschild-Kostant-Rosenberg-style theorem 
for coHochschild homology of cofree cocommutative differential graded coalgebras.

In future work we will construct and study an analogue of the Dennis trace map, with source the K-theory 
of a dg or spectral coalgebra C and with target its (topological) coHochschild homology.
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2. CoHochschild homology for chain coalgebras

In this section we recall from [23] the coHochschild complex of a chain coalgebra over a field k, which 
generalizes the definitions in [13] and in [28] and dualizes the usual definition of the Hochschild complex of 
a chain algebra. We establish important properties of this construction analogous to those known to hold 
for Hochschild homology: “agreement” (in the sense of [37]) and Morita invariance.

Notation 2.1. Throughout this section we work over a field k and write ⊗ to denote the tensor product over 
k and |v| to denote the degree of a homogeneous element v of a graded vector space.

• We denote the category of (unbounded) graded chain complexes over k by Chk, the category of 
augmented, nonnegatively graded chain algebras (dg algebras) over k by Alg

k
, and the category of 

coaugmented, connected (and hence nonnegatively graded) chain coalgebras (dg coalgebras) by Coalg
k
. 

All of these categories are naturally dg categories, i.e., enriched over Chk, with Alg
k

and Coalg
k

inheriting 
their enrichments from that of Chk.
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• We apply the Koszul sign convention for commuting elements of a graded vector space or for commuting 
a morphism of graded vector spaces past an element of the source module. For example, if V and W
are graded algebras and v ⊗ w, v′ ⊗ w′ ∈ V ⊗W , then

(v ⊗ w) · (v′ ⊗ w′) = (−1)|w|·|v′|vv′ ⊗ ww′.

Furthermore, if f : V → V ′ and g : W → W ′ are morphisms of graded vector spaces, then for all 
v ⊗ w ∈ V ⊗W ,

(f ⊗ g)(v ⊗ w) = (−1)|g|·|v|f(v) ⊗ g(w).

All signs in the formulas below follow from the Koszul rule. It is a matter of straightforward calculation 
in each case to show that differentials square to zero.

• The desuspension endofunctor s−1 on the category of graded vector spaces is defined on objects V =⊕
i∈Z Vi by (s−1V )i ∼= Vi+1. Given a homogeneous element v in V , we write s−1v for the corresponding 

element of s−1V .
• Given chain complexes (V, d) and (W, d), the notation f : (V, d) �−→ (W, d) indicates that f induces an 

isomorphism in homology. In this case we refer to f as a quasi-isomorphism.
• [47, Section 2.3] A quasi-equivalence of dg categories is a dg functor F : C → D such that FX,X′ :

homC(X, X ′) → homD
(
F (X), F (X ′)

)
is a quasi-isomorphism for all X, X ′ ∈ Ob C (i.e., F is quasi-fully 

faithful) and such that the induced functor on the homology categories, H0F : H0C → H0D, is essentially 
surjective, i.e., F is quasi-essentially surjective. The objects of the homology category H0C, which is a dg 
category in which the hom-objects have zero differential, are the same as those of C, while hom-objects 
are given by the 0th-homology of the hom-objects of C.

• Let T denote the endofunctor on the category of graded vector spaces given by

TV = ⊕n≥0V
⊗n,

where V ⊗0 = k. An element of the summand V ⊗n of TV is denoted v1| · · · |vn, where vi ∈ V for all i.
• The coaugmentation coideal of any C in Coalg

k
is denoted C.

• We consistently apply the Einstein summation convention, according to which an expression involving 
a term with the same letter as a subscript and a superscript denotes a sum over that index, e.g., ci ⊗ ci

denotes a sum of elementary tensors over the index i.

2.1. The dg cobar construction and its extensions

Let Ω denote the cobar construction functor from Coalg
k

to Alg
k
, defined by

ΩC =
(
T (s−1C), dΩ

)
where, if d denotes the differential on C, then

dΩ(s−1c1| · · · |s−1cn) =
∑

1≤j≤n

±s−1c1| · · · |s−1(dcj)| · · · |s−1cn

+
∑

1≤j≤n

±s−1c1|...|s−1cji|s−1cj
i| · · · |s−1cn,

with signs determined by the Koszul rule, where the reduced comultiplication applied to cj is cji ⊗ cj
i. 

A straightforward computation shows that ΩC is isomorphic to the totalization of the cosimplicial cobar 
construction if C is 1-connected (i.e., C is connected and C1 = 0).
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The graded vector space underlying ΩC is naturally a free associative algebra, with multiplication given 
by concatenation. The differential dΩ is a derivation with respect to this concatenation product, so that ΩC

is itself a chain algebra. Any chain algebra map α : ΩC → A is determined by its restriction to the algebra 
generators s−1C.

The following two extensions of the cobar construction play an important role below. Let MixC,ΩC and 
MixΩC,C denote the categories of left C-comodules in the category of right ΩC-modules and of right C-
comodules in the category of left ΩC-modules, respectively. We call the objects of these categories mixed 
modules. There are functors

PL : Coalg
k
→ MixC,ΩC and PR : Coalg

k
→ MixΩC,C ,

which we call the left and right based path constructions on C (where left and right refer to the side of the 
C-coaction) and which are defined as follows.

PLC =
(
C ⊗ T (s−1C), dPL

)
and PRC =

(
T (s−1C) ⊗ C, dPR

)
,

where

dPL
(e⊗ s−1c1| · · · |s−1cn) =de⊗ s−1c1| · · · |s−1cn ± e⊗ dΩ(s−1c1| · · · |s−1cn)

± ej ⊗ s−1ej |s−1c1| · · · |s−1cn

dPR
(s−1c1| · · · |s−1cn ⊗ e) =dΩ(s−1c1| · · · |s−1cn) ⊗ e ± s−1c1| · · · |s−1cn ⊗ de

± s−1c1| · · · |s−1cn|s−1ej ⊗ ej ,

where Δ(e) = ej ⊗ ej , and applying s−1 to an element of degree 0 gives 0. For every C in Coalg
k
, there are 

twisted extensions of chain complexes

ΩC
η⊗1

PLC
1⊗ε

C ΩC
1⊗η

PRC
ε⊗1

C,

which are dg analogues of the based pathspace fibration, where η : k → C is the coaugmentation and 
ε : ΩC → k the obvious augmentation.

As proved in [38, Proposition 10.6.3], both PLC and PRC are homotopy equivalent to the trivial mixed 
module k, for all C in Coalg

k
, via a chain homotopy defined in the case of PRC by

hR : PRC → PRC : w ⊗ e 	→
{

0 : |e| > 0 or w = 1
s−1c1| · · · |s−1cn−1 ⊗ cn : |e| = 0 and w = s−1c1| · · · |s−1cn

and analogously in the case of PLC. Observe that, when restricted to the sub ΩC-module of elements in 
positive degree, hR is a homotopy of left ΩC-modules, while hL is a homotopy of right ΩC-modules.

The proposition below generalizes this contractibility result.

Proposition 2.2. There are strong deformation retracts

1. ΩC
σ

PRC�CPLC
π

in the category of left ΩC-modules, and

2. C
ι

PLC ⊗ΩC PRC
ρ

in the category of left C-comodules.



6 K. Hess, B. Shipley / Journal of Pure and Applied Algebra 225 (2021) 106505
Proof. Note that the graded vector space underlying PRC�CPLC is isomorphic to T (s−1C) ⊗C⊗T (s−1C), 
while that underlying PLC ⊗ΩC PRC is isomorphic to C ⊗ T (s−1C) ⊗ C.

In the ΩC-module case, we define left ΩC-module maps

π : PRC�CPLC → ΩC : v ⊗ c⊗ w 	→
{
ε(c) · vw : |c| = 0
0 : |c| 
= 0,

where ε : C → k denotes the counit, and

σ : ΩC → PRC�CPLC : w 	→ w ⊗ 1 ⊗ 1.

While it is obvious that πσ is the identity, showing that σπ is homotopic to the identity requires a new 
chain homotopy h : PRC�CPLC → PRC�CPLC defined by

h(1 ⊗ c⊗ s−1c1| · · · |s−1cn) =
{∑

1≤i≤n ±s−1c1|...|s−1ci−1 ⊗ ci ⊗ s−1ci+1| · · · |s−1cn : |c| = 0
0 : |c| 
= 0,

then extended to a map of left T (s−1C)-modules. A straightforward computation shows that Dh + hD =
Id − σπ as desired, where D denotes the differential on PRC�CPLC.

Let Δ denote the comultiplication on C. In the C-comodule case, we define left C-comodule maps by

ι : C → PLC ⊗ΩC PRC : c 	→ ci ⊗ 1 ⊗ ci,

where Δ(c) = ci ⊗ ci, and

ρ : PLC ⊗ΩC PRC → C : c⊗ w ⊗ c′ 	→
{
c : |w| = |c′| = 0
0 : else.

It is obvious that ρι is equal to the identity and that ιρ is chain homotopic to the identity as left C-comodules, 
via the chain homotopy IdPLC ⊗ΩC hR, which itself respects the left C-coaction as well. �

Our interest in the left and right based path constructions stems from the following proposition.

Proposition 2.3. The pair of functors

ComodC
−�CPLC

ModΩC

−⊗ΩCPRC

forms a dg-adjunction.

Proof. It is well known that the dg-enrichments of ComodC and ModΩC can be constructed as equalizers 
in Chk, as follows. For right C-comodules N and N ′ with C-coactions ρ and ρ′,

ComodC(N,N ′) = lim
(
Ch k(N,N ′)

ρ′
∗

ρ∗◦(−⊗C)
Ch k(N,N ′ ⊗ C)

)
,

where the underline denotes the hom-chain complex, as opposed to the hom-set. For right ΩC-modules M
and M ′ with ΩC-actions α and α′,
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Mod ΩC(M,M ′) = lim
(
Ch k(M,M ′)

α′
∗◦(−⊗ΩC)

α∗
Ch k(M ⊗ ΩC,M ′)

)
.

It is easy to see from these constructions that both of the functors in the statement of the proposition are 
dg-enriched, essentially because on the underlying graded vector spaces, both functors are given by tensoring 
with a fixed object.

Since π : PRC�CPLC → ΩC is actually a map of ΩC-bimodules, while ι : C → PLC ⊗ΩC PRC is a map 
of C-bicomodules, there are dg-natural transformations

Id ∼= −�CC
−�Cι−−−−→ −�C(PLC ⊗ΩC PRC)

and

−⊗ΩC (PRC�CPLC) −⊗ΩCπ−−−−−→ −⊗ΩC ΩC ∼= Id,

which provide the unit and counit of the adjunction. It is an easy exercise to verify the triangle inequali-
ties. �

The extension of the cobar construction that is the focus of this article is the coHochschild complex
functor

Ĥ : Coalg
k
→ Chk,

defined as follows [23]. Let C be a connected, coaugmented chain coalgebra with comultiplication Δ(c) =
ci ⊗ ci. We then let

Ĥ(C) =
(
C ⊗ T (s−1C), d

Ĥ

)
where

d
Ĥ

(e⊗ s−1c1| · · · |s−1cn) =de⊗ s−1c1| · · · |s−1cn ± e⊗ dΩ(s−1c1| · · · |s−1cn)

± ej ⊗ s−1ej |s−1c1| · · · |s−1cn

± ei ⊗ s−1c1| · · · |s−1cn|s−1ei,

where Δ(e) = ej ⊗ ej , and applying s−1 to an element of degree 0 gives 0. The signs follow from the Koszul 
rule, as usual. As in the case of the cobar construction, it is not hard to show that Ĥ(C) is isomorphic to 
the totalization of a certain cosimplicial construction when C is 1-connected; see the analogue for spectra 
in Section 3.

For every C in Coalg
k
, there is a twisted extension of chain complexes

ΩC
η⊗1

Ĥ(C)
1⊗ε

C, (2.1)

which is the dg analogue of the free loop fibration, where, as above, η : k → C is the coaugmentation and 
ε : ΩC → k the obvious augmentation.

Remark 2.4. There is a natural and straightforward extension of the coHochschild complex of a chain 
coalgebra to a cocyclic complex, analogous to the extension of the Hochschild complex of a chain algebra 
to the cyclic complex. Moreover the construction of the coHochschild complex of a coalgebra C can be 
generalized to allow for coefficients in any C-bicomodule [23, Section 1.3].
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2.2. Properties of the dg coHochschild construction

The result below provides a first indication of the close link between the Hochschild and coHochschild 
constructions.

Proposition 2.5. [21, Corollary 2.22] Let H : Alg
k
→ Chk denote the usual Hochschild construction. For any 

C in Coalg
k
, there is a natural quasi-isomorphism

Ĥ(C) �−→ H(ΩC).

Remark 2.6. Another (and easier) way to obtain an algebra from a coalgebra C is to take its linear dual 
degreewise, denoted C∨. A straightforward computation shows that for any C in Coalg

k
, the linear dual of 

the coHochschild complex of C is isomorphic to the Hochschild (cochain) complex of C∨, i.e.,(
Ĥ(C)

)∨ ∼= H(C∨).

We show below that Proposition 2.5 can be categorified, i.e., lifted to model categories of C-comodules 
and ΩC-modules. We then use this categorification to establish “agreement” and Morita invariance for 
coHochschild homology.

Convention 2.7. Henceforth, we fix the following model structures.

• Endow Chk with the model structure for which cofibrations are degreewise injections, fibrations are 
degreewise surjections, and weak equivalences are quasi-isomorphisms.

• For any C in Coalg
k
, the category ModΩC of right ΩC-modules is equipped with the model structure 

right-induced from Chk by the forgetful functor

U : ModΩC → Chk,

which exists by [41, 4.1]. The fibrations in ModΩC are exactly those module maps that are degreewise 
surjective, whence every object is fibrant. Every cofibration in ModΩC is a retract of a sequential colimit 
of module maps given by pushouts along morphisms of the form (injection)⊗ΩC.

• For any C in Coalg
k
, the category ComodC of right C-comodules is equipped with the model structure 

left-induced from Chk by the forgetful functor

U : ComodC → Chk,

which exists by [22, 6.3.7]; see also [19]. The cofibrations in ComodC are exactly those comodule maps 
that are degreewise injective, whence every object is cofibrant. Every retract of a sequential limit of 
comodule maps given by pullbacks along morphisms of the form (surjection)⊗C is a fibration in ComodC .

2.2.1. Categorifying Proposition 2.5

Proposition 2.8. For any C in Coalg
k
, the enriched adjunction

ComodC
−�CPLC

ModΩC

−⊗ΩCPRC

is a Quillen equivalence.
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Proof. To simplify notation, we write

LC = −�CPLC and RC = −⊗ΩC PRC.

Observe that RC(M) ∼= (M ⊗C, DR) and LC(N) ∼= (N ⊗ΩC, DL), for every M in ModΩC and every N in 
ComodC , where the differentials of these complexes are specified by

DR(x⊗ c) = dx⊗ c ± x⊗ dc ± (x · s−1ci) ⊗ ci

and

DL(y ⊗ w) = dy ⊗ w ± y ⊗ dΩw ± yj ⊗ (s−1cj · w).

Here, ρ(y) = y ⊗ +yj ⊗ cj and Δ(c) = ci ⊗ ci, where ρ is the C-coaction on N and Δ the comultiplication 
on C, and the signs are determined by the Koszul rule.

We show first that LC � RC is a Quillen adjunction. If j : N → N ′ is a cofibration in ComodC , i.e., a 
degreewise injective morphism of C-comodules, then there is a decomposition N ′ = N ⊕V as graded vector 
spaces, since we are working over a field. It follows LC(N ′) can be built inductively as an ΩC-module from 
LC(N), as we explain below.

Suppose that dv ∈ N and ρ(v) − v ⊗ 1 ∈ N ⊗ C for all v ∈ V , and let B be a basis of V . There is a 
pushout diagram in ModΩC

∐
x∈B S|x|−1 ⊗ ΩC

ι
LC(N)

LC(j)∐
x∈B D|x| ⊗ ΩC LC(N ⊕ V )

,

where Sm is the chain complex with only one basis element, which is in degree m, Dm+1 has two basis 
elements, in degrees m and m + 1, with a differential linking the latter to the former, and ι maps the 
generator of S|x|−1 to dx for every x ∈ B. It follows that LC(j) is a cofibration, in this special case.

In the general case, we use that any comodule is the filtered colimit of its finite-dimensional subcomodules 
[20, Lemma 1.1]. We can structure this filtered colimit more precisely as follows. For any n ≥ 1, let {N ′(i, n) |
i ∈ In} denote the set of subcomodules of N ′ such that N ′(i, n)/N is of dimension n for all i ∈ In, and 
set N ′(n) = Σi∈InN

′(i, n). The argument above shows that the injection N → N ′(1) is a pushout along 
a morphism of the form (injection)⊗ΩC, and, more generally, that the inclusion N ′(n) → N ′(n + 1) is a 
pushout along a morphism of the form (injection)⊗ΩC for all n, whence j : N → N ′ = colimn N

′(n) is a 
cofibration.

On the other hand, we can show by a spectral sequence argument that the functor LC preserves all weak 
equivalences and therefore preserves trivial cofibrations. Any N in ComodC admits a natural “primitive” 
filtration

F0N ⊆ F1N ⊆ F2N ⊆ · · · ⊆ N (2.2)

as a C-comodule, i.e., F0N = ker(N ρ̄−→ N ⊗ C) and

FmN = ker(N ρ̄(n)

−−→ N ⊗ C⊗n)

for all m ≥ 1, where ρ̄ = ρ − N ⊗ η, and ρ̄(n) = (ρ̄ ⊗ C⊗n−1)ρ̄(n−1). Note that this filtration is always 
exhaustive, since C is connected, and (ρ ⊗ C)ρ = (N ⊗ Δ)ρ.
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Consider the exhaustive filtration of LC(N) as an ΩC-module induced by applying LC to the primitive 
filtration (2.2) of N :

(F0N ⊗ ΩC, d⊗ 1 + 1 ⊗ dΩ) ⊆ (F1N ⊗ ΩC,DL) ⊆ (F2(N) ⊗ ΩC,DL) ⊆ · · · ⊆ (N ⊗ ΩC,DL).

The E2-term of the spectral sequence associated to this filtration, which converges to H∗LC(N), is iso-
morphic as a graded vector space to H∗(N) ⊗H∗(ΩC), from which it follows that a quasi-isomorphism of 
C-comodules induces an isomorphism on the E2-terms of the associated spectral sequences and thus on the 
E∞-terms as well.

Since RC(M) is cofibrant in ComodC and LC(N) is fibrant in ModΩC for every M in ModΩC and every 
N in ComodC , it follows from [26, Proposition 1.3.13(b)] that LC � RC is a Quillen equivalence if the unit 
N → RCLCN and counit LCRCM → M of the LC � RC adjunction are weak equivalences for every N
(since they are all cofibrant) and every M (since they are all fibrant). To conclude, it suffices therefore to 
observe that for every M , there is a sequence of isomorphisms and weak equivalences in ModΩC ,

LCRCM = M ⊗ΩC PRC�CPLC � M ⊗ΩC ΩC ∼= M,

where the weak equivalence is a consequence of Proposition 2.2(1), and that for every N , there is a sequence 
of isomorphisms and weak equivalence in ComodC ,

RCLCN = N�CPLC ⊗ΩC PRC � N�CC ∼= N,

where the weak equivalence follows from Proposition 2.2(2). �
Remark 2.9. In Chapter 2 of his thesis [32], Lefèvre-Hasegawa defined a model structure on the category of 
cocomplete comodules over a cocomplete, coaugmented dg coalgebra C, of which the proposition above would 
seem to be a special case. Here, “cocomplete” means that the respective primitive filtration is exhaustive, 
which is not immediate if C is not connected. It seems, however, that Lefèvre-Hasegawa did not check that 
the category of cocomplete comodules is closed under limits, which we suspect is actually not true.

The proposition above also could be viewed as a special case [14, Proposition 3.15], which establishes 
a general Quillen equivalence between certain categories of coalgebras over a cooperad and algebras over 
an operad as mediated by a twisting morphism. One needs to show that the weak equivalences of [14] are 
the same as those in our model structure on ComodC , which follows from Proposition 2.2. We think there 
is merit in providing an explicit, independent proof in this special case, especially as it makes evident the 
“geometric” nature of the proof (using based path spaces).

Example 2.10. Proposition 2.8 implies that for every reduced simplicial set K,

ComodC∗(K)

−�C∗(K)PLC∗(K)

⊥ ModΩC∗(K)
−⊗ΩC∗(K)PRC∗(K)

is a Quillen equivalence, where C∗(K) denotes the normalized chain coalgebra of K with coefficients in k. 
Moreover, if K is actually 1-reduced, there is a natural quasi-isomorphism of chain algebras

αK : ΩC∗(K) �−→ C∗(GK)

[45], where G denotes the Kan loop group functor, which induces a Quillen equivalence
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ModΩC∗(K)

α!

ModC∗(GK)
α∗

.

It follows that if K is 1-reduced, there is a Quillen equivalence

ComodC∗(K) ModC∗(GK) .

2.2.2. Agreement
The Quillen equivalence of Proposition 2.8 enables us to establish “agreement” for coHochschild homology, 

analogous to “agreement” for Hochschild homology, which we recall now. In [37], McCarthy extended the 
notion of Hochschild homology in a natural way to exact categories, seen as “rings with many objects,” and 
established “agreement” in this context: the Hochschild homology of the exact category of finitely generated 
projective modules over a ring R is isomorphic to the Hochschild homology of R itself.

Keller generalized the definition of Hochschild homology to dg categories (seen as dg algebras with many 
objects) in [29], [30] and showed that agreement still held in this more general setting: for any dg k-algebra 
A, the Hochschild homology of A is isomorphic to that of the full dg subcategory dgfreeA of ModA [29, 
Theorem 2.4]. The objects of dgfreeA are finitely generated quasi-free A-modules, i.e., A -modules such that 
the underlying nondifferential graded module is free and finitely generated over the nondifferential graded 
algebra underlying A. Note that objects in dgfreeA are cofibrant in our chosen model structure on ModA.

For any C in Coalg
k
, the notion of agreement for coHochschild homology is expressed in terms of the 

full dg subcategory dgcofreeC of ComodC , the objects of which are the fibrant C-comodules N such that 
there exists a quasi-isomorphism of ΩC-modules LC(N) �−→ M , where M is an object of dgfreeΩC . Observe 
that a morphism LC(N) → M is a quasi-isomorphism if and only if its transpose N → RC(M) is a quasi-
isomorphism, since LC � RC is a Quillen equivalence, all objects in ComodC or in the image of RC are 
cofibrant, and all objects in ModΩC or in the image of LC are fibrant.

Remark 2.11. The notation for the dg subcategory dgcofreeC is a bit abusive, since not all of its objects 
are actually quasi-cofree, i.e., such that the underlying nondifferential graded comodule is cofree over the 
nondifferential graded coalgebra underlying C. On the other hand, any quasi-cofree C-comodule that is 
“finitely cogenerated” over C is an object of dgcofreeC . More precisely, any quasi-cofree C-comodule is the 
limit of a tower of comodule maps given by pullbacks along morphisms of the form (surjection)⊗C and is 
therefore fibrant. Moreover, if N is “finitely cogenerated” by V , then its image under LC is finitely generated 
by V .

Proposition 2.12. Agreement holds for coHochschild homology of coalgebras, i.e., for every C in Coalg
k
,

H∗
(
Ĥ(C)

) ∼= H∗
(
H(dgcofreeC)

)
.

The key to the proof of agreement for coalgebras, as well as to establishing Morita invariance at the end 
of this section, is the following lemma, providing conditions under which dg Quillen equivalences induce 
quasi-equivalences of dg categories. We were unable to find this result in the literature, though we suspect 
it is well known.

Lemma 2.13. Let M
F

⊥ N
G

be an enriched Quillen equivalence of dg model categories. Let M′

and N′ be full dg subcategories of M and N, respectively, where all objects of M′ and of N′ are fibrant and 
cofibrant.
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(1) Suppose that F restricts and corestricts to a functor F ′ : M′ → N′. If for every Y ∈ ObN′ there exists 
a weak equivalence pY : Ĝ(Y ) �−→ G(Y ) where Ĝ(Y ) ∈ Ob M′, then F ′ is a quasi-equivalence.

(2) Suppose that G restricts and corestricts to a functor G′ : N′ → M′. If for every X ∈ Ob M′ there exists 
a weak equivalence jX : F (X) �−→ F̂ (X) where F̂ (X) ∈ ObN′, then G′ is a quasi-equivalence.

Proof. We prove (1) and leave the dual proof of (2) to the reader. By [26, Proposition 1.3.13], since F � G is 
a Quillen equivalence, the unit morphism ηX′ : X ′ → G′F ′(X ′) is a weak equivalence for every X ′ ∈ ObM′, 
since X ′ is cofibrant and F ′(X ′) is fibrant. It follows that

F ′
X′,Y ′ : homM′(X ′, Y ′) → homN′

(
F ′(X ′), F ′(Y ′)

)
is a quasi-isomorphism for all X ′, Y ′ ∈ ObM′, since it factors as

homM′(X ′, Y ′) �−→ homM′
(
X ′, G′F ′(Y ′)

) ∼= homN′
(
F ′(X ′), F ′(Y ′)

)
.

The first map above is a quasi-isomorphism because X ′ is cofibrant, and ηX′ is a weak equivalence between 
fibrant objects. We conclude that F ′ is quasi-fully faithful.

Let Z ′ ∈ ObN′. Since we can choose pZ′ as a cofibrant replacement of G′(Z ′), the composite

F ′(Ĝ(Z ′)) F ′(pZ′ )−−−−−→ F ′G′(Z ′) εZ′−−→ Z ′

is a model for the derived counit of the adjunction and therefore a weak equivalence. Both its source and 
target are objects in N′ and therefore fibrant (and cofibrant), whence homN′

(
W ′, εZ′F ′(pZ′)

)
is a quasi-

isomorphism for all W ′ ∈ ObN′, as all objects in N′ are cofibrant. By Exercise 6 in [47, Section 2.3], it 
follows that the homology class of εZ′F ′(pZ′) is an isomorphism in the homology category of N′ and thus 
that F ′ is quasi-essentially surjective. �
Proof of Proposition 2.12. Observe that

Ĥ(C) � H(ΩC) � H(dgfreeΩC) � H(dgcofreeC),

where the first equivalence is given by Proposition 2.5 and the second by [29]. The third follows from 
Proposition 2.8 and Lemma 2.13(2). To see that all of the conditions of Lemma 2.13(2) are satisfied, note 
first that all objects of dgfreeΩC and dgcofreeC are both fibrant and cofibrant. Moreover, the functor RC

restricts and corestricts to a dg functor from dgfreeΩC to dgcofreeC , since the counit LCRC → Id of the 
Quillen equivalence LC � RC is a quasi-isomorphism on objects that are cofibrant and fibrant. Finally, 
dgcofreeC is defined precisely so that the remaining condition holds as well.

Because every quasi-equivalence of dg categories is a Morita equivalence [47, Section 4.4], and Hochschild 
homology of dg categories is an invariant of Morita equivalence [47, Section 5.2], we can conclude. �
2.2.3. Morita invariance

Thanks to the “agreement” result established above, we can now show that coHochschild homology 
satisfies a property dual to the Morita invariance of Hochschild homology. The study of equivalences between 
categories of comodules over coalgebras over a field, commonly referred to as Morita-Takeuchi theory, was 
initiated by Takeuchi [46] and further elaborated and generalized by Farinati and Solotar [18] and Brzezinski 
and Wisbauer [11], among others. In [4], Berglund and Hess formulated a homotopical version of this theory, 
in terms of the following notion.
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Definition 2.14. Let C, D be objects in Coalg
k
. A braiding from C to D is a pair (X, T ) where X is in Chk, 

and T is a morphism of chain complexes

T : C ⊗X → X ⊗D

satisfying the following axioms.

(Pentagon axiom)
The diagram

C ⊗X

ΔC⊗1

T
X ⊗D

1⊗ΔD

C ⊗ C ⊗X

1⊗T

X ⊗D ⊗D

C ⊗X ⊗D

T⊗1

(2.3)

commutes.

(Counit axiom)
The diagram

C ⊗X
T

εC⊗1

X ⊗D

1⊗εD

k⊗X
∼=

X X ⊗ k
∼=

(2.4)

commutes.
We write (X, T ) : C → D to indicate that (X, T ) is a braiding from C to D.

Example 2.15 (Change of coalgebras). A morphism f : C → D in Coalg
k

gives rise to a braiding (k, f) : C →
D and thus to an adjunction

ComodC
f∗

ComodD
f∗

, (2.5)

which we call the coextension/corestriction-of-scalars adjunction or change-of-corings adjunction associated 
to f . The D-component of the counit of the f∗ � f∗ adjunction is f itself and that for every C-comodule 
(M, δ),

f∗(M, δ) =
(
M, (1 ⊗ f)δ

)
.

Since ComodC is bicomplete for all coalgebras C (as Chk is locally presentable, and ComodC is a category 
of coalgebras for the comonad − ⊗C), it follows from [4, Proposition 3.17] that every braiding (X, T ) : C → D

gives rise to a Chk-adjunction

ComodC
T∗

ComodD
T∗

, T∗ � T ∗,
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such that the diagram

ComodC
T∗

U

ComodD

U

Chk
−⊗X

Chk

commutes, i.e., the endofunctor on Chk is just given by tensoring with X. Moreover, since we are working 
over a field and thus tensoring with any chain complex preserves both weak equivalences and equalizers, 
Proposition 3.31 in [4] implies that if X is dualizable with dual X∨, then T ∗ = −�D(X∨ ⊗ C), where 
−�D− denotes the cotensor product over D.

The following lemma, relating braidings to the adjunction LC � RC studied above, plays an important 
role at the end of this section.

Lemma 2.16. For every braiding (X, T ) : C → D, the dg adjunction

ModΩC

−⊗ΩC(X⊗ΩD)

⊥ ModΩD

homΩD(X⊗ΩD,−)

is a dg Quillen pair, satisfying the natural isomorphisms(
−⊗ΩC(X ⊗ ΩD)

)
◦ LC

∼= LD ◦ T∗

and

RC ◦ homΩD(X ⊗ ΩD,−) ∼= T ∗ ◦RD.

Proof. Given our choice of model structures on module categories, it is easy to check that the adjunction 
above is indeed a Quillen pair. It suffices to establish the first isomorphism, since the second is then an 
immediate consequence. The computation is straightforward, given that the left ΩC-action on X ⊗ ΩD

induced by the braiding

T : C ⊗X → X ⊗D : c⊗ x 	→ xi ⊗ di

is specified by s−1c · (x ⊗ w) = xi ⊗ s−1di · w for all c ∈ C, x ∈ X, and w ∈ ΩD. �
The coalgebraic analogue of Morita equivalence is defined as follows.

Definition 2.17. Let C, D be in Coalg
k
. If there is a braiding (X, T ) from C to D such that T∗ � T ∗ is a 

Quillen equivalence, then C and D are (homotopically) Morita-Takeuchi equivalent.

As a special case of [4, Theorem 4.16], we can describe Morita-Takeuchi-equivalent pairs of chain coalge-
bras in terms of the following notions, recalled from [4].

Definition 2.18. Let X be a dualizable chain complex and C a dg coalgebra. The canonical coalgebra asso-
ciated to X and C is the dg coalgebra X∗(C) with underlying chain complex

X∗(C) = X∨ ⊗ C ⊗X,
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and comultiplication given by the composite

X∨ ⊗ C ⊗X
1⊗Δ⊗1

X∨ ⊗ C ⊗ C ⊗X

1⊗1⊗u⊗1⊗1(
X∨ ⊗ C ⊗X

)
⊗
(
X∨ ⊗ C ⊗X

)
,

where u : k → X ⊗X∨ is the coevaluation map. The canonical braiding (X, T univ
C ) : C → X∗(C) is defined 

by

T univ
C = u⊗ 1: C ⊗X → X ⊗

(
X∨ ⊗ C ⊗X

)
.

The canonical adjunction associated to X and C is the adjunction governed by the universal braided bi-
module (X, T univ

C ),

ComodC
(Tuniv

C )∗

⊥ ComodX∗(C).

(Tuniv
C )∗

(2.6)

We say that X satisfies effective homotopic descent if this adjunction is a Quillen equivalence.

Remark 2.19. The canonical braiding determined by a dualizable chain complex X and a dg coalgebra C
is universal, in the sense that any braiding (X, T ) : C → C ′ factors as (X, T univ

C ) : C → X∗(C) followed by 
the change-of-coalgebras braiding (k, gT ) : X∗(C) → C ′, where gT is given by the composite

X∗(C) X∨⊗T−−−−→ X∨ ⊗X ⊗ C ′ ev⊗C′
−−−−→ k⊗ C ′ ∼= C ′.

Definition 2.20. A morphism g : C → C ′ of dg coalgebras is copure if the counit g∗g∗(M) → M of the 
g∗ � g∗ adjunction is a weak equivalence for all fibrant C ′-comodules M .

Remark 2.21. Since k is fibrant (seen as a chain complex concentrated in degree 0) in Chk, every coalgebra 
is fibrant as a comodule over itself. Thus, if g : C → C ′ is copure, then g∗g∗(C ′) → C ′ is a weak equivalence. 
Since g∗g∗(C ′) ∼= C, seen as a C ′-comodule via g, it follows that a copure coalgebra map is, in particular, 
a weak equivalence.

The next result is a special case of the second part of [4, Theorem 4.16].

Theorem 2.22. [4, Theorem 4.16] Let C, C ′ be in Coalg
k
. If C and C ′ are Morita-Takeuchi equivalent via 

a braiding (X, T ) such that X is dualizable, then X satisfies effective homotopic descent with respect to C, 
and gT : X∗(C) → C ′ is a copure weak equivalence of corings.

We can deduce the promised invariance of coHochschild homology from this description of Morita-
Takeuchi equivalent coalgebras.

Proposition 2.23. Let C, C ′ be in Coalg
k
. If C and C ′ are Morita-Takeuchi equivalent via a braiding (X, T )

such that the total dimension of X is finite, then Ĥ(C) � Ĥ(C ′).

Note that if X has finite total dimension, then it is certainly dualizable.
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Proof. Since X satisfies effective homotopic descent with respect to C, the canonical adjunction

ComodC
(Tuniv

C )∗

⊥ ComodX∗(C),

(Tuniv
C )∗

is a dg Quillen equivalence.
It follows that

Ĥ(C) � H(dgcofreeC) � H(dgcofreeX∗(C)) � Ĥ
(
X∗(C)

)
� Ĥ(C ′),

where the first and third weak equivalences follow from Agreement (Proposition 2.12), and the last equiva-
lence from the fact that gT is copure and therefore a weak equivalence.

Lemma 2.13(2) and Lemma 2.16 suffice to establish the second equivalence, as we now show. To simplify 
notation, taking D = X∗(C) in Lemma 2.16, let F � G denote the adjunction(

−⊗ΩC(X ⊗ ΩX∗(C))
)
� homΩX∗(C)(X ⊗ ΩX∗(C),−),

and let T = T univ
C .

Since T ∗ is right Quillen, it preserves fibrant objects. Moreover, if N is a X∗(C)-comodule such that 
there exists an ΩX∗(C)-module M and a quasi-isomorphism j : N �−→ RX∗(C)M , then

T ∗(j) : T ∗(N) �−→ T ∗(RX∗(C)M)

is also a quasi-isomorphism, since all modules are fibrant, and T ∗ is a right Quillen functor. By Lemma 2.16

T ∗(RX∗(C)M) ∼= RC ◦G(M),

so there is a quasi-isomorphism

T ∗(N) �−→ RC ◦G(M)

or, equivalently, a quasi-isomorphism

LCT
∗(N) �−→ G(M).

Moreover, because

G(M) = homΩX∗(C)(X ⊗ ΩX∗(C),M) ∼= hom(X,M) ∼= X∨ ⊗M,

if M is actually an object of dgfreeΩX∗(C), then G(M) is an object of dgfreeΩC . We conclude that T ∗ restricts 
and corestricts to a functor

T ∗ : dgcofreeX∗(C) → dgcofreeC .

By Lemma 2.13(2), to verify that T ∗ is actually a quasi-equivalence, it remains to check that for every 
N in dgcofreeC , there is an N ′ ∈ dgcofreeX∗(C)

and a quasi-isomorphism T∗(N) �−→ N ′. If N is an object of 
dgcofreeC , then there is an object M in dgfreeΩC and a quasi-isomorphism j : LC(N) �−→ M . Since F is left 
Quillen, and both LC(N) and M are cofibrant ΩC-modules, it follows that F (j) : F

(
LC(N)

)
→ F (M) is also 
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a quasi-isomorphism. By Lemma 2.16, F
(
LC(N)

) ∼= LX∗(C)
(
T∗(N)

)
, whence there is a quasi-isomorphism 

LX∗(C)
(
T∗(N)

) �−→ F (M), where F (M) is an object of dgfreeΩX∗(C). Indeed, if M is quasi-free on V of finite 
total degree, then F (M) is quasi-free on V ⊗X, which is also free of finite total degree. If T∗(N) is actually 
fibrant, then it is itself an object of dgcofreeX∗(C), and we can set N ′ = T∗(N). If not, then for any fibrant 
replacement of T∗(N) in ComodX∗(C) will be an object of dgcofreeX∗(C) and can play the role of N ′. �
3. Topological coHochschild homology of spectra

We now consider a spectral version of the constructions and results in section 2. Here we work in any 
monoidal model category of spectra. We show that our results are model invariant in Proposition 3.3 below.

3.1. The general theory

Let k be a commutative ring spectrum, C a k-coalgebra with comultiplication Δ : C → C ∧k C, and M
a C-bicomodule with right coaction ρ : M → M ∧k C and left coaction λ : M → C ∧k M . Henceforth we 
write ∧ for ∧k and C∧n for the n-fold smash product of C over k.

Definition 3.1. The coHochschild complex Ĥ(M, C) is the cosimplicial spectrum with

Ĥ(M,C)n = M ∧ C∧n

and coface operators

di =

⎧⎪⎨⎪⎩
ρ ∧ Id∧n

C i = 0
IdM ∧ Id∧i−1

C ∧ Δ ∧ Id∧n−i
C 1 ≤ i ≤ n

τ ◦ (λ ∧ Id∧n
C ) i = n + 1

where τ : C ∧M ∧ C∧n → M ∧ C∧n+1 cycles the first entry to the last entry. The codegeneracies involve 
the counit of C.

Note that one can take M = C with λ = ρ = Δ. In this case Ĥ(C, C) = Ĥ(C) is the cyclic cobar complex.
Next we define the homotopy invariant notion of topological coHochschild homology. We use TotX• to 

denote the totalization of a Reedy fibrant replacement of the cosimplicial spectrum X•. By [25, 19.8.7], 
this is a model of the homotopy inverse limit. Topological coHochschild homology is defined as the derived 
totalization of the coHochschild complex,

coTHH(M,C) = TotĤ(M,C).

We abbreviate coTHH(C, C) as coTHH(C).
The next statement shows that coTHH is homotopy invariant.

Lemma 3.2. Let C be a monoidal model category of k-module spectra. If f : C → C ′ is a map of coalgebra 
spectra in C such that in the underlying category of k-module spectra f is a weak equivalence, and C, C ′ are 
cofibrant, then the induced map coTHH(C) → coTHH(C ′) is a weak equivalence.

Proof. Since C and C ′ are cofibrant, and C is a monoidal model category, f induces a levelwise weak equiv-
alence Ĥ(C) → Ĥ(C ′). Since homotopy inverse limits preserve levelwise weak equivalences, the statement 
follows. �
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In addition, coTHH is model independent.

Proposition 3.3. Topological coHochschild homology is independent of the model of spectra used.

Proof. This follows from Lemma 3.4 below, since any two monoidal model categories of spectra are connected 
by Quillen equivalences via a strong monoidal left adjoint. A universal approach to constructing these 
monoidal Quillen equivalences is described in [44, 4.7]; explicit constructions are given in [36, 0.1,0.2], [40, 
5.1], and [35, 1.1,1.8]. This is also summarized in a large diagram in [41, 7.1]. �
Lemma 3.4. Let L : C → D be the left adjoint of a strong monoidal Quillen equivalence between two monoidal 
model categories of k-module spectra with L the associated derived functor. Let C be a coalgebra spectrum 
that is cofibrant as an underlying k-module spectrum. Then coTHH(LC) is weakly equivalent to LcoTHH(C).

Proof. Let R be the right adjoint to L. By [25, 15.4.1], levelwise prolongation, denoted L•, R•, induces a 
Quillen equivalence between the associated Reedy model categories of cosimplicial spectra. Let L• and R•

denote the derived functors.
Since LC∧LC ∼= L(C ∧C), it follows that LC is a coalgebra spectrum in D and that L•Ĥ(C) ∼= Ĥ(LC). 

Since C is cofibrant, Ĥ(C) is levelwise cofibrant and so is its cofibrant replacement in the Reedy model 
structure. Since L preserves weak equivalences between cofibrant objects, it follows that L•Ĥ(C) is weakly 
equivalent to L•Ĥ(C) and hence also to Ĥ(LC).

Applying R• to both sides of this equivalence, we have that R•L•Ĥ(C) is weakly equivalent to R•Ĥ(LC). 
Since L• and R• form an equivalence of homotopy categories, R•L• is naturally weakly equivalent to the 
identity and therefore

Ĥ(C) � R•L•Ĥ(C) � R•Ĥ(LC). (3.1)

Let c•X denote the constant cosimplicial object on X. Since L•(c•X) ∼= c•(LX), the right adjoints also 
commute, i.e., limR•X• ∼= R limX•, and so the associated derived functors also commute. In particular, 
RcoTHH(LC) is weakly equivalent to the homotopy inverse limit of R•Ĥ(LC). It follows from (3.1) that 
coTHH(C) � RcoTHH(LC). Since L and R form an equivalence of homotopy categories, this is equivalent 
to the statement in the lemma. �

It turns out that coalgebras in spaces with respect to the Cartesian product or in pointed spaces with 
respect to the smash product are of a very restricted nature. The only possible co-unital coalgebra structure 
on a space is given by the diagonal Δ : X → X × X. Similarly, for a pointed space, the only possible 
co-unital coalgebra structure exists on a pointed space of the form X+ and is induced by the diagonal 
Δ+ : X+ → X+ ∧X+.

It follows that strictly counital coalgebra spectra are also very restricted. Consider a symmetric spectrum 
Z. Since the zeroth level of Z ∧ Z is the smash product of two copies of level zero of Z, the zeroth level 
of a co-unital coalgebra symmetric spectrum must have a disjoint base point, which we denote (Z0)+. In 
fact, even more structure is forced in any of the symmetric monoidal categories of spectra. Let Sp refer 
to the S-modules of [17] or any diagram category of spectra, including symmetric spectra (over simplicial 
sets or topological spaces, see [27,36]), orthogonal spectra (see [36,35]), Γ-spaces (see [42,9]), and W-spaces 
(see [1]).

Proposition 3.5. [39] In Sp, co-unital coalgebras over the sphere spectrum are cocommutative. In fact, if C
is a co-unital coalgebra over the sphere spectrum, then Σ∞

+ C0 → C is surjective.

In an earlier version of this paper, we proved the special case of this proposition for symmetric spectra 
over simplicial sets. Because of Proposition 3.5, we focus on suspension spectra in the next section.
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3.2. coTHH of suspension spectra

The main statement of this section is the geometric identification of coTHH of a suspension spectrum 
as the suspension spectrum of the free loop space, see Theorem 3.7. The proof of this statement is delayed 
to the following section. This main statement leads to a connection between coTHH and THH and another 
analogue of “agreement” in the sense of [37]. Throughout this section by spaces we mean simplicial sets.

Definition 3.6. For X a Kan complex, consider any model of the loop-path space fibration, ΩX → PX → X. 
We say that a Kan complex X is an EMSS-good space if X is connected and π1X acts nilpotently on 
Hi(ΩX; Z) for all i.

This term refers to the fact that the Eilenberg-Moore spectral sequence for the loop-path space fibration 
converges strongly by [15] for any EMMS-good space X. Note that if X is simply connected, then X is 
certainly EMSS-good.

Theorem 3.7. If X is an EMSS-good space, then the topological coHochschild homology of its suspension 
spectrum is equivalent to the suspension spectrum of the free loop space:

coTHH(Σ∞
+ X) � Σ∞

+ LX.

See also [31] and [34, 2.22] for earlier proofs of this statement for simply connected spaces. The proof of 
this theorem is given in Section 3.3 and relies on the proofs of [8, 4.1, 8.4] and generalizations discussed in 
Appendix A. It is likely that this can be further generalized to non-connected spaces X, see for example 
the proofs of [43, 3.1, 3.2].

For X simply connected, THH(Σ∞
+ ΩX) � Σ∞

+ LX by [7], implying the following corollary.

Corollary 3.8. Let X be a simply connected Kan complex. There is a weak equivalence between the topological 
coHochschild homology of the suspension spectrum of X and the topological Hochschild homology of the 
suspension spectrum of the based loops on X:

coTHH(Σ∞
+ X) � THH(Σ∞

+ ΩX).

As in the differential graded context, there is also a categorified version of this result. In [24, 5.4], somewhat 
more generally reformulated below in Proposition 3.9, we show that there is a Quillen equivalence between 
the categories of module spectra over Σ∞

+ ΩX and of comodule spectra over Σ∞
+ X. Recall from [24, 5.2] that 

the category of comodules over Σ∞
+ X admits a model structure, denoted there by (ComodΣ∞

+ X)stπs
∗

because 
it is the stabilization of the category of X+-comodules with respect to πs

∗-equivalences. Since this is the 
only model structure we consider for this category in this paper, we denote it simply by ComodΣ∞

+ X . Weak 
equivalences in this structure induce stable equivalences on the underlying spectra by [24, 5.2 (1)].

The first part of the following result is a simplified version of the statement in [24, 5.4], setting E∗ = πs
∗. 

Note that, as above, choosing a base point for X determines a coaugmentation map from the sphere spectrum 
S → Σ∞

+ X, which in turn determines a Σ∞
+ X-comodule structure on S.

Proposition 3.9. [24, 5.4] For X a connected space, there is a Quillen equivalence

ModΣ∞
+ ΩX

L

ComodΣ∞
+ X

R

such that L(Σ∞
+ ΩX) is weakly equivalent to the sphere spectrum as a comodule, and R(Σ∞

+ X) is weakly 
equivalent to the sphere spectrum as a module.
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Proof. The statement of [24, 5.4] is formulated for the model of the loop space on X given by the Kan loop 
group, GX, for X a reduced simplicial set.

Here instead we work with Σ∞
+ ΩX, where ΩX denotes any model of the loop space of the fibrant 

replacement of X (i.e., a Kan complex). Since Σ∞
+ ΩX and Σ∞

+ GX have the same homotopy type, their 
categories of modules are Quillen equivalent. Moreover any connected simplicial set is weakly equivalent to 
a reduced simplicial set, and replacing X by a weakly equivalent space induces Quillen equivalences on the 
respective categories of comodule spectra (see [24, 5.3]).

The original result is also formulated with respect to a chosen generalized homology theory E∗, which 
we fix here to be stable homotopy, E∗ = πs

∗. As in [24, 5.14], since levelwise πs
∗-equivalences are stable 

equivalences, one can show that the weak equivalences in this model structure on ModΣ∞
+ ΩX are the stable 

equivalences on the underlying spectra, i.e., this is the usual model structure on ModΣ∞
+ ΩX . (The proof 

of [24, 5.14] treats the special case where X is a point, but works verbatim for any X.)
Concerning the second part of the theorem, the left adjoint in [24, 5.4], − ∧Σ∞

+ GX Σ∞
+ PX, takes Σ∞

+ GX

to Σ∞
+ PX, which is weakly equivalent to S since PX is contractible. Hence, L(Σ∞

+ GX) � S. On the other 
hand, the functor from comodules to modules is the stabilization of the composite of three functors given 
in [24, 4.14]. By [24, 3.11], since X+ is the cofree X+-comodule on S0, the first of these functors takes X+ to 
a retractive space RetX(S0) over X with total space S0×X. The next functor is an equivalence of categories 
that takes RetX(S0) to RetPX(S0) with a trivial GX-action, which is sent by the third functor to S0, the 
trivial, pointed GX-module. Upon stabilization, this computation implies that the Quillen equivalence on 
the spectral level sends the comodule Σ∞

+ X to the module S, i.e., R(Σ∞
+ X) � S. �

As in Proposition 2.12 in the differential graded context, it follows from Corollary 3.8 and Proposition 3.9
that topological coHochschild homology for suspension spectra satisfies “agreement.” Here though, instead 
of considering finitely generated free modules, we consider the modules that are finitely built from the 
free module spectrum. Recall that a subcategory of a triangulated category is called thick if it is closed 
under equivalences, triangles, and retracts. Here we also use the same terminology to refer to the underlying 
subcategory of the model category corresponding to the thick subcategory of the derived category. For 
example, for R a ring spectrum, we consider ThickR(R), the underlying spectral category associated to the 
thick subcategory generated by R. In the literature, these modules are variously called “perfect,” “compact,” 
or “finitely built from R.”

Since L(Σ∞
+ ΩX) � S, and Quillen equivalences preserve thick subcategories, [5, 5.3, 5.9] implies the 

following.

Lemma 3.10. The Quillen equivalence in Proposition 3.9 induces a weak equivalence

THH(ThickΣ∞
+ ΩX(Σ∞

+ ΩX)) � THH(ThickΣ∞
+ X(S)).

It is a consequence of [5, 5.12] that for any ring spectrum R,

THH(R) � THH(ThickR(R)).

The next corollary follows immediately from this equivalence for R = Σ∞
+ ΩX, together with Corollary 3.8

and Lemma 3.10.

Corollary 3.11. Agreement holds for topological coHochschild homology of coalgebra spectra that are suspen-
sion spectra. That is, for any simply-connected Kan complex X,

coTHH(Σ∞
+ X) � THH(ThickΣ∞X(S)).
+
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Remark 3.12. Note that ThickΣ∞
+ X(S) is the subcategory of compact objects in the category of comodules 

over Σ∞
+ X. This follows from the Quillen equivalence in Proposition 3.9, since ThickΣ∞

+ ΩX(Σ∞
+ ΩX) is the 

subcategory of compact object for modules over Σ∞
+ ΩX. Since R(Σ∞

+ X) is weakly equivalent to S, where 
R the right adjoint in Proposition 3.9, it follows that Σ∞

+ X is a compact comodule over itself if and only if 
S is a compact module over Σ∞

+ ΩX. In [16, 5.6(2)], working over HFp instead of S, it is shown that there 
are examples where HFp is not compact as a module over HFp ∧ Σ∞

+ ΩX, e.g., when X = CP∞.

3.3. Cobar, Bar, and loop spaces

In this section we consider the Cobar and Bar constructions on a suspension spectrum and prove Theo-
rem 3.7 from the last section about coTHH of a suspension spectrum. The proofs in this section rely on results 
about the convergence of spectral sequences for cosimplicial spaces that are established in Appendix A.

Let C be a k-coalgebra spectrum, N a left C-comodule with coaction λ : N → C ∧ N , and M a right 
C-comodule with coaction ρ : M → M ∧ C.

Definition 3.13. The cobar complex Ω•(M, C, N) is the cosimplicial spectrum with

Ω(M,C,N)n = M ∧ C∧n ∧N

with coface operators

di =

⎧⎪⎨⎪⎩
ρ ∧ Id∧n

C ∧ IdN i = 0
IdM ∧ Id∧i−1

C ∧ Δ ∧ Id∧n−i
C 1 ≤ i ≤ n

IdM ∧ Id∧n
C ∧ λ i = n + 1

The codegeneracies involve the counit of C.

If C is a coaugmented k-coalgebra with coaugmentation η : k → C, i.e., η is a homomorphism of coalgebras 
such that εη = IdC , then η endows k with the structure of a C-bicomodule. In this case Ω(k, C, k) = Ω•(C)
is the cobar complex of C. Its derived totalization is the cobar construction on C:

Cobar(C) = TotΩ•(C).

The following cosimplicial resolution of the mapping space plays an important role in the statements 
below.

Definition 3.14. Let W and Z be pointed simplicial sets with Z a Kan complex, and let Map∗(W•, Z) be 
the cosimplicial space with Map∗(W, Z)n equal to a product of copies of Z indexed by the non-base point 
n-simplices in W , with cofaces and codegeneracies induced by those of W . The pointed mapping space ZW

agrees with the totalization of this cosimplicial space.

If W = S1 = Δ[1]/∂Δ[1], then Map∗(S1
• , Z)n = Z×n for all n, and the totalization is ΩZ, a simplicial 

model for the based loop space on |Z|.
For X a pointed space, there is a canonical map S0 → X that gives rise to a coaugmentation S → Σ∞

+ X. 
Thus we can consider the cobar construction on Σ∞

+ X.

Proposition 3.15. If X is pointed and an EMSS-good space, then the cobar construction on the suspension 
spectrum of X is weakly equivalent to the suspension spectrum of the pointed loops on X:

Cobar(Σ∞
+ X) � Σ∞

+ ΩX.
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Proof. If we add a disjoint base point, then Map∗(S1
• , X)+ has cosimplicial level n given by (X×n)+ ∼=

(X+)∧n. Applying the suspension spectrum functor, we see that Σ∞ Map∗(S1
• , X)+ agrees with the cobar 

complex Ω•(Σ∞
+ X).

By [15], if X is EMSS-good, the Eilenberg-Moore spectral sequence converges for ordinary homology 
with integral coefficients. This Eilenberg-Moore spectral sequence is the homology spectral sequence for the 
cosimplicial space Map∗(S1

• , X). By Corollary A.3 the strong convergence of this spectral sequence implies 
that the total complex commutes with the suspension spectrum functor, i.e.,

TotΣ∞ Map∗(S1
• , X) � Σ∞TotMap∗(S1

• , X).

By Proposition A.6, we can add disjoint base points to this equivalence, obtaining that

TotΣ∞ Map∗(S1
• , X)+ � Σ∞TotMap∗(S1

• , X)+.

Since Tot Map∗(S1
• , X)+ � ΩX+, we can conclude. �

A dual to Proposition 3.15, with a considerably simpler proof, holds as well. The statement of the dual 
is formulated in terms of the Kan classifying space functor, W : sGp → sSet0, from simplicial groups to 
reduced simplicial sets. A detailed definition of this functor can be found in [12], where it is also shown that 
W factors as the composite codiag ◦N , where N : sGp → ssSet is the levelwise nerve functor from simplicial 
groups to bisimplicial sets, and codiag : ssSet → sSet is the Artin-Mazur codiagonalization functor [3]. The 
functor codiag is often called Artin-Mazur totalization and denoted Tot, which we avoid, due to the risk 
of confusion with the other notion of totalization that we employ in this article. As we do not make any 
computations based on the explicit and somewhat involved formula for codiag, we do not recall it here.

We also consider the bar construction functor, denoted Bar, which associates to any associative ring 
spectrum R a spectrum BarR = |B•R|, where | −| denotes geometric realization, and Bar•R is the simplicial 
spectrum with BarnR = R∧n, face maps built from the multiplication map of R, and degeneracies from its 
unit map.

Proposition 3.16. For any simplicial group G, the bar construction on the ring spectrum Σ∞
+ G is naturally 

weak equivalent to the suspension spectrum of the bar construction of G, i.e.,

Bar(Σ∞
+ G) � Σ∞

+ WG.

Proof. Cegarra and Remedios proved in [12] that the obvious natural transformation from the diagonal-
ization functor diag : ssSet → sSet to codiag is in fact a natural weak equivalence. It follows that for any 
simplicial group G there is a sequence of natural weak equivalences and isomorphisms

Σ∞
+ WG � Σ∞

+ diagNG ∼= |Σ∞
+ NG| ∼= |Bar•Σ∞

+ G| = Bar(Σ∞
+ G),

where straightforward computations suffice to establish the two isomorphisms. �
The next lemma is the first step in the proof of Theorem 3.7. Note that we consider unpointed mapping 

spaces here.

Lemma 3.17. For any space X, there is an isomorphism of cosimplicial spectra

coTHH•(Σ∞
+ X) ∼= Σ∞

+ Map(S1
• , X).



K. Hess, B. Shipley / Journal of Pure and Applied Algebra 225 (2021) 106505 23
Proof. Since these are both cosimplicial suspension spectra, it is enough to establish the isomorphism on 
the 0th space level. The 0th space of coTHH(Σ∞

+ X) has nth cosimplicial level (X+)∧(n+1) ∼= (X×(n+1))+, 
which agrees with Map(S1

• , X)n+. In both cases, the coface maps are induced by diagonals on the appropriate 
factor (with one extra twist for dn+1), while the codegeneracy maps are projections onto the appropriate 
factors. �
Proof of Theorem 3.7. Proposition A.6 implies that it is sufficient to prove the statement with disjoint base 
points removed, so it suffices to show that

TotΣ∞ Map(S1
• , X) � Σ∞TotMap(S1

• , X).

By Corollary A.3, it is enough to know that the Anderson spectral sequence for homology with coefficients 
in Z for the cosimplicial space Map(S1

• , X) strongly converges. By Proposition A.4 this holds for X an 
EMSS-good space, as required in the hypotheses here. �
Appendix A. Total complexes of cosimplicial suspension spectra

In this section we prove several useful results concerning cosimplicial spectra, their associated spectral 
sequences, and commuting certain homotopy limits and colimits. The most general statement, Proposi-
tion A.1, gives conditions in terms of convergence of the associated spectral sequence for commuting the 
derived total complex (a homotopy limit) with smashing with a spectrum (a homotopy colimit). In this 
paper, we need only the suspension spectrum case, stated in Corollary A.3. The convergence conditions in 
the hypothesis here are verified in Proposition A.4 for the Anderson spectral sequence for the cosimplicial 
space Map(S1

• , X). These statements are then used in the proofs of Theorem 3.7 and Proposition 3.15 above. 
Proposition A.6 shows that a variation of Corollary A.3 holds even after adding base points.

Proposition A.1. If the spectral sequence associated to the cosimplicial space Y • for the generalized homology 
theory D∗ converges strongly, then

Tot(D ∧ Y •) � D ∧ TotY •.

Bousfield, in [8], shows that the following conditions imply strong convergence for such spectral sequences.

Proposition A.2. [8, 3.1] Let R be a ring such that R ⊂ Q or R = Z/p for p a prime. If Y • is a cosim-
plicial space such that the associated homology spectral sequence with coefficients in R strongly converges 
to H∗(TotY •; R), then for each connective spectrum D with R-nilpotent coefficient groups πiD, the spectral 
sequence associated to Y • for the generalized homology theory D∗ converges strongly to D∗(TotY •).

Since abelian groups are Z-nilpotent, the following corollary of Propositions A.1 and A.2 holds.

Corollary A.3. If the integral spectral sequence for the cosimplicial space Y • strongly converges, then

Tot(Σ∞Y •) � Σ∞TotY •.

Proof of Proposition A.1. Recall from [10, X.6.1] that there is a homotopy spectral sequence for any cosim-
plicial space Y • that converges to the homotopy of TotY • under mild conditions. This spectral sequence 
arises from the tower of fibrations given by {Tots(Y •)} and has E2-term given by πsπtY

•.
Rector’s spectral sequence for computing the D∗-homology of a cosimplicial space is considered in [8, 2.4], 

where it is constructed as the homotopy spectral sequence for the cosimplicial spectrum given by D ∧ Y •. 
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The E2-term is therefore given by πsπt(D ∧ Y •) ∼= πsDt(Y •), and it abuts to π∗Tot(D ∧ Y •). By [8, 2.5], 
strong convergence for this spectral sequence implies that D∗(TotY •) is isomorphic to π∗Tot(D∧Y •). Strong 
convergence for the homology spectral sequence for D∗ thus implies the statement in the proposition. �

Our next goal is to prove the following strong convergence result.

Proposition A.4. For X an EMSS-good space, the Anderson spectral sequence for homology with coefficients 
in Z for the cosimplicial space Map(S1

• , X) strongly converges to H∗(LX; Z).

This strengthens the convergence results in [8, 4.2] that require X to be simply connected. We expect 
that Proposition A.5 should enable similar generalizations for other mapping spaces.

To prove Proposition A.4, we need the following definitions and result. A cosimplicial space is R-strongly 
convergent if the associated homology spectral sequence with coefficients in R strongly converges. If R = Z

we often leave off the R. It is R-pro-convergent if the homology spectral sequence with coefficients in R
converges to the associated tower of partial total spaces; see [8, 8.4] for details. In each application in this 
paper, the associated tower of partial total spaces is eventually constant, so pro-convergence is equivalent to 
strong convergence in cases relevant to us. The next result, from [8, 8.4] and generalized to non-contractible 
Y • in [43, 3.2], is formulated in terms of R-pro-convergent cosimplicial spaces.

Consider a pull-back square of cosimplicial spaces

M• Y •

f

X• B•

.

There are associated pull-back squares for each cosimplicial level n

Mn Y n

Xn Bn

and for each partial total space Tots

Tots M Tots Y

Tots X Tots B

.

Proposition A.5. [8, 8.4], [43, 3.2] Consider a pull-back square of cosimplicial spaces as above, with f a 
fibration and X•, Y •, and B• fibrant. If X•, Y •, and B• are R pro-convergent, and the Eilenberg-Moore 
spectral sequences for the pull-back squares above for each cosimplicial level n and each total level s strongly 
converge, then M• is R-pro-convergent.

Proof of Proposition A.4. Since S1 is the following pushout in simplicial sets

* Δ[1]

S0 S1

,
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the cosimplicial space Map(S1
• , X) is a pull-back:

Map(S1
• , X) Map(Δ[1]•, X)

Map(S0
• , X). Map(*•, X)

.

We use Proposition A.5 to establish strong convergence of the homology spectral sequence with coefficients 
in Z for Map(S1

• , X) by verifying the hypotheses listed there.
Since the inclusion * → Δ[1] is a cofibration of simplicial sets, and X is fibrant, the righthand vertical 

map above is a fibration of cosimplicial spaces. Also because X is fibrant, the four corners are fibrant 
cosimplicial spaces.

The cosimplicial spaces in the two bottom corners are constant, with each level given by X and X2

respectively. Hence the associated homology spectral sequences are strongly convergent. The cosimplicial 
space for the top right corner is equivalent to the cosimplicial space given by Rector’s geometric cobar 
construction for the pullback of the identity maps:

X

X X

.

By [8, 4.1], since the fibers here are trivial, the associated homology spectral sequence converges as long as 
X is connected.

Next we consider the Eilenberg-Moore spectral sequences associated to the pullbacks in each level. In 
level n the pullback is given by

Xn+2

π0,n+2

X
Δ

X2

.

Again, we apply [8, 4.1]. Here the vertical map is projection onto the first and last factors, so the action of 
π1(X2) on the homology of the fiber is trivial. Thus, the associated spectral sequence strongly converges.

Finally, we consider the Eilenberg-Moore spectral sequences associated to the pullbacks of partial to-
tal spaces. Tot0 agrees with cosimplicial level zero, so it is covered above for n = 0. By [10, X.3.3], 
Tots Map(Z•, Y ) ∼= Map(Z [s]

• , Y ) where Z [s]
• is the s-skeleton of Z. It follows that Tot ∼= Tots for all s

in the bottom two corners. Also, since Δ[1] is one dimensional, Tots Map(Δ[1]•, X) ∼= Map(Δ[1]•, X) for 
s ≥ 1. So we have the same pullback of partial total spaces for each s ≥ 1,

Map(Δ[1], X)

X
Δ

X2

.

Choose a point in X2 in the image of the diagonal map Δ, so that the fiber over that point is the pointed loop 
space ΩX. Since X is EMSS-good, the action of the fundamental group π1(X) on the homology H∗(ΩX)
for the path loop space fibration is nilpotent. It follows that for the vertical fibration above, π1(X2) also 
acts nilpotently on H∗(ΩX). Thus, by [8, 4.1], the associated spectral sequence strongly converges. �
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The following proposition considers the effect on the weak equivalence of Corollary A.3 of adding disjoint 
base points.

Proposition A.6. If Y • is a cosimplicial space such that TotΣ∞Y • is weakly equivalent to Σ∞TotY •, then 
TotΣ∞

+ Y • is weakly equivalent to Σ∞
+ (TotY •).

Proof. To be definite, we work here in the underlying model category of symmetric spectra of simplicial 
sets [27], where the suspension spectrum Σ∞X is always cofibrant. Thus we do not need to derive the 
coproducts below, but we do need to consider the derived product, denoted ×.

Recall that in the homotopy category of spectra, the coproduct is equivalent to the product, i.e.,

W ∨ Z � W × Z

for all spectra W and Z.
Let S ∼= Σ∞S0 denote the sphere spectrum. If fΣ∞X is a fibrant replacement of Σ∞X for some space 

X, then

Σ∞
+ X ∼= Σ∞X ∨ S � Σ∞X × S � fΣ∞X × fS.

Let fΣ∞
+ Y • denote the fibrant replacement of Σ∞

+ Y • in the Reedy model category of cosimplicial spectra. 
By the argument above, fΣ∞

+ Y • is levelwise weakly equivalent to fΣ∞(Y •) × c•fS, where c• denotes the 
constant cosimplicial spectrum functor. Since totalization commutes with products,

TotΣ∞
+ Y • � TotΣ∞(Y •) × Totc•fS � TotΣ∞(Y •) × fS.

The hypothesis of the proposition, together with the weak equivalence between products and coproducts, 
implies that

TotΣ∞(Y •) × fS � Σ∞TotY • ∨ fS.

Since S → fS is a trivial cofibration, this last term is weakly equivalent to Σ∞
+ (TotY •), as desired. �
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