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1. Introduction

Let g be a finite dimensional simple Lie algebra over C. The universal central extension t(g) of the 2-loop
algebra g ® (C[tlil,téﬂ], called the toroidal Lie algebra, has a celebrated presentation given by Moody-
Rao-Yokonuma [9] for constructing the vertex representation for t(g). In understanding the Langlands
reciprocity for algebraic surfaces, Ginzburg-Kapranov-Vasserot [3] introduced a notion of quantum toroidal
algebra Uy (gior) associated to g. The algebra Uy (§ior) specializes to the Moody-Rao-Yokonuma presentation
of t(§) in general, except for § in type A; when Uy (§i0r) specializes to a proper quotient of the latter [2].
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The theory of quantum toroidal algebras has been extensively studied, especially with a rich representation
theory developed by Hernandez [5,6] and others, see [7] for a survey. One notices that two major structural
properties of Uk (gtor) have played a fundamental role in Hernandez’s work: the triangular decomposition
and the (deformed) Drinfeld coproduct.

Let A be the generalized Cartan matrix associated to the affine Lie algebra g of §. When A is symmetric,
by using the vertex operators calculus, Jing introduced in [8] a quantum affinization algebra U (§) associated
to g. Meanwhile, it is remarkable that finite dimensional representations of Uy (g) were studied by Nakajima
in [10] using powerful geometric approach of quiver varieties. If A is of simply-laced type, then Uy (§) is
nothing but the quantum toroidal algebra Uy (o). However, for the case that A is not of simply-laced
type, the definition of U (§) is slightly different from that of Uy (g¢0r ). Explicitly, one notices that A(ll) is the
unique symmetric but non-simply-laced affine generalized Cartan matrix. In this case, the defining currents
xE(2), 2 (2) in Up(§) satisfy the relation

(2 = ¢72w)(z — w)zg (2)a (w) = (¢722 — w)(z — w)a (w)ag (2), (1.1)
which appeared naturally in calculation of quantum vertex operators [8] and equivariant K-homology of
quiver varieties [10]. In particular, Ux(§) specializes to the toroidal Lie algebra t(g) of type A; as the
classical limit of (1.1) holds in t(g). On the other hand, in Uy (o) these two currents satisfy the relation

(z = ¢PPw)zg (2)z7 (w) = (¢7°2 — w)at (w)ag (2). (1.2)

This stronger relation was needed in verifying the compatibility with affine quantum Serre relations in
Ur(81or) so that it processes a canonical triangular decomposition [5]. For the algebra Uy (§), we only know
that it has a weak form of triangular decomposition [10].

From now on, we assume that g is of type A;. The main goal of this paper is to define a “middle” quantum
algebra

uh(ﬁ) - U —» uh(gtor)

of Ur(§) and Ur(§tor), and prove that this new quantum toroidal algebra U processes the “good” properties
enjoyed by both Ux(§) and Uk (§tor). Explicitly, we first introduce in Section 2 a quantum algebra U which
specializes to the toroidal Lie algebra t(g). By definition, U is the quotient algebra of Uy(g) obtained by
modulo the relation

[ (21), (22 = ¢TPw)ag (z2)27 (w) — (¢ 22 — w)aif (w)ag (22)] = 0. (1.3)
One notices that Uy (gror) is a quotient algebra of U as the relation (1.2) implies the relations (1.1) and
(1.3). In Section 3, we prove that &/ admits a triangular decomposition (see Theorem 3.1). In Section 4,
we prove that U has a deformed Drinfeld coproduct (see Theorem 4.1). As in [4], this allows us to define
a (topological) Hopf algebra structure on U (see Theorem 4.2). As usual, the crucial step in establishing
Theorems 3.1 and 4.1 is to check the compatibility with affine quantum Serre relations, in which the new
relation (1.3) appeared naturally (see (3.10) and (4.6)). Finally, in Section 5 we point out that the quantum
vertex operators constructed in [8] satisfy the relation (1.3), so we obtain a vertex representation for U.
Throughout this paper, we denote by C[[A]] the ring of complex formal series in one variable /. By a
C[[R]]-algebra, we mean a topological algebra over C[[#]] with respect to the h-adic topology. For n, k,s € Z
with 0 < k < s, we denote the usual quantum numbers as follows

= S = e~ e W () =
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where
q = exp(h) € C[[R]].
2. Quantum toroidal algebra of type A,

In this section we introduce a new quantum algebra which specializes to toroidal Lie algebra of type A;.

Let
2 =2
A = (aij)ij=01 = (_2 5 ) (2.1)

be the generalized Cartan matrix of type Agl). For i,j =0,1, let

q“ —z

9ij(2) = m

(2.2)
be the formal Taylor series at z = 0. The following is the main object of this paper:

Definition 2.1. The quantum toroidal algebra U is the C[[h]]-algebra topologically generated by the elements

hi;na xi

,n’

c 1=0,1, neZ, (2.3)

and subject to the relations in terms of generating functions in z:

¢i( ) ihL 0 exp ( q — q Z h/z n< n) 5 x;t(z) = iU?fnZ—n

+n>0

The relations are:

Q) cis central, [67(2), 6 (w)] =0,

(Q2) & ()67 () = &y ()6 (2)g5(a°w/2) " 15~ w/2)
(Q3) ¢ (2)at (w) = o (w)g] (2)gis (¥ 2 w/2)*,

(Q4) 7 ()t (w) = aF (w)ey (2)gzaa¥H2/w) ™",

Q9 Z Z < )q (20(1)) xi(za(r))x;‘t(w)xz‘t('zo(r+l)) o 'x;t(zg(B)) =0,

oeS3 r=0

where i,j = 0,1 with 7 # j in (Q7), (Q8), (Q9) and d(z) = >, .5 2" is the usual é-function.
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Remark 2.2. As indicated in Introduction, in literature there have been two other definitions of quantum
toroidal algebra of type A;p: the algebra Up(§) introduced in [8,10] and the algebra U (§tor) introduced in
[3,5]. By definition, the algebra Uy, (§) is the C[[A]]-algebra topologically generated by the elements as in (2.3)
with relations (Q1)-(Q7) and (Q9), while the algebra Uy (§i0r) is the C[[R]]-algebra topologically generated
by the elements as in (2.3) with relations (Q1)-(Q6), (Q9) and the following relation

(z = ¢PPw)af (2)25 (w) = (772 — w)af (w)a (2), i#je€{0,1}. (2.4)

By definition our new algebra U is a quotient algebra of Ux(g), while Uy (§ior) is a quotient of U.

Now we recall the definition of the toroidal Lie algebra of type A;. Let K be the C-vector space spanned
by the symbols

tTltgnzki, 1=1,2, my,mg €Z
subject to the relations
mlt;nltgwkl + mgtznltgwkg =0.

Let g = sl3(C) be the simple Lie algebra of type A; and (-,-) the Killing form on g. The toroidal Lie
algebra (see [9])

t=tg) = (@oClH ') ok
is the universal central extension of the double loop algebra g® C [tfl, t;l], where K is the center space and

T ® tmltm27y ® t’ﬂlt’ﬂ T y ® t71L1+n1tm2+n2 x y mltml+nlt7,L2+n2k
1 2 1 %2
i=1

for z,y € g and my,mo,ny,no € Z.
Let {e*,a,e™} be a standard sla-triple in §, that is,

For ¢ =0,1 and m € Z, set

1
a1m =a @, aom =thki —a®ty, ef,, == @1y, e, =T @t 5.

Note that these elements generate the algebra t.
Following [9], we have:

Proposition 2.3. The toroidal Lie algebra t is abstractly generated by the elements ai,m,efm7k2 for i =
0,1, m € Z with relations

(L1) ko, t] =0, [@i;m,¥jn] = @ij0msn,0mks,
(L2)  [im, €, = £ai€5min,
(L3) e s €5l = 0ij (@ min + MOmin oka) ,
(L4) (2 —w)[ef(2), & (w)] = 0,
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(L5) (2 —w)?[ef (2),e5 (w)] =0, i,
(L6) (22 —w)lef (21), [ef (22), €5 ()] =0, i # j,
(L7)  [e7 (=1), [e (22). [ef (23), €5 ()]l = 0, i # .

where 1,7 = 0,1, m,n € Z and eii(z) = ez efnz_".

Proof. Denote by L the Lie algebra abstractly generated by the elements «; ,, ei[m, kg for i =0,1,m € Z
with relations (L1)-(L7). One easily checks that the relations (L1)-(L7) hold in t and so we have a surjective
Lie homomorphism % from £ to t. On the other hand, denote by £’ the Lie algebra abstractly generated by
the elements a; p,, efm,kQ for ¢ = 0,1, m € Z with relations (L1)-(L4) and (L7). Then there is a quotient
map, say ¢, from £’ to L. It was proved in [9] that the surjective homomorphism ¢ o ¢ : L' — L — tis

+

an isomorphism, noting that the relation (L4) is equivalent to the relation [e(2), e (w)] = 0. This in turn

implies that the map ¢ is an isomorphism, as required. O
By combining Definition 2.1 with Proposition 2.3, we have the following result.

Theorem 2.4. The classical limit U/RU of U is isomorphic to the universal enveloping algebra U(t) of the
toroidal Lie algebra t.

Proof. Let C(S) be the free C-algebra generated by the set
S = {hi,n, xfn, c| 1=0,1,n € Z},
and let ¢ be the surjective C-algebra homomorphism from C(S) to U(t) determined by

Rin = QG p, xt et

in in

CHkQ,

fori = 0,1, n € Z. Set U' = (C(S))[[R]], and let I be the closure (for the f-adic topology) of the two-sided
ideal T of U/ generated by the coefficients in (Q1)-(Q9). Then by definition we have U = U /I. We extend
1 to a C-algebra homomorphism from U/ to U(t) such that (k) = 0. Note that, via the homomorphism 1,
the relations (Q1)-(Q9) in U/ are exactly the relations (L1)-(L7) of t. This implies that 1)(I) = 0 and hence
Y(I) =0 (as ¢(h) = 0 and I/hI = I/hI). Therefore, we obtain a surjective C-algebra homomorphism from
U to U(t). Furthermore, this homomorphism induces a surjective C-algebra homomorphism from U /Al to
U(t), which we also denote as 1.

On the other hand, we have a surjective C-algebra homomorphism ¢ from U(t) to U /AU determined by

Oy = i + AU, ef xf:n +hAd, kor—c+hlU,

i,m

for e = 0,1, n € Z. It is obvious that ¢ is the inverse of ¢, so the theorem is proved. O

Remark 2.5. From the proof of Proposition 2.3, one knows that the algebra Uy (§) also specializes to t. On
the other hand, it is straightforward to see that the current

(2 — w)leg (2), €3 (w))

is nonzero in t and its components lie in the space K = > ez (Ct" taky + Ct7"t5 k). Thus, the algebra
Un(§tor) specializes to the quotient algebra t/KC of t (cf. [2]).
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3. Triangular decomposition of U

In this section, we prove that U has a triangular decomposition. By a triangular decomposition of a C|[[A]]-
algebra A, we mean a datum of three closed C[[R]]-subalgebras (A~, H, A™) of A such that the multiplication
- @h®xt — 2~ haT induces an C[[A]]-module isomorphism from A~-®@H®A* to A. Here and henceforth,
for two C[[fi]]-modules U, V, the notation U®V stands for the A-adically completed tensor product of U
and V.

Let U™ (resp. U™ ; resp. H) be the closed subalgebra of U generated by x;fm (resp. x

s T€SP. Ry, €).

i,m?

The following is the main result of this section:

Theorem 3.1. (U~ ,H,U") is a triangular decomposition of U. Moreover, Ut (resp. U™ ; resp H) is isomor-

phic to the C[[h]]-algebra topologically generated by xjm (resp. x;,,; resp. him, c) subject to the relations

(Q6)-(Q9) with “+7 (resp. (Q6)-(Q9) with “—7; resp. (Q1), (Q2)).

The rest of this section is devoted to proving Theorem 3.1. We first introduce some algebras related to
U that will be used later on.

Definition 3.2. Let U be the C[[i]]-algebra topologically generated by the elements in (2.3) with defining
relations (Q1)-(Q5), U the quotient algebra of & modulo the relations (Q6), (Q7), and U the quotient
algebra of U modulo the relation (Q8).

; resp. hi,nu

i,m?

Denote by U+ (resp. U~ resp. ’}:Z) the closed subalgebra of U generated by x;fm (resp. x
¢). The following result is standard.

Lemma 3.3. (ﬁ—ﬂ,iﬁ) is a triangular decomposition of U. Moreover, Ut (resp. Zjl_) is isomorphic to

the C[[h]]-algebra topologically free generated by xjm (resp. ;. ) and H is isomorphic to the C[[h]]-algebra
topologically generated by h; m,, ¢ with relations (Q1), (Q2).

The following result was proved in (the proof of) [5, Lemma 8].

Lemma 3.4. For i,j,k = 0,1, the following hold in U:

+

%

()}

(2 — g iw)ad (2)aF(w) — (992 - w)a
Similarly, we have:
Lemma 3.5. For ¢,j,k = 0,1 with i # j, the following hold in U:
o (1), (22 — q72w)a (z0)rE (w) — (¢722 — w)rt (w)a ()], aF (wo)] = 0. (3:2)
Proof. Let i, be as in the hypothesis. We first prove that for n = +,
[07(aT22), (22 — ¢ PPw)a (z2)25 (w) = (47222 — )z (w)af (22))] = 0. (3-3)

Indeed, it follows from (Q3) and (Q7) that

[0 (@F2°20), (22 — 472 w)af (22)a (w) = (722 — w)a} (w)af (22)))]

+2 2
G2 — 20 qTo2z1 —w

= 2 T2 -1
21 — Q7 2222 —qT7W
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Zi(zz)x]i(w) — (P2 — w)xf(w)x}(@)) ¢?_(q¥%021)

(q*° — QJFQ)Zl(Zz —w)
(21 — ¢F222) (21 — ¢F2w)

E(z2)at (w) — (¢F22 — w)aF (w)r () ¢F (¢T3°2)

. ((22 —¢Tw)x
+2

((z2 = ¢TPPw)z

=0.
Similarly, for the case n = —, (3.3) follows from (Q4) and (Q7). Now, in view of (3.3) and (Q5), we have
[l (21), 27 (wo)], (22 — 47 2w)af (z2)a5 (w) — (47222 — w)a (w)ai (22)] = 0. (3-4)

This together with (3.1) (with ¢ # j) gives (3.2), which proves the lemma. O

Lemma 3.6. Fori,j, k= 0,1 with i # j, the following equations hold in U:

P () P ) -2 (o))

P (3.5)
X Z‘:'t(zo'('r‘+1)) e x'i(za(B)) =0,
. +
a;j; ( > §i(zo(1)) -+ &i(za(r) )y (W) (3.6)

X 575(20'(7‘—',-1)) T 52(20(3)) = 07
where n = %, &(2p) = ; (zp) ifp#£1and () = gb;’(q:F”%Czl),

Proof. Equation (3.5) can be proved as that of [5, Eq. (20)] and we omit the details. For (3.6), we will prove
the case of 7 = +, the other case n = — is similar. Denote by R* the LHS of (3.6). Then it follows from
the relations (Q3), (Q4) that

=D* )" ZP 215 2r (2 2r(3), W, )T (2r(2)) - 47 (2n(r)) 75 ()

weSy r=1

le
X & (2r(ra) - 07 (2n(3)) 07 (F7°21),
where Sy acts on the set {2,3} and for 1 <r < 3,
1 1
)5 —— .
21— gt 2«1:[<3 2=

and

P’r‘(z17 29,23, W, q)

( ) Z H 21— 4°z) H (¢%21 — za) (¢ 21 — w)

p=12<a<p p<a<3

i (7”i 1> S Z [I Gi-d?z) T (621 —z2a) (21— ¢ w0).

p=r2<a<p p<a<3
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It was proved in [5, Lemma 6] that

P1<Z17Z27 23, qu) = (22 - q2w)f3§1)(21, 23, W, Q) + (23 - q7222)f2(1)(21aw7q)a (37)
p2(217227 z3, W, Q) = (U} - q222)f2(2)(21, 23, W, q) + (Z3 - q2w)f:§2) (Zlv 22, W, Q)7 (38)
Py(21,22, 23, w0, q) = (w0 — ¢%23) 52 (21, 22,0, q) + (23 — ¢ 222) f§7 (21,0, ), (3.9)

where f2(r) and f?ET) are some polynomials of degree at most 1 in the variables z1, zo, w
In view of (3.7), (3.8), (3.9) and (Q6), we have

Z Pr<zlaz7r(2)az7r(3)7waqi1> i(2’/71'(2)> i(zﬂ 3)) ( )¢+( ) =0,
TES2
Y P21 2e(2) 2na)s 0, ¢ ) (W) (2r(2)) 27 ()67 (47 2°21) = 0.
TES>

This implies that all the terms in R* which contain the polynomials fér) with a # 7,3 can be erased. Thus,
we obtain

R* =D* Z (2r(2) *qﬂw)fggl)(zl,Zn(3)aU),qil)fff(wﬂzi(zw(z))fi( Tr(3))¢ (quz z1)

TESy

lC
—D* ) (¢ ) — w) f5 (Zlvar(S)vwaqil)xii(zw(Q))xji(w)xii(Zﬂ(S))¢z_(q:F2 21)
TESy

1
+D* N (zr(3) — qi2w)f952)(zlvz7r(2)7waqi1>$ii(z7r(2))x;t(w)x;t(Z7r(3))¢j(q¥2021)
TES?

D N (%2 nga) — ) Y (21, 2n(2) 0, )3T ()25 () )2 (W) (47 2021).

TESy
A straightforward calculation shows that
fél)(zl, z3, W, q) = f2(2)(2:17 z3, W, Q) = Q(Zl - 23)7
f?EQ)(Zlv 22, W, q) = fég)(zh Z2, W, q) = _Q(Zl - ZQ)?
where

2

Q=("*"—d"+q?>— .

Then we have

RE = £QD* Y (2a(2) — w) (21 — 2n(3)) 75 (W)2F (20(2) )0 (2(3)) 07 (47 2°21)

TESy

FOD® Y (¢ 2n(2) — W)(21 = 2n(3))0 (20(2))2F ()77 (2(3)) 8] (472 21)
TESs

LQD* S (onay — P0) (21 — 20 (2r2))5F ()37 (2n(3))0F (47 021)
TES2

FQD* Z Pn(z) — W) (21 — 22(2)) 7 (2r(2) 2T (2r(3))2T (W) ST (7721

TESy
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= FQD*¢*? Z (21 = 2r(2)) [a:li(zw(g)), (Zre3) — qﬁw)xii(z,r(g))x;t(w) (3.10)
TESs

— (07 2n(3) — w)aF (W)TF (20(3)) |67 (47 2°21)

where the last equation follows from (Q8). O
As in the proof of [5, Lemma 10], it is obvious that Lemma 3.6 implies the following result.

Lemma 3.7. Fori,j,k = 0,1 with i # j, the following equations hold in U:

3
(52 0 (2) a0 o) - o )] =0

oc€S3 r=0

Proof of Theorem 3.1. We first recall a general result of triangular decompositions (cf. [5, Lemma 4]). Let
A be a completed and separated C[[h]]-algebra and (A~, H, AT) a triangular decomposition of A. Let BT
and B~ be respectively a closed two-sided ideal of A* and A~, and let B be the closed ideal of A generated
by BT + B~. Set C = A/B and denote by C* the image of B* in C. Assume that ABT c Bt A and
B~A C AB~. Then (C*, H,C™) is a triangular decomposition of C' and C* are isomorphic to A*/B*. In
view of this criterion, Theorem 3.1 follows from Lemmas 3.3, 3.4, 3.5 and 3.7. O

Remark 3.8. It was proved in [5] that the algebra Un(gior) has a triangular decomposition as in Theo-
rem 3.1. That is, U and U (§:0r) are two different choices of the quotient algebras of Uy (g) with a triangular
decomposition.

4. Hopf algebra structure

In this section, we give a Hopf algebra structure on U. For a C|[[A]]-module M and n € N, we denote that

ME" = MBM&---®M. (4.1)
—_——

n-copies

Let u, v be formal variables. Motivated by the deformed Drinfeld coproduct given in [6], we have:

Theorem 4.1. There exists a unique C[[h]]-algebra homomorphism A, : U — (U®2)((u)) defined as follows
(i=0,1)

(Col) Aylc)=c®1+1®c¢,

(Co2) Ao (07 (2)) = ¢F (0% 7)) @ ¢ (2u™"q7 )

(Co3) A (o (2)) =2 (2) © 1+ 67 (247) @ 2 (zu” g,
(Cod) Ay (27 (2) =1®@z; (2u™") + 27 (2¢7) ® ¢:‘(zu*1q072),

where ¢; = c¢® 1 and c2 = 1 ® c¢. Moreover, as C[[h]]-algebra homomorphisms U — (Z/I®3)((u,v)), we have

(Id® Ay) oAy = (A, ®Id) 0 Ay,

and, as CI[h]]-algebra homomorphisms U — (Z/{®2)((u)), we have



10 F. Chen et al. / Journal of Pure and Applied Algebra 226 (2022) 106814

(Id®e)oA, =1d, (e®Id)oA, =1d,,
where Id,, : U — U @ C((u)) is the C[[h]]-algebra homomorphism determined by

(Id1) dy(c) = ¢, Tdu(¢7(2) = 67 (zu™),
(1d2) Idu(xii(z )= xli (zu™1),

and € : U — C[[h]] is the C[[R]]-algebra homomorphism determined by

(Col) € (qﬁfc(z)) =1, ¢ (J:;t(z)) =0=¢(c).

Before proving Theorem 4.1, we remark that the above gives a (topological) Hopf algebra structure on
U (by A, the “limit” of A, at u = 1). However, one notices that A; is not a well-defined C[[A]]-algebra
homomorphism from U to L{®2, so we need to introduce certain topological completions of &/ and U® as
in [4]. Explicitly, let F be the free C][[h]]-algebra topologically generated by the set (2.3). Now give h; +n
degree n for n > 0, and all other elements degree 0. We extend the degree to all the elements of the algebra
by summation on the monomials. For £ > 0, let Fj, be the h-adically closed ideal of F generated by elements
of degree greater than k. Then we obtain an inverse system of C[[h]]-algebras (F/Fi,px), where py, is the
natural projection F/F, — F/Fir—1. Denote by F. the h-adic completion of the inverse limit liilf'./fk.
Note that F. is a complete and separated algebra over C[[A]] with inverse limit topology. Let K be the
closed ideal of F, generated by the relations (Q1)-(Q10). Set

U. = F. /K,

a completion of U. Note that there is a canonical injection from U to U..

Now, we consider the space 4%, In this case, we view F as a Z-graded algebra by giving J:Iin, Ty 1n
hi +rn degree n for n > 0, and give other generators degree 0. Denote by Fj, the closed two sided ideal of F
of elements of degree at least k. One notices that Fj, is a strict subset of Fj. Let F®F be the topological
completion of the inverse limit

FRF|Fr@F;.

Then F®F is also a complete and separated algebra over C[[h]]. Define U.®U, to be the quotient algebra
of F&F modulo the closure of KQF + FRK. It is easy to see that there is a canonical injection from URU
to U.®U,. Using these completions, we deduce from Theorem 4.1 that (U., A1, €) carries a C[[h]]-bialgebra
structure. Furthermore, by the same argument as in the proof of [1, Theorem 2.1], we have the following
result.

Theorem 4.2. U, is a Hopf algebra with coproduct Ay, counit € and the antipode S defined by (i = 0,1)

S(c) = —¢, S (x:r(z)) = —(;Sif(zq*%)*lx;r(zqfc),
S (z;(2)) = —a; (27 (2q7%), S (d7(2)) = o7 ()"

The rest of this section is devoted to proving Theorem 4.1. Recall the algebras U and U introduced in
Definition 3.2. Firstly, we have the following straightforward result.

Lemma 4.3. (Col1)-(Co4) defines a unique C[[h]]-algebra homomorphism Ay U — (L?®2)((u))

Furthermore, we have



F. Chen et al. / Journal of Pure and Applied Algebra 226 (2022) 106814 11

Lemma 4.4. A, induces a C[[h]]-algebra homomorphism from A, : U — (a®2> ((u)).

Proof. Fix any ¢ # j € {0,1} and denote by Iij; the LHS of the relation (Q8). We need to show that
ﬁu(lg) = 0 with n = +. We will show the case n = +, as the case n = — is similar and thus omitted. Set

(2)af (w) = (7% — w)zf (w)z (),

A straightforward calculation shows that

Af(z,w) = 2l (2,w) ® 1+ ¢~ ud; (247 )¢; (wg'?) @ i (zu g wu™" ™).

Using this, we obtain

[Au(@f (1)), Af (22, w)] = [w] (1), 2 (22, w)] @ 1 (4.2)

J »ig
oy (2147 ), 0 (22, w)] @ 2 (2107 ¢%) + ¢~ ud; (2107 )@y (2242 ) (wg'?)
® [ (1w g™), 7y (z0u™ g wu )]
+ ¢ ufzf (1), ¢;(22q%)¢; (wg?)] ® x;;-(zgu_lqcl,wu_lqcl)
By applying (Q4) one gets that

(67 (2142), 2 (22, w)]

=¢; (21473 (22, w) (1 = gji(21 /W) gii(21/ 22))

_ (@ - Ha(n—w)
(w—q7221)(22 — ¢*x1
[gjj(zl)agbi_(ZQq%)(b; (wq?)]

=07 (220%)¢; (wq? )a (21) (gji(21/w)gii(21/22) — 1)

- _ (> =g *)a(z—w) _ 202V (was )zt (=
= (w —q—221) (22 —q221)¢i (229 )¢J( q?)z] (z1). (4.4)

Recall from (Q7) that
(z — w):r;; (z,w) =0= (2 — w)x;;(zu*lqcl ,wu” ). (4.5)
Combining (4.2), (4.3), (4.4) and (4.5), we deduce from (Q8) that
[Au(af (21)), Afy (2, 0)] = 0.

This implies that A, (Ig) =0, as required. O

To continue the discussion, we need to introduce some notations. For 0 < s < 3, we denote by S3 s the
set of (s,3 — s)-shuffles in S3, that is

S3s={0€ 85| c(a) <ob),fora<b<sors<a<b}.

As a convention, we let o(a) = a for any a < 1 or a > 3. For 0 < s < 3 and o € S35, we define two partitions
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1
P070'

U---u P?)l_s)g and Pol,g U- Psl_s_1 -
of the set {0, 1,2, 3}, where

Pol,a:{pGZ|0§p<a(s+1)}7
Plo={peZ|o(s+k)<p<o(s+k+1)} for0<k<3—s
Pi_,,=1{peZ|o(B)<p<3} ifs<3,
P2,={peZ|0<p<o(l)} ifs>0,
PE,UZ{P€Z|U(k)§P<U(k+1)} for 0 < k < s,
Pl,={peZ|o(s)<p<3}

Furthermore, for 0 < s <3 and 0 < k <3 —s, set

Th(on, 2o, zmw) = Y () I (P22

0€S3,s rePl a<s<b,o(a)<o(b)
I G-¢2) [ @z-w [] (—qw),
a<s<b,o(a)>oc(b) a<s,o(a)<r a<s,o(a)>r

and for 0 < s <3and 0 < k < s, set

o) = Y Y () I (-2

0€S3,s T’EP2 a<s<b,o(a)<o(b)
I G I Gu— [ w-aa)
a<s<b,o(a)>o(b) a>s,o(a)>r a>s,o(a)<r

We have:

Lemma 4.5. (1) For 0 < k < 3, one has that

3
Tol,k(zl,zg,zg,w) = <k> (—1)*.
a
(2) There exist polynomials f1,0(21,22), f11(%1,22), f1,2(21, 22) € C[[A]][21, 22] such that

T} o(21, 22, 23, w) = fro(z1,w) (22 — ¢°23) — f1,1(21,23)(q 222 — w),

-2

T11,1(217 29, 23,w) = f11(21,23) (22 — ¢ *w) + f1,1(21, 22)(q 223 — w),

T 5(21, 22, 23,w) = — f1,1(21, 22) (23 — ¢ 2w) + fr2(21,w) (22 — ¢°23).
(8) There exist polynomials

f2,0(zl7 22, Zg,U)), f2,1(zl7 z2>7 f2,2(zl7 22,23, ’U}) € C[[h]][Zh 22, Zg,’ll)]

such that

foru(#1, 22, 23, w) = fap(22,21,23,w), k=02,
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and

Ty o(21, 22, 23, w) = fa0(21, 22, 23,w) (21 — ¢°22) + f2,1 (21, 22) (23 — 22) (¢ 223 — w),

Ty 1 (21, 22, 23,w) = fa2(21, 22, 23,w) (21 — ¢ 22) — fa,1 (21, 22) (23 — 22) (23 — ¢ *w).

(4) There exist polynomials f30(21,22), f31(21,22) € C[[A]][#1, 22] such that
T3 o(21, 22, 23, w) = f3,0(23, w)(21 — ¢°22) + f3,1(21, w)(22 — C°w).

(5) T k(zl,ZQ,z;;, w) = (71)ST3178’k(23,Zl722,w) if s < 3.
(6) T370(zl,22,23, w) = —T&O(zl,zQ,z?,,w).

Proof. The lemma follows from the following straightforward facts:

3
Tol7k(21,2,’2, Z3,U}) = T327k(zl7z25 Zg,ﬂ}) = (k) (_l)ka
q

T1 o(z1, 22, 23, w) = —T2 o(22, 23, 21, W)
(¢ =Dz ((a” w)(z2 — ¢°23) — [3lg2 (21 — 23) (¢ 222 — w)),

T1 1(21, 22, 23, w) = —T2 1(,22,2'3,21, w)

= (¢" = Dz1[3]g2 ((21 — 23) (22 — ¢ w) + (21 — 22) (¢ 25 — ),
Tl o(21, 22, 23, w) = —T2 o(22, 23, 21, W)
(¢* = )21 (= [Blg2(21 — 22) (23 — ¢ 2w) + (21 — ¢ *w)(22 — ¢°23)),
T2 o(z1, 22, 23, w) = (zg,zg,z1, )

=z12(1 - qu)(q —1)Blg2(23 —w)(g 23 —w) + (1 — ¢~ ) (21 — ¢*22)

X (¢%[8)g2 (23 — w)(g" 2122 — z3w) — 23(1 + ¢~ %) (%21 — 23)(¢%22 — 23)),
T2171(21,22,23,w) = T1271(22,23721,w)

= —z122(1 = ¢7*)(¢" = )32 (23 — w)(23 — ¢ *w) — (1 = ¢~ ") (21 — ¢°22)

X (¢*[3]g2 (23 — w) (2122 — ¢ z3w) — 23(1 + ¢~ ) (21 — ¢°23) (22 — ¢°23)),
Tsl’o(zl, 29,23, W) = —T()Q’O(zl, 29, 23, W)

=w(l - q74)( — (23 — q74w)(z1 - q222) + (q7421 —w)(zg — qzzg)). O
For i # j € {0,1}, denote by Jij; the LHS of (Q9).

Lemma 4.6. For i # j € {0,1}, we have

3—s

3 1
x T (ZT(l)a 27(2)s #7(3)» ’lU)
AU(J;) = § § =
J 7€S5 s=0 k=0 Ha§s<b(z7'(a) - q2ZT(b)) HELSS(ZT(G) - q_2w)

07 (Zr(sq1)) - 05 (22(3)) @5 (W) (20 1)) - 2 (20(s))
M (2r(sn) - T (e )T (W)TF (o)) -~ TF (22(3))

Tf,k(zru) ) 27(2) Zr(3)s W)

3
_|_
z::o = acscr(Zri@) = P2ew) Has s (W = 7227 )
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07 (2r(sa1) By (22(3)2T (22 ) -+ 27 (2o (i) )] (w)
T (Zrorn) - 2 (2r(9) @ TF (2r(s11)) -+ T7 (22(3)),5

where ag(z) = ¢ (2¢7) and T (2) = o (zu="q") for k =14,j.

Proof. For o € S3 , we define

N
3
<

S
—~
S
L]
Nlo
~—
Iy
q
—~

IS
N
+
—
~
AN
—~

N
w
~

777‘,0’(21’ 22,23, W) =
50(2‘1,227 z3

o go'('zr)x;(wu_qu)ga(errl) T 50(23)-

And for iy, ig,...,in € {0,1}, ¢, (2) =z (2,) or ¢; (2:q7), we define an ordered product

§Gin(21) -+ i, (2n) 8

by moving gzﬁij(zrq%) to the left. Then it follows from (Q4) that

gr,o(zly 22, 23, w) = H gii(zo(b) /za(a)) H Gij (w/za(a)) 8 E'I’,U(Zl7 22, 23 w) 8 )
a<s<b a<s
o(a)<r

nr,o(zlsz,ZBaw): H gii(za(b)/za(a)) H gji(zo(a)/w)877r,0(21»z27237w)8~
a<s<b a<s
o(a)>r

Moreover, it is straightforward to see that
Au(af (1)) Aulaf (z) Aule] (W) Au(ay (2r41)) -+ Au(zf (23))

3
:Z Z H 9ii(Z0(b)/ %0 (a)) H 9i5(W/25(a)) S&ro (21, 22, 23, W) § @ N0 (21, 22, 23, W)
s=00€S3 s a<s<b Ezg)s
o(a)<lr

3
+Z Z H gii(za(b)/za(a)) H gji(zg(a)/w)8777“,0(21732;23’11))8 ®€0’(zl7z2723)'

s=00€S3,s a<ls<b a<s
o(a)>r

Now the lemma follows from a direct calculation and the following facts:
8 §r1,0 (27(1)) 27(2)) #7(3)s w) 8 ® 57“1,0(27'(1)7 Z7(2)) Z7(3)s ’LU)
= 8 60,1('27‘0(1)7 Zro(2)1 #To(3)s w) 8 ® ﬁp}mo,l(zra(l)v Z2r0(2)1 Z1o(3)s w>7

QMg (Zr (1) 2r(2)s 2r(3), W)  ® Eo (27 (1) Zr(2), Zr(3)> W)
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= 8 np%ﬁ,l(zTa(l)a Zr0(2)s #1o(3)s ’U}) 8 ® gl(z‘ra(l)7 RZra(2)) #Ta(3)s ’U)),

where 7 € S3, 0 € S35 (0 < s < 3), 1, € P, (a = 1,2) and pj , is the minimal element in P¢,
(e=1,2). O

Proof of Theorem 4.1. In view of Lemmas 4.3 and 4.4, it suffices to show that
Au(J5) =0, fori#je{0,1}.

Let i # j € {0,1} be fixed. From Lemma 4.6 and (1), (5) of Lemma 4.5, it follows that

3 3—s 1
T (2 z z w)
+y s,k\*T(1)> #7(2)s #7(3)>
T=2.2 2 f p
k=0

= E e Hacsan(Fra) = 222 0) acs (2r(0) — a7 20)

07 (2r(s1)) 07 (22(3)) 07 (W) (2 1)) -+ 27 (27(s)
R TF (2r(s11) - TF (Zr )T (W) (2r(hs1)) - Zf (22(3))

+ Z ii TSQ,k(ZT(;)a27(2)’ZT(3)’w)

S Hacoan(Fr@) = @P2e) Has o (w — 47220 ()

d) ( Zr(s+1) ) d) ( ) +(Z7'(1)) osj'(zT(k))zj(w)
2 (Zrhr1) - 27 (2r(s) @ TF (Zr(st1)) -+ T7 (2r(3))-

Combining this with Lemma 4.5 and (Q6)-(Q7), a similar argument of Lemma 3.6 shows that

f 1(27(1), ZT(3)) ~_ ~_ ~_

J5) = : 0; (27(2))0; (27(3))8; (w)
ng acscn(zra) = @2r ) [lacs(2r(@) — 472w0) @ 7

2f (22(1) ® [(2r(2) — 20T (20(2)T] (W) = (¢ %272) — w)T] (0)T] (

fl,l(ZT37ZT2) T_
(3)) *7(2) &; (%(3))

Zr(o)), T (2,

+
7_;3 Ha§5<b(z‘r(a) - q2Z-,—(b)) Ha>s(w - qizzr(a))

5 (

[(zry = 2w)af (z-))af (w) — (67220 1) — w)a] ()] (zr), 27 (22(2)] @ T (2r3))-

Then it follows from (Q8) that AH(J;;) = 0. The proof of AH(JZ;) = 0 is similar. Therefore, we complete
the proof of Theorem 4.1. 0O

Remark 4.7. Let ﬁh(gm) be the quotient algebra of U modulo the relations (2.4) and (Q6). It was shown
in [5, Proposition 29] that the action (Col)-(Co4) defines a unique algebra homomorphism Ay Un(dtor) —
(Un(810r)® 2) ((u)). Recall that Uy (§ior) is the quotient algebra of U (gror) modulo the relation (Q9). As the
relations (Q6)-(Q8) also hold in Up(§ior), it follows from (the proof of) Theorem 4.1 that A, is compatible
with the affine quantum Serre relation (Q9). This implies that &u induces an algebra homomorphism from
Ur(8tor) to (Uh(gtor)®2)((u)), as expected in [5, Remark 6].

5. Vertex representation of U

In this section we show the vertex representation for Uy (§) given in [8] induces a representation for U.
We first recall the vertex representation given in [8]. Let

S =Clhin |i=0,1,n < 0][[A] (5.1)
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be the symmetric C[[A]]-algebra in the variable h; ,, which is topologically free as a C[[h]]-module. It is
known that there is an H-action on S such that ¢ =1, h; o = 0, h;, —,, = multiplication operator and h; , =
annihilation operator subject to the relation

nc

nciqf
q—qt

Omin, q
(Pims hj,—n] = ;: O[naij]q

where ¢ = 0,1 and n > 0. From now on, we take c and h;,, (i = 0,1, n € Z) as operators on S. For i = 0, 1,
we introduce the following fields on S

him
WG = 3 b £€<z>:exp<4:§2'@i?‘z$m>'
q

+m>0 m>0

Let Q = Zay P Zoy be a rank 2 lattice equipped with a semi-positive form (-, -) determined by (a;, ;) =
a;; for 4,5 =0,1. We fix a 2-cocycle € : Q x Q — {£1} such that

e(a, Be(B,a)™t = Cla, B), ela,0)=1=¢(0,a),
where
C:QxQ—{£1}, (o,f)— (—1)@A,

Denote by C.[Q)] the e-twisted group C-algebra of @, which by definition has a designated basis {e,, | « € Q}
such that e, - eg = e(a, B)eq+p for o, 8 € Q. Then Cr{Q} = C.[Q][[A]] becomes an H-module under the
action that ¢ and h;,, act trivially for i = 0,1, n # 0, and h,; o (i =0, 1) act by

hio-eg = (B,a;)eg for B € Q.
For i = 0, 1, define a linear operator 20 : Cr{Q} — Cr{Q}|[z,2z71]] by
Zhio ceg = z<5’°"'>65 for g € Q.
We define the Fock space
v = SBCH{Q} (5:2)
to be the tensor product H-module. Recall the vertex operators define in [8]:

K2

Xt (z) = Z Xipz "= E-_((ﬁ%z)ilE;"(qi%z)ﬂeiaizihivo. (5.3)
nezZ

As usual, the normal ordered product gXijE(z)X;E (w) § is defined by moving annihilation operators h;
(¢ =0,1, n > 0) to the right. For 4, j € I, it was proved in [8, (3.6)] that

X ()X} (w) = 8 X (2) X5 (w) § (= — ¢ Hw),7 (5.4)

where for n € N,

(1—az)h=01-q¢" ") 1—-¢ "z)--- (1—¢" "),

(1—2) =1/(1-a)p, (z—w)y" =1—w/2)5"2*",
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and (1 — )" is understood as power series in x. Moreover, it was proved in [8, (3.8)] that (the bilinear
form (-,-) is denoted as (+|-) therein)

We have:
Theorem 5.1. There is a U-module structure on the Fock space V with the action given by

c—1, hinrhip and r o XE

i,mn ,n?
where 1 = 0,1 andn € Z.

Proof. The relations (Q1-Q7) and (Q9) have been checked in [8, Theorem 3.1] and it remains to prove the
relation (Q8). For i # j € {0,1}, it follows from (5.4) that

X (z,w) =(2 — ¢Fw) XE(2)XE (w) — (6722 — w) XF ()X (2)

=8 XF()XFw)82718 (2) = s XFw)XF(w) 8210 (). (5.7)

It is straightforward to check that

Then it follows from (5.7) and (5.8) that (Q8) holds on V, as required. O
Remark 5.2. From (5.4), it follows that for ¢ # j € {0,1},
(z — qIQw)Xii(z)X;—L(w) £ (qF%2 — w)XJi(w)Xli(z)
In particular, the action given in Theorem 5.1 cannot induce a U (§tor)-module structure on V.
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