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1. Introduction

Let F be an arbitrary field and consider a pair of F -algebras A, B graded by subgroups H and K of an 

abelian finite group G. For any G-graded (A, B)-bimodule M the triangular algebra R =
(
A M

B

)
has a 

natural G-graded algebra structure.
In the present paper we determine the G-graded polynomial identities of R (Theorem 10) provided that 

the graded components of M are in some (specified) sense free and the G-supports of M and A ⊕ B are 
disjoint. This result does not depend on the characteristic of the base field F nor on its cardinality, so the 
results are valid for finite fields too. When F has characteristic zero we provide the Sn-structure of the 
G-graded multilinear spaces PG

n (R), related to the Sn-cocharacters of A, B and A ⊕ B (Theorem 17 and 
Corollary 19).
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Triangular algebras are a well known device in emphasizing different left and right behaviors in non-
commutative setups (see for instance the synthetic and yet agreeable digressions in [11], Example 1.14), but 
are also of interest in representation theory of algebras, most prominently due to a beautiful paper of Lewin 
[12]. His results may apply to problems pertaining PI-Theory of associative algebras, as it was shown in the 
same paper; actually Theorem 1 in [12] can be stated in a PI-setup, see [7] Corollary 1.8.2, and employed 
as an effective tool to compute the T -ideal of block-triangular matrices as in Section 4 of [8].

Lewin’s Theorem has been indeed generalized, as in Section 3 of [5], to setups involving graded algebras 
and graded polynomial identities, a topic of greatly increasing interest during the past 20 years. The reason 
in such interest is probably twofold. In first place, graded algebras behaves well from several points of view: 
they are beautiful structures, with an elegant complexity manifesting in their graded polynomial identities, 
much nicer than the ordinary polynomial identities. The second reason is that graded algebras are an essen-
tial ingredient in studying ordinary polynomial identities of algebras. This became evident since Kemer’s 
work [10], where Z2-graded algebras (also named superalgebras) play a key role in the representability of 
PI-algebras, as well as in the structure theory of T -ideals in terms of T -prime ideals. The pervading pres-
ence of Z2-graded algebras affects also the classification of varieties through the so called PI-exponent: every 
minimal variety is generated by a suitable Z2-graded algebra [9]. However the connections between graded 
and ordinary polynomial identities are present even at very basic level: it is well known and easy to prove 
that if two G-graded algebras A and B have the same graded polynomial identities then they must have 
the same ordinary polynomial identities.

Whatever weighted mix of these two reasons, or possibly for further ones, the investigations about 
graded algebras (associative, Lie, Jordan) received a great impulse, both in classifying the gradings of 
relevant algebras and in extending important ordinary (ungraded) theorems to graded settings. We must 
cite for instance that Kemer’s representability theorem, the solution of Specht’s problem and the Amitsur’s 
conjecture on the existence of the PI-exponent have been restated for G-graded algebras [1], [13], [2].

In the present paper, we investigate the hidden backbone of several results involving block triangular 
matrices. In the typical setup, the 0G-component of R is constituted by A ⊕B while M provides the other 
nonzero G-components of R. Thus the only nontrivial graded polynomial identities of A and B are the 
ordinary (non graded) ones. The easiest case is when A = B = M = F and A, B are trivially graded 
by a group G. Namely, this amounts to consider a non trivial G-grading on the algebra UT2(F ), as in 
[14] (actually, in this case the results follow directly from [4]). The results in [4], describing the Z2-graded 
polynomial identities of R when A and B are trivially graded and M is the component of degree 1 ∈ Z2, 
and those of [6], describing the Z2-graded cocharacters of R in the same settings, constitute the motivating 
examples of the present paper. As it turns out, apart from some (strong) freeness condition on M , the 
very reason why they work relies not on the fact that A and B have a specific (trivial) grading, but on 
the fact that the G-supports of A ⊕ B and M are disjoint. Hence all these results can be extended to a 
considerably much wider scope. Indeed, although far from being the most general case, this assumption 
is strong enough to provide effective general statements and computability. When the G-supports are not 
disjoint many entirely different situations may arise, and more specific assumptions are needed in order to 
get to conclusions. As an instance, in [5] the notion of G-regularity of A or B supplies the lack of disjointness 
of the supports and causes TG(R) being squeezed to TG(A)TG(B), thus providing a graded version of the 
original result of Lewin. However G-regularity is a condition even stronger than support disjointness: in the 
general case, TG(R) is simply sandwiched between TG(A)TG(B) and TG(A) ∩ TG(B).

The paper is sectioned in the following way: Section 2 collects the general definitions and results needed to 
study G-graded polynomial identities of an associative unitary F -algebra, in a tentative to keep the paper as 
self-contained as possible. A new formalization of the general results in [3], resulting in a more comfortable 
notation, is succinctly provided. The construction of the G-graded triangular algebra R is contained in 
Section 3, together with some general remarks and the main assumptions on the problem we are going to 
deal with. The first new contribution appears in Section 4, devoted to determine the G-graded polynomial 
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identities of R in terms of the graded polynomial identities of A and B. Finally Section 5 deals with the 
Sn-structure of the graded multilinear polynomial identities of R through the representation theory of the 
symmetric groups, in case the field F has characteristic zero. Precisely, in Theorem 17 we describe the 
Sn-structure of PG

n (R) and in Corollary 19 we provide a simple formula relating it to those determined by 
A and B.

2. Basic notions and notation

This section is devoted to a very quick survey on the main definitions, notations and results used in the 
rest of the paper. For the moment, assume that F is any (possibly finite) field. By F -algebra we mean an 
associative unitary algebra over the base field F . If (G, +) is any group, an F -algebra A is G-graded if it 
admits a direct decomposition into F -subspaces indexed by G, A =

⊕
g∈G Ag, satisfying AgAh ⊆ Ag+h for 

all g, h ∈ G. The additive notation for the operation in G is consistent with our setup since in this paper 
we will be concerned with abelian groups only. The subspace Ag is called the g-homogeneous component
of A, and an element a ∈ A is G-homogeneous of degree g if a ∈ Ag. If A, B are G-graded algebras, a 
G-homomorphism is any algebra homomorphism ϕ : A → G preserving the homogeneous components, that 
is ϕ(Ag) ⊆ Bg for all g ∈ G.

A free object for the class of G-graded algebras can be naturally defined: consider the set XG := {xi,g |
1 � i ∈ N, g ∈ G} of free non commuting indeterminates and the free F -algebra F 〈XG〉 generated by XG. 
If xi,g ∈ XG we say that the integer i is the name of the indeterminate, and g is its G-degree. Sometimes we 
shall use the word letter to point to an element of XG whose name and/or degree is not of specific interest. 
To specify that the G-degree of the letter x is g we write ∂G(x) = g. The G-degree of a monomial is the sum 
of the G-degrees of the indeterminates occurring in it. This turns F 〈XG〉 into a G-graded algebra, whose 
g-component is the linear span of all monomials of G-degree g.

If A is any G-graded algebra, then any G-graded homomorphism ϕ : F 〈XG〉 → A is uniquely determined 
by the images ϕ(xi,g) ∈ Ag for all i and g; we will often use G-substitution in A instead of G-homomorphism 
from F 〈XG〉 to A. Thus F 〈XG〉 is in fact free in the class of G-graded algebras. A polynomial f ∈ F 〈XG〉
is called a G-graded polynomial, and f is a G-graded polynomial identity for A if f lies in the kernel 
of all G-homomorphisms ϕ : F 〈XG〉 → A. The intersection of all those kernels is an ideal of F 〈XG〉, 
stable under all G-endomorphisms of F 〈XG〉. It is denoted by TG(A) and called the TG-ideal of the graded 
polynomial identities of A. More generally, an ideal I of F 〈XG〉 is called a TG-ideal if it is stable under all 
G-endomorphisms of F 〈XG〉. If S ⊆ F 〈XG〉, the least TG-ideal (S )TG

of F 〈XG〉 containing S is called 
the TG-ideal generated by S . Any polynomial f ∈ (S )TG

is called a consequence of S , or equivalently one 
says that f follows from S .

If A is G-graded, some of its components may be trivial, that is Ag = 0 for some g ∈ G. We denote 
S(A) := {g ∈ G | Ag 	= 0}, the support of A, and a letter x ∈ XG is supported in A if ∂G(x) ∈ S(A), 
that is if x is not a G-graded polynomial identity for A. A letter is trivial if it is not supported in A. We 
denote NG(A) := {x ∈ XG | x ∈ TG(A)} the set of trivial letters of A. They generate a TG-ideal of F 〈XG〉
contained in TG(A), the ideal of trivial G-graded identities of A. As a first step in studying the graded 
polynomial identities of A one is interested in finding a set of graded polynomials, besides those in NG(A), 
generating the whole TG(A).

A further step in studying the G-graded polynomial identities of A is to obtain a more detailed description 
of TG(A), through its structure. This in general requires more specific assumptions, in particular on the 
base field. Here we assume that F has characteristic zero, and consider graded multilinear polynomials: 
let PG

n denote the vector subspace of F 〈XG〉 spanned by all monomials xi1,g1xi2,g2 . . . xin,gn such that 
{i1, i2, . . . , in} = {1, 2, . . . , n} =: [n] and (g1, . . . , gn) ∈ Gn. Any polynomial in PG

n is called a G-multilinear 
polynomial of degree n.
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Since the characteristic of F is zero, any TG-ideal of F 〈XG〉 is generated by the G-multilinear polynomials 
it contains, by general multilinearization process and Vandermonde arguments. More precisely, TG(A) is 
generated by the polynomials in 

⋃
n∈N(PG

n ∩ TG(A)). Each PG
n ∩ TG(A) is actually more than a vector 

space. In fact, the symmetric group Sn acts on PG
n by extending diagonally the natural action of permuting 

the names of the indeterminates (that is σ • xi,g := xσ(i),g for all σ ∈ Sn), thus turning PG
n into a left 

Sn-module. Moreover, the action of σ ∈ Sn on XG defines a unique G-automorphism of F 〈XG〉, which we 
still denote by σ. Therefore σTG(A) = TG(A) and hence PG

n ∩ TG(A) is an Sn-module, whose structure is 
the second target aimed to. Actually, it is more convenient to describe the structure of the factor module 
PG
n (A) := PG

n /(PG
n ∩ TG(A)).

The Sn-structure of PG
n (A) is encoded in smaller multilinear spaces, whose description provides all 

necessary information on PG
n (A). In the present paper we follow the approach of [3], albeit in a different 

form to keep the notation as simple as possible. We quickly recall the main points of [3] within the new 
notation.

Given any nonempty set Ω, an Ω-multiset of class k is any function μ : Ω → N such that 
∑

ω∈Ω μ(ω) = k. 
The number μ(ω) is called the multiplicity of ω in the multiset. We shall denote the multiset by μ �Ω k. 
Each monomial w ∈ PG

n defines a G-multiset μ(w, ·) �G n: for all g ∈ G, μ(w, g) is the number of letters of 
G-degree g occurring in w. Therefore the natural monomial basis of PG

n is partitioned by the G-multisets 
of class n. If α �G n define V (α) to be the vector subspace of PG

n spanned by all monomials such that 
μ(w, ·) = α. One has

PG
n =

⊕
α�Gn

V (α), PG
n ∩ TG(A) =

⊕
α�Gn

(V (α) ∩ TG(A))

and notice that both V (α) and V (α) ∩ TG(A) are Sn-submodules of PG
n . Then (see [3], Lemma 1)

PG
n

PG
n ∩ TG(A)

∼=Sn

⊕
α�Gn

V (α)
V (α) ∩ TG(A) .

Yet a further reduction is possible. We call any function t : [n] → G a G-degree attribution, (or simply an 
attribution) for self-evident reasons. For a fixed attribution t, let V (t) be the vector space spanned by all 
monomials w ∈ PG

n such that exactly the indeterminates x1,t(1), . . . , xn,t(n) occur in w. Then t determines 
a G-multiset μ(t, ·) of class n by setting μ(t, g) :=

∣∣t−1(g)
∣∣ for all g ∈ G. If α �G n, with abuse of notation 

we write t ∈ α if μ(t, ·) = α. For a given α �G n, if t ∈ α then V (t) ⊆ V (α). V (t) is not an Sn-module, 
but is a module for a subgroup D(t) of Sn. Precisely, since the nonempty fibers t−1(g) ⊆ [n] form a 
partition of [n], the subgroups Sym(t−1(g)) of Sn mutually centralize, hence they generate a subgroup 
D(t) � Sn, namely the direct (internal) product of the subgroups Sym(t−1(g)), hence isomorphic to the 
direct (external) product of the symmetric groups Sα(g). Then V (t) is a D(t)-left module, V (t) ∩ TG(A) is 
a submodule and the factor module V (t, A) = V (t)/(V (t) ∩ TG(A)) is a D(t)-module as well. The main 
point in doing this is that ([3], Lemma 4)

V (α)
V (α) ∩ TG(A)

∼=Sn
FSn ⊗FD(t)

V (t)
V (t) ∩ TG(A) ,

that is the Sn-induced module V (t, A)Sn . This allows the reconstruction of the Sn-structure of PG
n (A).

3. Graded triangular algebras

Let F be any field. In this and the following section we allow F being finite. Let H, K be subgroups of 
an abelian group G and let A, B be F -algebras graded by H and K respectively. We can turn the direct 
sum A ⊕B into a G-graded algebra, setting
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(A⊕B)g := Ag ⊕Bg ∀g ∈ G.

We assume that TH(A) and TK(B) are known, as well as TG(A ⊕B). In fact, TG(A) and TG(B) are easily 
obtained:

Lemma 1. Let G be a group, H � G and let A be an H-graded F -algebra. If S is a set of polynomials such 
that S ∪ NH(A) generates TH(A), then TG(A) is generated by S ∪ NG(A).

Proof. A is turned into a G-graded algebra simply setting Ag = 0 for all g ∈ G \H. Thus SG(A) = SH(A)
(the support of A is the same), and NG(A) ⊇ NH(A). Let I be the TG-ideal generated by S ∪ NG(A). 
Plainly, I ⊆ TG(A). Conversely, if f ∈ TG(A), split it into a sum f = fH + f ′ where fH involves only letters 
in XH and each monomial of f ′ involves at least a letter x ∈ XG \XH . Then clearly f ′ is in the TG-ideal 
generated by NG(A) (in particular, f ′ ∈ I) and f ∈ TG(A) if and only if fH ∈ TG(A). This amounts to say 
that fH ∈ TH(A), and therefore lies in the TG-ideal generated by S ∪NG(A). So f ∈ I, and I = TG(A). �

Since the same arguments apply to B, we may assume that TG(B) is also known once given TK(B). Then 
it is easy to prove that TG(A ⊕ B) = TG(A) ∩ TG(B), and in principle this describes TG(A ⊕ B), but in 
practice it is definitively far from trivial to find a set of generators for this TG-ideal. So, we need to assume 
that a generating set for TG(A ⊕ B) is explicitly known. In the rest of the paper, the G-support of A ⊕ B

will be denoted simply as S. As an easy consequence,

Corollary 2. S = SH(A) ∪ SK(B), NG(A ⊕B) = NG(A) ∩ NG(B).

Proof. Let x ∈ XG. Then x ∈ S if and only if x /∈ TG(A ⊕B) = TG(A) ∩TG(B). Therefore either x /∈ TG(A)
or x /∈ TG(B). Equivalently, x ∈ SG(A) = SH(A) or x ∈ SG(B) = SH(B).

If instead x ∈ TG(A ⊕B) = TG(A) ∩ TG(B), then x is not supported in A nor in B, that is x is a trivial 
letter for both A and B. �

The direct sum of graded algebras can be generalized: let M be a G-graded (A, B)-bimodule, that is a 
bimodule admitting a decomposition M =

⊕
g Mg into F -vector subspaces Mg (g ∈ G) such that for all 

h ∈ H, k ∈ K and g ∈ G it holds AhMgBk ⊆ Mh+g+k. Imposing the null multiplication on M and the 
annihilations BM = 0 = MA the vector space R := A ⊕ M ⊕ B is turned into a G-graded algebra, with 
Rg = Ag ⊕Mg ⊕Bg.

A more convenient representation of R is

R =
(
A M

B

)
,

that is identifying any element (a, m, b) ∈ R with the matrix 
(
a m

b

)
, endowed with the usual matrix 

operations. This is why R is called a triangular algebra.
Plainly, S(R) = S(A ⊕B) ∪S(M) and N (R) = N (A ⊕B) ∩N (M). Here we assume that S(M) ∩S(A) =

∅ = S(M) ∩ S(B), which means that M and A ⊕B have disjoint supports, and our aim is to describe the 
G-graded polynomial identities of R.

Let us fix the following notation:

• by Z we denote the set of letters of XG supported in M ;
• by Y we denote the set of letters of XG supported in A ⊕B.

Hence, by our assumptions, {Y, Z, N (R)} is a partition of XG.
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4. G-graded polynomial identities of R

In this section we give a set of G-graded polynomial identities of R, and prove that it generates the whole 
TG(R).

Notice that of course N (R) ⊆ TG(R) and if z1, z2 ∈ Z then z1z2 ∈ TG(R) since M2 = 0.

Lemma 3. For all z1, z2 ∈ Z and x ∈ X, z1xz2 ∈ TG(R).

Proof. The statement is clear if x ∈ N (R) ∪ Z, so assume x ∈ Y and let ϕ : F 〈XG〉 → R be any 
G-homomorphism. Then ϕ(zi) = mi ∈ M and ϕ(x) = a + b ∈ A ⊕ B (x ∈ Y means that the letter is 
supported in A ⊕ B, hence not supported in M). Since MA = BM = 0R it follows ϕ(z1xz2) = 0. Hence 
z1xz2 ∈ TG(R). �

For any z1, z2 ∈ Z, the polynomial z1z2 can actually be viewed as a consequence of the identities z1xz2: 
indeed, it is obtained by z1x1,0z1 by the specialization x1,0 → 1F ∈ (F 〈XG〉)0. More interesting consequences 
are the following:

Corollary 4. For any z1, z2 ∈ Z and f ∈ F 〈XG〉, the polynomial z1fz2 is a consequence of {z1xz2 | x ∈ X}.

Proof. Each monomial w is G-homogeneous, therefore it can be obtained through specialization of any 
letter xw with the same G-degree. Hence z1wz2 follows from z1xwz2. Since f is the sum of its monomials, 
and each of them follows from {z1xz2 | x ∈ X}, the polynomial z1fz2 follows from that set, as well. �

Now let us describe the G-polynomial identities of R involving just letters supported in A ⊕B:

Lemma 5. If f ∈ F 〈Y 〉 then f ∈ TG(R) if and only if f ∈ TG(A ⊕B).

Proof. Since TG(R) ⊆ TG(A ⊕B), we just need to assume that f belongs to TG(A ⊕B). But since f vanishes 
on A ⊕B and just letters supported in A ⊕B are involved in f , f vanishes on R as well. �
Remark 6. There may be letters, say yA and yB, supported just in A and B respectively. Thus both yAyB
and yByA are G-graded polynomial identities for R, but do not follow from NG(R).

Actually they are among the polynomial identities already considered: in fact yA not supported in B
means yA ∈ TG(B), hence yAyB , yByA ∈ TG(B) and, similarly, yB ∈ TG(A) forces yAyB , yByA ∈ TG(A). 
Thus both monomials are in TG(A) ∩ TG(B) = TG(A ⊕B).

Other polynomial identities are more strictly depending on the triangular structure of R:

Lemma 7. For all f ∈ TG(A) and z ∈ Z, it holds fz ∈ TG(R).

Proof. Decompose f as a sum f = fY + fN + fZ where fN is the sum of those monomials of f involving at 
least one trivial letter, fY the sum of those monomials of f involving just letters from Y and let fZ be the 
sum of the remaining monomials of f . Notice that f ∈ TG(A) if and only if fY ∈ TG(A). In fact, fZ ∈ TG(A)
because each of its summands involves at least one letter from Z, which is not supported in A. The same 
argument works for fN ∈ TG(A).

Then fNz and fZz are consequences of NG(R) and {z1xz2 | z1, z2 ∈ Z, x ∈ XG} respectively, so they are 
in TG(R); therefore fz ∈ TG(R) if and only if fY z ∈ TG(R). Say fY = fY (y1, . . . , yn). For any G-substitution 
ϕ, namely ϕ(yi) = ai + bi ∈ A ⊕ B and ϕ(z) = m ∈ M , according to the G-degrees of y1, . . . , yn and z, it 
holds
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ϕ(fY z) = fY (a1 + b1, . . . , an + bn)m = fY (a1, . . . , an)m + fY (b1, . . . , bn)m.

The first summand vanishes because fY ∈ TG(A), the second because BM = 0. Therefore fz ∈ TG(R). �
We omit the proof of the following completely analogous result

Lemma 8. For all f ∈ TG(B) and for all z ∈ Z, it holds zf ∈ TG(R).

Now consider the following graded polynomials:

• x ∈ TG(R) (the trivial letters in NG(R));
• z1xz2 (for z1, z2 ∈ Z and x ∈ XG);
• f ∈ TG(A ⊕B) ∩ F 〈Y 〉;
• zf (for z ∈ Z and f ∈ TG(B));
• fz (for z ∈ Z and f ∈ TG(A)).

They generate a TG-ideal I of F 〈XG〉, and since each generator of I belongs to TG(R) it holds I ⊆ TG(R). 
A last assumption is needed to prove that in fact I ⊇ TG(R).

Preliminary, let us recall that saying that M is an (A, B)-bimodule amounts to say that it is a left 
(A ⊗F B◦)-module, where B◦ is the opposite algebra of B. We say that m ∈ M is an (A, B)-free element if 
its annihilator in A ⊗F B◦ is zero.

Remark 9. An operative characterization of an (A, B)-free element m ∈ M is that if b1, . . . , bn ∈ B are 
linearly independent and a1, . . . , an ∈ A are all nonzero, then 

∑n
i=1 aimbi 	= 0. This is equivalent to the 

analogous statement obtained reversing the roles of A and B.

Theorem 10. If any nontrivial homogeneous component of M has an (A, B)-free element then I = TG(R).

Proof. Let f ∈ TG(R). We want to prove that f ∈ I. We may assume that f involves only supported 
letters, since the trivial letters are in I, so f ∈ F 〈Y ∪ Z〉. Moreover we may assume that each monomial of 
f involves at most one letter from Z, otherwise it is in I. So f splits in f = f0 + f1, where f0 ∈ F 〈Y 〉 and 
each monomial of f1 involves just one letter from Z.

Notice that f ∈ TG(R) if and only if f0, f1 ∈ TG(R). Indeed, if f ∈ TG(R) we may consider the 
G-endomorphism ζ of F 〈XG〉 sending all letters from Z in zero and fixing all other letters. Then ζ(f) =
f0 ∈ TG(R), so f1 ∈ TG(R) as well.

It is easy to prove that f0 ∈ I. Indeed, f ∈ TG(R) forces f0 ∈ TG(R) ∩F 〈Y 〉 ⊆ TG(A ⊕B) ∩F 〈Y 〉, hence 
f0 is among the generators of I. Therefore we assume that f = f1, and prove that f ∈ I.

Actually, we may assume that just a single letter z ∈ Z occurs in f . Indeed, if z1, . . . , zk occur in f , 
then f splits in fz1 + · · · + fzk and, as before, f ∈ TG(R) if and only if all fzi ’s are in TG(R), by suitable 
specializations. Therefore, let f = f(y1, . . . , yn, z), and let

f(y1, . . . , yn, z) =
∑
i

uizvi ∈ TG(R)

for some polynomials ui, vi ∈ F 〈Y 〉. If ui ∈ TG(A) then uiz ∈ I, hence we can assume that ui /∈ TG(A) for 
all i, discarding summands which are known to be in I. Similarly, we may assume that the vi are linearly 
independent modulo TG(B), because if h ∈ TG(B) then zh ∈ I. Then we proceed in proving that f = 0
(that is, no summand is left after the mentioned reductions).

Since u1 /∈ TG(A) there exists a G-graded substitution sending yi → ai ∈ A such that u1(a1, . . . , an) 	= 0. 
Moreover, since the elements vi are linearly independent modulo TG(B) their classes vi = vi + TG(B)
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in the relatively free G-graded algebra F 〈XG〉/TG(B) are linearly independent. Hence the element u :=∑
i ui(a1, . . . , an) ⊗ vi ∈ A ⊗ F 〈X〉/TG(B) is nonzero. Then u can be rewritten as a sum

0 	= u =
∑
j

sj ⊗ gj ∈ A⊗ F 〈X〉
TG(B)

for nonzero elements gj = gj + TG(B) and linearly independent elements sj ∈ A. Since g1 /∈ TG(B) there 
exists a G-substitution sending yi → bi ∈ B such that g1(b1, . . . , bn) 	= 0. Hence r :=

∑
j sj ⊗ gj(b1, . . . , bn)

is a nonzero element in A ⊗B. Now, since z is supported in M , there exists an (A, B)-free element m ∈ M

of G-degree ∂G(z). Then consider the G-substitution ϕ defined by ϕ(yi) := ai + bi and ϕ(z) = m. It is

ϕ(f(y1, . . . , yn, z)) =
∑
i

ui(a1 + b1, . . . , an + bn)mvi(a1 + b1, . . . , an + bn)

=
∑
i

ui(a1, . . . , an)mvi(b1, . . . , bn)

=
∑
j

sjmgj(b1, . . . , bn) 	= 0

because m is free and 
∑

j sj ⊗ gj(b1, . . . , bn) 	= 0. �
From the proof we can extract the following easy corollary, which will be useful in the next section.

Corollary 11. If u1, . . . , uk ∈ F 〈XG〉 are not in TG(A) and v1, . . . , vk ∈ F 〈XG〉 are linearly independent 
modulo TG(B) then for any z ∈ Z the polynomial 

∑k
i=1 uizvi is not a G-polynomial identity for R.

5. Sn-structure of PG
n (R)

We are now going to describe the Sn-structure of PG
n (R) according to the structures of PH

n (A), PK
n (B)

and PG
n (A ⊕B). In order to employ the representation theory of the symmetric groups, in this section the 

field F is assumed of characteristic zero.
By [3], the problem of describing PG

n (R) is reduced to the description of the spaces V (α, R) for all 
multisets α �G n as in [3], Lemma 1.

Actually, if α(g) > 0 for some g /∈ S(R) then the whole V (α) is contained in TG(R) and V (α, R) is the 
null module. Hence we just need to consider multisets α �S(R) n. By the way, since S(R) = S�S(M) (recall 
we denoted S = S(A ⊕B)) we may split α into a (pointwise) sum of an S-multiset αS and an S(M)-multiset 
αS(M). But then αS(M) must be of class � 1, otherwise the whole V (α) lies inside TG(R). Therefore αS(M)
must be either zero or a Kronecker delta function δg centered at some g ∈ S(M). In the former case, V (α, R)
is actually the α-component of the Sn-module PG

n (A ⊕B), which is known by assumption. Hence just the 
latter case has to be investigated. A little result shows that in fact it does not matter which element of 
S(M) has been chosen.

Lemma 12. Let g, h ∈ S(M). Then for all αS �S n − 1 it is

V (αS + δg)
V (αS + δg) ∩ TG(R)

∼=Sn

V (αS + δh)
V (αS + δh) ∩ TG(R) .

Proof. The map γ switching the g- and h-degrees xi,g ↔ xi,h for all i � 1 and fixing the remaining letters 
is an Sn-isomorphism between V (αS + δg) and V (αS + δh).
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It is also true that V (αS + δg) ∩ TG(R) ∼=Sn
V (αS + δh) ∩ TG(R). Indeed if f ∈ V (αS + δg) ∩ TG(R), 

for all t � 1 the sum of the monomials in f involving the letter xt,g is also in V (αS + δg) ∩ TG(R) (by 
specialization), so we can harmlessly assume that just xt,g occurs in all monomials of f . Then the polynomial 
γ(f) ∈ V (αS + δh) must be in TG(R) as well, otherwise γ(f) must admit an expression f =

∑
i uixt,hvi

with ui /∈ TG(A) and vi linearly independent modulo TG(B). But then f =
∑

i uixt,gvi is not in TG(R) by 
Corollary 11. �

At the light of this the study of PG
n (R) can be reduced to studying just the Sn−1 × S1-modules of 

multilinear polynomials in which a single fixed letter z ∈ Z occurs. Notation becomes more comfortable 
switching to consider Sn×S1-modules, therefore from now on we consider multisets α �S n and by V (α)(⊆
PG
n+1) we denote the vector space spanned by all monomials in which z occurs with multiplicity 1, the letters 

with names in {1, . . . , n} have G-degrees according to α and the group Sn
∼= Sn × S1 acts on the letters 

fixing z and renaming the other ones as usual.
If w is a monomial in V (α) then it can be written as wlzwr for certain submonomials wl and wr. Each 

name 1, . . . , n occurs exactly once in w, and μ(w, ·) = α tells how many of them are assigned to the G-degree 
g ∈ G. Also, μ(wl, ·) =: β is an S-multiset, telling us how many names among the α(g) in w are placed to 
the left of z. Of course, β(g) � α(g) for all g ∈ G, and μ(wr, ·) = α − β. Notice that the class of β is the 
length of the monomial wl.

Let us define L = {β : G → N | β � α}. For any β ∈ L, let us define V (α, β) := spanF 〈wlzwr ∈ V (α) |
μ(wl, ·) = β〉.

Lemma 13. For all α � n it holds

V (α) =
⊕
β∈L

V (α, β), V (α) ∩ TG(R) =
⊕
β∈L

(V (α, β) ∩ TG(R)).

Proof. Any w = wlzwr ∈ V (α) lies exactly in V (α, μ(wl, ·)), and μ(wl, ·) ∈ L. Therefore V (α) =⊕
β∈L V (α, β) is clearly true. The second equality is more subtle.
Actually, the monomials of V (α) are parted in subsets indexed by the cartesian product [n]G×L. Indeed, 

if w = wlzwr is a monomial in V (α), it determines uniquely an attribution t ∈ [n]G (the indeterminates 
occurring in w) and a multiset β ∈ L (the multiplicities of the G-degrees of the indeterminates to the left 
of z). Let W (t, β) the vector subspace of V (α) spanned by all monomials wlzwr in indeterminates xi,t(i)
(i ∈ [n]) and such that μwl

= β. Then actually V (α) =
⊕

t,β W (t, β).
Now let f ∈ V (α) ∩ TG(R). Then

f =
∑

t∈[n]G

∑
β∈L

ft,β

with ft,β ∈ W (t, β). We want to show that ft,β ∈ TG(R) for all t, β.
For a chosen assignment t ∈ α, let ζt be the G-endomorphism fixing the indeterminates xi,t(i) and sending 

to 0 the other ones. Then in ζt(f) just the monomials in the indeterminates xi,t(i) (i ∈ [n]) survive, hence 
ζt(f) =

∑
β∈L ft,β ∈ TG(R). Hence we may reduce our concern to the case of f involving just indeterminates 

x1,t(1), . . . , xn,t(n), for some t : [n] → G. We then want to prove that all summands of f =
∑

β∈L fβ are in 
TG(R), that is each fβ vanishes under any R-valued G-substitution.

Since f is multilinear, we may consider only G-substitutions sending letters into G-homogeneous elements 
of a basis of R. Since each letter occurring in f is in Y , apart from z, this means that each yi occurring in 
f is substituted by a G-homogeneous basis element either of A either of B.

Choose a multiset β ∈ L and let ϕ be any such G-substitution. For any g ∈ G let k(g) be the number 
of letters of G-degree g occurring in f substituted by elements of Ag in ϕ. If there exists g ∈ G such 
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that β(g) 	= k(g) then either β(g) < k(g) and at least one element of Ag is placed to the right of ϕ(z) in 
each summand of ϕ(fβ), either β(g) > k(g), so at least an element of B occurs to the left of ϕ(z) in each 
summand of ϕ(fβ). In both cases, ϕ(fβ) = 0.

Therefore assume that k(g) = β(g) for all g ∈ G. Then ϕ(fβ′) = 0 for all β′ 	= β. But, since f ∈ TG(R), 
we get 0 = ϕ(f) = ϕ(fβ) and ϕ(fβ) = 0, after all.

This proves that all components fβ (actually, all ft,β) of f are in for TG(R) as well. �
Notice that for all β � α the space V (α, β) is an Sn-modules of V (α). Since V (α) ∩ TG(R) =⊕
β∈L(V (α, β) ∩ TG(R)), we get the consequence

Corollary 14. For all α �G n it holds

V (α,R) ∼=Sn

⊕
β∈L

V (α, β)
V (α, β) ∩ TG(R) =:

⊕
β∈L

V (α, β,R).

Therefore the Sn-structure of V (α, R) is determined from the Sn-structure of V (α, β, R) for all β ∈ L, 
hence we need a finer description of the spaces V (α, β).

Let β � α �S n. Each monomial w = wlzwr ∈ V (α, β) uniquely determines an ordered pair (J, t) where 
J is the subset of [n] consisting of the names of the letters occurring in wl, and t is the attribution function 
of w. Notice that |J | is the class of β, t ∈ α and the restriction tJ to J belongs to β, that is tJ ∈ β.

Let Ω(α, β) be the set of all such pairs.

Lemma 15. Sn acts on Ω(α, β). More precisely, if (J, t), (J ′, t′) ∈ Ω, there exists σ ∈ Sn such that (J ′, t′) =
(σJ, tσ−1).

Proof. If σ ∈ Sn then (σJ, tσ−1) ∈ Ω(α, β). Indeed, if w = wlzwr ∈ V (α, β) is a monomial defining (J, t), 
then σw ∈ V (α, β) defines (σJ, tσ−1). It follows immediately that Sn acts on Ω(α, β).

In order to show that the action is transitive, notice that by assumption for any g ∈ G the fibers of g in 
tJ and in t′J ′ are equal to β(g). Let λg be any bijection among them. Repeating this step for each g ∈ S, we 
get a bijection λ =

∏
g∈S λg such that λJ = J ′. Similar steps can be repeated to build a bijection ρ from 

[n] \ J to [n] \ J ′. Then set σ = λρ. Clearly, σ ∈ Sn, and σJ = J ′.
It is straightforward to check that t′ = tσ−1. �
For (J, t) ∈ Ω(α, β) let V (J, t) be the vector subspace spanned by the monomials of V (α, β) defining 

(J, t). We record the following easy consequence of the preceding Lemma:

Corollary 16. For all pairs (J, t) ∈ Ω(α, β), the vector spaces V (J, t) are pairwise isomorphic, as well as the 
subspaces V (J, t) ∩ TG(R) and the factor spaces V (J, t)/(V (J, t) ∩ TG(R)).

Proof. Fix (J, t) ∈ Ω(α, β). Then Ω(α, β) = {(σJ, tσ−1) | σ ∈ Sn}, and σV (J, t) = V (σJ, tσ−1). Now just 
recall that σ is a G-automorphism of F 〈XG〉. �

If β has class k, let us choose J = {1, . . . , k}, and fix any attribution t such that (J, t) ∈ Ω(α, β). Define

N := V ([k], t), N(R) := N

N ∩ TG(R) , dN := dimF N(R).

We should emphasize that N depends on α and β, as well as on the chosen t. By the way, since our concern 
is to describe the structure of V (α, β, R) for fixed α and β, we keep the notation to the very essentials.
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Thus N is chosen as a representative for the isomorphism class of the vector spaces corresponding to the 
pairs in Ω(α, β), and N(R) of the factor spaces.

Similarly to what happens in a general setup, we are now going to define a suitable subgroup D = D(t)
of Sn turning N into a left D-module.

Let us denote by tl the restriction of t to the set [k], and by tr the restriction to {k + 1, . . . , n}. The 
nonempty fibers of tl define a subgroup of Sk, namely the direct product Dl of the subgroups Sym(t−1

l (g))
for g ∈ G. Similarly, the nonempty fibers of tr define a subgroup Dr of Sym({k + 1, . . . , n}). Notice that 
Dl and Dr mutually centralize in Sn, and set D := Dl ×Dr.

The vector space N is thus turned into a left D-module, and N ∩TG(R) is a submodule; the factor space 
N(R) inherits the D-module structure. We can now prove the main result of this section:

Theorem 17.

V (α, β)
V (α, β) ∩ TG(R)

∼=Sn
FSn ⊗FD N(R).

Proof. Let us define

ψ : FSn × N
N∩TG(R) → V (α,β)

V (α,β)∩TG(R)
(σ, f + (N ∩ TG(R))) → σf + (V (α, β) ∩ TG(R))

The function ψ is well defined, because if f ∈ N then σf ∈ V (α, β); if moreover f ∈ N ∩ TG(R) then 
σf ∈ V (α, β) ∩TG(R) because σ is (can be extended uniquely to) a G-automorphism of F 〈XG〉, so σTG(R) =
TG(R).

Checking that ψ is FD-balanced is immediate, hence it defines uniquely an Sn-module homomorphism 
ψ∗ : FSn ⊗FD N(R) → V (α, β, R). Notice that

dim(FSn ⊗FD V (R)) =
(
n

k

)(
k

β

)(
n− k

α− β

)
dN = dimN(R),

where 
(
k
β

)
(or 

(
n−k
α−β

)
, respectively) denotes the multinomial coefficient corresponding to the multiset β of 

class k (to the multiset α− β of class n − k, respectively). Therefore the spaces have the same dimension. 
Since ψ∗ is plainly surjective, this is enough to conclude that ψ∗ is indeed an Sn-isomorphism. �

The Dl ×Dr-structure of N(R) is related to the structures of PG
n (A) and PG

n (B). More precisely, we get 
our second result of this section:

Proposition 18.

N(R) ∼=Dl×Dr
V (tl, A) ⊗F V (tr, B).

Proof. Recall that V (tl, A) = V (tl)
V (tl)∩TG(A) is a left Dl-module, and similarly V (tr, B) is a left Dr-module. 

Define

ϕ : V (tl, A) × V (tr, B) → N(R)
(f, g) −→ fzg + (N ∩ TG(R))

.

ϕ is well defined: if (f, g) ∈ V (tl) × V (tr) then fzg ∈ V (α, β); moreover, if f ∈ V (tl) ∩ TG(A) then fzg ∈
TG(R) because fz ∈ TG(R). The same happens when g ∈ TG(B). It is clear that ϕ is F -linear and commutes 
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with the Dl ×Dt-action, so ϕ uniquely defines an homomorphism ϕ∗ : V (tl, A) ⊗F V (tr, B) → N(R) of left 
Dl ×Dr-modules. We prove that ϕ∗ is an isomorphism by producing its inverse.

Define at first

ψ : N → V (tl, A) ⊗ V (tr, B)
wlzwr −→ wl ⊗ wr

.

This function is plainly a surjective homomorphism of Hl×Hr-modules. We prove that N∩TG(R) ⊆ kerψ.
So assume on the contrary that there is some f ∈ N ∩ TG(R) such that ψ(f) 	= 0. Since f ∈ N it can be 

written f =
∑m

i=1 uizvi for certain polynomials ui = ui(x1,t(1), . . . , xk,t(k)), vi = vi(xk+1,t(k+1), . . . , xn,t(n))
and a minimal m.

By minimality, none of the elements among the ui’s belongs to TG(A). For the same reason, the vi’s 
constitute a linearly independent set modulo TG(B).

But then, by Corollary 11, f /∈ TG(R), a contradiction.
Therefore the map ψ : N(R) → V (tl, A) ⊗ V (tr, B) sending f → ψ(f) is a well defined Dl ×Dr-module 

homomorphism. It is immediate to check that ϕ∗ and ψ are inverse functions. �
Typically, if the graded polynomial identities of A and B are known, their structure is given through 

PH
n (A) and PK

n (B) for all n ∈ N. Thus the structure of PG
n (A) (and of PG

g (B)) is known.
Indeed, PH

n (A) is the direct sum of the submodules V (α, A) ∼= (V (t, A))Sn where t is any attribution 
in α �H n. The same holds for PG

n (A), so the only difference may be in α �G n instead of α �H n. By 
the way the only attributions giving possibly non trivial summands V (α, A) correspond to α �SH(A) n or 
α �SG(A) n respectively, and since SH(A) = SG(A) they are exactly the same. More explicitly, if t : [n] → H

is an attribution such that V (t, A) 	= 0, then actually t([n]) ⊆ SH(A) = SG(A) and therefore V (t, A)Sn

participates just the same in both PH
n (A) and PG

n (A).
Now let us come to the point: we can combine the previous main results and get a simple and practical way 

of describing the structure of the G-graded polynomial identities of R by means of the Littlewood-Richardson 
rule. This is the sense of the following

Corollary 19.

V (α, β,R) ∼=Sn
(V (β,A) ⊗ V (α− β,B))Sn .

Proof. It is Dl × Dr � Sk × Sn−k (we are actually identifying Sn−k with Sym({k + 1, . . . , n})). Since 
N(R) ∼=Dl×Dr

V (tl, A) ⊗ V (tr, B), by inducing to Sk × Sn−k we get

N(R)Sk×Sn−k ∼=Sk×Sn−k
V (tl, A)Sk ⊗ V (tr, B)Sn−k .

We know that V (tl, A)Sk ∼=Sk
V (β, A), V (tr, B)Sn−k ∼=Sn−k

V (α−β, B). Inducing once more from Sk×Sn−k

to Sn we get

(N(R)Sk×Sn−k)Sn ∼=Sn
(V (β,A) ⊗ V (α− β,B))Sn ,

so by transitivity

(N(R)Sk×Sn−k)Sn ∼=Sn
N(R)Sn ∼=Sn

V (α, β,R). �
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