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We study relative Cohn path algebras, also known as Leavitt-Cohn path algebras, 
and we realize them as partial skew group rings. To do this we prove uniqueness 
theorems for relative Cohn path algebras. Furthermore, given any graph E we define 
E-relative branching systems and prove how they induce representations of the 
associated relative Cohn path algebra. We give necessary and sufficient conditions 
for faithfulness of the representations associated to E-relative branching systems. 
This improves previous results known to Leavitt path algebras of row-finite graphs 
with no sinks. To prove this last result we show first a version, for relative Cohn-path 
algebras, of the reduction theorem for Leavitt path algebras.
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1. Introduction

Leavitt path algebras of directed graphs are considered a mainstream topic of research in algebra. Intro-
duced initially in [2] and [4], they are the algebraic counterparts of graph C∗-algebras and generalizations 
of Leavitt algebras. Relative Cohn path algebras, as they are named in [1], are generalizations of Leavitt 
path algebras in which the so-called Cuntz-Krieger relation (CK2) hold just for a subset of regular vertices 
of the directed graph. Therefore relative Cohn path algebras include Cohn path algebras (the case when 
we completely omit the aforementioned (CK2) axiom), Leavitt path algebras, and everything in between. 
They are also known as Cohn-Leavitt path algebras; see for example [27] and [34].

Previously to the consideration of relative Cohn path algebras, its C∗-analog was introduced in [30], 
where Muhly and Tomforde presented the relative graph C∗-algebra C∗(E, S) of a graph E and S a subset 
of regular vertices of E. Moreover, relative Cuntz-Krieger algebras associated to finitely aligned higher-rank 
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graphs were defined in [32]. Ara and Goodearl, in [3], introduced and investigated relative Cohn path 
algebras of separated graphs, a more general class of graphs that encompass relative graph algebras.

Differently from what it might seem at first, the class of relative Cohn path algebras is equal to the class 
of Leavitt path algebras, see [1, Theorem 1.5.17] (the same is true for relative graph C*-algebras and graph 
C*-algebras, see [30]). In any case, working with relative Cohn path algebras is an useful and advantageous 
tool to unite considerations regarding both Cohn and Leavitt path algebras. For example, in [33] the use of 
relative Cohn path algebras is shown to be necessary when representing a Leavitt path algebra LK(E) as a 
direct limit of subalgebras of its finite subgraphs (in the case when E fails to be row-finite); here Vas also 
presents examples which illustrate the benefits of considering relative Cohn path algebras over using Leavitt 
path algebras alone (similar considerations are made in [30] for relative graph algebras). Furthermore, the 
Gelfand-Kirillov dimension and the invariant basis number (IBN) of relative Cohn path algebras are studied 
in [29] and [27], respectively. In the context of C*-algebra theory the study of relative algebras is also of 
great importance. For example, it is not clear if the relative Cuntz-Krieger algebras of finitely aligned higher 
rank graphs form a larger class than the class of ‘non-relative’ algebras, see [32]. In relation with dynamics 
and operator theory, relative graph algebras are the key ingredient in the unifying study of KMS states 
associated to graph algebras, see [9]. For the latter, the key step is to build a relative boundary path space 
and to realize relative graph C*-algebras as partial crossed products. To obtain an algebraic version of this 
result is one of our goals, as we describe below.

In this paper we connect the theory of relative Cohn path algebras with another key concept arising from 
operator algebras theory: partial skew group rings. Partial skew group rings were introduced by Exel and 
Dokuchaev in [11] as algebraic analogues of C∗ partial crossed products. This notion has been in constant 
development recently and for example [7,10,15,19,31] illustrate how the interaction between the theory of 
partial skew group rings and the theory of non-commutative rings can be fruitful. In our context, given 
a graph E, one could maybe use the equivalence between the class of Leavitt path algebras and the class 
of relative Cohn path algebra to apply the results in [24] and obtain a realization of a relative Cohn path 
algebra of E as a partial skew group ring. But, this would lead to an action of the free group on the edges of 
an extended graph and not on the free group on the edges of E. Our approach is more natural, as we define 
a relative boundary path space, and an action of the free group on the edges of the graph E, that give rise to 
the relative Cohn path algebra. Using our characterization we are able to describe maximal commutativity 
of a certain abelian subalgebra of the relative Cohn algebra in terms of a combinatorial property of the 
graph (which we call Relative Condition (L)). This commutative subalgebra corresponds to the one studied 
in [14] for Leavitt path algebras.

The other aspect of our work is to establish a connection between the theory of representations of 
relative Cohn path algebras with the theory of branching systems. Notice that branching systems, and 
representations arising from them, have connections with wavelets, C*-algebra theory, ring theory, among 
other areas (see [12,13,16–18,20,22,23,25] for example). In this paper we prove generalized versions of several 
representation theorems for Leavitt path algebras in [21], that is, we show how to obtain representations of 
relative Cohn path algebras from E-relative (algebraic) branching systems and study them. In particular we 
are able to obtain deeper versions, for Leavitt path algebras, of several results given in [21]. Concretely, we 
give necessary and sufficient conditions to guarantee faithfulness of a representation induced by an E-relative 
branching system. This result also extends a key result in [25] for the algebras of separated graphs that can 
be seen as relative Cohn path algebras. Further to improve the known result for Leavitt path algebras, our 
proof is simpler, and relies on a version of the reduction theorem for relative Cohn path algebras (a result 
we prove in Section 3). As an application of our theorem we build faithful representations, arising from 
E-relative branching systems, of any relative Cohn path algebra (this also extends results in [25] for row 
finite graphs with no sinks).

Our work is organized as follows. First in Section 2 we recall some basic terminology and definitions about 
relative Cohn path algebras and partial skew group rings. In Section 3 we prove the uniqueness theorems 
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for relative Cohn path algebras, which we will need in order to realize them as partial skew group rings. 
Furthermore, we show the so-called reduction theorem for relative Cohn path algebras (Proposition 3.3), 
in the spirit of the one originally given in [5] for Leavitt path algebras. In Section 4 we apply the previous 
results to associate relative Cohn path algebras to partial skew group rings. Finally, we devote Section 5
to the introduction of the notion of E-relative (algebraic) branching systems and the representations of 
the relative Cohn path algebra CX

K (E) induced by them. We present one of the main results of the paper, 
Theorem 5.6, where we describe necessary and sufficient conditions for a representation arising from a 
E-relative branching system to be faithful. Furthermore, we construct faithful representations, arising from 
E-relative algebraic branching systems, associated to any relative Cohn path algebra.

2. Preliminaries

Throughout the paper K denotes a field and K× := K \ {0}.

2.1. Relative Cohn path algebras

Let E = (E0, E1, r, s) be a directed graph. The elements of E0 are called vertices and the elements of E1

edges. If a vertex v emits no edges, that is, if s−1(v) is empty, then v is called a sink. A vertex v is called a 
regular vertex if s−1(v) is a finite non-empty set. The set of regular vertices is denoted by Reg(E).

A path of length n in E is a sequence ξ1ξ2 . . . ξn of edges in E such that r(ξi) = s(ξi+1) for i ∈ {1, 2, . . . ,
n − 1}. If ξ is a path of length n, then we write |ξ| = n. We consider vertices in E0 as paths of length zero. 
The set of all finite paths of length n is denoted by En and we let Path(E) = ∪∞

n=0E
n.

An infinite path in E is an infinite sequence ξ1ξ2 . . . of edges in E such that r(ξi) = s(ξi+1) for i ∈ N. 
The set of all infinite paths in E is denoted by E∞.

As usual, the range and source maps can be extended from E1 to E∞∪Path(E) by defining s(ξ) := s(ξ1)
for ξ = ξ1ξ2 . . . ∈ E∞ or ξ = ξ1 . . . ξn ∈ Path(E), and r(ξ) := r(ξn) for ξ = ξ1 . . . ξn ∈ Path(E).

A closed path α = e1...en in the graph E is a path such that r(ei) = s(ei+1) and r(α) := r(en) = v =
s(e1) =: s(α). The closed path α is called a cycle if it does not pass through any of its vertices twice, that 
is, if s(ei) �= s(ej) for every i �= j. An exit for a path α = e1 . . . en is an edge e such that s(e) = s(ei) for 
some i and e �= ei. We say that E satisfies Condition (L) if every simple closed path in E has an exit, or, 
equivalently, every cycle in E has an exit.

Definition 2.1. Let E be an arbitrary graph. Let X be any subset of Reg(E). The Cohn path algebra of E
relative to X, denoted CX

K (E), is the free K-algebra generated by the sets E0 ∪ E1 ∪ {e∗ | e ∈ E1} with 
relations:

(V) vw = δv,wv for v, w ∈ E0,
(E1) s(e)e = er(e) = e for e ∈ E1,
(E2) r(e)e∗ = e∗s(e) = e∗ for e ∈ E1,
(CK1) e∗f = δe,fr(e) for e, f ∈ E1 and,
(XCK2) v =

∑
e∈s−1(v) ee

∗ for every vertex v ∈ X.

We denote Y := Reg(E) \X throughout this paper.
We immediately see that the Cohn path algebra CK(E) corresponds to CK(E) = C∅

K(E) and the Leavitt 
path algebra LK(E) to LK(E) = C

Reg(E)
K (E).

From the axioms of the Definition 2.1 we have that every element of CX
K (E) can be represented as a 

sum of the form 
∑n

i=1 kiαiβ
∗
i for some n ∈ N, paths αi, βi such that r(αi) = r(βi), and ki ∈ K for every 

i = 1, . . . , n.
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We can define an K-linear involution ∗ on CX
K (E) in the following way: (

∑n
i=1 kiαiβ

∗
i )∗ =

∑n
i=1 kiβiα

∗
i

for n ∈ N, paths αi, βi such that r(αi) = r(βi), and ki ∈ K for every i = 1, . . . , n.
Also CX

K (E) is an unital ring if and only if E0 is finite (where the identity is the sum of elements of E0); 
it has local units if E0 is not finite (the finite sums of distinct vertices are local units).

Following [1, Corollary 2.1.5] another property is that it is also naturally graded by Z so that the 
n-component is:

CX
K (E)n =

{∑
i

kiαiβ
∗
i | αi, βi are paths, ki ∈ K, |αi| − |βi| = n for all i

}
.

We finish this subsection recalling that any relative Cohn path algebra CX
K (E) is isomorphic to the 

Leavitt path algebra of a graph E(X) which is obtained by adding certain new vertices and edges to E.

Definition 2.2. (as in [1] Definition 1.5.16) Let E be an arbitrary graph, X be a subset of Reg(E), and 
Y = Reg(E) \X. Let Y ′ = {v′ : v ∈ Y }. For v ∈ Y , and for each edge e ∈ r−1(v), consider a new symbol e′. 
Define the graph E(X) as follows:

E(X)0 = E0 ∪ Y ′ and E(X)1 = E1 ∪ {e′ : r(e) ∈ Y }.

For each e ∈ E1 let rE(X)(e′) = r(e)′ and sE(X)(e′) = s(e), and rE(X)(e) = r(e) and sE(X)(e) = s(e).

Theorem 2.3. (as in [1], Theorem 1.5.18) Let E be a graph, X a subset of Reg(E), and let E(X) be the 
graph constructed above (Definition 2.2). Then there is an isomorphism φ : CX

K (E) → LK(E(X)) such that 
φ(v) = v + v′ if v ∈ Y and φ(v) = v otherwise. Furthermore, φ(e) = e if rE(e) /∈ Y and φ(e) = e + e′

if rE(e) ∈ Y . Moreover, the inverse of φ is given by an isomorphism ψ : LK(E(X)) → CX
K (E) such that 

ψ(v) = v if v /∈ Y , and ψ(v) =
∑

e∈s−1(v) ee
∗, ψ(v′) = v−

∑
e∈s−1(v) ee

∗ if v ∈ Y . Also ψ(e) = e if r(e) /∈ Y , 
and ψ(e) = e 

∑
f∈s−1(v) ff

∗, ψ(e′) = e(v −
∑

f∈s−1(v) ff
∗) if r(e) = v ∈ Y .

2.2. Partial skew group rings

For later use, we recall the definitions of a partial action and a partial skew group ring as in [11].
A partial action of a group G on a set Ω is a pair α = ({Dt}t∈G, {αt}t∈G), where for each t ∈ G, 

Dt is a subset of Ω and αt : Dt−1 → Dt is a bijection such that De = Ω, αe is the identity in Ω, 
αt(Dt−1 ∩Ds) = Dt ∩Dts and αt(αs(x)) = αts(x), for all x ∈ Ds−1 ∩Ds−1t−1 . In case Ω is an algebra or 
a ring then the subsets Dt should also be ideals and the maps αt should be isomorphisms. Associated to a 
partial action of a group G in a ring A the partial skew group ring A �α G is defined as the set of all finite 
formal sums 

∑
t∈G atδt, where, for all t ∈ G, at ∈ Dt and δt are symbols. Addition is defined in the usual 

way and multiplication is determined by (atδt)(bsδs) = αt(α−t(at)bs)δt+s.

3. Uniqueness theorems for relative Cohn path algebras

In this section we develop the main tools we will use in the next sections. These are also interesting 
results in their own. We begin with the so-called reduction theorem for relative Cohn path algebras (Propo-
sition 3.3), for which we need an auxiliary result first.

Lemma 3.1. Let c = e1e2 · · · en be a cycle without exits based at a vertex w, and denote μ0 = w, μk = e1 · · · ek
for 1 ≤ k < n with s(ek) ∈ Y . Then
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wCX
K (E)w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

0≤i≤ti,
0≤j≤tj ,
0≤k<n

lijkc
iμkμ

∗
kc

−j | lijk ∈ K; ti, tj ∈ N ∪ {0}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Proof. Following the same ideas as in the proof of [1, Lemma 2.2.7] we have first that any γ ∈ Path(E) such 
that s(γ) = w is of the form cmτp where m ∈ Z+, τ0 = w, τp = e1 · · · ep for 1 ≤ p < n, and deg(γ) = mn +p.

Consider γ, λ ∈ Path(E) with s(λ) = s(γ) = w. Suppose that s(ek) ∈ Y and s(ek+1) ∈ X, . . . , s(ep) ∈ X

for k ≤ p. If deg(γ) = deg(λ) and γλ∗ �= 0, we have γλ∗ = cqe1 · · · eke∗k · · · e∗1c−q. If deg(γ) > deg(λ) and 
γλ∗ �= 0 then γλ∗ = cd+qe1 · · · eke∗k · · · e∗1c−q, d ∈ N. On the other hand, deg(γ) < deg(λ) and γλ∗ �= 0
imply γλ∗ = cqe1 · · · eke∗k · · · e∗1c−q−d, d ∈ N.

For any α ∈ wCX
K (E)w, write α =

∑r
i=1 liγiλ

∗
i with li ∈ K and γi, λi ∈ Path(E) such that s(λi) =

s(γi) = w for all 1 ≤ i ≤ r. Then, using the computations in the previous paragraph we get the desired 
result. �

Although we cannot determine whether the corner wCX
K (E)w given in Lemma 3.1 is isomorphic to some 

known algebra, we provide below an example of elements in a specific corner.

Example 3.2. Consider the graph in the picture below with Y = {w, v}.

��

>

<

e1

e2

w
v

Take the cycle c = e1e2 based at w. Notice that elements in wCX
K (E)w include ci(c∗)j (since v ∈ Y ), and 

cie1e
∗
1(c∗)j (since also w ∈ Y ) for i, j ∈ N ∪ {0}.

Proposition 3.3. For any nonzero element α ∈ CX
K (E) there exist μ, η ∈ Path(E) such that either:

(i) 0 �= μ∗αη = ku, for some k ∈ K× and u ∈ E0, or
(ii) 0 �= μ∗αη = k(v −

∑
e∈s−1(v) ee

∗), for some k ∈ K× and v ∈ Y , or
(iii) 0 �= μ∗αη ∈ wCX

K (E)w, for some cycle without exits based at a vertex w.

Proof. We show first that for a nonzero element α ∈ CX
K (E), there exist paths μ, η ∈ Path(E) such that 

0 �= αη ∈ KE or 0 �= μ∗αη = k(v −
∑

e∈s−1(v) ee
∗), for some k ∈ K× and v ∈ Y .

Consider a vertex v ∈ E0 such that αv �= 0. Write αv =
∑m

i=1 αie
∗
i + α′, with ei ∈ E1, ei �= ej for i �= j

and αi, α′ ∈ CX
K (E), α′ in only real edges and such that this is a minimal representation of αv in ghost 

edges.
If αvei = 0 for every i ∈ {1, . . . , m}, then 0 = αvei = αi + α′ei. Hence αi = −α′ei, and αv =∑m
i=1 −α′eie

∗
i + α′ = α′(

∑m
i=1 −eie

∗
i + v) �= 0. This implies that 

∑m
i=1 −eie

∗
i + v �= 0. There are now two 

cases, depending whether v ∈ Y or not. Suppose first that v ∈ E0 \Y . Since s(ei) = v for every i, this means 
that there exists f ∈ E1, f �= ei for every i, with s(f) = v. In this case, αvf = α′f �= 0 (because α′ is in 
only real edges), with α′f in only real edges, so we conclude. In the second case, assume that v ∈ Y . Then, 
multiplying the equation αv = α′(

∑m
i=1 −eie

∗
i + v) �= 0 by α′ ∗, we get that α′ ∗αv =

∑m
i=1 −eie

∗
i + v �= 0, 

and we obtain the desired result.
Continue with the case αvei �= 0 for some i, say for i = 1. Then 0 �= αve1 = α1 + α′e1, with α1 + α′e1

having strictly less degree in ghost edges than α. Repeating the argument above a finite number of steps 
we prove our first statement.
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Now, consider 0 �= α ∈ CX
K (E). Suppose that there exists a path η ∈ Path(E) such that β := αη ∈

KE\{0} (if not, by what is proved above, we are finished). Write 0 �= β =
∑r

i=1 kiβi as a linear combination 
of different paths βi with ki �= 0 for any i. We prove by induction on r that, after multiplying β on the 
left and/or the right, we get a vertex or a element in wCX

K (E)w for some cycle without exits based at a 
vertex w.

For r = 1, if β1 has degree 0 then it is a vertex and we are finished. Otherwise we have β = k1β1 =
k1f1 · · · fn, so that k−1

1 f∗
n · · · f∗

1β = v where v = r(fn) ∈ E0.
Suppose by induction that the property is true for any nonzero element which is a sum of less than r

paths in the conditions above. Write 0 �= β =
∑r

i=1 kiβi such that deg(βi) ≤ deg(βi+1) for any i. If for 
some i we have deg(βi) = deg(βi+1) then, since βi �= βi+1, there is some path μ such that βi = μfν and 
βi+1 = μf ′ν′ where f, f ′ ∈ E1 are different and ν, ν′ are paths. Thus 0 �= f∗μ∗β and we can apply the 
induction hypothesis to this element. So we can go on supposing that deg(βi) < deg(βi+1) for each i.

We have 0 �= β∗
1β = k1v +

∑
i kiγi, where v = r(β1) and γi = β∗

1βi. If some γi is null then we apply the 
induction hypothesis to β∗

1β and we are done. Otherwise if some γi does not start (or finish) in v we apply 
the induction hypothesis to vβ∗

1β �= 0 (or β∗
1βv �= 0). Thus we have

0 �= z := β∗
1β = k1v +

r∑
i=2

kiγi,

where 0 < deg(γ2) < · · · < deg(γr) and all the paths γi start and finish in v.
If T (v) ∩ Pc(E) = ∅ then, by [1, Lemma 2.2.8], there exists a path τ such that τ∗β∗

1βτ = τ∗zτ = k1r(τ)
and we are done.

If T (v) ∩Pc(E) �= ∅ then there is a path ρ starting at v such that w = r(ρ) is a vertex in a cycle without 
exits. In this case 0 �= ρ∗β∗

1βρ = ρ∗zρ ∈ wCX
K (E)w and the proof is complete. �

Remark 3.4. Notice that the proposition above does not follow immediately from the Reduction Theorem 
([1], Theorem 2.2.11) and Theorem 2.3. In fact, if we take v ∈ LK(E(X)) such that v ∈ Y then it is 
already “reduced” to a vertex; but if we now apply the isomorphism ψ : LK(E(X)) → CX

K (E) then 
ψ(v) =

∑
e∈s−1(v) ee

∗, which is not in any “reduced form” of Proposition 3.3.

Notice that, by Lemma 3.1, for X = Reg(E) (that is CX
K (E) = LK(E)) we obtain the following well-known 

result: if c is a cycle without exits based at a vertex w then

wLK(E)w =
{

n∑
r=m

lrc
r | lr ∈ K,m, n ∈ Z

}
∼= K[x, x−1].

In particular from Proposition 3.3 we get the so-called reduction theorem for Leavitt path algebras:

Corollary 3.5. (as in [1], Theorem 2.2.11) Let E be an arbitrary graph and K any field. For every nonzero 
element α ∈ LK(E) there exist μ, η ∈ Path(E) such that either:

(i) 0 �= μ∗αη = ku, for some k ∈ K× and u ∈ E0, or
(ii) 0 �= μ∗αη = p(c), for some cycle without exits c and p(x) a nonzero polynomial in K[x, x−1].

Another immediate consequence from Proposition 3.3 is the following result, which we will use in the 
proof of the Graded Uniqueness Theorem.

Corollary 3.6. Let α be a nonzero homogeneous element of CX
K (E). Then there exist μ, η ∈ Path(E) such 

that either
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(i) 0 �= μ∗αη = ku, for some k ∈ K× and u ∈ E0, or
(ii) 0 �= μ∗αη = k(v −

∑
e∈s−1(v) ee

∗), for some k ∈ K× and v ∈ Y .

In particular, every nonzero graded ideal of CX
K (E) contains a vertex or a element of the form v −∑

e∈s−1(v) ee
∗ for some v ∈ Y .

Proof. By the first part of the proof of Proposition 3.3 we have that for a nonzero element α ∈ CX
K (E), 

there exist paths μ, η ∈ Path(E) such that 0 �= αη ∈ KE or 0 �= μ∗αη = k(v −
∑

e∈s−1(v) ee
∗), for some 

k ∈ K× and v ∈ Y . For the second case it is done. Suppose we are in the first case. Since α is a homogeneous 
element, 0 �= αη is a homogeneous element in KE. Now we write αη =

∑r
i=1 kiβi with ki ∈ K×, βi �= βj

and |βi| = |βj | for all i �= j. Therefore β∗
1αη = k1r(β1) and we complete the proof.

The particular statement follows immediately. �
We are now in position to show the uniqueness theorems for relative Cohn path algebras.

Theorem 3.7. (The Graded Uniqueness Theorem) Consider A a Z-graded ring and π : CX
K (E) → A a graded 

ring homomorphism. Suppose that π(u) �= 0 for every vertex u ∈ E0 and π(v−
∑

e∈s−1(v) ee
∗) �= 0 for every 

vertex v ∈ Y . Then π is injective.

Proof. Notice that Ker(π) is a graded ideal of CX
K (E). Then by Corollary 3.6, Ker(π) is either {0}, or 

contains a vertex, or contains a element of the form v −
∑

e∈s−1(v) ee
∗ for some v ∈ Y . By the hypothesis, 

the only option is Ker(π) = {0}. �
Theorem 3.8. (The Cuntz-Krieger Uniqueness Theorem) Consider π : CX

K (E) → A a ring homomorphism. 
Suppose that the graph E satisfies Condition (L), that π(u) �= 0 for every vertex u ∈ E0, and π(v −∑

e∈s−1(v) ee
∗) �= 0 for every vertex v ∈ Y . Then π is injective.

Proof. We use that Ker(π) is an ideal of CX
K (E). Let α be a nonzero element in Ker(π). Since E satisfies 

Condition (L) then, by Proposition 3.3, there exist μ, η ∈ Path(E) such that either 0 �= μ∗αη = ku, for 
some k ∈ K× and u ∈ E0, or 0 �= μ∗αη = k(v −

∑
e∈s−1(v) ee

∗), for some k ∈ K× and v ∈ Y . Therefore 
Ker(π) either contains a vertex, or contains a element of the form v −

∑
e∈s−1(v) ee

∗ for some v ∈ Y , what 
contradicts the hypothesis of the theorem. Therefore Ker(π) = {0}. �

As a consequence of the isomorphism between relative Cohn path algebras and Leavitt path algebras we 
obtain other uniqueness theorem. For this aim we previously define:

Definition 3.9. Let E be a graph. We say that E satisfies Relative Condition (L) if every cycle c = e1 · · · en
such that s(ei) /∈ Y for every i = 1, . . . , n, has an exit.

Theorem 3.10. (The Relative Cuntz-Krieger Uniqueness Theorem) Consider π : CX
K (E) → A a ring homo-

morphism. Suppose that the graph E satisfies Relative Condition (L) and that:

(i) π(u) �= 0 for every vertex u /∈ Y ,
(ii) π(v −

∑
e∈s−1(v) ee

∗) �= 0 for every vertex v ∈ Y , and
(iii) π(

∑
e∈s−1(v) ee

∗) �= 0 for every vertex v ∈ Y .

Then π is injective.

Proof. It is straightforward that the corresponding graph E(X) satisfies Condition (L). Consider the iso-
morphism ψ : LK(E(X)) → CX

K (E) given in Theorem 2.3. We have that π ◦ ψ : LK(E(X)) → A is 
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a ring homomorphism. Moreover, if u /∈ Y then π ◦ ψ(u) = π(ψ(u)) = π(u) �= 0; if v ∈ Y then 
π ◦ ψ(v) = π(ψ(v)) = π(

∑
e∈s−1(v) ee

∗) �= 0 and π ◦ ψ(v′) = π(ψ(v′)) = π(v −
∑

e∈s−1(v) ee
∗) �= 0. By 

the Cuntz-Krieger Uniqueness Theorem ([1, Theorem 2.2.16]) we have that π ◦ ψ is injective. Therefore π
is injective. �
4. Relative Cohn path algebras as partial skew group rings

Given a graph E and a subset X of Reg(E), in this section we describe the associated relative Cohn path 
algebra as the partial skew group ring associated to a partial action, of the free group on the edges of the 
graph, on the “relative algebraic boundary path space”. We use this characterization to relate dynamical 
properties of the action with combinatorial properties of the graph.

Since each relative Cohn path algebra is isomorphic to a Leavitt path algebra (see Theorem 2.3), and in 
[24,26] each Leavitt path algebra was realized as a partial skew group ring, we obtain a characterization of 
relative Cohn path algebras as partial skew group rings by composing isomorphisms. However, the partial 
skew group ring obtained this way is formed by a partial action of the free group on edges of E(X), so that 
some “unnatural” edges e′ appear on the free group. Furthermore, the boundary path space will also include 
paths containing edges of E(X). We believe that the picture we present is the correct one for dealing with 
relative graphs, as we have an action of the free group on the edges and a “relative boundary path space” 
that only involves edges and vertices of E. In fact, the “relative algebraic boundary path space” of a graph 
is the space of infinite paths in the graph union with finite paths ending in a sink or in a vertex in Y . The 
precise definition follows below (compare it with the analytical counterpart, see [9]).

Definition 4.1. Let E be a graph and X be a subset of Reg(E). Recall that Y = Reg(E) \X. The algebraic 
relative boundary path space ∂XE is defined by

∂X(E) = E∞ ∪ {ξ ∈ Path(E) : r(ξ) is a sink } ∪ {ξ ∈ Path(E) : r(ξ) ∈ Y }.

We denote by F the free group generated by the set E1. Next we define a partial action ({Uc}c∈F , {θc}c∈F )
of F on ∂X(E). The sets and maps are defined as follows:

Let W = ∪n∈NEn be the set of all finite paths of length greater or equal to one (as a subset of F), and 
define:

• U0 := ∂X(E), where 0 is the neutral element of F .
• Ub−1 := {ξ ∈ ∂X(E) : s(ξ) = r(b)}, for all b ∈ W .
• Ua := {ξ ∈ ∂X(E) : ξ1ξ2...ξ|a| = a}, for all a ∈ W .
• Uab−1 := Ua, for ab−1 ∈ F with a, b ∈ W , r(a) = r(b) and ab−1 in its reduced form (that is, a|a| �= b|b|).
• Uc := ∅, for all other c ∈ F .

Furthermore, let

Uv = {ξ ∈ ∂X(E) : s(ξ) = v}, for all v ∈ E0.

Remark 4.2. Note that v ∈ Uv if, and only if, v is a sink or v ∈ Y . Moreover, if v = r(b) is a sink then 
Ub−1 = {r(b)} and Ub = {b}. Notice also that if v ∈ X then Uv =

⋃
s(a)=v

Ua.

Next we define the maps θc : Uc−1 → Uc. Let θ0 : U0 → U0 be the identity map. For b ∈ W , let 
θb : Ub−1 → Ub be the “add b” or “creation” map, that is, if ξ ∈ Ub−1 then θb(ξ) = bξ (we are assuming 
here that br(b) = b). The inverse of θb is given by the “erase b” map, that is, θb−1 : Ub → Ub−1 is given by 
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θb−1(η) = η|b|+1η|b|+2... if r(b) is not a sink and r(b) /∈ Y , and θb−1(b) = r(b), if r(b) is a sink or r(b) ∈ Y . 
Finally, for a, b ∈ W with r(a) = r(b) and a|a| �= b|b| we define θab−1 : Uba−1 → Uab−1 as the “erase b and 
add a” map, that is, θab−1(ξ) = aξ(|b|+1)ξ(|b|+2)....

Example 4.3. Consider the graph below and take Y = {r(f1)}.

�

�

�

� >
f3

>
>

<

f1

f4

f2

We have, for example,

Uf2(f3)−1 = Uf2 = {f2, f2f4, f2f2, f2f2f4 · · · f2f2f2 · · · }.

Also, since r(f1) ∈ Y we have that r(f1) ∈ Ur(f1) and hence Ur(f1) contains, but is not equal to Uf2 ∪ Uf4 .

The set partial action defined above induces a partial action in the algebra level (for more details about 
the relations between partial actions on sets and partial actions of algebras see [6] and [15]). For each c ∈ F , 
with Uc �= ∅, let F (Uc) be the K-algebra of functions from Uc to K. Note that F (Uc) may be identified with 
the subset of the functions in F (∂XE) that vanishes outside of Uc. Furthermore, each F (Uc) is an ideal of 
the K-algebra F (∂XE). Now, for each c ∈ F , define αc : F (Uc−1) → F (Uc) by α(f) = f ◦ θc−1 , which is 
an K-isomorphism. One can now check that the family {{αc}c∈F , {F (Uc)}c∈F} is a partial action of F on 
F (∂XE).

To obtain the relative Cohn path algebra we need to consider the following restriction of the above partial 
action: for each c ∈ F , and for each v ∈ E0, define the characteristic maps 1c := χUc

and 1v := χUv
. Finally, 

let

D(∂X(E)) = D0 = span{{1p : p ∈ F \ {0}} ∪ {1v : v ∈ E0}},

(where span means the K-linear span) and, for each p ∈ F \ {0}, let Dp ⊆ F (Up) be defined as 1pD0, that 
is,

Dp = span{{1p1q : q ∈ F}}.

Since αp(1p−11q) = 1p1pq (see [24]), consider, for each p ∈ F , the restriction of αp to Dp−1 . Notice that 
αp : Dp−1 → Dp is an isomorphism of K-algebras and, furthermore, {{αp}p∈F , {Dp}p∈F} is a partial action. 
Denote by D(∂X(E)) �α F the partial skew group ring associated to it.

Theorem 4.4. Let E be a graph and X be any subset of Reg(E). There exists a K-algebra isomorphism ϕ, 
from CX

K (E) onto D(∂X(E)) �αF , such that ϕ(e) = 1eδe, ϕ(e∗) = 1e−1δe−1 , for all e ∈ E1, and ϕ(v) = 1vδ0, 
for all v ∈ E0.

Proof. Consider the sets {1eδe, 1e−1δe−1 : e ∈ E1} and {1vδ0 : v ∈ E0} in D(∂X(E)) �α F . Proceeding as in 
[24] one can check that these sets satisfy the relations defining the relative Cohn path algebra and hence, 
by the universal property of CX

K (E), we obtain the desired homomorphism ϕ : CX
K (E) → D(∂X(E)) �α F , 

such that, for all e ∈ E1 and all v ∈ E0, ϕ(e) = 1eδe, ϕ(e∗) = 1e−1δe−1 and ϕ(v) = 1vδ0.
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To show that ϕ is injective we will use the Graded Uniqueness Theorem (Theorem 3.7). So we need 
to define a Z-grading in D(∂X(E)) �α F . This is done as in [24] and hence we just sketch the steps: For 
each p ∈ F , let |p| := m − n, where m is the number of generators (elements of E1) of p and n is the 
number of inverses of generators of p. Define, for each z ∈ Z, Az ⊆ D(∂X(E)) �α F as the K-linear span of 
{apδp : ap ∈ Dp and |p| = z}. Then {Az}z∈Z is a Z-grading of D(∂X(E)) �α F . Remember CX

K (E) is a Z
graded K−algebra, with the grading induced by the length of the paths. Now, for each ab∗ ∈ CX

K (E) with 
|a| − |b| = z, we have that ϕ(ab∗) ∈ Dab−1δab−1 . Since |ab−1| = |a| − |b| = z then Dab−1δab−1 ⊆ Az, and 
hence ϕ is a Z graded isomorphism.

To apply the Graded Uniqueness Theorem (Theorem 3.7), we still need to check that ϕ(v) �= 0 for all v ∈
E0 (which is straightforward since ϕ(v) = 1vδ0 and Uv �= ∅ for all v ∈ E0), and that π(v−

∑
e∈s−1(v) ee

∗) �= 0
for every vertex v ∈ Y . Notice that if v ∈ Y then, by Remark 4.2, v ∈ Uv. On the other hand v /∈ Ue for 
any e ∈ s−1(v) (since any element in Ue has length at least one). Therefore 1v �=

∑
e∈s−1(v) 1e and hence 

π(v −
∑

e∈s−1(v) ee
∗) = 1v −

∑
e∈s−1(v) 1e �= 0. We conclude that ϕ is injective.

The proof that ϕ is surjective is identical to the proof given in [24, Theorem 3.3]. �
The interplay between combinatorial and algebraic objects is a driving force in the study of Leavitt 

path algebras and in other areas of Mathematics (see [28] for an example of this interplay out of Leavitt 
path algebras theory). Usually to make the connection between a combinatorial property of a graph (for 
example), and an algebra associated to it, one builds an intermediate dynamical system with properties 
that model the algebraic and combinatorial aspects under study. This is the case at hand. In our setting, 
the combinatorial object is composed by a graph and a subset X of the regular vertices, and the algebra 
associated to it is the relative Cohn path algebra.

Given a graph E, and a non-empty subset Y , the associated relative Cohn path algebra is never simple, 
since the graph E(X) has sinks (which imply the existence of hereditary and saturated sets). In [8,19]
simplicity of a partial skew ring A � F was characterized in terms of maximal commutativity of A and 
F−simplicity of A. Below we show that maximal commutativity of D(∂X(E)) in D(∂X(E)) �αF , is equivalent 
to Relative Condition (L) in the graph. Therefore, for any relative graph with Y �= ∅ and that satisfies the 
Relative Condition (L), D(∂X(E)) is never F−simple.

Proposition 4.5. Let E be a graph and X be a subset of Reg(E). Then D(∂X(E)) is maximal commutative 
in D(∂X(E)) �α F if, and only if, the graph E satisfies Relative Condition (L).

Proof. Suppose first that E satisfies Relative Condition (L). Let at ∈ Dt, with t �= 0 and at �= 0, be such 
that atδt · a0δ0 = a0δ0 · atδt for each a0 ∈ D0, that is, such that

αt(αt−1(at)a0) = ata0 (1)

for all a0 ∈ D0.
Taking a0 = 1t−1 in Equation (1) we obtain that at = at1t−1 and hence the support of at is contained in 

Ut ∩ Ut−1 . So either t ∈ W or t = r−1 with r ∈ W . If t ∈ W then t is a closed path and if t = r−1 then r is 
a closed path. Furthermore, by induction we obtain that at = at1(tn)−1 and at1tn = at, for all n ∈ N.

Let ξ ∈ supp(at), that is, at(ξ) �= 0. Notice that, since at ∈ Dt, there exists an M such that for each 
μ ∈ Ut with μ1 · · ·μM = ξ1 · · · ξM it holds that at(μ) = at(ξ).

Suppose that t ∈ W . If t is a closed path such that the source of each edge in t belongs to X then, by 
the Relative Condition (L), t has an exit. The proof now follows as the proof of Proposition 3.1 in [19]. 
So suppose t is a closed path, say t = t1 . . . tk, and s(tj) ∈ Y for some j. Let μ = ξ1 . . . ξMμM+1 . . . μL (a 
finite path), where r(μL) = s(tj). Then we can find an n ∈ N such that 1tn(μ) = 0 and this implies that 
0 �= at(μ) = at1tn(μ) = 0, a contradiction. The case t = r−1, with r a closed path, is done analogously.
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We conclude that there is no at ∈ Dt, with t �= 0, such that atδt commutes with each element of D0δ0. 
Hence D(∂X(E))δ0 is maximal commutative.

Suppose now that E does not satisfy Relative Condition (L), that is, there exists a closed path t = t1...tm, 
such that s(ti) /∈ Y for all i, which has no exit. Then, proceeding as in the proof of Proposition 3.1 in [19]
we get that 1tδt commutes with D(∂X(E))δ0 and so D(∂X(E)) is not maximal commutative. �
5. Representations of CX

K (E) arising from relative branching systems

In this section we define E-relative algebraic branching systems associated to a directed graph E (and 
a subset X of Reg(E)) and study the representations of relative Cohn path algebras associated to such 
systems.

We start with the definition of an E-relative algebraic branching system (this is motivated by definitions 
in [21]).

Definition 5.1. Let E be a graph and X a subset of Reg(E). Let X be a set and let {Re}e∈E1 , {Dv}v∈E0 be 
families of subsets of X such that:

1. Re ∩Rd = ∅ for each d, e ∈ E1 with d �= e;
2. Du ∩Dv = ∅ for each u, v ∈ E0 with u �= v;
3. Re ⊆ Ds(e) for each e ∈ E1;
4. Dv =

⋃
e:s(e)=v

Re for each v ∈ X; and

5. for each e ∈ E1, there exists a bijective map fe : Dr(e) → Re.

A set X, with families of subsets {Re}e∈E1 , {Dv}v∈E0 , and maps fe as above, is called an E-relative 
(algebraic) branching system, and we denote it by (X, {Re}e∈E1 , {Dv}v∈E0 , {fe}e∈E1), or when no confusion 
arises, simply by X.

We show that each E-relative branching system induces a representation of the relative Cohn path algebra 
CX

K (E).
Fix an E-relative branching system X. Let M be the K-module of all functions from X taking values in 

K and let HomK(M) denote the K-algebra of all homomorphisms from M to M (with multiplication given 
by composition of homomorphisms and the other operations given in the usual way).

Now, for each e ∈ E1 and for each v ∈ E0, we will define homomorphisms Se, S∗
e and Pv in HomK(M). 

Let

Seφ = χRe
· φ ◦ f−1

e ,

where φ ∈ M and χRe
is the characteristic function of Re. For φ ∈ M , we define the homomorphism S∗

e by

S∗
eφ = χDr(e) · φ ◦ fe.

Finally, for each v ∈ E0, and for φ ∈ M , we define Pv by

Pvφ = χDv
· φ,

that is, Pv is the multiplication operator by χDv
, the characteristic function of Dv.

Proposition 5.2. Let X be an E-relative branching system. Then there exists a representation (that is, an 
algebra homomorphism) π : CX

K (E) → HomK(M) such that
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π(e) = Se, π(e∗) = S∗
e and π(v) = Pv,

for each e ∈ E1 and v ∈ E0.

Proof. Analogous to what is done in [21, Theorem 2.2]. �
Let E be a graph, with E0 and E1 countable and X ⊆ Reg(E). Next we show that there always exists an 

E-relative algebraic branching system in R associated to E and X. We will use the construction we present 
later, when we build faithful representations of relative Cohn path algebras.

Proposition 5.3. Let E = (E0, E1, r, s) be a graph, with E0, E1 both countable. Then there exists an E-relative 
branching system X, where X is an (possibly unbounded) interval of R.

Proof. Let E0 = {vi}i∈I , where I = {1, 2, . . . , N} or I = N. For each i ≥ 1 define Dvi = [i − 1, i).
Our next goal is to define Re for each e ∈ E1.
Let v be such that N := |s−1(v)| < ∞. Then s−1(v) = {e1, . . . , eN}. If v ∈ X then partition the interval 

Dv into N intervals, closed on the left and open on the right, and define each Re1, . . . , ReN as one of these 
intervals (with Rei ∩ Rej = ∅, for i �= j). If v ∈ Y then partition the interval Dv into N + 1 intervals, 
closed on the left and open on the right, and define each of Re1, . . . , ReN as one of these intervals (with 
Rei ∩Rej = ∅, for i �= j).

Let v be such that |s−1(v)| = ∞. Then s−1(v) = {e1, e2, . . .}. Partition the interval Dv into ∞ intervals, 
closed on the left and open on the right, and define each of Rei as one of these intervals (with Rei ∩Rej = ∅, 
for i �= j, and length of Rei equal to 1

2i ).
Finally, for each e ∈ E1 define fe : Dr(e) → Re as the affine bijection between these intervals.
It is now standard to check that X above is a relative branching system. �
Proposition 5.3 together with Proposition 5.2 guarantees that every relative Cohn path algebra CX

K (E)
of a countable graph E may be represented in HomK(M). Let us summarize this result in the following 
corollary:

Corollary 5.4. Given a countable graph E, there exists a homomorphism π : CX
K (E) → HomK(M) such that

π(v)(φ) = χDv
.φ, π(e)(φ) = χRe

.φ ◦ f−1
e and π(e∗)(φ) = χDr(e) .φ ◦ fe

for each φ ∈ M , where M is the K-module of all functions from X taking values in K, X is an (possible 
unlimited) interval of R, and Re and Dv are as in Proposition 5.3.

Remark 5.5. Propositions 5.2, 5.3, and Corollary 5.4 generalize to relative Cohn path algebras Theorems 
2.2, 3.1, and Corollary 3.2 in [21].

Let (X, {Re}e∈E1 , {Dv}v∈E0 , {fe}e∈E1) be an E-relative branching system. For a closed path α = e1...en, 
let fα : Dv → Re1 ⊆ Dv denote the composition

fα := fe1 ◦ ... ◦ fen .

Notice that since α is a path fα is well defined.
We are now in position to prove one of the main results of the paper.

Theorem 5.6. Let E be a graph and (X, {Re}e∈E1 , {Dv}v∈E0 , {fe}e∈E1) be an E-relative branching system. 
Let π be the representation of CX

K (E) induced by this E-relative branching system. Then π is faithful if, and 
only if, the following conditions are satisfied:
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1. for each e ∈ E1 and v ∈ E0, Re and Dv are non-empty;
2. Dv �=

⋃
e∈s−1(v) Re for all v ∈ Y ; and

3. for each finite set of paths {c1, ..., cm} in E, beginning on the same vertex w with c = e1 · · · en a cycle 
without exits such that s(ei) /∈ Y for every i ∈ {1, . . . , n}, there is an element z0 ∈ Dw such that 
f j
c (z0) �= z0 for all j ∈ {1, . . . , m}.

Proof. Suppose that Conditions 1. to 3. are satisfied. Let π be a representation of CX
K (E) and φ : CX

K (E) →
LK(E(X)) be the isomorphism given in Theorem 2.3. Then π := π ◦ φ−1 is a representation of LK(E(X)). 
We will show that π is injective, and hence π is also injective.

Consider α ∈ LK(E(X)). By Corollary 3.5 we have that there exist μ, η ∈ Path(E(X)) such that either: 
0 �= μ∗αη = ku, for some k ∈ K× and u ∈ E(X)0; or 0 �= μ∗αη = p(c), where c is a cycle without exits in 
E(X) and p(x) a polynomial in K[x, x−1].

Suppose the case 0 �= μ∗αη = ku. If u ∈ E0 \ Y , then π(u) = π(u) and hence for each ρ ∈ M , where M
is the K-module of all functions from X taking values in K, π(u)(ρ) = χDu

· ρ �= 0 by 1.. If u ∈ Y , then 
φ−1(u) =

∑
e∈s−1(u) ee

∗ and again for each ρ ∈ M , π(u)(ρ) = χ∪Re
· ρ �= 0 by 1.. Now if u ∈ Y ′, we have 

φ−1(u) = u −
∑

e∈s−1(u) ee
∗ and for each ρ ∈ M , π(u)(ρ) = χDv\∪Re

· ρ �= 0 by 2.. In any case π(μ∗αη) �= 0
and necessarily π(α) �= 0.

Assume now that 0 �= μ∗αη =
∑n

r=m lrc
r, for some cycle c without exits in E(X), lr ∈ K, m, n ∈ Z, 

m ≤ n. If there are negative indices of c in the previous sum, multiply μ∗αη on the left by a certain power 
of c, say cs, so that csμ∗αη =

∑n
r=0 lrc

r where n ∈ N. Notice that if c = e1 · · · et is a cycle without exits 
in E(X) then the vertices s(ei)E /∈ Y for every i = 1, . . . , t; hence φ−1(c) = c and π(csμ∗αη) = π(csμ∗αη). 
Then for each ρ ∈ M , π(csμ∗αη)(ρ) =

∑n
r=0 χDw

· ρ((fc)−r) �= 0 by 3.. So we have that π(csμ∗αη) �= 0
which gives π(α) �= 0.

Since π is injective, it immediately follows that π is injective.
In order to prove the converse statement suppose that one of 1., 2. or 3. is not satisfied. We will show 

that this implies that π is not injective.
For the first situation, if Dv = ∅ for some vertex v then π(v) = 0; if Re = ∅ for some edge e then π(e) = 0.
In the second case imagine Dv =

⋃
e∈s−1(v) Re for some v ∈ Y . Then π(v −

∑
e∈s−1(v) ee

∗) = 0.
Finally suppose there exist j0 and a cycle c = e1 · · · en without exits based at w such that s(ei) /∈ Y for 

every i, with the condition that f j0
c (z) = z for every z ∈ Dw. Then we have that π(cj0) = π(w) since

fc(Dr(en)) = fe1 · · · fen(Dr(en)) = fe1 · · · fen−1(Ren)
= fe1 · · · fen−1(Dr(en−1)) = fe1 · · · fen−2(Ren−1)
= . . .

= fe1(Re2) = Re1 = Ds(e1) = Dw,

and for each ρ ∈ M , π(cj0)(ρ) = χ
f
j0
c (Dr(en))

· ρ(f−j0
c ) = χDw

· ρ = π(w)(ρ). �

Remark 5.7. We remark that Theorem 5.6 generalizes [21, Theorem 4.2] which refers to Leavitt path al-
gebras of row finite graphs with no sinks (and provides only a sufficient condition for faithfulness of the 
representations). It also generalizes the main result in [25] (Theorem 4.3, which deals with separated graphs 
without loops such that all edges have the same source and the range map is injective, and again only 
provides a sufficient condition for faithfulness) in the context of non separated graphs. Therefore, more than 
providing the correct ambience for the study of relative Cohn path algebras, our theorem above, taking X
as the set of regular vertices, improves on the known theory of Leavitt path algebras.

Finally, motivated by Corollary 4.3 in [21] and using Theorem 5.6, we construct below a faithful repre-
sentation of CX

K (E) for any graph E and subset X ⊆ Reg(E).
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Example 5.8. Let E = (E0, E1, r, s) be a graph with E0, E1 both countable, and let X ⊆ Reg(E). Consider 
Dv for v ∈ E0, and Re for e ∈ E1, constructed as in the proof of Proposition 5.3.

We need to define bijective maps fe : Dr(e) → Re, for each e ∈ E1. To do this, first fix an irrational 
number θ ∈ [0, 1), and let hθ : [0, 1) → [0, 1) be defined by hθ(x) = (x + θ) mod(1), which is a bijective 
map. Consider for any e ∈ E1, ge : Dr(e) → [0, 1) and g̃e : [0, 1) → Re as the affine bijections between these 
intervals respectively. Consider fe = g̃e ◦ hθ ◦ ge. This defines fe : Dr(e) → Re as a bijective map.

Then we have an E-relative branching system

(X, {Dv}v∈E0 , {Re}e∈E1 , {fe}e∈E1),

and hence we obtain a representation π : CX
K (E) → HomK(M) (as in Proposition 5.2).

We will prove that the representation π : CX
K (E) → HomK(M) induced by the E-relative branching 

system constructed above is faithful.
All we need to do is verify the hypothesis of Theorem 5.6. By construction it clearly satisfies 1. and 2.. 

We check that for each finite set of paths {c1, ..., cm} in E, beginning on the same vertex w, and with 
c = e1 · · · en a cycle without exits such that s(ei) /∈ Y for every i ∈ {1, . . . , n}, there is an element z0 ∈ Dw

such that f j
c (z0) �= z0 for all j ∈ {1, . . . , m}.

So, let c = e1 . . . en be a cycle without exits such that s(ei) /∈ Y for every i ∈ {1, . . . , n}, and beginning 
on w. In this case we have that Re1 = Dr(en) and Rei = Dr(ei−1) for i = 2, . . . , n. Notice that then g̃e1 = g−1

en

and g̃ei = g−1
ei−1

for i = 2, . . . , n. Hence

fc = fe1 ◦ . . . ◦ fen = g̃e1 ◦ hθ ◦ ge1 ◦ . . . ◦ g̃en ◦ hθ ◦ gen = g̃e1 ◦ hn
θ ◦ gen ,

and therefore f j
c = g̃e1 ◦ hnj

θ ◦ gen . It follows that, if z ∈ Dw is a rational number, then fe1 ◦ ... ◦ fen(z) is a 
irrational number and hence no rational number is a fixed point for fc. Then, for any finite set {c1, ..., cm}
in E, beginning on w, we may choose z0 ∈ Dw to be a rational number, and so f j

c (z0) �= z0 for all 
j ∈ {1, . . . , m} as desired.

Observe that the construction in Example 5.8 gives [21, Corollary 4.3] in the case that E is a row finite 
graph with no sinks and X = Reg(E) (i.e., for Leavitt path algebras). Also motivated by [21, Corollary 4.3], 
in [17] the authors build faithful representations of graph C*-algebras associated to countable graphs (see 
Proposition 3.2). Therefore our construction can also be seen as an “algebraization” of the C*-construction.
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