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1. Introduction

In this section, denote the complex by C, and the projective line by P!.

Let X,Y be Riemann Surfaces where X has genus g, and f : X — Y be a nonconstant rational map
of degree n. The monodromy group G of this cover, that is, the Galois group of the Galois closure of
C(X)/C(Y). So G is a transitive group of degree n. See [4, Page 1, Chapter 1], the main problem some
scholars are interested in is the following: if we fix the genus of X, what restrictions are placed on G? For
more background on this problem, refer to [3,5]. Actually, the critical case to investigate is when Y = P!
and f is indecomposable because G is a primitive permutation group of degree n in this case. The natural
question is for which primitive group G appear as the monodromy group of an indecomposable low genus
covering f : X — Pl and for G which is not alternating or symmetric (in their natural action) what are the
corresponding covers f7 This is the problem of the classification of monodromy groups, which was started
by Guralnick and Thompson after the classification of finite simple groups and its roots lie in the work of
Ritt and Zariski. The classification of monodromy groups is a long project with many people involved, for
some results and history see [4].
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Let B C P! be the set of branch points of the cover f with |B| = r, where f : X — P! is indecomposable.
Since the fundamental group of P!\ B is a group generated by r elements with the single relation that
the product is 1, using Riemann’s Existence Theorem, it follows that the existence of a cover gives rise to
elements x1, ..., ¢, in G such that G = (x4, ..., z,-) and x1 ---z, = 1. Therefore, the investigation of monodromy
groups associated with group structures, especially the “primitive” Hurwitz problem of the classification
of monodromy groups. In group theoretic language, it is the following problem: Given conjugacy classes
C1,...,Cy in a permutation group G, are there elements z; in C; with product z; - - - z, = 1 and such
that the group generated by x1, ..., x, is primitive, and each such tuple corresponds to an indecomposable
covering which appears in this classification. Recently, the classification was completed when the degree is
assumed to be sufficiently large in [8], except for these two families of ramification types: Given by conjugacy
classes of Sg1Ss: s,8,58,([d—4,2,2],1)s and s, s, s, ([d — 3,3],1)s, here s denotes the swap in Sy Ss, and
a conjugacy classes in this group is denoted by (a, b)s where (a,b) is a partition of d (conjugacy classes in
Sq). Indeed, Danny Neftin and Michael E. Zieve guessed that these two families of ramification types do not
occur, and further Danny Neftin observed that if the following conjecture is true then these two families of
ramification types do not occur.

Conjecture 1.1. ([7]) Let o and 8 be two permutations in Sy. If the commutator [o, B] has at least n — 4
fized points, then there exists a permutation v in S,, such that o) = o' and 7 = 7', Here o = vy tay
and o, B] = a3 tap.

In this paper, we give a positive solution of Conjecture 1.1, and then we start to explain the idea of the
proof. Firstly, we will provide some ways to construct some permutations conjugate a permutation onto
its inverse under some conditions (see Lemma 2.1 and Corollary 2.2) as well as a property of simultaneous
conjugation (see Lemma 2.3), and then by using these ways and the property to give a formal proof of
Conjecture 1.1 in the case when af = fa (see Lemma 2.4), and further the problem will be reduced

L and of as the objects because of

to the simpler situation (see Assumption 2.5). Secondly, we take o~
[, B] = a~ 1P, and we discover that there exist two situations of a®, and there exists two close relationships

between the two cases, such as:

Example A. Given a1 = (1,2)(3,4)(5,6)(7,8,9) and 8, = (1,4,6,8)(2,3,5,7). Then [ay, 5] = (2,9,7),
(1,2)% = (3,4), (3,4)" = (5,6), (5,6)%* = (7,8) and further (2,3,5,7)* = (1,4,6,8).

Example B. Given as = (1,2)(7,8,9), B2 = (1,8)(2,7). Then [az, B2] = [, B1], (1,2)72 #£ (1,2), (1,2)72 #
(7,8,9), (7,8,9)%2 # (1,2) and (7,8,9)” # (7,8,9).

Relationship 1. There exists a permutation u = (6,4, 1)(5, 3,2) such that of = ay and 3 = pf; and 3,4,5,6
are fixed points of 5.

Relationship 2. Pick w = (1,2)(7,8) and v = (4,5)(3,6) such that a§ = a5 ', (1,2)* = (1,2) = (1,2)"1,
(7,8,9)% = (8,7,9) = (7,8,9)"" and 5 = B5* and pu<” = (3,5,2)(4,6,1) = p~'. Then we see that
o = (6,5)(4,3)(1,2)(8,7,9) = a; " and A7 = (5,3,2,7)(6,4,1,8) = 5, .

So we will introduce a definition (see Definition 3.1) to distinguish between the two situations, and the
two relationships will be summarized as three lemmas (see Lemma 3.3, Lemma 3.4 and Lemma 3.5) which
imply that the case of Example A can be transformed into the case of Example B, and so we shall introduce
a tool (see Definition 3.6) to characterize the case of Example B (see Theorems 3.11-3.15). Finally, we will
apply the techniques (see Lemma 4.1 and Lemma 4.2) to confirm Conjecture 1.1 for the case of Example B
(see Lemma 4.6), and then by using lemmas (see Lemma 3.5 and Lemma 4.6) to confirm Conjecture 1.1 for
the case of Example A (see Lemma 4.8).
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2. Preliminaries

Throughout this paper, if there is no special statement, the different letters and the same letter with
different marks indicate different points. Furthermore, S, is the symmetric group on the set [n] = {1,2,...,n},
and (1) is the identity of S,,.

Recall some notions and notations about symmetric group which will be used, for further details see [1,2].
For a,f € Sy, we write Fiz(a) = {i € [n]|i* = i} and M(a) = [n] \ Fiz(a) and the commutator
[, B] = a8~ taB = a~ta” and o(a) the order of a. It is well known that there exist some disjoint cycles
a1, ..., &g such that @ = aj - o, and then we use {a} to denote the set {a, ..., a5}, and we say «; is a cycle
factor of a. Tt is obvious that ™' = a7 '+ a7 ! and of = af - af and {f} = {alﬁ, ..., a2}, Moreover,
the centralizer of « in S, is denoted by Cs, («), that is, Cg, () = {z € S,|ra = az}. In particular, we
note that for v,w € Sy, @7 = a¥ if and only if yw™! € Cg, (). So we start with the w such that a% = a;l
foreachi=1,2,....,s

Lemma 2.1. Let o = (2, Zp—1, ..., 21) and 8 = (Yr, Yr—1, -, y1) be two disjoint r-cycles in S,,.
(i) For each z; in M(«), there exists an involution w such that o = a~! and z; € Fiz(w) and M(w) C

)-
(ii) For any two points x; and x; in M (), there exists an involution w such that a* = a1 and 2% = z;
and M (w) C M(c).
(iii) For all z; € M(a) and y; € M(f), there exists an involution w such that a* = g1 g = a7 1,
M(w) € M(a)UM(8) and (zi,3;) € {w}.

M (w). In particular, there are at most two points in M (a) N Fliz(w).

Proof. Note that a=! = (21,22, ...,7,) and & = (T, Tk—1, .o, T1, Ty Tr1, ooy Tpy1) and o = (28,254, ...,
oy, a8, xe .15, ) where 1 < k < r. So we see that o = a~! if and only if there exists an integer k
such that x{ = x1,2%_; = ®2,..., 2 = 2,77 = T4, e TR = Ty Picking an involution w such that
{w} = {(zs,2¢) |75, 2 € M(c) with s+t =k +1 or k+r + 1}. One easily checks that a* = a1 and
M(w) C M(a), and further the w is completely determined by k.

(i) According to the above discussions, it follows that x; € M («) N Fiz(w) if and only if there exists an
integer k such that 1 <k <r,2i=k+1or2i=k+r+1. Since 1 <17 <r, there always exists such integer
k for each x; in M(«). In addition, the necessary and sufficient condition shows that there are at most two
points in M (a) N Fiz(w), and |M(a) N Fiz(w)| = 2 if and only if both k41 and k4 r+1 are even numbers.

(ii) Similarly, we know that (x;,z;) € {w} if and only if there exists an integer k such that 1 < k <,
i+j=k+1lori+j=k+r+1. It follows from 1 < 7,5 < r that there always exists such integer k for any
two points z; and x;.

(iii) Note that & = (@i, Ti—1, ooy T1, Tpy Tp—1y ooy Tig1) a0d 871 = (Y4, Yjt1s s Yrs Y1, -y Yj—1)- Since a and
B are two disjoint r-cycles, we can take the involution w such that = = y;, x7 | = y;41,...2¢; = y;—1 and
M (w) = M(a)UM(B). It is simple to see a* = 37! and (x;,y;) € {w}. In addition, we see @ = o’ = (871,
and so 8¢ = a~!. We have thus proved this lemma. O

Corollary 2.2. Let a = (211, %12, ..., Z15) * - * (Tk1, Th2, .o, Tr) and S = (x11,221,...,2%1). Then for any
permutation w with 8 = 87! and M(w) C M(S), there exists a permutation v such that a*¥ = a~! and
M(v) € M(a)\ M(B) and g« = g~

Proof. Let a; = (1, T2, .., xir) € {a} for i = 1,2,...,k. From $* = 7! and M(w) C M(B), it follows
that w is an involution, and so we assume that

W= (Ts;1,Tt,1) (Tsp1, Tep1) - - - (Ts,1, 1) Where {w} = {(xs,1,26,1), (@501, Ttn1), oo (Tsy1, Te1) -

For each cycle factor (2,1, %¢;1), by Lemma 2.1 (iii), there exists an involution w; such that
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(Ts;1,2¢51)w; 1 (Ts51,@151)w; 1
as; = oy, and oy = oy, and M(w;) C M(as; o) \ {zs;1, 2451}

Picking v/ = wiws - - - w;. Then we see that
M(I/) c M(a> \ M(B) and (04510452 T Qg Qg Qi - atl)wyl = (04510452 T Qg Qg Oy - atz)_l'
On the other hand, Lemma 2.1 (i) shows that there are at most two points in M (8) N Fiz(w). If M(5)N

Fiz(w) =0, then a = aig, (g, -+ g, v, gy -+ iy, and so a®” = a~Land M (v) € M(a)\M(B) and g« = 371
where v = /. Suppose {z,1} = M ()N Fiz(w). Then by Lemma 2.1 (i) we see that there exists an involution

w’ such that a;j/ = a; ' and M(w') C M(ap) \ {zp1}. In this case, a = (as, o, - - Qg Qpy - - - Q) ),
and it is easy to verify a*” = o~ ! and M(v) C M(a)\ M(B) and 8*¥ = p~! where v = w'v/. Assume
{xp1,2q1} = M(S)NFiz(w). Similarly, there also exists an involution w” such that 04‘;” = oyt and M(w") C

M(ag) \ {zg1}, taking v = w'w"V/, we see a*” = a1 and M(v) C M(a)\ M(B) and B<¥ = 371. The proof
of this corollary is complete. O

Next, we first state an useful lemma and then give a formal proof of Conjecture 1.1 in the case when

af = Ba.

Lemma 2.3. Let o and 8 be two permutations in S,. If there exists a permutation pu € S, such that
a* = o~ and B* = B!, then there exists a permutation v € S, such that ¥ = o, 37 = 87! and
M(y) € M(a) UM(B).

Proof. We define a subset of {u}, that is, IN (o, 8) = {u; € {u}| M(p;) € M(a)UM(B8)}. IEIN (e, B) # 0, it
is easy to see that oY = a1, 37 = 8~ and M(y) C M(a)UM(B), where {7} = IN(«,3). If IN(a, ) = 0,
then M(u) N M(a) = 0 and M(u) N M(B) = 0, and thus a = o~ and 8 = 7!, which imply o and 3
are two involutions. In this case, we may set v = (1) where (1) is the identity. It is clear that a” = a™1,
BY =371 and M(y) =0 C M(a)U M(B). The proof of this lemma is now complete. O

Lemma 2.4. ([7, Danny Neftin]) Let « and 8 be two permutations in S, with af = Ba. Then there exists a
permutation v € S, such that o = a~! and 7 = g~1.

Proof. Since aff = fa, it follows that {a} is an invariant set under the action of 5 by conjugation. According
to Lemma 2.3, it suffices to prove the case that {a} is an orbit under the action of S by conjugation and
vice versa. If « is a cycle, then 8 = o™ for a positive integer m, and it is simple to show that there
exists a permutation which simultaneously conjugates « and [ onto their respective inverses. So we let
a = ajas - oy, and the cycle factor «; = (1, %2, ..., x4) for i = 1,2, ..., k with & > 1. Since {a} is an orbit

f = ap and af =41 fori=1,2,...,k— 1.

of B which acts on it by conjugation, we may assume that «
Without loss of generality, we set a:f] =x(jq1); fori=1,2,..,k—1and j =1,2,...,[. Picking o = pypa--- pu,
where y; = (Zrj, T(k—1)j, -, ¥1;) for j = 1,2,...,1. Then we see that of = ay, af = a;_1 for i = 2,...,k,
M(p) = M(a) and further M(ag - - - a) C Fiz(ps). Obviously, a‘fﬂ = a1, and thus p8 = aof* for
a positive integer m, therefore, there exists an involution w so that o = a;* and (uB)* = (uB)~" and
M(w) € M(aq). Note that ay = (211,712, ..., 211) and g = (Tx1, T(k—1)1, -, T11)** (Tki, T(k—1)15 - T17)- Then
by Corollary 2.2 we see that there exists a permutation v such that u*¥ = p=! and M(v) C M(as - - - ay).
So we have (uB)* = pvf" = p~' ¥ and (uB)*" = (af")*” = a;™ = (uB)~" = ', therefore,
p 1B = Bt~ and so f¥Y* = 1. Note a = o/fo/fz e o/fk. On the other hand, we see that

) ) 1 ) . "
(allf)wy,u _ O/lﬁwu/t _ agwl/)(wu) samn _ (al—l)(;ﬁ)w”y _ (al—l)# it1 _ (allt ”1)71’

—1+1 —2+1 —k+1 .
and thus a*"* = (off  of <-af )7L Since o(u) = k, we have
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k—1+1 k—241 k—k+1 2 k
wrp (M I3 Lk -1 _ (oo p? o pfN—1 1
« = (af aq Qg )T = () ay )T =a

Consequently, we derive this lemma. O
Then by Lemma 2.3 and Lemma 2.4, we conclude this section by the following assumption.

Assumption 2.5. we assume that there is no orbit of 5 acting on {a} under conjugation in the rest of this
paper.

3. Characterization of o and 8 with |Fiz([e, 8])| > n — 4

Given o = ay - - - ag with s > 1. Then [, 8] = a7 ' -+ a; el - af. Since [Fiz([o, B])] > n — 4, it follows
that there are some points which are not only in M («) but also in Fiz([o, 8]) when |M(a)| > 4. Note
that if there exists an «; such that af = «;, then z € Fiz([a, 5]) for all x € M(c;). On the other hand,

k
Assumption 2.5 implies that there exists a positive integer k > 2 such that a? ¢ {a}. In fact, this situation
really may arise, see Example A. So we introduce the following definition to characterize this situation.

Definition 3.1. Let o and 8 be two permutations in Sy, and {aq, a9, ..., } C {a} with &k > 2. If ozf = Q11
foralll1 <i<k, ozf ¢ {a} and af # oy for each a; € {a}, then we say a1 — a2 — -+ — o, is a transitive
cycle factors chain of 5 on «, and k is the length of this transitive cycle factors chain.

Then by Definition 3.1 we obtain the following remark immediately.

Remark 3.2. Let o, 5 € S,, with some transitive cycle factors chains of S on «. Then there is no common
cycle factor between two different transitive cycle factors chains of 8 on «.

Inspired by Relationship 1 and Relationship 2, we get the following three lemmas.

Lemma 3.3. Let o, € S, and 3 — a3 — - -+ — «ai be a transitive cycle factors chain of 5 on «.
Then there exists a permutation u € Cg, (anas - - - o) such that o(u) =k, M(u) = M(a1ag - - - ax) and
M(agas -+ - ag) C Fix(up).

Proof. Since a; — as — - -+ — «ay is a transitive cycle factors chain of 5 on «, we have af = ;41 for
i=1,2,...,k—1. Without loss of generality, we may assume that «; = (x;1, x;2,...,zy) for i = 1,2, ..., k, and
m?j =a(q1); fori=1,2,..,k—1and j =1,2,...1. Pick p = pypug - - - pu where p1; = (Tpj, T(k—1)55 - T15)
for j =1,2,...,1. Clearly, u € Cg, (a1cv2 - - - o), o(p) = k and M () = M (o - - - ag). Moreover, we see
xfjﬁ =ux; fori=2,...,kand j =1,2,....1, and thus M(asas - - - ax) C Fiz(uf), as desired. O

Lemma 3.4. Let o, B, € S,, with p € Cg, (a1ae---ag), o(p) =k, M () = M(aiae---ay) and M(ag---ax) C
Fix(upf), where a3 — ag — - -+ — «ay; is a transitive cycle factors chain of 5 on a. Then [a, f] = [&/a, pf5],
where o is a permutation with {o/} = {a} \ {a1, a9, ..., ap}.

Proof. Note [a, 8] = [/ajas - - - ap, f] = (d/aras - - - ap) "N ajas - - - o). Tt follows from o* = o and
M(azas -+ ag) C Fiz(uB) that (o/ajas - - ag)? = ('ayas - - o) = (o) *Pag - - - oy Hence, we have
[a,8] = [(on)tag t o [an - - - ap(@an)"P] = (ooq) (o )P = [0/ o, pf]. O

Lemma 3.5. Let o, o/, 5,0 € S, with u € Cg, (anag - - - ag), o(p) = k, M(p) = M(apag - - - a) and
M(ag - -+ ag) C Fiz(uB), where a3 — aa — - -+ — «y is a transitive cycle factors chain of 8 on « and
{'} = {a} \ {1, 02, ...,a}. If there exists a permutation w such that M(w) C M(cd'a1) U M (p5) and
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(1B)* = (uB)~' and o/¥ = o/ 7! and of = ozl_l, then there exists a permutation v such that ¥ = o~ ! and
BY = 1. In particular, o/¥ = o/ 1.
Proof. Since oy — a3 — - -+ — i is a transitive cycle factors chain of f on a, we may set o; =

(i1, Tigy ooy ) for @ = 1,2, ... k. As with p € Cg, (anag - - - ag), o(p) = k, M(p) = M(aqnag - - - o) and
M (o~ ay) C Fiz(pf), we may take o = pug iz - - jy where pij = (Tpj, (j—1);, .-, v15) for j = 1,2,...., 1. Note
p= (Tr1, T(k=1)1, -+ T11) " (Thts T(h—1)15 -, T11) and y = (11,12, ..., 711). Then by Corollary 2.2 we see that
there exists a permutation v such that u«* = p=! and M(v) € M(ag---ag). From M(az---ar) C Fiz(us),
we derive (uB)*” = ((uB8)~1) = (uB)~! = B~ 1u~t. In addition, (uB)*” = u*vBv” = u=1B“*. Thus we
have = '8*¥ = B~ 'u~!, which indicates p~'8“Yu = =1, and so B“v# = B~ 1.

We claim that a*V# = o~ 1. Clearly, a“"* = o/ “YH(ajaq - - - ag)VH. Since M (a’) N M (vp) = 0, we have

5 . v

1 k i i
o't = o/ 71 Note ajag-ap = af o ol . Consider (aff )*# for each i = 1,2,..., k. We see (o )*"* =

i =1, -1 iNwy
O/f wrp _ atiw(wu) ulwuu. Since o = a;l and M( )ﬂ M(a1> — 0, we have atiw(wu) plovp _ ( *1)(H )i
, B )
As p#v = p~t, we derive (a7 ) = (a7 = (o o )~L. Since o(u) = k, we have (o - =
k 1 2
~1. Hence, (aag - - ag)"" = (off off - )*r = (aff of -- -a‘f )7l = (a1ag - ag) "t In

Hk7i+l)
particular, M(v) N M (/) =0 and M (u) N M(c/) = 0 indicate o/“"* = o/ ~1. O

j2

(of

It follows from Lemma 3.4 and Lemma 3.5 that the problem can be attributed to the case that there is
no transitive cycle factors chain. So we first deal with the case that there is no transitive cycle factors chain
of B on a. See Example B, we have ay; ' = (1,2)(8,7,9) and o5 = (8,7)(2,1,9) and 1,8 € Fiz([az, (2)])
even if there is no transitive cycle factors chain of 8 on as. In fact, we had observed this phenomenon and
further applied it in [9]. Now we recall some notions and notations which will be used to characterize this
phenomenon, for further details refer to [6].

A block A in a cycle 1 = (ay,as,...,a,,) is a consecutive nonempty substring a;,a;y1,...,a;4; of
@iy Qi1 -y G, G1, A2, ..., @5—1 Which means that for each 1 <k </, ajyp = aiqr if ¢ +k < m, and a;4r = a;
if i +k > m, where j =i+ k(mod m) with 1 < j < m. We say two blocks A and B are disjoint if they do
not have points in common, and the product AB of two disjoint blocks is defined as the usual concatenation
of strings, for example, if A =1,2,3 and B = 4,5,6,7 then AB = 1,2,3,4,5,6,7. A block partition of the
cycle 7 is a set {41, ..., A;} of pairwise disjoint blocks in 7 such that there exists a block product A;, - - 4;,
of these blocks such that 7 = (A;, - - - A;,).

1

Definition 3.6. Let g and h be two permutations in S,,. If A = x1,x9,...,x; is a block i in a cycle factor of g,
and A=' = 2;,2;_1, ..., 21 is a block in a cycle factor of h such that x] # xlffl and z{  # ah then we say
{A, A=} is a local inverse pair between g and h. In particular, if [ = 1, then 29 # 2} " and xy 7é xh.
Furthermore, we say z is a free point between g and h if x is either in M(g) N Fiz(h) or in M (h) N Fiz(g).

Remark 3.7. Let g and h be two permutations in S,,. If |[M(g)| = |M(h)|, then the number of free points
between g and h is even.

Proof. Let F(g,h) be the set of free points between g and h. As with Definition 3.6, we have F(g,h) =
[M(g)\ (M(g)nM(h))]U[M(h)\ (M(g) N M(h))]. In addition, it can easily be seen that [M(g) \ (M(g) N
M(h))]N[M(R)\ (M(g) N M(h))] = 0, and so |F(g, h)| = 2[M(g) \ (M (g) N M (h))| due to [M(g)| = [M(h)].
Thus we have proved this remark. 0O

Lemma 3.8. Let g = g1 - - - g5 and h = hy - - - hy be two permutations in S,, with g;h; # (1) for all ¢ and j.
(i) If € M(g) N Fix(gh), then there exists a local inverse pair containing  between g and h.
(ii) For each local inverse pair {A, A™'} between g and h, there exists only one point which is not only
in A but also in M (gh) while other points of A are in Fixz(gh).
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(iii) For every x € M(g) N M (h), there exists a local inverse pair between g and h containing z.
(iv) |M(gh)| is equal to the sum of the numbers of local inverse pairs and free points between g and h.

Proof. (i) Let z € M(g) and = € Fiz(gh). Then we see that there exist two cycle factors g; € {g} and
hj € {h} such that they can be expressed as g; = (z,y,...) and h; = (y,z,...). Since g;h; # (1), there exists
a local inverse pair containing x between g and h by Definition 3.6.

(i) Without loss of generality, we set {A, A='} is a local inverse pair between g and h where A =
T, T2, ..., 2 and A™1 = 271, ...,21. According to Definition 3.6, if I > 1, then x; € Fiz(gh) for i =
1,...,0 — 1 and x; ¢ Fix(gh); if | =1, 2; ¢ Fixz(gh).

(iii) Let © € M(g) N M(h). If z is in Fix(gh) or Fiz(hg), then by (i) we infer (iii). Otherwise, we have
x9 # 2" and 29 # z". In this case, {A, A~1} is a local inverse pair containing x between g and h, where
A=xand A~ ! =ux.

(iv) For all x € M(g) U M (h), x is either in M (g) N M (h) or in (M(g) N Fixz(h)) U (Fixz(g) N M(h)), and
thus x is either a free point or contained in a local inverse pair by Definition 3.6 and (iii). Then by (i) and
(ii) we infer (iv). The proof is completed. O

Using Lemma 3.8 (i), we obtain the following lemma immediately.

Lemma 3.9. Let o = o - - - o and 3 be two permutations in S,,. If x € M(a~!) N Fiz([a, B]), then there
exist a; and o for which one of the following conditions holds:
(i) a;la? = (1) and = € M(a; ).

(ii) There exists a local inverse pair between a; ! and af containing z.

So far, we have seen that if there is no transitive cycle factors chain of § on «, then we can use local
inverse pairs and free points to describe ! and af, and so we deal with the case that there is no transitive
cycle factors chain of 5 on «a in the following.

Lemma 3.10. Let « and § be two permutations in S,, with 1 < |M([a, 8])| < 4. If there is no transitive cycle
factors chain of 5 on «, then [{a}| < 3.

Proof. Suppose a = ajas - - - a5 with {a} = {aq, a9, ...,as} and s > 3. Note |M(o;)| > 2 for i =1,2,...,s.
We have |M(a)| = |M ()| +|M(a2)| + -+ |M(as)| > 8, and so there exist some points in M (a) U M (o)
that become fixed points of [«, ]. Since there is no transitive cycle factors chain of 8 on «, it follows that
a; 104? # (1) for all 4 and j. Then by Lemma 3.8 (i) we deduce that there exist at least one local inverse
pair between a~! and o, and thus the number of free points between a~! and o is not more than 3 by
Lemma 3.8 (iv). On the other hand, if there exists a cycle factor g € {a~!} such that there is no local
inverse pair between g and o, then by Lemma 3.8 (iii) we see that all elements of M(g) are free points
between a~! and of, and thus there are at least four free points between o' and o from the proof of
Remark 3.7, a contradiction. Hence, there exist at least one local inverse pair between g and af for each
cycle factor g € {a~'}, in other words, there exist at least s local inverse pairs between a~! and of.
However, Lemma 3.8 (ii) implies that the number of local inverse pairs between o' and o is not more
than 4, and so s < 4. If s = 4, then it can only be a~! = (A)(B)(C)(D) and o’ = (A=) (B~1)(C~1) (DY),
however, a~'a” = (1), a contradiction. Thus we have deduced that s <3. O

Theorem 3.11. Let o and 3 be two permutations in S,, with |M ([, 8])| = 4, where « is a cycle. Then one
of the followings holds:

(i) o=t = (2,9) and o = (2/,y’) where x,y, 2,y are four free points between a~! and o”.

(ii) a=! = (ABz) and of = (A~1B~'y) where z,y are two free points, {4, A~'} and {B, B~!} are two
local inverse pairs between o~ ! and .
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(iii) @t = (ABCD) and of = (A~'B~1C~1D~1) where {4, A7}, {B,B~'}, {C,C~'}, {D,D~'} are
four local inverse pairs between o' and o”.

Proof. It follows from Lemma 3.8 (iv) that the number of free points is at most 4. In addition, Remark 3.7
shows that the number of free points may be 0 or 2 or 4. Thus we divide into three cases to discuss a™*
and of.

(i) If there are four free points, then there is no local inverse pair by Lemma 3.8 (iv), and thus we obtain
(i) immediately.

(ii) If there are two free points, then by Lemma 3.8 (iv) we see that there are two local inverse pairs. So
we may assume that the block partitions of a~! and o are {A, B, z} and {A~!, B~!, y} respectively, where
x,y are two free points, {A, A~'} and {B, B~'} are two local inverse pairs between a~! and o®. Without
loss of generality, we take a~! = (ABz). Note that there are two possible cases of the circle permutation
on A~1, B! y, those are, (A"1B~1y) or (B~'A~1y). However, if o’ = (B~1A~1y), then {4, A~'} and
{B, B~'} are not local inverse pairs between a~! and o, a contradiction. It follows from Definition 3.6
that o = (A~1B~1y).

(iii) If there is no free point, then there are four local inverse pairs from Lemma 3.8 (iv), those
are, {A, A1}, {B,B~'}, {C,C~'} and {D,D~!}. Similarly, we set a=! = (ABCD). Obviously, there
are six possible cases of the circle permutation on A=Y, B~!, D~' C~!. However, nothing but o? =
(A71B~1C~1D™1Y), for example, if o = (A~'B~!D71C~1) then {C,C~'} and {D, D!} are not local
inverse pairs between ! and a?, a contradiction. O

Theorem 3.12. Let o and 3 be two permutations in S,, with |M ([, 8])| = 3, where « is a cycle. Then one
of the followings holds:
(i) @' = (Az) and o = (A~'y) where x,y are two free points, {A, A~'} is a local inverse pair between

a~ ! and o”.

(ii) o=t = (ABC) and of = (A"'B~1C~1) where {A, A~'}, {B, B~} and {C,C~!} are three local
inverse pairs between o~ ! and a?.

Proof. It follows from |M ([, 5])| = 3 and Remark 3.7 that the number of free points may be 0 or 2. So we
divide into two cases to discuss a~! and o,

(i) If there are two free points, then there exists only one local inverse pair {4, A~'}, and thus we may
set a~! = (Az) and o = (A~'y) where x,y are two free points.

(ii) If there is no free point, then there are three local inverse pairs. So we may set a~! = (ABC).
Proceeding as in the proof of Theorem 3.11 (ii), we derive o® = (A~'B~1C~!). O

Theorem 3.13. Let a and /5 be two permutations in S, with [{a}| = 2, |[M (o, 8])| = 4 and there is no
transitive cycle factors chain of 8 on a. Then one of the followings holds:

(i) ! = (A)(Bz) and o’ = (B~')(A~'y) where z,y are two free points, {4, A~'} and {B, B~} are
two local inverse pairs between o~ ! and a?.

(ii) Either ™! = (ABC)(D), o = (D7'B7'C™H)(A™') or o = (A7'C~Y)(B~'D™Y), ot =
(AB)(CD) where {A, A=}, {B,B~ '}, {C,C~ 1}, {D, D!} are four local inverse pairs between a1 and
aP.

Proof. Since there is no transitive cycle factors chain of 8 on «, it follows from Lemma 3.8 (iv) that
the number of free points and local inverse pairs is 4. Additionally, if there is no local inverse pair, then
the number of free points between a~! and o is not less than 8 because of [{a}| = 2 and the proof of
Remark 3.7. Hence, there exists at least one local inverse pair, which means that the number of free points
may be 0 or 2.
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(i) If there are two free points o and y, then there are two local inverse pairs {4, A1} and {B, B~'},
and so we can let o~ = (A)(Bz). Note that for o, there are two possible cases which are (A~1)(B~1y)
and (B~1)(A™'y). However, if o® = (A=1)(B~'y), then {A, A~'} is not a local inverse pair between a~!
and o, a contradiction. Therefore, o® = (B~1)(A™1y).

(i) If there is no free point, then there are four local inverse pairs {A, A=}, {B,B~'}, {C,C~'} and
{D, D~'}. We observe that there are two possible cases:

1. There exists one cycle factor of a~! has three blocks and the other cycle factor has one block. In this
case, an argument similar to the one used in (i) shows that a=! = (ABC)(D) and o = (D"1B~1C~1)(A™1)

2. Every cycle factor of a~! has two blocks. In the same way, we derive a~! = (AB)(CD) and o® =
(A-tc~-YYB~tD™Y. O

Theorem 3.14. Let « and /3 be two permutations in S, with [{a}| = 2, |[M (o, 8])| = 3 and there is no
transitive cycle factors chain of # on a. Then a™! = (AB)(C) and o = (B7'C~1)(A~!) where {A, A~1},
{B,B7'} and {C,C~'} are three local inverse pairs between a~! and o”.

Proof. According to the proof of Theorem 3.13, it follows that the number of free points is 0 or 2. If the
number of free points is 2, then there exists only one local inverse pair, and thus there exists a cycle factor
a; € {a~ !} such that there is no local inverse pair between «; ' and o, which implies that the number of
free points between a~! and o is not less than 4 because of |M(«; )| > 2 and the proof of Remark 3.7,
a contradiction. Hence, there is no free point between a~! and o, and then by using the way of proving
Theorem 3.13 to derive this theorem. O

Theorem 3.15. Let o and § be two permutations in S,, with [{a}| =3, 1 < |M (e, 8])] < 4 and there is no
transitive cycle factors chain of 8 on a. Then a~! = (AB)(C)(D) and o = (C~1D71)(A~1)(B~1) where
{A, A=} {B,B7'}, {C,C~'}, {D, D'} are four local inverse pairs between a~! and o.

Proof. An argument similar to the one used in Theorem 3.14 shows that there is no free points between
a~! and o, and there are four local inverse pairs {A, A~'}, {B,B~1}, {C,C~'} and {D, D~!'} between
a~ ! and of. Proceeding as in the proof of Theorem 3.13, we prove this theorem. O

We conclude this section by pointing out two useful remarks.

Remark 3.16. In Theorems 3.11-3.15, we see that there exists at most one point that is in M (o) but not
in M («) except Theorem 3.11 (i).

Remark 3.17. In Theorems 3.13-3.15, we see that there are at most two cycle factors of o whose lengths
are equal, those are, Theorem 3.13 (ii) 2 and Theorem 3.15.

4. Simultaneous conjugation

In this section, we first prove Conjecture 1.1 in the case when there is no transitive cycle factors chain of
B on a. Note that for the case that there is no transitive cycle factors chain of § on «, it suffices to prove
each case of Theorems 3.11-3.15. However, there are still two problems that need to be solved, one is that
for a fixed «, there exist many S’ such that [a, '] = [a, f], and the other is that we can’t give an exact
form of 3 even if a and a® have been given. In order to settle these two problems, we give the following
two lemmas.
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Lemma 4.1. Let o = a3 - - - oy, and S be two permutations in .S,, with |[M(8) \ M(«)| < 1 and there are at
most two cycle factors of o whose lengths are equal. If there exists an involution w such that M (w) C M(«)
and oy = a;l fori=1,2,....,k and 8% = 87!, then the followings hold:

(i) If all lengths of the cycle factors of a are different from each other, then for each 8’ with of =af ,
there exists a permutation v such that /7 = 8/ ~! and o] = ozi_l fori=1,2,..., k.

(ii) If |ay| = |az| and there exists an involution u € Cg, (o) N Cs, (8) N Cs, (w) such that of = as
and oy = oy and M () € M(a), then for each ' with o = of, there exists a permutation ~ such that
B7=p"1and o] =a; ' fori=1,2,..,k.

Proof. (i) It is well known that 8 € Cg, ()8 for each 8’ with o = of. Since all lengths of the cycle
factors of « are different from each other, it follows that

Cs, (o) = (a1) X {ag) - - - x(ar) X S((n)\M(a))» Where S\ a(a)) is the symmetric group on [n] \ M (a).

So we may set 3/ = abf where a = o/foz? . O‘Zk and b € S\ M(a))- As with [M(8) \ M(a)] <1
and Lemma 2.1 (i), there exists an involution 6 € S\ a(a)) such that B = B and b’ = b~!. Picking
~v = abwh. Note ' = ﬂ(“b)_lab and ab = ba. We see a] = a¥? = (ozi_l)‘9 = ai_l for i = 1,2,...,k, and
BT = (Blab) " gpyabwt — Bwl(gh)«f = B=1g=1p=1 = B=1(ab)~! = B’ 1, as desired.

(ii) Note that Cs, () = {as) X - -+ x () X G X S(jnp\M(a)) Where G = ((a1) x (a2)) x (u). So we may set
B' = abB where a = ai'af - ajf i’ and b € S\ a(a))- If @ = 0, the (ii) follows by (i). Consider i = 1. Then
by |M(8)\ M(a)| <1 and Lemma 2.1 (i), there exists an involution 6 € S\ (a)) such that b’ = b~?
and % = B. Choose v = abwuf. Note 3/ = ﬁ(ab)flab and ab = ba. We see o] = ai_l fori=1,2,...,k, and
B = (B ab)ebent — g (ah)end — 3-1(ar g " - ap ub) = B [u(ar 0" - - - ap Hb)O =
B~ Yab)~t = 'L, as desired. O

Lemma 4.2. Let a and 3 be two permutations in S, with M(8) C M(a)U M(a”) and there exists at most
one point that is in M (a®) but not in M(«). If there exists an involution w such that M(w) € M(a),
a* = a ! and 2%“? = g for all x € M(a), then B = 371

Proof. Suppose there exists at most one point which is in M (a?) but not in M (c). Then by Assumption 2.5
and M () C M(a)UM (a”) we see that there exists at most one point which is in M () but not in M («), and
thus the 2¢f“% = g for all x € M(a) implies wBwf is the identity, and therefore wBw = B~1. Additionally,
since w is an involution, we derive wBw = $“ = 1. The proof of this lemma is now complete. O

According to Remark 3.16, Remark 3.17 and Lemma 4.1, it suffices to consider one 8 with M(5) C
M(a) U M(a?) for each case of Theorems 3.11-3.15 except Theorem 3.11 (i). Now we start to prove
Conjecture 1.1 in the case when there is no transitive cycle factors chain of 5 on a.

Proposition 4.3. Let o and 8 be two permutations in S,, with 0 < |M([a, B])] < 4, where « is a cycle. Then
there exists a permutation + such that ¥ = a1 and 37 = =1

Proof. Apparently, it suffices to discuss each case of Theorem 3.11 and Theorem 3.12, as follows:

Case 1: Theorem 3.11 (i). Without loss of generality, we set 2 = 2’ and y® = y/. Note that x and 2’ are
contained in the same cycle factor of § as well as y and y’. By Lemma 2.1 (i) (ii), we see that there exists
an involution v such that a¥ = a~! and g7 = =L

Case 2: Theorem 3.11 (ii). According to Definition 3.6 and Lemma 4.1, we may assume that

-1
ot = (z1,29,...,2) and @ = (Tg, Ty 1, .00 T1, Ty 1, ooy Tag 1, Trp1),



J. Pan / Journal of Pure and Applied Algebra 226 (2022) 106804 11

where 1 < s <r —2 and xf = xs,xf_l = Ts_ 1, ,xf = xr_l,xf_l = I,_o, ...,xf+2 = xs+1,xf+1 = Tpi1
and M(B) € M(a) U M(a?). Then we have 8 = (2, Zy_1, ..., Ts+1, Trr1)- Pick an involution w such that
=g, 8 = Tg_1,.., 28 =21, 2 = Xy, o = Tpoq, ., 2Y = Teqq and M(w) € M(«). One easily
checks that o = o~ ! and 8% = 871, as desired.

Case 3: Theorem 3.11 (iii). Similarly, we may assume that a=! = (21,3, ..., 7,) and

aﬁ = (xsaxsfla vy L1y Lty L1y ooy Lsh1s Lhy Lh—1y ey Lt41y Ly Tr—1, "'7xk+1>7

where 1 < s <t <k <rand xf = xs,xf_l = xs_l,...,:cf_s+1 = xl,xf_s = x4, ...,xf_t_H = xs_,_l,xf_t =
Tk, ...,zf_kﬂ = xt+1,xf_k = z,, ,z? = x4+ and M(B8) € M(«). Note that

f—xjﬂ,h ifr—s+1<j5<r
Jﬁf:cgﬂ_s_t ry dfr—t4+1<j5<r—s
x?—xj+t+k ry 1f’f‘—]€—|—1§j§’r—t
ol =z, f1<j<r—k

Take an involution w so that ¢ = z,, 2% = z,_1, ..., 2¥ = Ty_it1, ..., ¥ = 21 and M (w) C M(«). Obviously,

o = a~!. On the other hand, an easy computation to verify that

wB

T j+1:xf+jfs:xj7 lfISJSS
xwﬁwﬂ ﬁwﬁ o :)+t ]Jrl r+jfsft = Ty, if s +1 < J <t
7 T*jJrl - B [3 o . .
Ty L = Ty = 2y, HEH1<j<E
g =75 = 25, thk+l<j=<r
As with Lemma, 4.2, as desired.

Case 4: Theorem 3.12 (i). In the same way, we take o~ = (21,22, ...,7,_1,7) and &® = (z,_1, ..., 21, V),
where :vf_l = xr_l,xf_Q = T,_o, ,mf =x,,2°% =y and ( ) C ( YUM (a?). Then we have 3 = (z,v).
Regard an involution w with 2% = x,._1, % = Xp_9, ..., 2y = Tr_1, =z and M(w) C M(«), as desired.

Case 4: Theorem 3.12 (ii). Similarly, we may set that

a ™l = (z1,20, .., x,) and @F = (@, g1, ooy T1, Ty Ty 1, ooy Ty 1y Ty Ty oy Tpg 1)
where 1 < s <t <rand zf = xs,xf_l =251, ...,xf_s_H = xl,mf_s = Xy, ,z? = 1:5_4_1,33? = x,, .,ztﬁ_H =
241 and M(B8) € M(a). Note that
x?:xj, ift+1<j<r
o) =wayy, ift-s+1<j<t
mf:xjH, ifl1<j<t—s

Take an involution w so that af = x4, 28 = 241, ...,2¢ | = T, ..., 2% = 2441 and M (w) € M (). Obviously,
a® = a~!. On the other hand, one easily checks that

puwp  _ wB _ . .
wpl =l = =y, 1< <
wPhwfh __ Bwp 8 8 _ . )
T - xtw]+1 :J.H —jr1 = Ty = Xy, ifs+1<j<t
Bwp B

wg _ . ‘
Tyl =Ty = o =x;, i+ 1<j<r

As with Lemma 4.2, as desired. O
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Proposition 4.4. Let o = ajao and 8 be in S,, with af ¢ {a} for i = 1,2, where ay and ag are two cycle
factors of a. If 0 < |M([e, B])| < 4, then there exists a permutation v € S, such that o] = aj*
agy = a2_1 and fY = gL

and

Proof. Note that it suffices to prove each case of Theorem 3.13 and Theorem 3.14, as follows:
Case 1: Theorem 3.13 (i). According to Definition 3.6 and Lemma 4.1, we can assume that

a = (1, ., ) (Y1, -y yr) and af = Wiy ooy Y1, 1) (T o1, Ty ey 1),

where mlﬁ = yl,xlﬂ_l = xl,l,...,wf = 9y, xf = x,41 and ylﬁ = xl,ylﬁ_l = xl,l,..,y’f = x1 and M(B) C
M(a) U M(a?). Then we see 8 = (x1,y1)(z2,v2) - - - (21,41)(@r, Tr41). Choosing an involution w such that
¥ =mx,2Y | = T2,..., 2 = 2,2 =z, and ¥ = Y1,y = Yo, ..., ¥Y =y and M(w) € M(e). One easily
checks that o’ = a7t a§ = ay ! and % = B!, as desired.
Case 2: o~ = (ABC)(D) and o = (D~*B~'C~1)(A~!) of Theorem 3.13 (ii). We may let
a = (z1,...,2.)(y1, ..., y) and af = (Yiy ooy Y1y Ty Tg— 15 eey LYl s Ty wovy Tt 1 ) (T1y TY—1, vy 1),

where 1 <[ < s < r and a:f = yl,mf_l = Y1y eees xf = Tsy1 and ylﬁ = wl,ylﬁ_l = xl_l,...,yf = z; and
M(B) € M(«a). It is easy to see that

x?:yjﬂ,r, ifr—Il+1<j<r
ZJB.:‘?ZS.H'-H—M ifr—s+1<j<r—1I
m?zijrs, fl1<j<r—s

Pick an involution w such that z¢ = z,,2§ = z,_1, ...,z = 1 and ¥ = y,,95 = yi—1,..,y = y1 and
M(w) € M(a). Note y“uﬁwﬂ = yf_“ﬁl = 137_%+1 = xf-l-’ri =y, for i =1,...,] and further

3

y;”fﬁl:yf:xj, if1<j<l
wpwhB __ _ Bwp _ B8 B o . .
T =L T\ T = Ty =%, HI+1<j<s
:cffs_j_i_l::cf_szxj, ifs+1<j<r

As with Lemma 4.2, as desired.
Case 3: a~! = (AB)(CD), o = (A"*C~1)(B~'D!) of Theorem 3.13 (ii). We may set

a = (z1, .y ) (Y1, -, y1) and af = (Try Tty ooy Tt 1y Ysy ooy Y1) (Yly ooy Ys 1y Ty oery T1)5

where 1 < s < [ < r and xf? = :m,:vi1 = xr,l,...,xfﬂ = Zsy1, xf = ys,...7xf = 1y, and yf =

YUl = Yty Yo = Ysi1,¥? = @6,y = @1 and M(B) € M(a). We see that § = (z4,ys) - - -

(21,y1). Take an involution w such that 2§ = zs,2% = xs_1,..., 2%

= T1,T5 1 = Tp,.., Ty = Tgy1 and
Y = Ysi Y5 = Ys—1, 088 = Y1, Y = Y- ¥ = Yst1 and M(w) © M(a). It is easy to check that
o = a;' and o = ay;' and B¢ = B~' In addition, we observe that if » = I, then the involution
o= (Tr,yr)(@r—1,Yr—1) - - - (z1,91) such that p € Cs,(a) N Cs, (B) N Cs, (w) and of = az and af = oy, as
desired.
Case 4: Theorem 3.14. In this case, we may assume that
0471 = (x17"'7x7”)(y13 "'ayl) and aﬂ = (ylayl—la--wyl,wm"',xl+1)(xlaxl—1>"'7x1)a

where 1 < [ < r and xlﬁ = yl,xlﬂ_l = Yi—1y s xf = xl,xf = xT,...wﬁl = x74+1 and ylﬁ = xl,ylﬁ_l =

Ti_1,.,yb = z1 and M(B) C M(a). Obviously, 8 = (x1,11)(22,y2) - - - (z1,3). Pick an involution w such



J. Pan / Journal of Pure and Applied Algebra 226 (2022) 106804 13

that =7 = z,28 = x1,..., 2 = z1,27, = Tp, 2y = xyqq and yY = Y, 958 = -1,y = y1 and
M(w) € M(a). Tt is straightforward to show a4 = a; ' and o = a; "' and % = 871, O

Proposition 4.5. Let a = ajasas and 8 be in S,, with af ¢ {a} for i = 1,2,3, where ay,aq, a3 are three
cycle factors of a. If 0 < |[M([a, A])| < 4, then there exists a permutation v € S,, such that o] = a7 ' and
a =ay ' and o = agz' and g7 = gL

Proof. As with Theorem 3.15 and Definition 3.6 and Lemma 4.1, we set a3 = (z1,Z2,...,2Ty), @y =
(ylay27 "'ays)a a3 = (Z17"'7Zt) and

of = (ymysq---,yhzt,th, ~-~721)($s,$571, -~,!E1)($r,$r71, ~~~7ms+1)7

where xf = y57x571 = ys,h...,xf = yhxf = z, ...,xfﬂ = z; and yf = xs,yil = xs,l,...7y1ﬂ = x7 and
2P = mr,zil = Tp_qy .y zlﬂ =441 and M(5) C M(«). In this case, we note that

B= (371’3/1)(1'2792) T ($87y5)(xs+lvzl) T (xr,zt).

Take an involution w such that ¥ = zs,2% = zs_1,....,2% = 2541 and ¥¥ = Ys, Y5 = Ys—1,--Y> = %1
and 2¢ = 2,28 = x4 1,...,2¢ = 21 and M(w) € M(a). An easy computation to show that a&’ = a; ' and
of = a;l and af = a;l and Y = B71. On the other hand, we observe that if s = ¢, then the involution
o= (2, 25)(Ys, 2s) (Tr—1, Ts—1)(Ys—1, 2s-1) - - (Ts41,21)(y1, 21) such that p € Cg, (a) N Cs,(8) N Cs, (w)
and ofy = a3 and of = ay, as desired. O

Using Proposition 4.3 and Proposition 4.4 and Proposition 4.5, we obtain the following lemma.

Lemma 4.6. Let « and 8 be two permutations in S,, with 0 < M ([«, 5]) < 4 and there is no transitive cycle
factors chain of 3 on a. Then there exists a permutation v € S,, such that 87 = 7! and o] = o ! for all
a; € {a}.

Up to now, we have proved the case that there is no transitive cycle factors chain of 5 on . We are now
turning to consider the opposite case, and we first give an useful lemma.

Lemma 4.7. Let o and 8 be two permutations in S,, with 0 < M ([e, 8]) < 4. Then there exist at most three
transitive cycle factors chains of 8 on a.

Proof. Proof by contradiction. Assume that there exist s transitive cycle factors chains of § on «a with
s > 3, those are, apm, 11 = Q42 =+ = Qm,tk; for j = 1,2,...,s. For each transitive cycle factors
chain am; 41 — Q42 =+ = Qm,1k;, by using Lemma 3.3, we see there exists a permutation p; €
Cs, (Qm,;+10m; 42 -+ Qm,1k;) such that o(u;) = kj, M(p;) = M(Qm;410m; 12 - = Om;+k;) and M (o, 42 -
© Qmyk;) © Fiz(pgB). As with Lemma 3.4, we see that [a, ] = [o/aum, 41, p10] where o’ € S, with
{&/} = {a} \ {am,+1, @my 42, -y Oy +k, b+ In addition, it follows from p; € Cs, (Quny+10m 42 * * * Qunytky)
and M(p1) = M(0my+10%mq+2 * * * Omy+k,) and Remark 3.2 that there exist s — 1 transitive cycle factors
chains of p18 on o ayy, +1, those are,

Q41 = Qupjp2 —> 0 = Qup g, fOT J = 2,8,

Using Lemma 3.4 again, we infer [, 8] = [&/am,+1, #15] = [@” Qmy41Qmq+1, p1p2] where o € S, with
{&"} ={dam;+1 }\{Wma+1s Wmat2, oy Omotks +- Applying Lemma 3.4 repeatedly, and finally we get o, 8] =
[ty 410y 41 - -+ Qo 1, pa iz - - psB] where o € Sy with {o™} = {a} \ ({am, y10m, 42 - - - amy 4k, } U
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{@my+1Qmat2 " Qs p U U{Qun . 41Qm, 42+ Qm_+k. })- According to Definition 3.1, it follows that there

is no transitive cycle factors chain of pyus - - - us8 on o’

Lemma 3.10. O

Oy +10my+1 * * * O, 41, however, s > 3 contradicts

In what follows, we will confirm Conjecture 1.1 in the case when there exist transitive cycle factors chains
of § on a.

Lemma 4.8. Let « and § be two permutations in S, with 0 < M ([e, 3]) < 4 and there exist transitive cycle
factors chains of 3 on a. Then there exists a permutation v € S,, such that o = a~! and 37 = g~1.

Proof. Without loss of generality, let a3 — as — -+ - — ay be a transitive cycle factors chain of § on «.
Then by Lemma 3.3 and Lemma 3.4, there exists a permutation p € Cg, (jas - - - o) such that o(u) = k,
M(p) = M(ar1az---ag), M(agas---ai) C Fiz(uf) and [o, 8] = [/ ag, pf], where o’ is a permutation with
{'} = {a} \ {a1, a2, ...,a;}. On the other hand, it follows from Lemma 4.7 that the number of transitive
cycle factors chains of 5 on « is 1 or 2 or 3, and so we divide into three cases to confirm this lemma in the
following.

Case 1: there exist one transitive cycle factors chain of § on «. In this case, we note that there is no
transitive cycle factors chain of u8 on /a1, and then by Lemma 4.6 and Lemma 2.3 we deduce that there
exists a permutation w such that M(w) C M(c/a;) U M (pB) and (pB) = (uB)~" and o = o ' for all

a; € {d’a1}. As with Lemma 3.5, there exists a permutation v € S, such that o = a~! and 7 = 371. In

A
P =

particular, o] = a; ! for each oy € {a'}.

Case 2: there exist two transitive cycle factors chains of S on «, and the second transitive cycle factors
chain is ap41 — ary2 — -+ — ;. Regarding [&’aq, uf]. Since p € Cg, (a1 - - - ) and M(p) =
M(ajasg - - - ag), we see that agy1 — apia — - -+ — g is the unique transitive cycle factors chain
of uB on o’ay. According to Case 1 and Lemma 2.3, it follows that there exists a permutation w’ such
that M(w') € M(a’ar) U M(uB), (uB)* = (uf)~' and (a’ay)® = (a’a;)™" and o] = a; ' for each
a; € ({o"TU{as1}) where {”"} = {&'}\{@k+1, @kt2, ..., a1 }. Applying Lemma 3.5, there exists a permutation
v € S, such that @ = a~! and 87 = 1. In particular, o] = a;l for each a; € {a}.

Case 3: there exist three transitive cycle factors chains of 5 on «, and the third transitive cycle factors
chain is ag11 — ag12 — -+ = . Considering [¢’aq, u3]. In a similar manner, we know that there are two

transitive cycle factors chains of uf on o’a;, those are

Qpt1 = Qg2 — -+ - — g and Q41 = Qe — - - —> Q.
According to Case 2 and Lemma 2.3, it follows that there exists a permutation w” such that M (w"”) C
M(o/ay) UM(up), (uB)*" = (uB)~! and /" = o/ ' and a¥” = a7!. Then by using Lemma 3.5, there
exists a permutation v € S, such that a” = o~ ' and 87 =57 O

So far, we have confirmed Conjecture 1.1 and thus we obtain the following theorem.

Theorem 4.9. Let o and 8 be two permutations in S,,. If the commutator [, 5] has at least n — 4 fixed
points, then there exists a permutation v € S,, such that o = a~! and 87 = g~1.

Here, we give an example which shows that k = 4 is the best bound in the sense of |M ([«, 5])| < k implies
that there exists a permutation which simultaneously conjugates « and § onto their respective inverses.

Example 4.10. Given o = (4,3,2,1) and 8 = (3,2,1,5,4,6,7). Then we see [a, 8] = (2,3,4,5,6). Noticing
that there do not exist a permutation w such that a¥ = a~! and ¥ = 1.
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