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by Danny Neftin, which leads to the completion of the classification of monodromy 
groups for sufficiently large degree.
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1. Introduction

In this section, denote the complex by C, and the projective line by P1.
Let X, Y be Riemann Surfaces where X has genus g, and f : X → Y be a nonconstant rational map 

of degree n. The monodromy group G of this cover, that is, the Galois group of the Galois closure of 
C(X)/C(Y). So G is a transitive group of degree n. See [4, Page 1, Chapter 1], the main problem some 
scholars are interested in is the following: if we fix the genus of X, what restrictions are placed on G? For 
more background on this problem, refer to [3,5]. Actually, the critical case to investigate is when Y = P1

and f is indecomposable because G is a primitive permutation group of degree n in this case. The natural 
question is for which primitive group G appear as the monodromy group of an indecomposable low genus 
covering f : X → P1, and for G which is not alternating or symmetric (in their natural action) what are the 
corresponding covers f? This is the problem of the classification of monodromy groups, which was started 
by Guralnick and Thompson after the classification of finite simple groups and its roots lie in the work of 
Ritt and Zariski. The classification of monodromy groups is a long project with many people involved, for 
some results and history see [4].
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Let B ⊂ P1 be the set of branch points of the cover f with |B| = r, where f : X → P1 is indecomposable. 
Since the fundamental group of P1 \ B is a group generated by r elements with the single relation that 
the product is 1, using Riemann’s Existence Theorem, it follows that the existence of a cover gives rise to 
elements x1, ..., xr in G such that G = 〈x1, ..., xr〉 and x1·· ·xr = 1. Therefore, the investigation of monodromy 
groups associated with group structures, especially the “primitive” Hurwitz problem of the classification 
of monodromy groups. In group theoretic language, it is the following problem: Given conjugacy classes 
C1, ..., Cr in a permutation group G, are there elements xi in Ci with product x1 · · · xr = 1 and such 
that the group generated by x1, ..., xr is primitive, and each such tuple corresponds to an indecomposable 
covering which appears in this classification. Recently, the classification was completed when the degree is 
assumed to be sufficiently large in [8], except for these two families of ramification types: Given by conjugacy 
classes of Sd � S2: s, s, s, ([d − 4, 2, 2], 1)s and s, s, s, ([d − 3, 3], 1)s, here s denotes the swap in Sd � S2, and 
a conjugacy classes in this group is denoted by (a, b)s where (a, b) is a partition of d (conjugacy classes in 
Sd). Indeed, Danny Neftin and Michael E. Zieve guessed that these two families of ramification types do not 
occur, and further Danny Neftin observed that if the following conjecture is true then these two families of 
ramification types do not occur.

Conjecture 1.1. ([7]) Let α and β be two permutations in Sn. If the commutator [α, β] has at least n − 4
fixed points, then there exists a permutation γ in Sn such that αγ = α−1 and βγ = β−1. Here αγ = γ−1αγ

and [α, β] = α−1β−1αβ.

In this paper, we give a positive solution of Conjecture 1.1, and then we start to explain the idea of the 
proof. Firstly, we will provide some ways to construct some permutations conjugate a permutation onto 
its inverse under some conditions (see Lemma 2.1 and Corollary 2.2) as well as a property of simultaneous 
conjugation (see Lemma 2.3), and then by using these ways and the property to give a formal proof of 
Conjecture 1.1 in the case when αβ = βα (see Lemma 2.4), and further the problem will be reduced 
to the simpler situation (see Assumption 2.5). Secondly, we take α−1 and αβ as the objects because of 
[α, β] = α−1αβ , and we discover that there exist two situations of αβ, and there exists two close relationships 
between the two cases, such as:

Example A. Given α1 = (1, 2)(3, 4)(5, 6)(7, 8, 9) and β1 = (1, 4, 6, 8)(2, 3, 5, 7). Then [α1, β1] = (2, 9, 7), 
(1, 2)β1 = (3, 4), (3, 4)β1 = (5, 6), (5, 6)β1 = (7, 8) and further (2, 3, 5, 7)α1 = (1, 4, 6, 8).

Example B. Given α2 = (1, 2)(7, 8, 9), β2 = (1, 8)(2, 7). Then [α2, β2] = [α1, β1], (1, 2)β2 �= (1, 2), (1, 2)β2 �=
(7, 8, 9), (7, 8, 9)β2 �= (1, 2) and (7, 8, 9)β2 �= (7, 8, 9).

Relationship 1. There exists a permutation μ = (6, 4, 1)(5, 3, 2) such that αμ
1 = α1 and β2 = μβ1 and 3, 4, 5, 6

are fixed points of β2.

Relationship 2. Pick ω = (1, 2)(7, 8) and ν = (4, 5)(3, 6) such that αω
2 = α−1

2 , (1, 2)ω = (1, 2) = (1, 2)−1, 
(7, 8, 9)ω = (8, 7, 9) = (7, 8, 9)−1 and βω

2 = β−1
2 and μων = (3, 5, 2)(4, 6, 1) = μ−1. Then we see that 

αωνμ
1 = (6, 5)(4, 3)(1, 2)(8, 7, 9) = α−1

1 and βωνμ
1 = (5, 3, 2, 7)(6, 4, 1, 8) = β−1

1 .

So we will introduce a definition (see Definition 3.1) to distinguish between the two situations, and the 
two relationships will be summarized as three lemmas (see Lemma 3.3, Lemma 3.4 and Lemma 3.5) which 
imply that the case of Example A can be transformed into the case of Example B, and so we shall introduce 
a tool (see Definition 3.6) to characterize the case of Example B (see Theorems 3.11–3.15). Finally, we will
apply the techniques (see Lemma 4.1 and Lemma 4.2) to confirm Conjecture 1.1 for the case of Example B
(see Lemma 4.6), and then by using lemmas (see Lemma 3.5 and Lemma 4.6) to confirm Conjecture 1.1 for 
the case of Example A (see Lemma 4.8).
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2. Preliminaries

Throughout this paper, if there is no special statement, the different letters and the same letter with 
different marks indicate different points. Furthermore, Sn is the symmetric group on the set [n] = {1, 2, ..., n}, 
and (1) is the identity of Sn.

Recall some notions and notations about symmetric group which will be used, for further details see [1,2]. 
For α, β ∈ Sn, we write Fix(α) = {i ∈ [n]|iα = i} and M(α) = [n] \ Fix(α) and the commutator 
[α, β] = α−1β−1αβ = α−1αβ and o(α) the order of α. It is well known that there exist some disjoint cycles 
α1, ..., αs such that α = α1 · · ·αs, and then we use {α} to denote the set {α1, ..., αs}, and we say αi is a cycle 
factor of α. It is obvious that α−1 = α−1

1 · · · α−1
s and αβ = αβ

1 · · · αβ
s and {αβ} = {αβ

1 , ..., α
β
s }. Moreover, 

the centralizer of α in Sn is denoted by CSn
(α), that is, CSn

(α) = {x ∈ Sn|xα = αx}. In particular, we 
note that for γ, ω ∈ Sn, αγ = αω if and only if γω−1 ∈ CSn

(α). So we start with the ω such that αω
i = α−1

i

for each i = 1, 2, ..., s.

Lemma 2.1. Let α = (xr, xr−1, ..., x1) and β = (yr, yr−1, ..., y1) be two disjoint r-cycles in Sn.
(i) For each xi in M(α), there exists an involution ω such that αω = α−1 and xi ∈ Fix(ω) and M(ω) ⊆

M(α). In particular, there are at most two points in M(α) ∩ Fix(ω).
(ii) For any two points xi and xj in M(α), there exists an involution ω such that αω = α−1 and xω

i = xj

and M(ω) ⊆ M(α).
(iii) For all xi ∈ M(α) and yj ∈ M(β), there exists an involution ω such that αω = β−1, βω = α−1, 

M(ω) ⊆ M(α) ∪M(β) and (xi, yj) ∈ {ω}.

Proof. Note that α−1 = (x1, x2, ..., xr) and α = (xk, xk−1, ..., x1, xr, xr−1, ..., xk+1) and αω = (xω
k , x

ω
k−1, ...,

xω
1 , x

ω
r , x

ω
r−1, ..., x

ω
k+1) where 1 ≤ k ≤ r. So we see that αω = α−1 if and only if there exists an integer k

such that xω
k = x1, xω

k−1 = x2, ..., xω
1 = xk, xω

r = xk+1, ..., xω
k+1 = xr. Picking an involution ω such that 

{ω} = {(xs, xt)|xs, xt ∈ M(α) with s + t = k + 1 or k + r + 1}. One easily checks that αω = α−1 and 
M(ω) ⊆ M(α), and further the ω is completely determined by k.

(i) According to the above discussions, it follows that xi ∈ M(α) ∩ Fix(ω) if and only if there exists an 
integer k such that 1 ≤ k ≤ r, 2i = k + 1 or 2i = k + r+ 1. Since 1 ≤ i ≤ r, there always exists such integer 
k for each xi in M(α). In addition, the necessary and sufficient condition shows that there are at most two 
points in M(α) ∩Fix(ω), and |M(α) ∩Fix(ω)| = 2 if and only if both k+1 and k+ r+1 are even numbers.

(ii) Similarly, we know that (xi, xj) ∈ {ω} if and only if there exists an integer k such that 1 ≤ k ≤ r, 
i + j = k + 1 or i + j = k + r + 1. It follows from 1 ≤ i, j ≤ r that there always exists such integer k for any 
two points xi and xj .

(iii) Note that α = (xi, xi−1, ..., x1, xr, xr−1, ..., xi+1) and β−1 = (yj , yj+1, ..., yr, y1, ..., yj−1). Since α and 
β are two disjoint r-cycles, we can take the involution ω such that xω

i = yj , xω
i−1 = yj+1, ...xω

i+1 = yj−1 and 
M(ω) = M(α) ∪M(β). It is simple to see αω = β−1 and (xi, yj) ∈ {ω}. In addition, we see α = αω2 = (β−1)ω, 
and so βω = α−1. We have thus proved this lemma. �
Corollary 2.2. Let α = (x11, x12, ..., x1r) · · · (xk1, xk2, ..., xkr) and β = (x11, x21, ..., xk1). Then for any 
permutation ω with βω = β−1 and M(ω) ⊆ M(β), there exists a permutation ν such that αων = α−1 and 
M(ν) ⊆ M(α) \M(β) and βων = β−1.

Proof. Let αi = (xi1, xi2, ..., xir) ∈ {α} for i = 1, 2, ..., k. From βω = β−1 and M(ω) ⊆ M(β), it follows 
that ω is an involution, and so we assume that

ω = (xs11, xt11)(xs21, xt21) · · · (xsl1, xtl1) where {ω} = {(xs11, xt11), (xs21, xt21), ..., (xsl1, xtl1)}.

For each cycle factor (xsj1, xtj1), by Lemma 2.1 (iii), there exists an involution ωj such that
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α
(xsj1,xtj1)ωj

sj = α−1
tj and α

(xsj1,xtj1)ωj

tj = α−1
sj and M(ωj) ⊆ M(αsjαtj ) \ {xsj1, xtj1}.

Picking ν′ = ω1ω2 · · · ωl. Then we see that

M(ν′) ⊆ M(α) \M(β) and (αs1αs2 · · · αslαt1αt2 · · · αtl)ων′
= (αs1αs2 · · · αslαt1αt2 · · · αtl)−1.

On the other hand, Lemma 2.1 (i) shows that there are at most two points in M(β) ∩Fix(ω). If M(β) ∩
Fix(ω) = ∅, then α = αs1αs2 ·· ·αslαt1αt2 ·· ·αtl , and so αων = α−1 and M(ν) ⊆ M(α) \M(β) and βων = β−1

where ν = ν′. Suppose {xp1} = M(β) ∩Fix(ω). Then by Lemma 2.1 (i) we see that there exists an involution 
ω′ such that αω′

p = α−1
p and M(ω′) ⊆ M(αp) \ {xp1}. In this case, α = (αs1αs2 · · · αslαt1αt2 · · · αtl)αp, 

and it is easy to verify αων = α−1 and M(ν) ⊆ M(α) \ M(β) and βων = β−1 where ν = ω′ν′. Assume 
{xp1, xq1} = M(β) ∩Fix(ω). Similarly, there also exists an involution ω′′ such that αω′′

q = α−1
q and M(ω′′) ⊆

M(αq) \ {xq1}, taking ν = ω′ω′′ν′, we see αων = α−1 and M(ν) ⊆ M(α) \M(β) and βων = β−1. The proof 
of this corollary is complete. �

Next, we first state an useful lemma and then give a formal proof of Conjecture 1.1 in the case when 
αβ = βα.

Lemma 2.3. Let α and β be two permutations in Sn. If there exists a permutation μ ∈ Sn such that 
αμ = α−1 and βμ = β−1, then there exists a permutation γ ∈ Sn such that αγ = α−1, βγ = β−1 and 
M(γ) ⊆ M(α) ∪M(β).

Proof. We define a subset of {μ}, that is, IN(α, β) = {μi ∈ {μ}|M(μi) ⊆ M(α) ∪M(β)}. If IN(α, β) �= ∅, it 
is easy to see that αγ = α−1, βγ = β−1 and M(γ) ⊆ M(α) ∪M(β), where {γ} = IN(α, β). If IN(α, β) = ∅, 
then M(μ) ∩ M(α) = ∅ and M(μ) ∩ M(β) = ∅, and thus α = α−1 and β = β−1, which imply α and β
are two involutions. In this case, we may set γ = (1) where (1) is the identity. It is clear that αγ = α−1, 
βγ = β−1 and M(γ) = ∅ ⊆ M(α) ∪M(β). The proof of this lemma is now complete. �
Lemma 2.4. ([7, Danny Neftin]) Let α and β be two permutations in Sn with αβ = βα. Then there exists a 
permutation γ ∈ Sn such that αγ = α−1 and βγ = β−1.

Proof. Since αβ = βα, it follows that {α} is an invariant set under the action of β by conjugation. According 
to Lemma 2.3, it suffices to prove the case that {α} is an orbit under the action of β by conjugation and 
vice versa. If α is a cycle, then β = αm for a positive integer m, and it is simple to show that there 
exists a permutation which simultaneously conjugates α and β onto their respective inverses. So we let 
α = α1α2 · · ·αk, and the cycle factor αi = (xi1, xi2, ..., xil) for i = 1, 2, ..., k with k > 1. Since {α} is an orbit 
of β which acts on it by conjugation, we may assume that αβ

k = α1 and αβ
i = αi+1 for i = 1, 2, ..., k − 1. 

Without loss of generality, we set xβ
ij = x(i+1)j for i = 1, 2, ..., k−1 and j = 1, 2, ..., l. Picking μ = μ1μ2 · · ·μl, 

where μj = (xkj , x(k−1)j , ..., x1j) for j = 1, 2, ..., l. Then we see that αμ
1 = αk, αμ

i = αi−1 for i = 2, ..., k, 
M(μ) = M(α) and further M(α2 · · · αk) ⊆ Fix(μβ). Obviously, αμβ

1 = α1, and thus μβ = αm
1 for 

a positive integer m, therefore, there exists an involution ω so that αω
1 = α−1

1 and (μβ)ω = (μβ)−1 and 
M(ω) ⊆ M(α1). Note that α1 = (x11, x12, ..., x1l) and μ = (xk1, x(k−1)1, ..., x11) ·· ·(xkl, x(k−1)l, ..., x1l). Then 
by Corollary 2.2 we see that there exists a permutation ν such that μων = μ−1 and M(ν) ⊆ M(α2 · · · αk). 
So we have (μβ)ων = μωνβων = μ−1βων and (μβ)ων = (αm

1 )ων = α−m
1 = (μβ)−1 = β−1μ−1, therefore, 

μ−1βων = β−1μ−1 and so βωνμ = β−1. Note α = αμ
1α

μ2

1 · · · αμk

1 . On the other hand, we see that

(αμi

1 )ωνμ = αμiωνμ
1 = α

(ων)(ων)−1μiωνμ
1 = (α−1

1 )(μ
i)ωνμ = (α−1

1 )μ
−i+1

= (αμ−i+1

1 )−1,

and thus αωνμ = (αμ−1+1

1 αμ−2+1

1 · · · αμ−k+1

1 )−1. Since o(μ) = k, we have
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αωνμ = (αμk−1+1

1 αμk−2+1

1 · · · αμk−k+1

1 )−1 = (αμ
1α

μ2

1 · · · αμk

1 )−1 = α−1.

Consequently, we derive this lemma. �
Then by Lemma 2.3 and Lemma 2.4, we conclude this section by the following assumption.

Assumption 2.5. we assume that there is no orbit of β acting on {α} under conjugation in the rest of this 
paper.

3. Characterization of α and β with |Fix([α, β])| ≥ n − 4

Given α = α1 · · ·αs with s ≥ 1. Then [α, β] = α−1
1 · · ·α−1

s αβ
1 · · ·αβ

s . Since |Fix([α, β])| ≥ n − 4, it follows 
that there are some points which are not only in M(α) but also in Fix([α, β]) when |M(α)| > 4. Note 
that if there exists an αj such that αβ

j = αi, then x ∈ Fix([α, β]) for all x ∈ M(αi). On the other hand, 
Assumption 2.5 implies that there exists a positive integer k ≥ 2 such that αβk

j /∈ {α}. In fact, this situation 
really may arise, see Example A. So we introduce the following definition to characterize this situation.

Definition 3.1. Let α and β be two permutations in Sn, and {α1, α2, ..., αk} ⊆ {α} with k ≥ 2. If αβ
i = αi+1

for all 1 ≤ i < k, αβ
k /∈ {α} and αβ

j �= α1 for each αj ∈ {α}, then we say α1 → α2 → · · · → αk is a transitive 
cycle factors chain of β on α, and k is the length of this transitive cycle factors chain.

Then by Definition 3.1 we obtain the following remark immediately.

Remark 3.2. Let α, β ∈ Sn with some transitive cycle factors chains of β on α. Then there is no common 
cycle factor between two different transitive cycle factors chains of β on α.

Inspired by Relationship 1 and Relationship 2, we get the following three lemmas.

Lemma 3.3. Let α, β ∈ Sn and α1 → α2 → · · · → αk be a transitive cycle factors chain of β on α. 
Then there exists a permutation μ ∈ CSn

(α1α2 · · · αk) such that o(μ) = k, M(μ) = M(α1α2 · · · αk) and 
M(α2α3 · · · αk) ⊆ Fix(μβ).

Proof. Since α1 → α2 → · · · → αk is a transitive cycle factors chain of β on α, we have αβ
i = αi+1 for 

i = 1, 2, ..., k−1. Without loss of generality, we may assume that αi = (xi1, xi2, ..., xil) for i = 1, 2, ..., k, and 
xβ
ij = x(i+1)j for i = 1, 2, ..., k − 1 and j = 1, 2, ..., l. Pick μ = μ1μ2 · · · μl where μj = (xkj , x(k−1)j , ..., x1j)

for j = 1, 2, ..., l. Clearly, μ ∈ CSn
(α1α2 · · · αk), o(μ) = k and M(μ) = M(α1α2 · · · αk). Moreover, we see 

xμβ
ij = xij for i = 2, ..., k and j = 1, 2, ..., l, and thus M(α2α3 · · · αk) ⊆ Fix(μβ), as desired. �

Lemma 3.4. Let α, β, μ ∈ Sn with μ ∈ CSn
(α1α2 ·· ·αk), o(μ) = k, M(μ) = M(α1α2 ·· ·αk) and M(α2 ·· ·αk) ⊆

Fix(μβ), where α1 → α2 → · · · → αk is a transitive cycle factors chain of β on α. Then [α, β] = [α′α1, μβ], 
where α′ is a permutation with {α′} = {α} \ {α1, α2, ..., αk}.

Proof. Note [α, β] = [α′α1α2 · · · αk, β] = (α′α1α2 · · · αk)−1(α′α1α2 · · · αk)β . It follows from αμ = α and 
M(α2α3 · · ·αk) ⊆ Fix(μβ) that (α′α1α2 · · · αk)β = (α′α1α2 · · · αk)μβ = (α′α1)μβα2 · · · αk. Hence, we have 
[α, β] = [(α′α1)−1α−1

2 · · · α−1
k ][α2 · · · αk(α′α1)μβ ] = (α′α1)−1(α′α1)μβ = [α′α1, μβ]. �

Lemma 3.5. Let α, α′, β, μ ∈ Sn with μ ∈ CSn
(α1α2 · · · αk), o(μ) = k, M(μ) = M(α1α2 · · · αk) and 

M(α2 · · · αk) ⊆ Fix(μβ), where α1 → α2 → · · · → αk is a transitive cycle factors chain of β on α and 
{α′} = {α} \ {α1, α2, ..., αk}. If there exists a permutation ω such that M(ω) ⊆ M(α′α1) ∪ M(μβ) and 
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(μβ)ω = (μβ)−1 and α′ω = α′ −1 and αω
1 = α−1

1 , then there exists a permutation γ such that αγ = α−1 and 
βγ = β−1. In particular, α′ γ = α′ −1.

Proof. Since α1 → α2 → · · · → αk is a transitive cycle factors chain of β on α, we may set αi =
(xi1, xi2, ..., xil) for i = 1, 2, ..., k. As with μ ∈ CSn

(α1α2 · · · αk), o(μ) = k, M(μ) = M(α1α2 · · · αk) and 
M(α2 · · ·αk) ⊆ Fix(μβ), we may take μ = μ1μ2 · · ·μl where μj = (xkj , x(k−1)j , ..., x1j) for j = 1, 2, ..., l. Note 
μ = (xk1, x(k−1)1, ..., x11) ·· ·(xkl, x(k−1)l, ..., x1l) and α1 = (x11, x12, ..., x1l). Then by Corollary 2.2 we see that 
there exists a permutation ν such that μων = μ−1 and M(ν) ⊆ M(α2 · · ·αk). From M(α2 · · ·αk) ⊆ Fix(μβ), 
we derive (μβ)ων = ((μβ)−1)ν = (μβ)−1 = β−1μ−1. In addition, (μβ)ων = μωνβων = μ−1βων . Thus we 
have μ−1βων = β−1μ−1, which indicates μ−1βωνμ = β−1, and so βωνμ = β−1.

We claim that αωνμ = α−1. Clearly, αωνμ = α′ωνμ(α1α2 · · · αk)ωνμ. Since M(α′) ∩M(νμ) = ∅, we have 

α′ωνμ = α′ −1. Note α1α2 ·· ·αk = αμ1

1 αμ2

1 ·· ·αμk

1 . Consider (αμi

1 )ωνμ for each i = 1, 2, ..., k. We see (αμi

1 )ωνμ =
αμiωνμ

1 = α
ων(ων)−1μiωνμ
1 . Since αω

1 = α−1
1 and M(ν) ∩M(α1) = ∅, we have αων(ων)−1μiωνμ

1 = (α−1
1 )(μi)ωνμ. 

As μων = μ−1, we derive (α−1
1 )(μi)ωνμ = (α−1

1 )μ−i+1 = (αμ−i+1

1 )−1. Since o(μ) = k, we have (αμ−i+1

1 )−1 =
(αμk−i+1

1 )−1. Hence, (α1α2 · · · αk)ωνμ = (αμ1

1 αμ2

1 · · · αμk

1 )ωνμ = (αμ1

1 αμ2

1 · · · αμk

1 )−1 = (α1α2 · · · αk)−1. In 
particular, M(ν) ∩M(α′) = ∅ and M(μ) ∩M(α′) = ∅ indicate α′ωνμ = α′ −1. �

It follows from Lemma 3.4 and Lemma 3.5 that the problem can be attributed to the case that there is 
no transitive cycle factors chain. So we first deal with the case that there is no transitive cycle factors chain 
of β on α. See Example B, we have α−1

2 = (1, 2)(8, 7, 9) and αβ2
2 = (8, 7)(2, 1, 9) and 1, 8 ∈ Fix([α2, β2])

even if there is no transitive cycle factors chain of β2 on α2. In fact, we had observed this phenomenon and 
further applied it in [9]. Now we recall some notions and notations which will be used to characterize this 
phenomenon, for further details refer to [6].

A block A in a cycle π = (a1, a2, ..., am) is a consecutive nonempty substring ai, ai+1, ..., ai+l of 
ai, ai+1, ..., am, a1, a2, ..., ai−1 which means that for each 1 ≤ k ≤ l, ai+k = ai+k if i + k ≤ m, and ai+k = aj
if i + k > m, where j ≡ i + k(mod m) with 1 ≤ j < m. We say two blocks A and B are disjoint if they do 
not have points in common, and the product AB of two disjoint blocks is defined as the usual concatenation 
of strings, for example, if A = 1, 2, 3 and B = 4, 5, 6, 7 then AB = 1, 2, 3, 4, 5, 6, 7. A block partition of the 
cycle π is a set {A1, ..., Al} of pairwise disjoint blocks in π such that there exists a block product Ai1 · · ·Ail

of these blocks such that π = (Ai1 · · ·Ail).

Definition 3.6. Let g and h be two permutations in Sn. If A = x1, x2, ..., xl is a block in a cycle factor of g, 
and A−1 = xl, xl−1, ..., x1 is a block in a cycle factor of h such that xg

l �= xh−1

l and xg−1

1 �= xh
1 , then we say 

{A, A−1} is a local inverse pair between g and h. In particular, if l = 1, then xg
1 �= xh−1

1 and xg−1

1 �= xh
1 . 

Furthermore, we say x is a free point between g and h if x is either in M(g) ∩ Fix(h) or in M(h) ∩ Fix(g).

Remark 3.7. Let g and h be two permutations in Sn. If |M(g)| = |M(h)|, then the number of free points 
between g and h is even.

Proof. Let F (g, h) be the set of free points between g and h. As with Definition 3.6, we have F (g, h) =
[M(g) \ (M(g) ∩M(h))] ∪ [M(h) \ (M(g) ∩M(h))]. In addition, it can easily be seen that [M(g) \ (M(g) ∩
M(h))] ∩ [M(h) \ (M(g) ∩M(h))] = ∅, and so |F (g, h)| = 2|M(g) \ (M(g) ∩M(h))| due to |M(g)| = |M(h)|. 
Thus we have proved this remark. �
Lemma 3.8. Let g = g1 · · · gs and h = h1 · · · ht be two permutations in Sn with gihj �= (1) for all i and j.

(i) If x ∈ M(g) ∩ Fix(gh), then there exists a local inverse pair containing x between g and h.
(ii) For each local inverse pair {A, A−1} between g and h, there exists only one point which is not only 

in A but also in M(gh) while other points of A are in Fix(gh).
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(iii) For every x ∈ M(g) ∩M(h), there exists a local inverse pair between g and h containing x.
(iv) |M(gh)| is equal to the sum of the numbers of local inverse pairs and free points between g and h.

Proof. (i) Let x ∈ M(g) and x ∈ Fix(gh). Then we see that there exist two cycle factors gi ∈ {g} and 
hj ∈ {h} such that they can be expressed as gi = (x, y, ...) and hj = (y, x, ...). Since gihj �= (1), there exists 
a local inverse pair containing x between g and h by Definition 3.6.

(ii) Without loss of generality, we set {A, A−1} is a local inverse pair between g and h where A =
x1, x2, ..., xl and A−1 = xl, xl−1, ..., x1. According to Definition 3.6, if l > 1, then xi ∈ Fix(gh) for i =
1, ..., l − 1 and xl /∈ Fix(gh); if l = 1, xl /∈ Fix(gh).

(iii) Let x ∈ M(g) ∩M(h). If x is in Fix(gh) or Fix(hg), then by (i) we infer (iii). Otherwise, we have 
xg �= xh−1 and xg−1 �= xh. In this case, {A, A−1} is a local inverse pair containing x between g and h, where 
A = x and A−1 = x.

(iv) For all x ∈ M(g) ∪M(h), x is either in M(g) ∩M(h) or in (M(g) ∩Fix(h)) ∪ (Fix(g) ∩M(h)), and 
thus x is either a free point or contained in a local inverse pair by Definition 3.6 and (iii). Then by (i) and 
(ii) we infer (iv). The proof is completed. �

Using Lemma 3.8 (i), we obtain the following lemma immediately.

Lemma 3.9. Let α = α1 · · · αs and β be two permutations in Sn. If x ∈ M(α−1) ∩ Fix([α, β]), then there 
exist αi and αj for which one of the following conditions holds:

(i) α−1
i αβ

j = (1) and x ∈ M(α−1
i ).

(ii) There exists a local inverse pair between α−1
i and αβ

j containing x.

So far, we have seen that if there is no transitive cycle factors chain of β on α, then we can use local 
inverse pairs and free points to describe α−1 and αβ , and so we deal with the case that there is no transitive 
cycle factors chain of β on α in the following.

Lemma 3.10. Let α and β be two permutations in Sn with 1 < |M([α, β])| ≤ 4. If there is no transitive cycle 
factors chain of β on α, then |{α}| ≤ 3.

Proof. Suppose α = α1α2 · · · αs with {α} = {α1, α2, ..., αs} and s > 3. Note |M(αi)| ≥ 2 for i = 1, 2, ..., s. 
We have |M(α)| = |M(α1)| + |M(α2)| + · · · + |M(αs)| ≥ 8, and so there exist some points in M(α) ∪M(αβ)
that become fixed points of [α, β]. Since there is no transitive cycle factors chain of β on α, it follows that 
α−1
i αβ

j �= (1) for all i and j. Then by Lemma 3.8 (i) we deduce that there exist at least one local inverse 
pair between α−1 and αβ , and thus the number of free points between α−1 and αβ is not more than 3 by 
Lemma 3.8 (iv). On the other hand, if there exists a cycle factor g ∈ {α−1} such that there is no local 
inverse pair between g and αβ , then by Lemma 3.8 (iii) we see that all elements of M(g) are free points 
between α−1 and αβ , and thus there are at least four free points between α−1 and αβ from the proof of 
Remark 3.7, a contradiction. Hence, there exist at least one local inverse pair between g and αβ for each 
cycle factor g ∈ {α−1}, in other words, there exist at least s local inverse pairs between α−1 and αβ . 
However, Lemma 3.8 (ii) implies that the number of local inverse pairs between α−1 and αβ is not more 
than 4, and so s ≤ 4. If s = 4, then it can only be α−1 = (A)(B)(C)(D) and αβ = (A−1)(B−1)(C−1)(D−1), 
however, α−1αβ = (1), a contradiction. Thus we have deduced that s ≤ 3. �
Theorem 3.11. Let α and β be two permutations in Sn with |M([α, β])| = 4, where α is a cycle. Then one 
of the followings holds:

(i) α−1 = (x, y) and αβ = (x′, y′) where x, y, x′, y′ are four free points between α−1 and αβ .
(ii) α−1 = (ABx) and αβ = (A−1B−1y) where x, y are two free points, {A, A−1} and {B, B−1} are two 

local inverse pairs between α−1 and αβ .
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(iii) α−1 = (ABCD) and αβ = (A−1B−1C−1D−1) where {A, A−1}, {B, B−1}, {C, C−1}, {D, D−1} are 
four local inverse pairs between α−1 and αβ .

Proof. It follows from Lemma 3.8 (iv) that the number of free points is at most 4. In addition, Remark 3.7
shows that the number of free points may be 0 or 2 or 4. Thus we divide into three cases to discuss α−1

and αβ .
(i) If there are four free points, then there is no local inverse pair by Lemma 3.8 (iv), and thus we obtain 

(i) immediately.
(ii) If there are two free points, then by Lemma 3.8 (iv) we see that there are two local inverse pairs. So 

we may assume that the block partitions of α−1 and αβ are {A, B, x} and {A−1, B−1, y} respectively, where 
x, y are two free points, {A, A−1} and {B, B−1} are two local inverse pairs between α−1 and αβ . Without 
loss of generality, we take α−1 = (ABx). Note that there are two possible cases of the circle permutation 
on A−1, B−1, y, those are, (A−1B−1y) or (B−1A−1y). However, if αβ = (B−1A−1y), then {A, A−1} and 
{B, B−1} are not local inverse pairs between α−1 and αβ, a contradiction. It follows from Definition 3.6
that αβ = (A−1B−1y).

(iii) If there is no free point, then there are four local inverse pairs from Lemma 3.8 (iv), those 
are, {A, A−1}, {B, B−1}, {C, C−1} and {D, D−1}. Similarly, we set α−1 = (ABCD). Obviously, there 
are six possible cases of the circle permutation on A−1, B−1, D−1, C−1. However, nothing but αβ =
(A−1B−1C−1D−1), for example, if αβ = (A−1B−1D−1C−1) then {C, C−1} and {D, D−1} are not local 
inverse pairs between α−1 and αβ , a contradiction. �
Theorem 3.12. Let α and β be two permutations in Sn with |M([α, β])| = 3, where α is a cycle. Then one 
of the followings holds:

(i) α−1 = (Ax) and αβ = (A−1y) where x, y are two free points, {A, A−1} is a local inverse pair between 
α−1 and αβ .

(ii) α−1 = (ABC) and αβ = (A−1B−1C−1) where {A, A−1}, {B, B−1} and {C, C−1} are three local 
inverse pairs between α−1 and αβ .

Proof. It follows from |M([α, β])| = 3 and Remark 3.7 that the number of free points may be 0 or 2. So we 
divide into two cases to discuss α−1 and αβ .

(i) If there are two free points, then there exists only one local inverse pair {A, A−1}, and thus we may 
set α−1 = (Ax) and αβ = (A−1y) where x, y are two free points.

(ii) If there is no free point, then there are three local inverse pairs. So we may set α−1 = (ABC). 
Proceeding as in the proof of Theorem 3.11 (ii), we derive αβ = (A−1B−1C−1). �
Theorem 3.13. Let α and β be two permutations in Sn with |{α}| = 2, |M([α, β])| = 4 and there is no 
transitive cycle factors chain of β on α. Then one of the followings holds:

(i) α−1 = (A)(Bx) and αβ = (B−1)(A−1y) where x, y are two free points, {A, A−1} and {B, B−1} are 
two local inverse pairs between α−1 and αβ .

(ii) Either α−1 = (ABC)(D), αβ = (D−1B−1C−1)(A−1) or αβ = (A−1C−1)(B−1D−1), α−1 =
(AB)(CD) where {A, A−1}, {B, B−1}, {C, C−1}, {D, D−1} are four local inverse pairs between α−1 and 
αβ .

Proof. Since there is no transitive cycle factors chain of β on α, it follows from Lemma 3.8 (iv) that 
the number of free points and local inverse pairs is 4. Additionally, if there is no local inverse pair, then 
the number of free points between α−1 and αβ is not less than 8 because of |{α}| = 2 and the proof of 
Remark 3.7. Hence, there exists at least one local inverse pair, which means that the number of free points 
may be 0 or 2.
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(i) If there are two free points x and y, then there are two local inverse pairs {A, A−1} and {B, B−1}, 
and so we can let α−1 = (A)(Bx). Note that for αβ, there are two possible cases which are (A−1)(B−1y)
and (B−1)(A−1y). However, if αβ = (A−1)(B−1y), then {A, A−1} is not a local inverse pair between α−1

and αβ , a contradiction. Therefore, αβ = (B−1)(A−1y).
(ii) If there is no free point, then there are four local inverse pairs {A, A−1}, {B, B−1}, {C, C−1} and 

{D, D−1}. We observe that there are two possible cases:
1. There exists one cycle factor of α−1 has three blocks and the other cycle factor has one block. In this 

case, an argument similar to the one used in (i) shows that α−1 = (ABC)(D) and αβ = (D−1B−1C−1)(A−1)
2. Every cycle factor of α−1 has two blocks. In the same way, we derive α−1 = (AB)(CD) and αβ =

(A−1C−1)(B−1D−1). �
Theorem 3.14. Let α and β be two permutations in Sn with |{α}| = 2, |M([α, β])| = 3 and there is no 
transitive cycle factors chain of β on α. Then α−1 = (AB)(C) and αβ = (B−1C−1)(A−1) where {A, A−1}, 
{B, B−1} and {C, C−1} are three local inverse pairs between α−1 and αβ .

Proof. According to the proof of Theorem 3.13, it follows that the number of free points is 0 or 2. If the 
number of free points is 2, then there exists only one local inverse pair, and thus there exists a cycle factor 
αi ∈ {α−1} such that there is no local inverse pair between α−1

i and αβ , which implies that the number of 
free points between α−1 and αβ is not less than 4 because of |M(α−1

i )| ≥ 2 and the proof of Remark 3.7, 
a contradiction. Hence, there is no free point between α−1 and αβ , and then by using the way of proving 
Theorem 3.13 to derive this theorem. �
Theorem 3.15. Let α and β be two permutations in Sn with |{α}| = 3, 1 < |M([α, β])| ≤ 4 and there is no 
transitive cycle factors chain of β on α. Then α−1 = (AB)(C)(D) and αβ = (C−1D−1)(A−1)(B−1) where 
{A, A−1}, {B, B−1}, {C, C−1}, {D, D−1} are four local inverse pairs between α−1 and αβ .

Proof. An argument similar to the one used in Theorem 3.14 shows that there is no free points between 
α−1 and αβ , and there are four local inverse pairs {A, A−1}, {B, B−1}, {C, C−1} and {D, D−1} between 
α−1 and αβ . Proceeding as in the proof of Theorem 3.13, we prove this theorem. �

We conclude this section by pointing out two useful remarks.

Remark 3.16. In Theorems 3.11–3.15, we see that there exists at most one point that is in M(αβ) but not 
in M(α) except Theorem 3.11 (i).

Remark 3.17. In Theorems 3.13–3.15, we see that there are at most two cycle factors of α whose lengths 
are equal, those are, Theorem 3.13 (ii) 2 and Theorem 3.15.

4. Simultaneous conjugation

In this section, we first prove Conjecture 1.1 in the case when there is no transitive cycle factors chain of 
β on α. Note that for the case that there is no transitive cycle factors chain of β on α, it suffices to prove 
each case of Theorems 3.11–3.15. However, there are still two problems that need to be solved, one is that 
for a fixed α, there exist many β′ such that [α, β′] = [α, β], and the other is that we can’t give an exact 
form of β even if α and αβ have been given. In order to settle these two problems, we give the following 
two lemmas.
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Lemma 4.1. Let α = α1 · · · αk and β be two permutations in Sn with |M(β) \M(α)| ≤ 1 and there are at 
most two cycle factors of α whose lengths are equal. If there exists an involution ω such that M(ω) ⊆ M(α)
and αω

i = α−1
i for i = 1, 2, ..., k and βω = β−1, then the followings hold:

(i) If all lengths of the cycle factors of α are different from each other, then for each β′ with αβ′ = αβ , 
there exists a permutation γ such that β′ γ = β′ −1 and αγ

i = α−1
i for i = 1, 2, ..., k.

(ii) If |α1| = |α2| and there exists an involution μ ∈ CSn
(α) ∩ CSn

(β) ∩ CSn
(ω) such that αμ

1 = α2
and αμ

2 = α1 and M(μ) ⊆ M(α), then for each β′ with αβ′ = αβ , there exists a permutation γ such that 
β′ γ = β′ −1 and αγ

i = α−1
i for i = 1, 2, ..., k.

Proof. (i) It is well known that β′ ∈ CSn
(α)β for each β′ with αβ′ = αβ . Since all lengths of the cycle 

factors of α are different from each other, it follows that

CSn
(α) = 〈α1〉 × 〈α2〉 · · · ×〈αk〉 × S([n]\M(α)),where S([n]\M(α)) is the symmetric group on [n] \M(α).

So we may set β′ = abβ where a = αi1
1 αi2

2 · · · αik
k and b ∈ S([n]\M(α)). As with |M(β) \ M(α)| ≤ 1

and Lemma 2.1 (i), there exists an involution θ ∈ S([n]\M(α)) such that βθ = β and bθ = b−1. Picking 

γ = abωθ. Note β′ = β(ab)−1
ab and ab = ba. We see αγ

i = αωθ
i = (α−1

i )θ = α−1
i for i = 1, 2, ..., k, and 

β′ γ = (β(ab)−1
ab)abωθ = βωθ(ab)ωθ = β−1a−1b−1 = β−1(ab)−1 = β′ −1, as desired.

(ii) Note that CSn
(α) = 〈α3〉 ×· · · ×〈αk〉 ×G ×S([n]\M(α)) where G = (〈α1〉 ×〈α2〉) � 〈μ〉. So we may set 

β′ = abβ where a = αi1
1 αi2

2 · · ·αik
k μi and b ∈ S([n]\M(α)). If i = 0, the (ii) follows by (i). Consider i = 1. Then 

by |M(β) \ M(α)| ≤ 1 and Lemma 2.1 (i), there exists an involution θ ∈ S([n]\M(α)) such that bθ = b−1

and βθ = β. Choose γ = abωμθ. Note β′ = β(ab)−1
ab and ab = ba. We see αγ

i = α−1
i for i = 1, 2, ..., k, and 

β′ γ = (β(ab)−1
ab)abωμθ = βωμθ(ab)ωμθ = β−1(α−i1

1 α−i2
2 · · · α−ik

k μb)μθ = β−1[μ(α−i1
1 α−i2

2 · · · α−ik
k b)μ]μθ =

β−1(ab)−1 = β′ −1, as desired. �
Lemma 4.2. Let α and β be two permutations in Sn with M(β) ⊆ M(α) ∪M(αβ) and there exists at most 
one point that is in M(αβ) but not in M(α). If there exists an involution ω such that M(ω) ⊆ M(α), 
αω = α−1 and xωβωβ = x for all x ∈ M(α), then βω = β−1.

Proof. Suppose there exists at most one point which is in M(αβ) but not in M(α). Then by Assumption 2.5 
and M(β) ⊆ M(α) ∪M(αβ) we see that there exists at most one point which is in M(β) but not in M(α), and 
thus the xωβωβ = x for all x ∈ M(α) implies ωβωβ is the identity, and therefore ωβω = β−1. Additionally, 
since ω is an involution, we derive ωβω = βω = β−1. The proof of this lemma is now complete. �

According to Remark 3.16, Remark 3.17 and Lemma 4.1, it suffices to consider one β with M(β) ⊆
M(α) ∪ M(αβ) for each case of Theorems 3.11–3.15 except Theorem 3.11 (i). Now we start to prove 
Conjecture 1.1 in the case when there is no transitive cycle factors chain of β on α.

Proposition 4.3. Let α and β be two permutations in Sn with 0 < |M([α, β])| ≤ 4, where α is a cycle. Then 
there exists a permutation γ such that αγ = α−1 and βγ = β−1.

Proof. Apparently, it suffices to discuss each case of Theorem 3.11 and Theorem 3.12, as follows:
Case 1: Theorem 3.11 (i). Without loss of generality, we set xβ = x′ and yβ = y′. Note that x and x′ are 

contained in the same cycle factor of β as well as y and y′. By Lemma 2.1 (i) (ii), we see that there exists 
an involution γ such that αγ = α−1 and βγ = β−1.

Case 2: Theorem 3.11 (ii). According to Definition 3.6 and Lemma 4.1, we may assume that

α−1 = (x1, x2, ..., xr) and αβ = (xs, xs−1, ..., x1, xr−1, ..., xs+1, xr+1),
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where 1 ≤ s ≤ r − 2 and xβ
s = xs, x

β
s−1 = xs−1, ..., xβ

r = xr−1, x
β
r−1 = xr−2, ..., x

β
s+2 = xs+1, x

β
s+1 = xr+1

and M(β) ⊆ M(α) ∪M(αβ). Then we have β = (xr, xr−1, ..., xs+1, xr+1). Pick an involution ω such that 
xω

1 = xs, xω
2 = xs−1, ..., xω

s = x1, xω
s+1 = xr, xω

s+2 = xr−1, ..., xω
r = xs+1 and M(ω) ⊆ M(α). One easily 

checks that αω = α−1 and βω = β−1, as desired.
Case 3: Theorem 3.11 (iii). Similarly, we may assume that α−1 = (x1, x2, ..., xr) and

αβ = (xs, xs−1, ..., x1, xt, xt−1, ..., xs+1, xk, xk−1, ..., xt+1, xr, xr−1, ..., xk+1),

where 1 ≤ s < t < k < r and xβ
r = xs, x

β
r−1 = xs−1, ..., x

β
r−s+1 = x1, x

β
r−s = xt, ..., x

β
r−t+1 = xs+1, x

β
r−t =

xk, ..., x
β
r−k+1 = xt+1, x

β
r−k = xr, ..., x

β
1 = xk+1 and M(β) ⊆ M(α). Note that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xβ
j = xj+s−r, if r − s + 1 ≤ j ≤ r

xβ
j = xs+j+t−r, if r − t + 1 ≤ j ≤ r − s

xβ
j = xj+t+k−r, if r − k + 1 ≤ j ≤ r − t

xβ
j = xj+k, if 1 ≤ j ≤ r − k

Take an involution ω so that xω
1 = xr, xω

2 = xr−1, ..., xω
i = xr−i+1, ..., xω

r = x1 and M(ω) ⊆ M(α). Obviously, 
αω = α−1. On the other hand, an easy computation to verify that

xωβωβ
j = xβωβ

r−j+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xωβ
s−j+1 = xβ

r+j−s = xj , if 1 ≤ j ≤ s

xωβ
s+t−j+1 = xβ

r+j−s−t = xj , if s + 1 ≤ j ≤ t

xωβ
k+t−j+1 = xβ

r+j−k−t = xj , if t + 1 ≤ j ≤ k

xωβ
k+r−j+1 = xβ

j−k = xj , if k + 1 ≤ j ≤ r

As with Lemma 4.2, as desired.
Case 4: Theorem 3.12 (i). In the same way, we take α−1 = (x1, x2, ..., xr−1, x) and αβ = (xr−1, ..., x1, y), 

where xβ
r−1 = xr−1, x

β
r−2 = xr−2, ..., x

β
1 = x1, xβ = y and M(β) ⊆ M(α) ∪M(αβ). Then we have β = (x, y). 

Regard an involution ω with xω
1 = xr−1, xω

2 = xr−2, ..., xω
1 = xr−1, xω = x and M(ω) ⊆ M(α), as desired.

Case 4: Theorem 3.12 (ii). Similarly, we may set that

α−1 = (x1, x2, ..., xr) and αβ = (xs, xs−1, ..., x1, xt, xt−1, ..., xs+1, xr, xr−1, ..., xt+1),

where 1 ≤ s < t < r and xβ
t = xs, x

β
t−1 = xs−1, ..., x

β
t−s+1 = x1, x

β
t−s = xt, ..., x

β
1 = xs+1, xβ

r = xr, ..., x
β
t+1 =

xt+1 and M(β) ⊆ M(α). Note that
⎧⎪⎪⎨
⎪⎪⎩

xβ
j = xj , if t + 1 ≤ j ≤ r

xβ
j = xs+j−t, if t− s + 1 ≤ j ≤ t

xβ
j = xj+s, if 1 ≤ j ≤ t− s

Take an involution ω so that xω
1 = xt, xω

2 = xt−1, ..., xω
t+1 = xr, ..., xω

r = xt+1 and M(ω) ⊆ M(α). Obviously, 
αω = α−1. On the other hand, one easily checks that

xωβωβ
j =

⎧⎪⎪⎨
⎪⎪⎩

xβωβ
t−j+1 = xωβ

s−j+1 = xβ
t+j−s = xj , if 1 ≤ j ≤ s

xβωβ
t−j+1 = xωβ

s+t−j+1 = xβ
j−s = xj , if s + 1 ≤ j ≤ t

xβωβ
r−j+t+1 = xωβ

r+t−j+1 = xβ
j = xj , if t + 1 ≤ j ≤ r

As with Lemma 4.2, as desired. �
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Proposition 4.4. Let α = α1α2 and β be in Sn with αβ
i /∈ {α} for i = 1, 2, where α1 and α2 are two cycle 

factors of α. If 0 < |M([α, β])| ≤ 4, then there exists a permutation γ ∈ Sn such that αγ
1 = α−1

1 and 
αγ

2 = α−1
2 and βγ = β−1.

Proof. Note that it suffices to prove each case of Theorem 3.13 and Theorem 3.14, as follows:
Case 1: Theorem 3.13 (i). According to Definition 3.6 and Lemma 4.1, we can assume that

α−1 = (x1, ..., xr)(y1, ..., yl) and αβ = (yl, ..., y1, xr+1)(xr−1, xr−2, ..., x1),

where xβ
l = yl, x

β
l−1 = xl−1, ..., x

β
1 = y1, xβ

r = xr+1 and yβl = xl, y
β
l−1 = xl−1, .., y

β
1 = x1 and M(β) ⊆

M(α) ∪M(αβ). Then we see β = (x1, y1)(x2, y2) · · · (xl, yl)(xr, xr+1). Choosing an involution ω such that 
xω
l = x1, xω

l−1 = x2, ..., xω
1 = xl, xω

r = xr and yωl = y1, yωl−1 = y2, ..., yω1 = yl and M(ω) ⊆ M(α). One easily 
checks that αω

1 = α−1
1 , αω

2 = α−1
2 and βω = β−1, as desired.

Case 2: α−1 = (ABC)(D) and αβ = (D−1B−1C−1)(A−1) of Theorem 3.13 (ii). We may let

α−1 = (x1, ..., xr)(y1, ..., yl) and αβ = (yl, ..., y1, xs, xs−1, ..., xl+1, xr, ..., xs+1)(xl, xl−1, ..., x1),

where 1 < l < s < r and xβ
r = yl, x

β
r−1 = yl−1, ..., xβ

1 = xs+1 and yβl = xl, y
β
l−1 = xl−1, ..., y

β
1 = x1 and 

M(β) ⊆ M(α). It is easy to see that
⎧⎪⎪⎨
⎪⎪⎩

xβ
j = yj+l−r, if r − l + 1 ≤ j ≤ r

xβ
j = xs+j+l−r, if r − s + 1 ≤ j ≤ r − l

xβ
j = xj+s, if 1 ≤ j ≤ r − s

Pick an involution ω such that xω
1 = xr, xω

2 = xr−1, ..., xω
r = x1 and yω1 = yl, yω2 = yl−1, ..., yωl = y1 and 

M(ω) ⊆ M(α). Note yωβωβ
i = yβωβ

l−i+1 = xωβ
l−i+1 = xβ

r−l+i = yi for i = 1, ..., l and further

xωβωβ
j = xβωβ

r−j+1 =

⎧⎪⎪⎨
⎪⎪⎩

yωβ
l−j+1 = yβj = xj , if 1 ≤ j ≤ l

xωβ
s+l−j+1 = xβ

r+j−s−l = xj , if l + 1 ≤ j ≤ s

xωβ
r+s−j+1 = xβ

j−s = xj , if s + 1 ≤ j ≤ r

As with Lemma 4.2, as desired.
Case 3: α−1 = (AB)(CD), αβ = (A−1C−1)(B−1D−1) of Theorem 3.13 (ii). We may set

α−1 = (x1, ..., xr)(y1, ..., yl) and αβ = (xr, xr−1, ..., xs+1, ys, ..., y1)(yl, ..., ys+1, xs, ..., x1),

where 1 ≤ s < l ≤ r and xβ
r = xr, x

β
r−1 = xr−1, ..., x

β
s+1 = xs+1, xβ

s = ys, ..., x
β
1 = y1 and yβl =

yl, y
β
l−1 = yl−1, .., y

β
s+1 = ys+1, yβs = xs, ..., y

β
1 = x1 and M(β) ⊆ M(α). We see that β = (xs, ys) · · ·

(x1, y1). Take an involution ω such that xω
1 = xs, xω

2 = xs−1, ..., xω
s = x1, xω

s+1 = xr, ..., xω
r = xs+1 and 

yω1 = ys, yω2 = ys−1, ..., yωs = y1, yωs+1 = yl, ..., yωl = ys+1 and M(ω) ⊆ M(α). It is easy to check that 
αω

1 = α−1
1 and αω

2 = α−1
2 and βω = β−1. In addition, we observe that if r = l, then the involution 

μ = (xr, yr)(xr−1, yr−1) · · · (x1, y1) such that μ ∈ CSn
(α) ∩CSn

(β) ∩CSn
(ω) and αμ

1 = α2 and αμ
2 = α1, as 

desired.
Case 4: Theorem 3.14. In this case, we may assume that

α−1 = (x1, ..., xr)(y1, ..., yl) and αβ = (yl, yl−1, ..., y1, xr, ..., xl+1)(xl, xl−1, ..., x1),

where 1 < l < r and xβ
l = yl, x

β
l−1 = yl−1, ..., xβ

1 = x1, xβ
r = xr, ..., x

β
l+1 = xl+1 and yβl = xl, y

β
l−1 =

xl−1, .., y
β
1 = x1 and M(β) ⊆ M(α). Obviously, β = (x1, y1)(x2, y2) · · · (xl, yl). Pick an involution ω such 
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that xω
1 = xl, xω

2 = xl−1, ..., xω
l = x1, xω

l+1 = xr, ..., xω
r = xl+1 and yω1 = yl, yω2 = yl−1, ..., yωl = y1 and 

M(ω) ⊆ M(α). It is straightforward to show αω
1 = α−1

1 and αω
2 = α−1

2 and βω = β−1. �
Proposition 4.5. Let α = α1α2α3 and β be in Sn with αβ

i /∈ {α} for i = 1, 2, 3, where α1, α2, α3 are three 
cycle factors of α. If 0 < |M([α, β])| ≤ 4, then there exists a permutation γ ∈ Sn such that αγ

1 = α−1
1 and 

αγ
2 = α−1

2 and αγ
3 = α−1

3 and βγ = β−1.

Proof. As with Theorem 3.15 and Definition 3.6 and Lemma 4.1, we set α1 = (x1, x2, ..., xr), α2 =
(y1, y2, ..., ys), α3 = (z1, ..., zt) and

αβ = (ys, ys−1..., y1, zt, zt−1, ..., z1)(xs, xs−1, ..., x1)(xr, xr−1, ..., xs+1),

where xβ
s = ys, x

β
s−1 = ys−1, ..., x

β
1 = y1, xβ

r = zt, ..., x
β
s+1 = z1 and yβs = xs, y

β
s−1 = xs−1, ..., y

β
1 = x1 and 

zβt = xr, z
β
t−1 = xr−1, ..., z

β
1 = xs+1 and M(β) ⊆ M(α). In this case, we note that

β = (x1, y1)(x2, y2) · · · (xs, ys)(xs+1, z1) · · · (xr, zt).

Take an involution ω such that xω
1 = xs, xω

2 = xs−1, ..., xω
r = xs+1 and yω1 = ys, yω2 = ys−1, ..., yωs = y1

and zω1 = zt, zω2 = xt−1, ..., zωt = z1 and M(ω) ⊆ M(α). An easy computation to show that αω
1 = α−1

1 and 
αω

2 = α−1
2 and αω

3 = α−1
3 and βγ = β−1. On the other hand, we observe that if s = t, then the involution 

μ = (xr, xs)(ys, zs)(xr−1, xs−1)(ys−1, zs−1) · · · (xs+1, x1)(y1, z1) such that μ ∈ CSn
(α) ∩ CSn

(β) ∩ CSn
(ω)

and αμ
2 = α3 and αμ

3 = α2, as desired. �
Using Proposition 4.3 and Proposition 4.4 and Proposition 4.5, we obtain the following lemma.

Lemma 4.6. Let α and β be two permutations in Sn with 0 < M([α, β]) ≤ 4 and there is no transitive cycle 
factors chain of β on α. Then there exists a permutation γ ∈ Sn such that βγ = β−1 and αγ

i = α−1
i for all 

αi ∈ {α}.

Up to now, we have proved the case that there is no transitive cycle factors chain of β on α. We are now 
turning to consider the opposite case, and we first give an useful lemma.

Lemma 4.7. Let α and β be two permutations in Sn with 0 < M([α, β]) ≤ 4. Then there exist at most three 
transitive cycle factors chains of β on α.

Proof. Proof by contradiction. Assume that there exist s transitive cycle factors chains of β on α with 
s > 3, those are, αmj+1 → αmj+2 → · · · → αmj+kj

for j = 1, 2, ..., s. For each transitive cycle factors 
chain αmj+1 → αmj+2 → · · · → αmj+kj

, by using Lemma 3.3, we see there exists a permutation μj ∈
CSn

(αmj+1αmj+2 · · · αmj+kj
) such that o(μj) = kj , M(μj) = M(αmj+1αmj+2 · · · αmj+kj

) and M(αmj+2 ·
· · αmj+kj

) ⊆ Fix(μjβ). As with Lemma 3.4, we see that [α, β] = [α′αm1+1, μ1β] where α′ ∈ Sn with 
{α′} = {α} \ {αm1+1, αm1+2, ..., αm1+k1}. In addition, it follows from μ1 ∈ CSn

(αm1+1αm1+2 · · · αm1+k1)
and M(μ1) = M(αm1+1αm1+2 · · · αm1+k1) and Remark 3.2 that there exist s − 1 transitive cycle factors 
chains of μ1β on α′αm1+1, those are,

αmj+1 → αmj+2 → · · · → αmj+kj
for j = 2, ..., s.

Using Lemma 3.4 again, we infer [α, β] = [α′αm1+1, μ1β] = [α′′αm1+1αm2+1, μ1μ2β] where α′′ ∈ Sn with 
{α′′} = {α′αm1+1} \{αm2+1, αm2+2, ..., αm2+k2}. Applying Lemma 3.4 repeatedly, and finally we get [α, β] =
[α′′′αm1+1αm2+1 · · · αms+1, μ1μ2 · · · μsβ] where α′′′ ∈ Sn with {α′′′} = {α} \ ({αm1+1αm1+2 · · · αm1+k1} ∪
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{αm2+1αm2+2 · · ·αm2+k2} ∪· · · ∪{αms+1αms+2 · · ·αms+ks
}). According to Definition 3.1, it follows that there 

is no transitive cycle factors chain of μ1μ2 · · ·μsβ on α′′′αm1+1αm2+1 · · ·αms+1, however, s > 3 contradicts 
Lemma 3.10. �

In what follows, we will confirm Conjecture 1.1 in the case when there exist transitive cycle factors chains 
of β on α.

Lemma 4.8. Let α and β be two permutations in Sn with 0 < M([α, β]) ≤ 4 and there exist transitive cycle 
factors chains of β on α. Then there exists a permutation γ ∈ Sn such that αγ = α−1 and βγ = β−1.

Proof. Without loss of generality, let α1 → α2 → · · · → αk be a transitive cycle factors chain of β on α. 
Then by Lemma 3.3 and Lemma 3.4, there exists a permutation μ ∈ CSn

(α1α2 · · · αk) such that o(μ) = k, 
M(μ) = M(α1α2 · · ·αk), M(α2α3 · · ·αk) ⊆ Fix(μβ) and [α, β] = [α′α1, μβ], where α′ is a permutation with 
{α′} = {α} \ {α1, α2, ..., αk}. On the other hand, it follows from Lemma 4.7 that the number of transitive 
cycle factors chains of β on α is 1 or 2 or 3, and so we divide into three cases to confirm this lemma in the 
following.

Case 1: there exist one transitive cycle factors chain of β on α. In this case, we note that there is no 
transitive cycle factors chain of μβ on α′α1, and then by Lemma 4.6 and Lemma 2.3 we deduce that there 
exists a permutation ω such that M(ω) ⊆ M(α′α1) ∪ M(μβ) and (μβ)ω = (μβ)−1 and αω

i = α−1
i for all 

αi ∈ {α′α1}. As with Lemma 3.5, there exists a permutation γ ∈ Sn such that αγ = α−1 and βγ = β−1. In 
particular, αγ

i = α−1
i for each αi ∈ {α′}.

Case 2: there exist two transitive cycle factors chains of β on α, and the second transitive cycle factors 
chain is αk+1 → αk+2 → · · · → αl. Regarding [α′α1, μβ]. Since μ ∈ CSn

(α1α2 · · · αk) and M(μ) =
M(α1α2 · · · αk), we see that αk+1 → αk+2 → · · · → αl is the unique transitive cycle factors chain 
of μβ on α′α1. According to Case 1 and Lemma 2.3, it follows that there exists a permutation ω′ such 
that M(ω′) ⊆ M(α′α1) ∪ M(μβ), (μβ)ω′ = (μβ)−1 and (α′α1)ω

′ = (α′α1)−1 and αγ
i = α−1

i for each 
αi ∈ ({α′′} ∪{α1}) where {α′′} = {α′} \{αk+1, αk+2, ..., αl}. Applying Lemma 3.5, there exists a permutation 
γ ∈ Sn such that αγ = α−1 and βγ = β−1. In particular, αγ

i = α−1
i for each αi ∈ {α′′}.

Case 3: there exist three transitive cycle factors chains of β on α, and the third transitive cycle factors 
chain is αl+1 → αl+2 → · · · → αm. Considering [α′α1, μβ]. In a similar manner, we know that there are two 
transitive cycle factors chains of μβ on α′α1, those are

αk+1 → αk+2 → · · · → αl and αl+1 → αl+2 → · · · → αm.

According to Case 2 and Lemma 2.3, it follows that there exists a permutation ω′′ such that M(ω′′) ⊆
M(α′α1) ∪M(μβ), (μβ)ω′′ = (μβ)−1 and α′ω′′ = α′ −1 and αω′′

1 = α−1
1 . Then by using Lemma 3.5, there 

exists a permutation γ ∈ Sn such that αγ = α−1 and βγ = β−1. �
So far, we have confirmed Conjecture 1.1 and thus we obtain the following theorem.

Theorem 4.9. Let α and β be two permutations in Sn. If the commutator [α, β] has at least n − 4 fixed 
points, then there exists a permutation γ ∈ Sn such that αγ = α−1 and βγ = β−1.

Here, we give an example which shows that k = 4 is the best bound in the sense of |M([α, β])| ≤ k implies 
that there exists a permutation which simultaneously conjugates α and β onto their respective inverses.

Example 4.10. Given α = (4, 3, 2, 1) and β = (3, 2, 1, 5, 4, 6, 7). Then we see [α, β] = (2, 3, 4, 5, 6). Noticing 
that there do not exist a permutation ω such that αω = α−1 and βω = β−1.
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