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Let p be a prime integer and F the function field in two algebraically independent 
variables over a smaller field F0. We prove that if char(F0) = p � 3 then there exist 
p2 − 1 cyclic algebras of degree p over F that have no maximal subfield in common, 
and if char(F0) = 0 then there exist p2 cyclic algebras of degree p over F that have 
no maximal subfield in common.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A cyclic algebra of prime degree p over a field F takes the form

(α, β)p,F = F 〈x, y : xp = α, yp = β, yxy−1 = ρx〉,

for some α, β ∈ F× when char(F ) �= p and F contains a primitive pth root of unity ρ. This algebra is a 
division algebra if α /∈ (F×)p and β is not a norm in the field extension F [ p

√
α]/F , and otherwise it is the 

matrix algebra Mp(F ). When char(F ) = p, a cyclic algebra of degree p over F takes the form

[α, β)p,F = F 〈x, y : xp − x = α, yp = β, yxy−1 = x + 1〉,

for some α ∈ F and β ∈ F×. This algebra is a division algebra if α /∈ ℘(F ) = {λp − λ : λ ∈ F} and β is 
not a norm in the field extension F [x : xp −x = α]/F , and otherwise it is the matrix algebra Mp(F ). These 
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algebras won their significance for being the generators of pBr(F ) (see [12] and [10, Chapter 9]). These 
algebras are called “quaternion algebras” when p = 2.

We say that cyclic algebras A1, . . . , A� of degree p over F are linked if they share a common maximal 
subfield. We say that pBr(F ) is �-linked if every � cyclic algebras of degree p over F are linked.

The linkage properties of such algebras demonstrate a deeper phenomenon yet to be fully understood: 
clearly if A and B are linked then A ⊗B is not a division algebra, but for quaternion algebras the converse 
holds true as well. This means that 2Br(F ) is 2-linked if and only if its symbol length is � 1 (i.e., every 
class is represented by a single quaternion algebra). Moreover, if 2Br(F ) is 2-linked then the u-invariant of 
F is either 0, 1, 2, 4 or 8 ([8] and [5]), and for nonreal fields F , 2Br(F ) is 3-linked if and only if u(F ) � 4
(see [2] and [6]).

For local fields F , pBr(F ) is clearly �-linked for any �. It follows from the local-global principle (e.g., see 
[7] and [13, Proposition 15]) that for global fields F , pBr(F ) is �-linked for any � too. A question was raised 
([2]) on whether function fields F = F0(α, β) in two algebraically independent variables over algebraically 
closed fields F0 also satisfy this property. It was answered in the negative for quaternion algebras ([7] for 
char(F ) = 0 and [3] for char(F ) = 2), showing that for such fields 2Br(F ) is not 4-linked.

In the current paper, we extend this observation to cyclic algebras of odd prime degree p over F =
F0(α, β), showing that when char(F0) = p, the group pBr(F ) is not (p2−1)-linked, and when char(F0) = 0, 
the group pBr(F ) is not p2-linked.

2. Characteristic p

Lemma 2.1. Let A = [α, β)p,F be a cyclic algebra of degree p generated by x and y over a field F of 
char(F ) = p, and write Tr : A → F for its reduced trace map. Then for any λ =

∑p−1
i=0

∑p−1
j=0 ci,jx

iyj ∈ A, 
Tr(λ) = −cp−1,0.

Proof. For each j ∈ {1, . . . , p −1}, every element v in F (x)yj satisfies vp ∈ F , and so Tr(v) = 0. The problem 
therefore reduces to calculating TrK/F (xi) where K = F (x) with x a root of the irreducible polynomial 
Xp −X − α in F [X]. For this, let Lxi : K → K be the F -linear transformation given by multiplication by 
xi. For i ∈ {1, 2, . . . , p − 1}, the matrix [Lxi ] of Lxi relative to the F -basis {1, x, . . . , xp−1} of K has the 
following form: a diagonal of 1-s starting at the (i + 1, 1)-entry (i.e., row i + 1 and column 1), a diagonal 
of α-s starting at the (1, p − i + 1)-entry, a 1 directly below each α, and all other entries are 0-s. Thus, 
TrK/F (xi) = Tr[Lxi ] = 0 for i ∈ {1, . . . , p − 2}, while TrK/F (xp−1) = Tr[Lxp−1 ] = p − 1. �
Remark 2.2. The last statement appeared in [4, Remark 2.2], but we provided here a simpler proof which 
was suggested by an anonymous colleague. Note that the trace argument works in a more general setting, 
in any characteristic and for roots x of any irreducible polynomial Xn −X − α for any natural number n.

Theorem 2.3. Let p be an odd prime, F0 a field of char(F0) = p and F = F0(α, β) the function field in two 
algebraically independent variables α and β over F0. Then there exist p2 − 1 cyclic algebras of degree p over 
F that share no maximal subfield.

Proof. Note that F is endowed with the right-to-left (α−1, β−1)-adic valuation, which we denote by v. This 
is in fact the restriction to the standard rank 2 valuation on F0( (α−1) )( (β−1) ). Write ΓF for the value group 
of F with respect to v. Note ΓF = Z × Z. For each (i, j) ∈ I = {0, 1, . . . , p − 1}×2 \ {(0, 0)}, write

Ai,j =
{

[αiβj , β)p,F i �= 0
[βj , α) i = 0.
p,F
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Since the values of αiβj and β when i �= 0 are negative and Fp-independent in ΓF /pΓF , the valuation v
extends to Ai,j and Ai,j is totally ramified over F with value group ΓAi,j

= 1
pZ × 1

pZ (see [14]). For a similar 
argument, the valuation extends also to A0,j, when j �= 0, and A0,j is totally ramified over F with value 
group ΓA0,j = 1

pZ × 1
pZ (see also [4, Remark 3.2]). Write Vi,j for the subspace of trace zero elements of Ai,j . 

It follows from Lemma 2.1 that v(Vi,j)/ΓF /	 ( i
p , 

j
p ), because writing x and y for the standard generators 

of Ai,j , Vi,j = SpanF {xky� : (k, �) ∈ {0, 1, . . . , p − 1}×2 \ {(p − 1, 0)}}, the values of the xky�-s are distinct 
modulo ΓF and none is congruent to ( i

p , 
j
p ). Therefore the intersection of all the v(Vi,j)-s modulo ΓF is 

trivial, which means that 
⋂

(i,j)∈I v(Vi,j) = ΓF .
Now, suppose the contrary, that the algebras above share a maximal subfield K. Since K is a subfield 

of each Ai,j , it is totally ramified over F . Write W for its subspace of elements of trace 0. Then dimFW

is at least p − 1. Since W ⊆
⋂

(i,j)∈I Vi,j , the values of all the nonzero elements in W are in ΓF . Recall 
that p > 2. We can therefore choose two elements w1 and w2 in K whose values are Fp-independent in 
ΓK/ΓF . As a result, they are also linearly independent, and there is a nonzero linear combination of theirs 
w3 ∈ Fw1 + Fw2 which lives in W . Hence, the value of w3 is either v(w1) or v(w2). In either case, v(w3) is 
not in ΓF , despite the fact that w3 ∈ W , contradiction. Consequently, the algebras Ai,j have no maximal 
subfield in common. �
Remark 2.4. Theorem 2.3 holds true also if one replaces F0(α, β) with the field of iterated Laurent series 
F0( (α−1) )( (β−1) ) in two variables over F0 of char(F0) = p. This demonstrates another difference between 
the behaviour of Laurent series in the good characteristic and the bad characteristic, because over an 
algebraically closed field F0 of char(F0) = 0, the group pBr(F ) for F = F0( (α−1) )( (β−1) ) is generated by a 
single division cyclic algebra of degree p and thus pBr(F ) is �-linked for any �.

3. Characteristic 0

For the proof of the main result, we need the following observation about inseparable field extensions:

Lemma 3.1. Let E be a field of char(E) = p > 0, and α ∈ E \ Ep.

1. Then the Ep-vector spaces Vi = SpanEp{(α − i)k : k ∈ {1, . . . , p − 1}} for i ∈ {0, . . . , p − 1} satisfy ⋂p−1
i=0 Vi = {0}.

2. Furthermore, if there is another element β ∈ E \ Ep(α), then the vector spaces Wi,j given by Wi,0 =
SpanEp{(α− i)mβn : m, n ∈ {0, . . . , p − 1}, (m, n) �= (0, 0)} and Wi,j = SpanEp{αm(αiβ − j)n : m, n ∈
{0, . . . , p − 1}, (m, n) �= (0, 0)} for i ∈ {0, . . . , p − 1} and j ∈ {1, . . . , p − 1}, satisfy 

⋂p−1
i,j=0 Wi,j = {0}.

Proof. The first statement follows from the fact that an element v = c0 + c1α + · · · + cp−1α
p−1 ∈ Ep(α) is 

in Vi if and only if

c0 + c1i + c2i
2 + · · · + cp−1i

p−1 = 0.

If we assume that v ∈
⋂p−1

i=0 Vi, then the polynomial c0 + c1X + · · · + cp−1X
p−1 ∈ Ep[X] has at least 

p distinct roots in Ep (which are the elements of the subfield Fp), it must be the zero polynomial, i.e., 
c0 = c1 = · · · = cp−1 = 0.

For the second statement, we first note that Wi,0 can be written as

Wi,0 = SpanEp(α−i){βk : k ∈ {1, . . . , p− 1}} ⊕ SpanEp{(α− i)k : k ∈ {1, . . . , p− 1}} =

= SpanEp(α){βk : k ∈ {1, . . . , p− 1}} ⊕ SpanEp{(α− i)k : k ∈ {1, . . . , p− 1}}.
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It follows from the first statement that

p−1⋂
i=0

Wi,0 = SpanEp(α){βk : k ∈ {1, . . . , p− 1}}.

Now, for any i ∈ {0, . . . , p − 1}, the space W0,0 can also be written as

W0,0 = SpanEp(αiβ){αk : k ∈ {1, . . . , p− 1}} ⊕ SpanEp{(αiβ − 0)k : k ∈ {1, . . . , p− 1}},

and for any j ∈ {1, . . . , p − 1} we can write the space Wi,j as

Wi,j = SpanEp(αiβ−j){αk : k ∈ {1, . . . , p− 1}} ⊕ SpanEp{(αiβ − j)k : k ∈ {1, . . . , p− 1}}
= SpanEp(αiβ){αk : k ∈ {1, . . . , p− 1}} ⊕ SpanEp{(αiβ − j)k : k ∈ {1, . . . , p− 1}}.

It follows from the first statement that for any i ∈ {0, . . . , p − 1},

W0,0 ∩

⎛
⎝p−1⋂

j=1
Wi,j

⎞
⎠ = SpanEp(αiβ){αk : k ∈ {1, . . . , p− 1}}.

Since the intersection 
⋂

(i,j)∈{0,...,p−1}×2 Wi,j can be written as

⋂
(i,j)∈{0,...,p−1}×2

Wi,j =
(

p−1⋂
i=0

Wi,0

)
∩

⎛
⎝p−1⋂

i=1

⎛
⎝W0,0 ∩

⎛
⎝p−1⋂

j=1
Wi,j

⎞
⎠
⎞
⎠
⎞
⎠ ,

we conclude that

⋂
(i,j)∈{0,...,p−1}×2

Wi,j = SpanEp(α){βk : k ∈ {1, . . . , p−1}}∩
(

p−1⋂
i=1

(
SpanEp(αiβ){αk : k ∈ {1, . . . , p− 1}}

))
,

and the intersection on the right-hand side is clearly trivial. �
Theorem 3.2. Let F0 be a field of char(F0) = 0 and F = F0(α, β) the function field in two algebraically 
independent variables over F0. Then there exist p2 cyclic algebras of degree p over F that have no maximal 
subfield in common.

Proof. Consider the algebras Ai,j = (γi,j , δi,j)p,F for i, j ∈ {0, . . . , p − 1} where (γi,j , δi,j) are given (as 
elements of F × F ) by the formula

(γi,j , δi,j) =
{

(α− i, β) (i, j) ∈ {0, . . . , p− 1} × {0}
(αiβ − j, α) (i, j) ∈ {0, . . . , p− 1} × {1, . . . , p− 1}

In the rest of the proof we can assume that F0 is algebraically closed. If it is not, we can extend scalars 
to F alg

0 (α, β). If the algebras do not have a common maximal subfield under this restriction, they did not 
have any common maximal subfield from the beginning. Denote by Vi,j the subspace of Ai,j of elements of 
trace zero. Every maximal subfield is generated by an element of trace zero, and therefore in order for the 
algebras to have a common maximal subfield, they must posses nonzero elements of trace zero of the same 
reduced norm. Write ϕi,j for the restriction of the reduced norm to Vi,j, and thus a necessary condition for 
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the algebras to share a maximal subfield is that the forms ϕi,j for i, j ∈ {0, . . . , p − 1} represent a common 
nonzero value. Now, the p-adic valuation extends from Q to F0 with residue field k, and thus to F with 
residue field E = k(α, β). (See [9, Chapter 3] for details.) Since the value group of F0 is divisible, if the 
forms represent a common nonzero value, we can suppose the equality ϕ1,1(v1,1) = · · · = ϕp−1,p−1(vp−1,p−1)
is obtained for elements v1,1, . . . , vp−1,p−1 of minimal value 0. If such a solution to the system above exists, 
then it gives rise to a solution to the system

ϕ1,1(v1,1) = · · · = ϕp−1,p−1(vp−1,p−1) (1)

and their value in k(α, β) is nonzero as the residue of an element of value zero.
The valuation extends from F to the algebras Ai,j , which are unramified, and their residue algebras are 

k( p
√
α, p

√
β). (This follows from [15, Proposition 3.38] and the fact that k( p

√
γi,j , p

√
δi,j) = k( p

√
α, p

√
β) is a 

degree p2 field extension of k.) Fixing generators x and y for Ai,j , the image of the reduced norm of an 
element t =

∑p
m=0

∑p
n=0 cm,nx

myn of value zero in the residue field k(α, β) is tp (by [15, Lemma 11.16]), 
which is 

∑p
m=0

∑p
n=0 c

p
m,nγ

m
i,jδ

n
i,j . If Tr(t) = 0 then c0,0 = 0. Thus, the solution to the system (1) gives rise to 

a nontrivial intersection of the Ep-vector spaces Wi,j = Span{γm
i,jδ

n
i,j : m, n ∈ {0, . . . , p −1}, (m, n) �= (0, 0)}

for i, j ∈ {0, . . . , p − 1}. However, they intersect trivially by Lemma 3.1. Hence, the algebras Ai,j for 
i, j ∈ {0, . . . , p − 1} share no maximal subfield. �
4. In the opposite direction

It is important to point out what is known about the linkage of pBr(F ) for function fields F = F0(α, β)
over algebraically closed fields F0:

• When p = 2, 2Br(F ) is 3-linked in any characteristic, so the story is complete in this case, for previous 
papers have shown that it need not be 4-linked.

• When p = 3, 3Br(F ) is 2-linked by an easy argument mentioned in [1] based on [11]. Here we show that 
it need not be 8-linked in characteristic 3, or 9-linked in characteristic 0. Between 2 and 8 or 9 there is 
still a significant gap.

• There are no results in this direction for p > 3 to the author’s knowledge. There are results on the 
related period-index problem but that does not settle the problem yet.
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