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0. Introduction

An inspiration for this work came from McCullough-Peeva’s paper [11] in which they constructed families 
of counterexamples to the Eisenbud-Goto conjecture via new constructions of step-by-step homogenizations 
and Rees-like algebras. McCullough and Peeva applied these constructions in particular to the Mayr-Meyer 
ideals from [10]. Mayr-Meyer ideals are computationally hard in the sense that they have large Castelnuovo-
Mumford regularity (Bayer and Stillman [2]) and large ideal-membership coefficient degrees (Mayr and 
Meyer [10]). Another class of computationally hard ideals are permanental ideals ([17]). Papers [7], [8], [12], 
[14], [15] indicate that perhaps computational hardness is related to the large numbers of associated primes, 
but McCullough and Peeva showed that even prime ideals — so ideals with only one associated prime — 
can be computationally hard, namely that they can have very large Castelnuovo-Mumford regularity. This 
paper is a result of trying to understand why McCullough and Peeva’s Rees-like algebras and step-by-step 
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homogenizations generate such “hard” prime ideals, and trying to determine whether the primes defin-
ing Rees-like algebras have large numbers of associated primes. While initially we worked with Rees-like 
algebras, we got tighter results with extended Rees algebras.

We construct classes of prime ideals P in polynomial rings over fields such that the number of associated 
primes of P 2 is not bounded by any polynomial function in the number of variables. In Theorem 4.1 we 
construct a family of almost complete intersection prime ideals P of height n − 1 in 3n variables for which 
all P e with e ≥ 2 have exactly 3n embedded primes. These P are generated by elements of degrees up to 3
(or by quasi-homogeneous elements of degrees up to 10). In Theorem 4.3 we construct for odd n a family 
of prime ideals P of height n+1

2 in 3n variables for which P 2 has at least 3n + 3(n+7)/2 embedded primes. 
We know of no other class of ideals with such large numbers of associated prime ideals. The second author 
proved in [15] that there is an upper bound on the number of associated prime ideals of the Mayr-Meyer 
ideals that is doubly exponential in the number of variables, but it is not known whether the number of 
associated primes is in fact doubly or even singly exponential.

Hermann [5] was the first to consider upper bounds on the numbers and degrees of primary components 
of ideals in polynomial rings over a field. Seidenberg proved in [13, Point 65] that there exists a primitive 
recursive function B(n, d) that is at least doubly exponential in n such that any ideal I in a polynomial ring 
in n variables over a field with generators of degree at most d has at most B(n, d) associated primes. Our 
Theorem 4.1 shows that B(n, d) ≥ 3n/3 for all d ≥ 3. More recent proofs of upper bounds on the numbers 
of primary components are in the paper [18] by van den Vries and Schmidt and in the paper [1] by Ananyan 
and Hochster. The bound E(m, d) given by Ananyan and Hochster depends on the upper bound m on the 
generators of I and on the upper bound d of the degrees of the generators, and it does not depend on 
the number of variables. (Note that B(n, d), while not explicitly invoking m, does get a free upper bound (
n+d
d

)
on m.) In Theorem 4.1 we construct a family of (n +1)-generated almost complete intersection prime 

ideals P in 3n variables for which all P e with e ≥ 2 have exactly 3n embedded primes. Thus P 2 has at most 
m = (n + 2)(n + 1)/2 ≤ (n + 2)2/2 generators, which shows that E(m, d) ≥ 3

√
2m−1.

We develop two new methods for generating ideals with large numbers of primary components: splitting, 
which is a generalization of the step-by-step homogenization, and spreading. Section 1 develops some basic 
properties of splitting. We show that splitting increases the number of associated primes in a controlled 
way; the number is bounded above by a polynomial in the number of variables in the new ring, and the 
polynomial is of degree that is equal to the largest number of variables contained in an associated prime of 
the original ideal. Splitting does not increase the number of variables in the associated primes; it increases 
the numbers of associated primes. With the goal of increasing the numbers of variables in associated primes 
we introduce in Section 2 the new notion of spreading. We determine the presenting ideal of the Rees 
algebra, of the extended Rees algebra, or of the Rees-like algebra of the spreading of an ideal I from the 
presenting ideal of the same type of Rees algebra of I.

In Section 3 we compute the presenting ideal P of the extended Rees algebra of a specific five-generated 
monomial ideal. The spreading of monomial ideals is easy to understand. In Section 4 we apply spreading 
and splitting to this P to get the exponential results.

All rings in this paper are commutative with identity, and most are Noetherian.

1. Splitting, flatness, primary decompositions

In this section we define splittings, we prove that they are faithfully flat maps, and we show that under 
splitting the number of associated primes increases. We give a lower bound for the number of associated 
primes, and we show that the bound is achieved when all exponents of variables in the splitting are equal 
to 1.
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Definition 1.1. Let A be a ring. An A-splitting is an A-algebra homomorphism ϕ : A[z] → A[u1, . . . , un]
given by ϕ(z) = up1

1 · · ·upn
n , where n, p1, . . . , pn are positive integers and z, u1, . . . , un are variables over A. 

We refer to this map as the A-splitting z �→ up1
1 · · ·upn

n .

Step-by-step homogenization of McCullough-Peeva [11] is a special case of splitting with n = 2, p1 = 1
and p2 chosen carefully depending on the gradings. In this paper the splittings ignore any gradings.

The composition of splittings is a splitting. If we restrict the splittings to those for which at least one 
(resp. each) pi equals 1, then again the composition of two such splittings is of the same type.

Theorem 1.2. Splitting is a free and thus a faithfully flat map.

Proof. Note that the A-splitting z �→ up1
1 · · ·upn

n is a composition of the A-splitting A[z] → A[up1
1 , . . . , upn

n ]
with the inclusion into the free extension A[u1, . . . , un]. So it suffices to prove that the A-splitting A[z] →
A[up1

1 , . . . , upn
n ] is free. But up1

1 , . . . , upn
n are variables over A, so by possibly renaming them, it remains 

to prove that the splitting z �→ u1 · · ·un is free. But A[u1, . . . , un] is free over A[u1 · · ·un] ∼= A[z] with 
basis consisting of monomials ui1

1 ui2
2 · · ·uin

n with i1, i2, . . . , in non-negative integers of which at least one 
equals 0. �
Lemma 1.3. (This is a generalization of [3, Exercise 10.4].) Let a, b be a regular sequence in a ring R and let 
u be a variable over R. Then a is a non-zerodivisor on R[u]/(au − b)R[u]. If the zero ideal in R is prime 
(resp. primary), then (au − b)R[u] is a prime (resp. primary) ideal in R[u].

Proof. Let r ∈ (au − b) : a. Then ra = s(au − b) for some s ∈ R[u]. Since a, b is a regular sequence in 
R[u], this means that there exists s′ ∈ R[u] such that r − su = s′b and s = −s′a. Hence r = su + s′b =
−s′(au − b) ∈ (au − b). This proves the first statement.

Let B = R[u]/(au −b)R[u]. Since a is a non-zerodivisor on B and on R, we can form localizations Ra and 
Ba at the multiplicatively closed set {1, a, a2, . . .}. Then B injects into Ba = Ra[u]/(u − b/a)Ra[u] ∼= Ra. 
Since the zero ideal in R is prime (resp. primary), it is prime (resp. primary) in Ra and hence also in Ba

and in its subring B. This says that (au − b)R[u] is a prime (resp. primary) ideal in R[u]. �
Remark 1.4. It is not true in general with the set-up as in the lemma that for an integer p > 1, (aup−b)A[u]
is prime or primary. For example, if a = cp, b = dp is a regular sequence for some c, d ∈ R, then aup − b

factors.

Lemma 1.5. Let A be a ring and let ϕ : A[z] → A[u1, . . . , un] be the splitting map z �→ u1 · · ·un. Let q be a 
prime (resp. primary) ideal in A[z] such that z is not in the radical of q. Then ϕ(q)A[u1, . . . , un] is prime 
(resp. primary) of the same height as q, and the ui are non-zerodivisor on A[u1, . . . , un]/ϕ(q)A[u1, . . . , un].

Proof. Let U stand for u1, . . . , un. Set R = (A[z]/q)[U ]. By assumption, u2 · · ·un, z is a regular sequence 
on R. Since u1 is a variable in R over the obvious subring, we may apply Lemma 1.3 with b = z, a =
u2 · · ·un, u = u1. Then by lifting we get that qA[z][U ] + (z − u1 · · ·un) is a prime (resp. primary) ideal in 
A[z][U ], so that ϕ(q)A[U ] = (qA[z][U ] + (z − u1 · · ·un)) ∩ A[U ] is a prime (resp. primary) ideal in A[U ]. 
Lemma 1.3 also says that the ui are non-zerodivisors on R/(z−u1 · · ·un), which by contraction means that 
they are non-zerodivisors on A[U ]/ϕ(q)A[U ].

The height claim follows from faithful flatness of splittings. �
Lemma 1.6. Let A be a Noetherian ring and let ϕ : A[z] → A[U ] = A[u1, . . . , un] be the splitting map 
z �→ u1 · · ·un. Let q be a primary ideal in A[z] that contains a power of z. Then
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ϕ(q)A[U ] =
n⋂

i=1

(
ϕ(q)A[U ] : (u1 · · ·ui−1ui+1 · · ·un)∞

)

is an irredundant primary decomposition. (Exponent ∞ stands for a very large integer; the colon ideals are 
independent of the large integer because the ring is Noetherian.)

The radical of q can be written as JA[z] + (z) with J a prime ideal in A. Then the associated primes of 
ϕ(q)A[U ] are JA[U ] + (u1), . . ., JA[U ] + (un). In particular, the heights of q and ϕ(q)A[U ] are the same.

Proof. Let Q be 
√
q. Then Q is a prime ideal in A[z] containing z, so we can write it as JA[z] + (z) for 

some prime ideal J ⊆ A. Then ϕ(Q)A[U ] = JA[U ] +(u1 · · ·un). Set Qi = JA[U ] +(ui). These are the prime 
ideals in A[U ] minimal over ϕ(Q)A[U ] and

n⋂
i=1

Qi = JA[U ] + (u1 · · ·un) = ϕ(Q)A[U ]

is an irredundant primary decomposition. Since ϕ is flat by Theorem 1.2, an application of [9, Theorem 23.2]
says that the associated primes of qA[U ] are precisely Q1, . . . , Qn. Since uj ∈ Qj \Qi for all distinct i, j, we 
get that the Qi-primary component of ϕ(q)A[U ] is ϕ(q)A[U ] : (u1 · · ·ui−1ui+1 · · ·un)∞. �

It should be noted that splitting does not increase the numbers of variables in the associated primes.

Theorem 1.7. Let A be a Noetherian ring, m, n1, . . . , nm positive integers, and let A[Z] = A[z1, . . . , zm] and 
A[U ] = A[uij : i = 1, . . . , m; j = 1, . . . , ni] be polynomial rings over A. Let ϕ : A[Z] → A[U ] be the A-algebra 
homomorphism with zi �→ upi1

i1 · · ·upini
ini

for some positive integers pij. Let I be an ideal in A[Z] with an 
irredundant primary decomposition I = q1 ∩ q2 ∩ · · · ∩ qs. Then the following statements hold.

(1) The height of ϕ(I)A[u1, . . . , un] equals the height of I.
(2) The number of primary components of ϕ(I)A[U ] is the sum of the numbers of primary components of 

the ϕ(qi)A[U ].
(3) Let I be a primary ideal in A. For i = 1, . . . , m let εi be 1 if I contains a power of zi and let εi be 

0 otherwise. Then ϕ(I)A[U ] has at least nε1
1 · · ·nεm

m primary components. If pij = 1 for all (i, j) with 
εi = 1, then ϕ(I)A[U ] has exactly nε1

1 · · ·nεm
m primary components. The counted corresponding associated 

prime ideals are of the form 
√
I ∩A + (uij : εi > 0, j = 1, . . . , ni).

Proof. The homomorphism ϕ is a composition of the A-algebra homomorphisms where each zi is split 
separately. By Theorem 1.2, ϕ is faithfully flat, so that (1) holds. Also, flatness and [9, Theorem 23.2]
say that an irredundant primary decomposition of ϕ(I)A[U ] equals the intersection of irredundant primary 
decompositions of the ϕ(qi)A[U ]. This proves (2).

Suppose that (3) holds in case all pij = 1. Then I ′ = IA[zi, u
pij

ij : i, j]/(zi−upi1
i1 · · ·upini

ini
: i) has the stated 

associated primes. But A[zi, u
pij

ij : i, j]/(zi − upi1
i1 · · ·upini

ini
: i) ⊆ A[U ] ∼= A[zi, uij : i, j]/(zi − upi1

i1 · · ·upini
ini

: i)
is a free extension, so that an irredundant primary decomposition of ϕ(I)A[U ] contracts to a possibly 
redundant primary decomposition of I ′. This means that the number of associated primes of ϕ(I)A[U ] is 
at least the number of primary components of I ′. Thus it suffices to prove (3) in case all p1j equal 1. The 
case m = 1 follows from the previous two lemmas.

Now let m > 1. Let ϕ1 be the splitting of z1 and let ϕ′ be the splitting of z2, . . . , zm such that ϕ = ϕ′ ◦ϕ1. 
By the case m = 1, the number of primary components of I ′ = ϕ1(I)A[u11, . . . , u1n1 ] is nε1

1 . By the previous 
two lemmas, for each i > 1 and for each primary component q of I ′, q contains zi if and only if I contains zi. 
Thus by induction on m, the number of primary components of ϕ′(q)A[U ] is nε2

2 · · ·nεm
m , with the stated 
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form. By applying [9, Theorem 23.2] again due to faithful flatness, ϕ(I)A[U ] = ϕ′(I ′)A[U ] has nε1
1 · · ·nεm

m

primary components. The corresponding associated primes are in the stated form. �
2. Variable spreading

Splitting replaces one variable by a product of variables, it can be described by a homomorphism, and 
its effect is that after splitting an ideal, the number of associated prime ideals increases. By Theorem 1.7, 
the increase is limited by the number of variables in the associated primes of I, and it does not increase the 
number of variables in the associated primes. This section introduces a new method, which we call spreading, 
which adds more variables. A simple example is in Proposition 2.6, a more involved one in Theorem 2.9.

Here is an attempt at adding variables to associated primes. Let P (resp. Q) be a prime ideal in a 
polynomial ring k[x1, . . . , xn] (resp. k[y1, . . . , ym]) with the property that it contains no variables but all of 
its higher powers have embedded primes containing variables. (Such an example is in Example 3.1.) Suppose 
that (P +Q)k[x1, . . . , xn, y1, . . . , ym] is prime (say if k is algebraically closed). Let P 2 = P (2) ∩ p1 ∩ · · · ∩ pr
and Q2 = Q(2) ∩ q1 ∩ · · · ∩ qs be primary decompositions. It turns out that the number of variables in the 
associated primes of (P + Q)2 does not increase because (P + Q)(2) ∩

⋂r
i=1(pi + Q) ∩

⋂s
j=1(P + qj) is a 

primary decomposition of (P +Q)2. Namely, by Theorem 2.7 in Walker [19], (P +Q)(2) = P (2) +PQ +Q(2), 
with the algebraic closure assumption the ideals pi+Q and P +qj are primary, and the intersection of these 
primary ideals is (P + Q)2 by using that ⊗kk[x]/P and ⊗kk[y]/Q are flat. Thus the associated primes of 
(P +Q)2 are P +Q, √pi+Q, P +√

qj , and thus the number of variables in any embedded prime of (P +Q)2
is the same as such a number for P 2 and Q2. However, by [16, Theorem 1.5], √pi + √

qj are associated to 
higher powers of P +Q, so that we can get an increase in the number of variables appearing in an associated 
prime of higher powers of P + Q.

Definition 2.1. (Sz, dz, Su, du, ϕ) is called an A-spreading if the following conditions are satisfied:

(1) Sz and Su are A-algebras.
(2) dz, du are gradings on Sz, Su, respectively, with degrees in possibly distinct commutative monoids 

Mz, Mu that are submonoids of free Z-modules.
(3) ϕ : Su → Sz is an A-algebra homomorphism that takes homogeneous components to homogeneous 

components; by abuse of notation we write ϕ : Mu → Mz so that for any homogeneous f ∈ Su, 
ϕ(du(f)) = dz(ϕ(f)).

(4) If f and g are homogeneous elements in Su, then the degree of ϕ(fg) is the sum of the degrees of ϕ(f)
and ϕ(g). In other words, dz(ϕ(fg)) = dz(ϕ(f)) + dz(ϕ(g)). With the abuse of notation from (3), this 
is saying that dz ◦ ϕ is a monoid homomorphism.

Given such an A-spreading, the spreading of a homogeneous ideal I in Sz is

spr(I) = (f ∈ Su : f is homogeneous and ϕ(f) ∈ I) .

Example 2.2. Let A = k[a, b] where k is a field and a and b are variables over k. Let Sz = A[c], Su =
A[c1, . . . , cn], dz and du trivial on A, dz(c) = 1, and ϕ : Su → Sz given by ϕ(ci) = c for all i. Let 
J = (a2b2c, b4, ab3, a3b, a4) ⊆ Sz.

(1) Let du(cj) = 1 for all j. Then spr(J) = (a2b2c1, b4, ab3, a3b, a4, c1 − c2, . . . , c1 − cn).
(2) Let du(cj) = ej , where ej = (0, . . . , 0, 1, 0, . . . , 0) has 1 in the jth entry. Then spr(J) =

(a2b2c1, . . . , a2b2cn, b4, ab3, a3b, a4).



JID:JPAA AID:6094 /FLA [m3L; v1.252; Prn:21/02/2019; 14:08] P.6 (1-13)
6 J. Kim, I. Swanson / Journal of Pure and Applied Algebra ••• (••••) •••–•••
Note that ϕ(c1 − c2) = 0 ∈ J regardless of the grading, but that c1 − c2 is not in spr(J) when it is not 
homogeneous.

Remarks 2.3. Let I ⊆ J be homogeneous ideals in Sz.

(1) ϕ(spr(I)) ⊆ I. Equality need not hold: say if Sz = A[z], Su = A[u1, . . . , un] are polynomial rings over 
A and ϕ(ui) = z2, then spr(z) = (u1, . . . , un) and ϕ(spr(z)) = ϕ(u1, . . . , un) = (z)2 � (z).

(2) If I ⊆ J , then spr(I) ⊆ spr(J).
(3) For all ideals I, J in Sz, spr(I) spr(J) ⊆ spr(IJ).

In general, spr(I) spr(J) need not equal spr(IJ) and spr(Ir) need not equal (spr(I))r. For example, let 
Sz = A[z], Su = A[u1, . . . , un] and ϕ take ui to z. First suppose that du is the trivial (zero) grading. Then 
spr(zr) = (ur

1, u1 − u2, . . . , u1 − un). The element u1 − u2 is thus not in any higher power of spr(z) but it is 
in spr(zr) for every positive integer r. If instead we choose the grading du(ui) = ei for all i and change ϕ to 
ϕ(ui) = z2, then spr(z) = spr(z2) = (u1, . . . , un), so that spreading again does not commute with powers. 
Here is another example: Let Sz = A[z1, z2, . . . , zm] for some m ≥ 2, Su = A[uij : i = 1, . . . , m; j =
1, . . . , un], ϕ(uij) = zi and du(uij) = ej . The spreading does not commute with powers as the spreading of 
every ideal contains u11u22 − u12u21.

Lemma 2.4. Spreading commutes with radicals. The spreading of a radical (resp. prime, primary) ideal is 
radical (resp. prime, primary).

Proof. Let I be a homogeneous ideal in Sz. Certainly 
√
I, spr(I) are homogeneous.

First suppose that I is a radical ideal. Let f ∈ Su be in the radical of spr(I). We want to prove that 
f ∈ spr(I). It suffices to prove the result in case f is homogeneous. For some large N , fN ∈ spr(I), so 
(ϕ(f))N = ϕ(fN ) ∈ I. Since I is radical, it follows that ϕ(f) ∈ I and so f ∈ spr(I). This proves that the 
spreading of a radical ideal is radical.

In general, spr(I) ⊆ spr(
√
I), so that the radical of spr(I) is contained in the radical ideal spr(

√
I). We 

next prove the opposite inclusion. If f in spr(
√
I) is homogeneous, then ϕ(f) ∈

√
I, so that for some large 

integer N , ϕ(fN ) = (ϕ(f))N ∈ I. Hence fN ∈ spr(I). This proves that the radical of spr(I) equals spr(
√
I), 

so that spreading commutes with radicals.
Now let f, g ∈ Su be homogeneous such that fg ∈ spr(I). Then ϕ(f)ϕ(g) = ϕ(fg) ∈ I.
If I is prime, then either ϕ(f) or ϕ(g) is in I, so that either f or g is in spr(I). Thus by homogeneity of 

ideals, spr(I) is a prime ideal.
If I is primary and f /∈ spr(I), then ϕ(f) /∈ I, so that ϕ(g) ∈

√
I. But then g ∈ spr(

√
I) =

√
spr(I). 

Thus spr(I) is primary. �
Lemma 2.5. Spreading commutes with intersections of homogeneous ideals. In particular, it commutes with 
(homogeneous) primary decompositions.

Surjective spreading takes irredundant primary decompositions to irredundant primary decompositions.

Proof. Let I = q1 ∩ · · · ∩ qr be an intersection of homogeneous ideals in Sz. Then spr(I) ⊆ spr(q1) ∩
· · · ∩ spr(qr). To prove equality, let f be a homogeneous element in spr(q1) ∩ · · · ∩ spr(qr). Then ϕ(f) ∈
ϕ (spr(q1)) ∩ · · · ∩ ϕ (spr(qr)) ⊆ q1 ∩ · · · ∩ qr = I, so that f ∈ spr(I). This proves that spreading commutes 
with intersections.

By Lemma 2.4, if qi is primary, so is spr(qi), so that spreading commutes with primary decompositions.
Suppose that ϕ is surjective and that spr(I) = spr(q2) ∩ · · ·∩ spr(qr). Let a ∈ q2 ∩ · · ·∩ qr. By surjectivity 

there exists b ∈ spr(q2 ∩ · · · ∩ qr) such that a = ϕ(b). But then b ∈ spr(q2) ∩ · · · ∩ spr(qr) = spr(I), so that 
a = ϕ(b) ∈ I, which says that q1 was an irredundant primary component of I. This proves the lemma. �
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The following is a special case of spreading:

Proposition 2.6. Let z, z1, . . . , zn be variables over a Noetherian ring A, let I be an ideal in A[z] and let 
J = I + (z − z1, . . . , z − zn) be an ideal in R = A[z, z1, . . . , zn]. Then the following hold for a positive 
integer e.

(1) If an associated prime ideal P of Ie contains z, then an associated prime ideal of Je contains P and 
n + 1 variables z, z1, . . . , zn.

(2) If z is not a zerodivisor on A[z]/Ie, then Je : z ⊆ Ie + (z − z1, . . . , z − zn).

Proof. Set Sz = A[z], Su = R, du and dz both zero on A and with value 1 on the variables. Let ϕ : Su → Sz

be the A[z]-algebra homomorphism that maps zi to z. Then (Sz, dz, Su, du, ϕ) is a surjective A-spreading, 
and J = spr(I).

Let P be an associated prime ideal of Ie such that z ∈ P . By a characterization of associated primes, 
P = Ie : a for some a ∈ Sz \ Ie. If a ∈ Je then a = ϕ(a) ∈ ϕ(Je) = Ie, which is a contradiction. So Je : a is 
a proper ideal and so necessarily contained in some associated prime Q of Je. This Q contains z and also 
z − z1, . . . , z − zn, hence it contains z, z1, . . . , zn. (Note that Lemma 2.5 proves (1) in case e = 1 but not in 
case e > 1.)

Suppose that z is not a zerodivisor on Sz/I
e. Let b ∈ Su such that zb ∈ Je. Then zϕ(b) = ϕ(zb) ∈

ϕ(Je) = Ie. By assumption then ϕ(b) ∈ Ie, so that b ∈ Je+(z−z1, . . . , z−zn) = Ie+(z−z1, . . . , z−zn). �
Definition 2.7. An A-spreading (Sz, dz, Su, du, ϕ) is called full if for any du-degree a, ϕ restricted to (Su)a
is injective into (Sz)ϕ(a).

Example 2.8. The following is an example of a non-injective full spreading. Let m, v1, . . . , vm be positive 
integers, Sz = A[z1, . . . , zm] and Su = A[uij : i = 1, . . . , m; j = 1, . . . , vi]. Let ϕ(uij) = zi and ϕ|A = id. 
Let dz be the monomial Nm-grading on Sz with dz(A) = 0 and dz(zi) = ei, and let du be the monomial 
NN -grading on Su with du(A) = 0 and du(uij) = ev1+v2+···+vi−1+j . The verification of the full property is 
straightforward since every homogeneous element in Sz (resp. Su) is of the form am for some a ∈ A and 
some monomial m in the zi (resp. in the uij).

Recall that for an ideal J in a ring A, its Rees algebra is A[Jt], its extended Rees algebra is A[Jt, t−1], 
and its Rees-like algebra is A[Jt, t2], where t is a variable over A. In the rest of this section we use the 
presenting ideal of a Rees algebra of an ideal J to construct the prime ideal presenting the same type of 
Rees algebra of a full spreading of J .

Set-up: Let (Sz, dz, Su, du, ϕ) be an A-spreading of Noetherian rings. Let a1, . . . , am be homogeneous ele-
ments in Sz and let J = (a1, . . . , am). Let spr(J) have m′ homogeneous generators. Let t, T , Z = Z1, . . . , Zm, 
U1, . . . , Um′ be variables over Sz and Su.

Let ϕ̃ : Su[t, t−1] → Sz[t, t−1] be the A-algebra homomorphism that agrees with ϕ on Su and such that 
ϕ(t±1) = t±1. The grading on Sz[t, t−1] is as follows: the degree of a homogeneous element s ∈ Sz ⊆ Sz[t, t−1]
is (dz(s), 0) and the degree of t±1 is (0, ±1). The grading on Su[t, t−1] is defined similarly.

All three types of Rees algebras of J are subrings of Sz[t, t−1]. Let ψz : Sz[Z, T ] → Sz[t, t−1] be the 
Sz-algebra homomorphism which takes Zi to ait, and which takes T to one of 0, t−1, t2, depending on 
whether we are using Rees algebra, extended Rees algebra, or the Rees-like algebra. The image of ψz is the 
chosen type of the Rees algebra of J . To make this map graded, we impose the grading dZ on Sz[Z, T ] as 
follows: dZ(s) = (dz(s), 0) for all s ∈ Sz, dZ(Zi) = (dz(ai), 1) for all i = 1, . . . , m, and the degree of T is ∞, 
(0, −1), or (0, 2) depending on the type of the Rees algebra. (Instead of dZ(T ) = ∞ in case of Rees algebra 
we can simply not adjoin T .)
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Analogously we define the grading dU on Su[U, T ], and we let ψu : Su[U, T ] → Su[t, t−1] be a graded 
Su-algebra homomorphism whose image is a Rees algebra of spr(J), this Rees algebra being of the same 
type as the constructed algebra for J . With this we have the following commutative diagram:

J ⊆ Sz ⊆ Sz[Z, T ] ψz

−→ Rees algebra of J ⊆ Sz[t, t−1]

↑ ϕ ↑ ϕ̃

spr(J) ⊆ Su ⊆ Su[U, T ] ψu

−→ Rees algebra of spr(J) ⊆ Su[t, t−1]

Note that ϕ̃ takes the Rees algebra of spr(J) to the Rees algebra of J . Let ϕ̂ be the restriction map of ϕ̃. 
We next define Φ : Su[U, T ] → Sz[Z, T ] as Φ|Su

= ϕ, Φ(T ) = T , and Φ(Ui) = fi where fi is a homogeneous 
element of Sz[Z, T ] such that ψz(fi) = ϕ̂(ψu(Ui)). Then the following diagram commutes:

J ⊆ Sz ⊆ Sz[Z, T ] ψz

−→ Rees algebra of J ⊆ Sz[t, t−1]

↑ ϕ ↑ Φ ↑ ϕ̂ ↑ ϕ̃

spr(J) ⊆ Su ⊆ Su[U, T ] ψu

−→ Rees algebra of spr(J) ⊆ Su[t, t−1]

Theorem 2.9. (Sz[Z, T ], dZ , Su[U, T ], dU , Φ) is an A-spreading.

(1) If ϕ is surjective, then there exists a surjective Φ.
(2) ker(ψu) ⊆ spr(ker(ψz)).
(3) If ϕ is full, then spr(ker(ψz)) equals ker(ψu). In other words, when ϕ is full then the spreading of the 

presenting ideal of a type of Rees algebra of J equals the presenting ideal of the same type of Rees algebra 
of the spreading of J .

Proof. The set-up makes (Sz[Z, T ], dZ , Su[U, T ], dU , Φ) a spreading.
Suppose that ϕ is surjective. Then ϕ̃ and ϕ̂ are surjective as well. We may order a generating set of 

spr(J) so that the image under ϕ of the ith generator is ai for i ≤ m. We then set Φ(Ui) = Zi for i ≤ m, 
which makes Φ surjective.

Let f ∈ ker(ψu). Since ψu is a graded homomorphism, every homogeneous component of f is in ker(ψu), 
so that to prove that f ∈ spr(ker(ψz)) without loss of generality we may assume that f is homogeneous. 
Then ψz ◦ Φ(f) = ϕ̂ ◦ ψu(f) = 0, so that Φ(f) ∈ ker(ψz). Thus f ∈ spr(ker(ψz)).

Now let ϕ be full and let f ∈ spr(ker(ψz)) be homogeneous. Then Φ(f) ∈ ker(ψz), so that 0 = ψz ◦Φ(f) =
ϕ̂ ◦ ψu(f). Since ϕ is injective on homogeneous components, so are ϕ̃ and ϕ̂, so that ψu(f) = 0. Thus 
f ∈ ker(ψu). �
3. Examples

This section provides a few examples of prime ideals whose powers have embedded primes that contain 
variables. These examples are used in Section 4 as a base for generating prime ideals whose powers have 
many associated primes containing many variables.

The first example below treats all powers of a prime ideal, whereas the second example is about the 
second power only.

Example 3.1. Let P be the kernel of the k-algebra homomorphism k[x, y, z] → k[t3, t4, t5] taking x to t3, y to 
t4, z to t5. Then P is a prime ideal of height two, it contains no variables, and by [6], (x, y, z) is associated 
to P e for all e ≥ 2, and ∪∞

e=1 Ass(k[x, y, z]/P e) = {P, (x1, y, z)}.
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Proposition 3.2. In any polynomial ring in nine variables over an arbitrary field there exists a binomial 
prime ideal P of height 5 containing no variables such that P 2 has exactly two embedded associated prime 
ideals: one of the two is a monomial ideal generated by eight variables and the other is the maximal ideal 
generated by the nine variables.

Proof. Let k be a field, a, b, c, Z1, . . . , Z5, t, T variables over k, let A = k[a, b, c], J = (a2b2c, b4, ab3, a3b, a4)A, 
and R = k[a, b, c, Z1, Z2, Z3, Z4, Z5, T ]. Let B = A[Jt, t−1] ⊆ A[t, t−1] be the extended Rees algebra of J . 
There is a natural surjective A-algebra map R → B, with Zi mapping onto t times the ith listed generator 
of J , and with T mapping to t−1. Let P be the kernel of this map.

Then P is a prime ideal that contains no variables. As the dimension of the Rees algebra is 4, the height 
of P is 5. Rees algebras of monomial ideals are generated by binomials.

It is easy to verify that the following elements are in P : f1 = a4 −Z5T , f2 = aZ2 − bZ3, f3 = aZ4 − bZ5, 
f4 = ab3−Z3T , f5 = a3Z3−b3Z5, f6 = a4Z2−b4Z5, f7 = a2Z1−b2cZ5, f8 = a2b2c −Z1T , f9 = Z1Z5−cZ2

4 , 
f10 = Z1Z2−cZ2

3 , f11 = aZ1−bcZ4, f12 = Z2
1 −c2Z3Z4, f13 = Z2T −b4, f14 = Z2

2Z4−Z3
3 , f15 = Z3

2Z5−Z4
3 , 

f16 = acZ3 − bZ1, f17 = a3b − Z4T , f18 = a2Z3 − b2Z4. We do not claim that these elements generate P .
Consider α = a4Z2 − a3bZ3 − ab3Z4 + b4Z5 − Z2Z5T + Z3Z4T . If α ∈ P 2, then under the lexicographic 

order a > b > c > Z1 > Z2 > · · · > Z5 > T , the leading monomial a4Z2 must be a product of two leading 
terms of elements of P . By the structure of the kernels of monomial maps, neither a3 nor Z2 can be multiples 
of leading terms of elements of P , which means that α is not in P 2. One can verify that

aα = a5Z2 − a4bZ3 − a2b3Z4 + ab4Z5 − aZ2Z5T + aZ3Z4T = f1f2 − f3f4 ∈ P 2.

Since a /∈ P , this proves that P 2 has an embedded prime ideal which contains P 2 : α and thus a. If we 
invert c or set c = 1, then the resulting α is still not in P 2 but aα ∈ P 2. This proves that c is not in the 
radical of P 2 : α, so that at least one of the embedded prime ideals of P 2 does not contain c.

After inverting a, the ideal (f1, f3, f5, f6, f7) equals (a−4Z5T −1, Z4− bZ5/a, Z3− b3Z5/a
3, Z2− b4Z5/a

4,

Z1 − b2cZ5/a
2), which is a prime ideal in Ra of height 5 and contained in Pa. By the height consideration 

Pa must equal this five-generated ideal. Similarly, after inverting Z1, P is the complete intersection prime 
ideal (f8, f9, f10, f11, f12)Z1 = (T − a2b2cZ−1

1 , Z5 − cZ2
4Z

−1
1 , Z2 − cZ2

3Z
−1
1 , a − bcZ4Z

−1
1 , 1 − c2Z3Z4Z

−1
1 ), 

after inverting Z2, P is the complete intersection prime ideal (f2, f10, f13, f14, f15)Z2 = (a − bZ3Z
−1
2 , Z1 −

cZ2
3Z

−1
2 , T − b4Z−1

2 , Z4 − Z3
3Z

−2
2 , Z5 − Z4

3Z
−3
2 ), and after inverting Z3, P is the complete intersection 

prime ideal (f2, f4, f10, f14, f15)Z3 = (b − aZ2Z
−1
3 , T − ab3Z−1

3 , c − Z1Z2Z
−2
3 , Z5 − Z4

3Z
−3
3 , 1 − Z2

2Z4Z
−3
3 ). 

Furthermore, after localization at T , PT is generated by the variables Z1−a2b2cT−1, Z2−b4T−1, Z3−ab3T−1, 
Z4 −a3bT−1, Z5 −a4T−1. Whenever an ideal in a Cohen-Macaulay ring is generated by a regular sequence, 
its powers have no embedded primes. So we just proved that a, Z1, Z2 and Z3, T must be contained in every 
embedded prime of every power of P . By symmetry, a, b, Z1, Z2, Z3, Z4, Z5, T must be contained in all the 
embedded primes of powers of P .

Thus we have proved that P 2 has an embedded associated prime ideal and that each embedded 
prime ideal contains (a, b, Z1, Z2, Z3, Z4, Z5, T ). By multihomogeneity of J and of the extended Rees al-
gebra, then the only possible associated primes of P 2 are Q1 = (a, b, Z1, Z2, Z3, Z4, Z5, T ) and Q2 =
(a, b, c, Z1, Z2, Z3, Z4, Z5, T ). Since we proved that at least one embedded prime ideal does not contain c, 
we get that Q1 is associated to P 2.

We next prove that Q2 is also associated to P 2. Consider β = a5Z3−2a3b2Z4 +a2b3Z5−aZ3Z5T +bZ2
4T . 

If β ∈ P 2, then under the lexicographic order a > b > c > Z1 > Z2 > · · · > Z5 > T , the leading monomial 
a5Z3 must be a product of the leading terms of two elements of P . By the structure of the kernels of 
monomial maps, neither a3 nor aZ3 can be multiples of leading terms of elements of P , which means that 
β /∈ P 2. However,
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cβ = a5cZ3 − 2a3b2cZ4 + a2b3cZ5 − acZ3Z5T + bcZ2
4T = f1f16 + f11f17 − f8f18.

This proves that Q2 is associated to P 2. �
The proof shows more:

Proposition 3.3. Let k be an arbitrary field, let a, b, c, Z1, . . . , Z5, T be variables over k, let R = k[a, b, c,
Z1, . . . , Z5, T ], and let P be the kernel of the k[a, b, c]-algebra surjection from R to the extended Rees algebra 
of the monomial ideal (a2b2c, b4, ab3, a3b, a4) ⊆ k[a, b, c], where Zi maps to the ith listed generator of J and 
T maps to t−1. Then there exist α, β ∈ k[a, b, Z2, Z3, Z4, Z5, T ] such that (a, b, Z1, . . . , Z5, T ) is the radical 
of P 2 : α and such that the maximal ideal (a, b, c, Z1, . . . , Z5, T ) is the radical of P 2 : β. (We emphasize: no 
variables c and Z1 appear in α and β.)

Proof. Proposition 3.2 shows that P 2 = P (2) ∩ J1 ∩ J2, where J1 is primary to (a, b, Z1, . . . , Z5, T ) and J2
is primary to (a, b, c, Z1, . . . , Z5, T ).

We take α, β as in the proof of Proposition 3.2. Since aα ∈ P 2 and since a is a non-zerodivisor on R/P (2), 
it follows that α ∈ P (2). Thus P 2 : α = (J1 : α) ∩ (J2 : α) �= R. Since c is not in the radical of P 2 : α (see 
the proof of Proposition 3.2), necessarily J1 : α �= R. Thus the radical of P 2 : α is (a, b, Z1, . . . , Z5, T ).

Since cβ ∈ P 2 and since c is a non-zerodivisor on R/P (2) and on R/J1, it follows that β ∈ P (2) ∩ J1. 
Thus P 2 : β = J2 : β �= R must be primary to the maximal ideal. �
Remark 3.4. Work similar to that in the proof of Proposition 3.2 shows that if P is the presenting ideal of 
the Rees algebra A[Jt] of J , then P is a prime ideal of height 4 in a polynomial ring in eight variables, that 
(a, b, Z1, Z2, Z3, Z4, Z5) is associated to P 2 and that the only other candidate for an embedded associated 
prime of P 2 is (a, b, c, Z1, Z2, Z3, Z4, Z5). Macaulay2 [4] computes that the latter ideal is not associated 
to P 2.

If P is the presenting ideal of the Rees-like algebra A[Jt, t2] of J , then we can similarly show that 
P is a prime ideal of height 5 in a polynomial ring in nine variables, that either (a, b, Z1, Z2, Z3, Z4, Z5) or 
(a, b, Z1, Z2, Z3, Z4, Z5, T ) is associated to P 2 and that the only other candidates for embedded associated 
primes of P 2 are (a, b, c, Z1, Z2, Z3, Z4, Z5) and (a, b, c, Z1, Z2, Z3, Z4, Z5, T ). Macaulay2 [4] computes that 
only the first and the third prime ideals on this list are associated to P 2.

4. Prime ideals whose powers have many associated prime ideals

We exploit splitting and spreading to generate prime ideals whose specific powers have arbitrarily many 
associated prime ideals.

Theorem 4.1. Let k be an arbitrary field, and let m ≥ 3 and v1, . . . , vm be any positive integers. Then there 
exists a polynomial ring R in 

∑
vi variables over k with an m-generated prime ideal P of height m − 1 with 

generators of degree at most 3 (or with quasi-homogeneous generators of degree at most 10) such that for 
all integers e ≥ 2, P e has 

∏
vi embedded primes, all of which have height m.

In case all vi equal v, this says that there exists a polynomial ring in mv variables over a field k with 
an m-generated prime ideal P of height m − 1 such that P e has vm embedded primes if e ≥ 2. The number 
vm = ( v

√
v)mv is exponential in the number mv of variables if we think of v as fixed.

Proof. Let x, y, z, z1, . . . , zm−3 be variables over k. Let I = (x3 − yz, y2 − xz, z2 − x2y) ∈ k[x, y, z] be 
the prime ideal as in Example 3.1. Set Rm = k[x, y, z, z1, . . . zm−3] and Im = (x3 − yz, y2 − xz, z2 −
x2y, z1 − z, . . . , zm−3 − z). Then Rm is a polynomial ring in m variables over k and Im is a prime ideal 
in Rm of height m − 1. By Proposition 2.6, Im is a spreading of I. By Example 3.1, for all integers e ≥ 2, 
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Ie has exactly one embedded prime ideal, namely (x, y, z). Then by Proposition 2.6, the maximal ideal 
J = (x, y, z, z1, . . . , zm−3) in Rm is an associated prime ideal of Iem. Suppose that Q is associated to Iem. 
Since Im has height m − 1, the height of Q is either m − 1 or m, so that by quasi-homogeneity of Im we 
get that either Q = Im or Q = J . This proves that for all integers e ≥ 2, the set of associated primes of Iem
consists of Im and J .

Let ϕ : Rm → A be the splitting which for i = 1, . . . , m splits the ith variable into vi variables. Set 
P = ϕ(Im)A. Then by Theorem 1.7, A is a polynomial ring in 

∑
i vi variables over k, P is a prime ideal of 

height m −1, and P e has 1 +v1 · · · vm primary components for all e ≥ 2. Each of the embedded components 
is the splitting of J and is thus generated by m variables.

The number of generators of P is at most the number of generators m of Im. Since the height of P is 
m − 1, the number of generators is at least m − 1, and since higher powers of P have embedded primes, P
cannot be a complete intersection, so that the number of generators of P is exactly m. �
Corollary 4.2. Let M and d be positive integers and let E(M, d) the Ananyan-Hochster bound from [1], 
namely the constant such that for any ideal I in any polynomial ring over a field, if I has at most M
generators all of which have degree at most d, then I has at most E(M, d) associated primes. Then E(M, d) ≥
1 + 3

√
2M−1.

Proof. Let m ≥ 3, v = 3, P be as in Theorem 4.1. Then the number M of generators of P 2 is at most 
m(m+1)

2 ≤ (m+1)2
2 , and the number of associated primes of P 2 is

1 + 3m ≥ 1 + 3
√

2M−1. �
Theorem 4.3. For every field k, for every odd integer m = 2n +7 ≥ 9 and for all positive integers v1, . . . , vm
there exists a polynomial ring in 

∑m
i=1 vi variables over k with a prime ideal P of height m+1

2 = n + 4 such 
that P 2 has at least 

∏m
i=1 vi + v1v2

∏m
i=n+3 vi embedded primes.

If all vi equal v, this says that there exists a prime ideal P of height m+1
2 = n + 4 in a polynomial 

ring in mv variables such that P 2 has at least vm + v
m+7

2 = v2n+7 + vn+7 embedded primes. The number 
vm = ( v

√
v)mv is exponential in the number mv of variables if we think of v as fixed.

Proof. We use the set-up as in Example 2.2 (2): A = k[a, b], Sz = A[c], Su = A[c1, . . . , cn], J =
(a2b2c, b4, ab3, a3b, a4) ⊆ Sz, dz and du trivial gradings on A, and dz(c) = 1, du(cj) = ej , where 
ej = (0, . . . , 0, 1, 0, . . . , 0) has 1 in the jth entry. Then the A-module homomorphism ϕ : Su → Sz taking cj
to c is a spreading, and it is surjective and full. Furthermore, spr(J) = (a2b2c1, . . . , a2b2cn, b4, ab3, a3b, a4).

The extended Rees algebra of J is a natural homomorphic image of the polynomial ring SZ =
Sz[Z1, . . . , Z5, T ], and the extended Rees algebra of spr(J) is a natural homomorphic image of the polyno-
mial ring SU = Su[U1, . . . , Un, U ′

2, U
′
3, U

′
4, U

′
5, T ]. Let PZ (resp. PU ) be the kernels of these homomorphisms. 

By Theorem 2.9, there exists a surjective spreading (SZ , dZ , SU , dU , Φ) such that spr(PZ) = PU . We may 
take ϕ(Ui) = Z1 and ϕ(U ′

i) = Zi for all i. Without loss of generality we may identify each U ′
i with Zi, so 

that in the sequel we write SU = Su[U1, . . . , Un, Z2, Z3, Z4, Z5, T ].
Note that SU is a polynomial ring in m = 2n + 7 variables over k. Since Su has dimension n + 2, the 

extended Rees algebra of spr(J) has dimension n +3, so that the height of PU is (2n +7) − (n +3) = n +4 =
m+1

2 .
Let MZ (resp. MU ) be the maximal homogeneous ideal in SZ (resp. SU ). We show that MU is associated 

to P 2
U . Note that PZ is as in Proposition 3.3, and so MZ is associated to P 2

Z and MZ is the radical of P 2
Z : f

for some f ∈ k[a, b, Z2, Z3, Z4, Z5, T ]. Since Φ(f) = f /∈ P 2
Z = Φ(P 2

U ), it follows that f /∈ P 2
U . Let x be any 

variable in SU . Then for some large integer p, Φ(xpf) = Φ(x)pf ∈ P 2
Z = Φ(P 2

U ). We use a lexicographic 
order that places all c1, . . . , cn and U1, . . . , Un at the top of the order, and if x is one of these variables, 
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then x is the least in the order. Then by Gröbner bases theory there exists an equation that writes Φ(xpf)
as an element of P 2

Z using only the variables Φ(x), a, b, Z2, Z3, Z4, Z5, T . If in that equation we replace each 
occurrence of Φ(x) with x, then by the definition of spreading we get that xpf ∈ P 2

U . This proves that MU

is associated to P 2
U .

Set QZ = (a, b, Z1, . . . , Z5, T ), and Q′
U = (a, b, U1, . . . , Un, Z2, . . . , Z5, T ). By Proposition 3.3, QZ is 

associated to P 2
Z and QZ is the radical of P 2

Z : g for some g ∈ k[a, b, Z2, Z3, Z4, Z5, T ]. As in the proof in the 
previous paragraph, g /∈ P 2

U and a power of Q′
U is contained in P 2

U : g. If a power of ci is in P 2
U : g then a 

power of c = Φ(ci) is in P 2
Z : g, which is a contradiction. Thus no power of ci is in P 2

U : g. Thus there exists 
a prime ideal QU associated to P 2

U that contains Q′
U and that is different from MU . Thus QU contains at 

least the n + 7 = m−7
2 variables from Q′

U .
If we split the ith variable in SU into a product of vi distinct new variables, as i varies from 1 to m, then 

by Theorem 1.7, the image P of PU is a prime ideal of height m+1
2 , and P 2 has at least 

∏m
i=1 vi embedded 

primes coming from MU and at least v1v2
∏m

i=n+3 vi embedded primes coming from QU . �
Remark 4.4. The proof shows that one of the associated prime ideals of P 2

U is the maximal ideal of SU and 
that another associated prime ideal has at least n + 7 variables. We do not determine the exact number of 
variables in this second associated prime.

Examples 4.5. All rings below are polynomial rings over an arbitrary field.

(1) By Theorem 4.1 there exists a prime ideal P of height 4 in 2 + 2 + 5 + 5 + 5 = 19 variables such that 
P e has exactly 500 = 22 · 53 embedded primes for all e ≥ 2.

(2) By Theorem 4.3 there exists a prime ideal P of height 5 in 2 +2 +1 +1 +1 +1 +5 +5 +5 = 23 variables 
such that P 2 has at least 22 · 14 · 53 + 22 · 13 · 53 = 1000 embedded primes.

(3) By Theorem 4.1, there exists a prime ideal P of height 5 in 6 ·3 = 18 variables such that P e has exactly 
36 = 729 embedded primes for all e ≥ 2.

(4) By Theorem 4.3, there exists a prime ideal P of height 5 in 9 · 2 = 18 variables such that P 2 has at 
least 29 + 28 = 768 embedded primes.

(5) By Theorem 4.1, there exists a prime ideal P of height 10 in 11 · 2 = 22 variables such that P e has 
exactly 211 = 2048 embedded primes for all e ≥ 2.

(6) By Theorem 4.3, there exists a prime ideal P of height 6 in 11 · 2 = 22 variables such that P 2 has at 
least 211 + 29 = 2560 embedded primes.
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