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1. Introduction

The aim of this paper is to prove the following result:

The category of 1-dimensional cobordisms, freely enriched over the category of commutative monoids 
and completed with respect to biproducts, provides a proper graphical language for closed categories with 
biproducts.

This coherence result is formally stated through Theorems 7.5 and 8.3-8.4 below. The first of these theorems 
treats the case of symmetric monoidal closed categories with biproducts. As in the case of symmetric 
monoidal closed categories, the commuting diagrams are restricted to those involving “proper” objects. 
This result says that every two canonical arrows from a to b (for a and b proper) with the same “graphs” 
are equal in such a category. However, the notion of the graph of an arrow is somewhat different in this 
case—it is a matrix whose entries are formal sums of graphs adequate for symmetric monoidal closed case 
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(the Kelly-Mac Lane graphs). The second and the third theorem are analogous. They treat the cases of 
compact closed categories with biproducts and dagger compact closed categories with dagger biproducts. 
The main difference is that the latter results are not restricted to proper objects.

Coherence, as a category theoretical notion, finds its roots in the papers of Mac Lane, [19], and Stasheff, 
[27]. Since then, lots of coherence results have been proven and possible applications have been found in 
many fields of mathematics. We mention just a few appearances of such results in category theory, [20, XI.3, 
Theorem 1], in mathematical linguistics and logic, [18, Proposition 4], in homotopy theory, [3, Theorem 3.6], 
[22, Theorems 3.1-2], in combinatorics, [12, Theorem 2.5], [4, Theorem 5.2], in low-dimensional topology, 
[29, Theorem 2.5] and in mathematical physics, [24].

As one can see from the examples above, coherence results are formulated in many different (sometimes 
hardly recognisable) forms. The approach to coherence in this paper is the one established in [8], namely, 
coherence for a category theorist is nothing but completeness for a logician. It stems from Kelly’s attempt, 
[13, Section 1.4, pp. 111-112], to make uniform the notion of coherence, which is further developed by 
Voreadou, [30, Introduction, p. viii], and Soloviev, [25], [26]. According to this approach, on the side of 
syntax, we have a freely generated category C whose language and axiomatic commuting diagrams are 
specified, while on the side of semantics we have some kind of graphs (a graphical language), which may be 
formalised as arrows of a category D of the “same type” as C. Then, following [8], a coherence result may 
be stated as existence of a faithful functor from C to D. Since one expects out of such a result a decision 
procedure for diagram commuting problem, it is desirable to have this problem decidable in D (cf. the 
notion of manageable category given in [8, §1.1]).

Traditionally, the graphs associated to arrows of closed categories are based on 1-dimensional manifolds 
(cf. [15] and [14]), while the graphs adequate for arrows of categories with products, coproducts and biprod-
ucts contain branchings (singularities) and hence are not manifolds (cf. [24]). These two graphical languages 
do not cooperate well, as it was noted in [23, Section 3, last paragraph]. The main problem related to this 
discrepancy is to find a proper graphical language for cartesian closed categories, and it remains open. On 
the other hand, from the point of view of category theory, the closed structure goes perfectly well with 
biproducts—the former distributes over the latter. Also, there are lots of examples possessing both struc-
tures. However, the only coherence result we know from the literature, which treats closed categories with 
biproducts, is [2, Theorem 21].

The structures investigated in this paper are of particular interest for researchers working in quantum 
information and computation (cf. [1], [2], [23] and [10]). Our interest for closed categories with biprod-
ucts is motivated by questions arising from categorial proof theory. A recent research, [5], in which both 
authors have participated, considers a sequent system with a connective that acts simultaneously as con-
junction and disjunction. From the standpoint of categorial proof theory, such a connective corresponds to 
a biproduct.

We hope that our results could interact with research concerning the problem of full coherence for closed 
categories (see [25], [26] and [21]), where sometimes (cf. [26, Lemma 2.7]) the role of biproducts is evident. 
The language we cover in this paper includes basic notions used in homological algebra—potentially, our 
results can simplify some diagram chasing. Also, our approach opens up the possibility to construct other 
graphical languages for some more involved structures in order to extend a very systematic list given in [24].

In the last section of the paper, we mention some open problems. A possibility to switch from one type of 
graphs to another, in coherence result for closed categories with biproducts, by using topological quantum 
field theories seems to be of particular interest.

2. Closed categories and biproducts

A brief review of some categorial notions relevant for our results is given in this section. A symmetric 
monoidal category is a category A equipped with a distinguished object I, a bifunctor ⊗ : A × A → A
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and the natural isomorphisms α, λ and σ with components αa,b,c : a ⊗ (b ⊗ c) → (a ⊗ b) ⊗ c, λa : I ⊗
a → a and σa,b : a ⊗ b → b ⊗ a. Moreover, the coherence conditions concerning the arrows of A (see the 
equalities (3.19)-(3.21) below) hold.

A symmetric monoidal closed category is a symmetric monoidal category A in which for every object a
there is a right adjoint a � : A → A to the functor a⊗. A compact closed category is a symmetric monoidal 
category in which every object a has a dual a∗ in the sense that there are arrows η : I → a∗ ⊗ a and 
ε : a ⊗ a∗ → I such that

(a∗ ⊗ ε) ◦ α−1
a∗,a,a∗ ◦ (η ⊗ a∗) = σI,a∗ , (ε⊗ a) ◦ αa,a∗,a ◦ (a⊗ η) = σa,I . (2.1)

Every compact closed category is symmetric monoidal closed since a∗⊗ is a right adjoint to a⊗ for every 
object a of such a category.

A dagger category is a category A equipped with a functor † : Aop → A such that for every object a and 
every arrow f of this category a† = a, and f†† = f . (For more details see [23] and [10].) A dagger compact 
closed category is a compact closed category A, which is also a dagger category satisfying

(f ⊗ g)† = f† ⊗ g†, (2.2)

α†
a,b,c = α−1

a,b,c, λ†
a = λ−1

a , σ†
a,b = σb,a, (2.3)

σa,a∗ ◦ ε† = η. (2.4)

This notion was introduced by Abramsky and Coecke, [1], under the name “strongly compact closed cate-
gory”. (For the reasons to switch to another terminology see [23, Remark 2.7].)

A zero object (or a null object) in a category is an object which is both initial and terminal. If a category 
contains a zero object 0, then for every pair a, b of its objects, there is a composite 0a,b : a → 0 → b. (For 
every other zero object 0′ of this category, the composite a → 0′ → b is equal to 0a,b.) A biproduct of a1
and a2 in a category with a zero object consists of a coproduct and a product diagram

a1
ι1−→ a1 ⊕ a2

ι2←− a2, a1
π1

←− a1 ⊕ a2
π2

−→ a2

for which

πj ◦ ιi =
{

1ai
, i = j,

0ai,aj
, otherwise,

where i, j ∈ {1, 2} (cf. the equalities (3.13)-(3.14) below).
More generally, a biproduct of a family of objects {aj | j ∈ J} consists of a universal cocone and a 

universal cone

{ιj : aj → B | j ∈ J}, {πj : B → aj | j ∈ J}

for which the above equality holds for all i, j ∈ J . A category with biproducts is a category with zero object 
and biproducts for every pair of objects. Note that a category with biproducts has biproducts for all finite 
families of objects, but not necessary for infinite families of objects. A biproduct is a dagger biproduct when 
ιj = (πj)†, for every j ∈ J .

By defining f + g for f, g : a → b as μb ◦ (f ⊕ g) ◦ μ̄a, where μb : b ⊕ b → b is the codiagonal map, and 
μ̄a : a → a ⊕ a is the diagonal map tied to the coproduct b ⊕ b and to the product a ⊕ a one obtains an 
operation on the set of arrows from a to b which is commutative and has 0a,b as neutral. Moreover, the 
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composition distributes over +. Hence, every category with biproducts may be conceived as a category 
enriched over the category Cmd of commutative monoids.

Example 1. The category Set of sets and functions is symmetric monoidal closed with ⊗ being the Cartesian 
product, and X � Y being the set of functions from X to Y . More generally, every cartesian closed category
is symmetric monoidal closed. Even restricted to finite sets, Set is not compact closed. There are no zero 
objects and biproducts in this category.

Example 2. The category Set∗ of pointed sets whose objects are sets each of which contains a distinguished 
element, and whose arrows are functions that preserve the distinguished element is symmetric monoidal 
closed with ⊗ being the smash product (all the pairs having at least one component distinguished are 
identified into the distinguished element of the product) and X � Y being the set of all functions from X
to Y that preserve the distinguished element, with the distinguished element being the function that maps 
each element of X to the distinguished element of Y . Note that the smash product is not a product in Set∗, 
hence, the above structure is not cartesian closed. Also, this category is not compact closed. Every singleton 
is a zero object in Set∗, but this is not a category with biproducts.

Example 3. The category Rel of sets and relations is dagger compact closed with dagger biproducts of all 
families of objects. The bifunctor ⊗ is the Cartesian product. For every relation ρ its converse (transpose) 
is ρ†. Every object is self-dual. The arrow η : {∗} → X × X is the relation {(∗, (x, x)) | x ∈ X}, while 
ε : X ×X → {∗} is its converse {((x, x), ∗) | x ∈ X}. The biproduct of a family of objects is given by their 
disjoint union and standard injections, while the converse of an injection is the corresponding projection. 
The category Relω is the full subcategory of Rel on finite ordinals. This category is also dagger compact 
closed with dagger biproducts.

Example 4. For any field K, the category VectK of vector spaces over K is symmetric monoidal closed with 
⊗ being the usual tensor product and V � W being the vector space of linear transformations from V to 
W . The zero object of VectK is the trivial vector space and the biproduct of V and W is given by the direct 
sum V ⊕ W . There are no biproducts of infinite families of non-zero vector spaces. The full subcategory 
fdVectK of VectK on finite dimensional vector spaces is compact closed. The usual dual space V � K

plays the role of a dual V ∗ of V in fdVectK . For (ei)1≤i≤n being a basis of V and (ei)1≤i≤n being its dual 
basis of V ∗, the linear transformations η : K → V ∗ ⊗ V and ε : V ⊗ V ∗ → K are determined by

η(1) =
n∑

i=1
ei ⊗ ei, ε(ei ⊗ ej) = ej(ei) =

{
1, i = j,

0, otherwise.

Example 5. The category fdHilb of finite dimensional Hilbert spaces (over C) is dagger compact closed with 
dagger biproducts. For every arrow f of this category, f† is its unique adjoint determined by 〈f(x), y〉 =
〈x, f†(y)〉.

Example 6. For any rig (R, +, ·, 0, 1) ((R, +, 0) commutative monoid, (R, ·, 1) monoid, plus distributivity 
x · (y+ z) = (x · y) +(x · z), (y+ z) ·x = (y ·x) +(z ·x), 0 ·x = 0 = x · 0), consider the category MatR whose 
objects are finite ordinals and arrows from n to m are m ×n matrices over R, with matrix multiplication as 
composition. This category is dagger compact closed with dagger biproducts. The bifunctor ⊗ is given by 
the multiplication on objects and the Kronecker product on arrows. For every matrix A over R, its transpose 
is A†. Every object is self-dual. The arrow η : 1 → n · n is the column with n2 entries having 1 at places 
indexed by k · n, 0 ≤ k < n and 0 at all the other places. The arrow ε : n · n → 1 is the transpose of η. The 
biproduct of n and m is given by the sum n + m, the injections
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ι1n,m =
(
En

0

)
(n+m)×n

, ι2n,m =
(

0
Em

)
(n+m)×m

,

and the projections π1
n,m = (ι1n,m)T , π2

n,m = (ι2n,m)T .
For the rig 2 = ({0, 1}, +, ·, 0, 1) where 1 +1 = 1, i.e. the Boolean algebra with two elements, the category 

Mat2 is isomorphic, with respect to dagger compact closed and biproduct structure, to the category Relω. 
This isomorphism is the identity on objects. For our purposes, the category MatN for the rig structure on 
natural numbers is of particular interest. For any field K, the category MatK is a skeleton of the category 
fdVectK .

Example 7. The category 1Cob has as objects the finite sequences of points together with their orientation 
(either + or −). Hence, an object of 1Cob is represented by a sequence of + and −, e.g. + + − + −−. 
By a 1-manifold we mean a compact oriented 1-dimensional topological manifold with boundary (a finite 
collection of oriented circles and line segments). For a, b objects of 1Cob, a 1-cobordism from a to b is a 
triple (M, f0 : a → M, f1 : b → M), where M is a 1-manifold with boundary Σ0

∐
Σ1 whose orientation is 

induced from the orientation of M , the embedding f0 : a → M whose image is Σ0 is orientation preserving, 
while the embedding f1 : b → M whose image is Σ1 is orientation reversing. Two cobordisms (M, f0, f1) and 
(M ′, f ′

0, f
′
1) from a to b are equivalent, when there is an orientation preserving homeomorphism F : M → M ′

such that the following diagram commutes.

a

M

M ′

b

f0 f1

f ′
0 f ′

1

F
�����

�����

�����

�����
�

The arrows of 1Cob are the equivalence classes of 1-cobordisms. The identity 1a : a → a is represented by 
the cobordism (a × I, x �→ (x, 0), x �→ (x, 1)), while (M, f0, f1) : a → b and (N, g0, g1) : b → c are composed 

by “gluing”, i.e. by making the pushout of M f1←− b 
g0−→ N .

The category 1Cob serves to us as a formalisation of Kelly-Mac Lane graphs introduced in [15]. Actually, 
just the arrows of 1Cob free of closed 1-manifolds (circles) are sufficient for these matters, and even the 
orientation is not relevant. However, if one switches from symmetric monoidal closed categories to compact 
closed categories, the presence of closed components in 1-manifolds is essential (see [14]). All the arrows of 
1Cob are illustrated such that the source of an arrow is at the top, while its target is at the bottom of the 
picture, hence the direction of pictures is top to bottom and not left to right (e.g. [17]) or bottom to top (e.g. 
[29]). We omit the orientation of arrows and objects in pictures when this is not essential.

The category 1Cob is dagger compact closed. We have (strict) symmetric monoidal structure on 1Cob
in which ⊗ is given by disjoint union, i.e. by putting two cobordisms “side by side”. Symmetry is generated 
by transpositions:

(Note that our manifolds are not embedded in the plane and we consider the above cobordism as the disjoint 
union of two line segments—just the embedding of the source and the target matters.)

The dual a∗ of an object a is the same sequence of points with reversed orientation. For example, if 
a = + −−, then a∗ = − ++. The arrows η : ∅ → a∗⊗a and ε : a ⊗a∗ → ∅, for a as above are the cobordisms 
illustrated as:
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+ + +− −

− + + + − −

−

The equalities (2.1) (in their simplest form, when a = +) are illustrated as:

=

−
−

−
−−

−

+ =

+

+

+

+
+

+

−

The cobordism f† : b → a is obtained by reversing the orientation of the 1-manifold representing the 
cobordism f : a → b. (By reversing the orientation of M , the embedding f0 : a → M becomes orientation 
reversing, hence a becomes the target of the obtained cobordism—analogously, b becomes its source.) For 
example, if f is illustrated at the left-hand side, then f† is illustrated at the right-hand side of the following 
picture.

−+ +

+

+

++ −

It is not hard to check that the equalities (2.2)-(2.4) hold.

3. SMCB categories

This section is devoted to an equational presentation of symmetric monoidal closed categories with 
biproducts. Our choice of the language, which is very important in such a situation, is the one that provides 
an easy approach to coherence. A SMCB category A consists of a set of objects and a set of arrows. There 
are two functions (source and target) from the set of arrows to the set of objects of A. For every object 
a of A there is the identity arrow 1a : a → a. The set of objects includes two distinguished objects I and 
0. Arrows f : a → b and g : b → c compose to give g ◦ f : a → c, and arrows f1, f2 : a → b add to give 
f1 + f2 : a → b. For every pair of objects a and b of A, there are the objects a ⊗ b, a ⊕ b and a � b. Also, for 
every pair of arrows f : a → a′ and g : b → b′ there are the arrows f⊗g : a ⊗b → a′⊗b′, f⊕g : a ⊕b → a′⊕b′

and a � g : a � b → a � b′. In A we have the following families of arrows indexed by its objects.

αa,b,c : a⊗ (b⊗ c) → (a⊗ b) ⊗ c, α−1
a,b,c : (a⊗ b) ⊗ c → a⊗ (b⊗ c),

λa : I ⊗ a → a, λ−1
a : a → I ⊗ a,

σa,b : a⊗ b → b⊗ a,

ηa,b : b → a � (a⊗ b), εa,b : a⊗ (a � b) → b,

ι1a,b : a → a⊕ b, ι2a,b : b → a⊕ b,

π1
a,b : a⊕ b → a, π2

a,b : a⊕ b → b,

0a,b : a → b.
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The arrows of A should satisfy the following equalities:

f ◦ 1a = f = 1a′ ◦ f, (h ◦ g) ◦ f = h ◦ (g ◦ f), (3.1)
1a ⊗ 1b = 1a⊗b, (f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1) ⊗ (g2 ◦ g1), (3.2)
1a ⊕ 1b = 1a⊕b, (f2 ⊕ g2) ◦ (f1 ⊕ g1) = (f2 ◦ f1) ⊕ (g2 ◦ g1), (3.3)

a � 1b = 1a�b, (a � g2) ◦ (a � g1) = a � (g2 ◦ g1), (3.4)
((f ⊗ g) ⊗ h) ◦ αa,b,c = αa′,b′,c′ ◦ (f ⊗ (g ⊗ h)),

α−1
a,b,c ◦ αa,b,c = 1a⊗(b⊗c), αa,b,c ◦ α−1

a,b,c = 1(a⊗b)⊗c,
(3.5)

f ◦ λa = λa′ ◦ (I ⊗ f), λ−1
a ◦ λa = 1I⊗a, λa ◦ λ−1

a = 1a, (3.6)
(g ⊗ f) ◦ σa,b = σa′,b′ ◦ (f ⊗ g), σb,a ◦ σa,b = 1a⊗b, (3.7)

(a � (a⊗ g)) ◦ ηa,b = ηa,b′ ◦ g, (3.8)
g ◦ εa,b = εa,b′ ◦ (a⊗ (a � g)), (3.9)

(f ⊕ g) ◦ ι1a,b = ι1a′,b′ ◦ f, (f ⊕ g) ◦ ι2a,b = ι2a′,b′ ◦ g, (3.10)
f ◦ π1

a,b = π1
a′,b′ ◦ (f ⊕ g), g ◦ π2

a,b = π2
a′,b′ ◦ (f ⊕ g), (3.11)

(a � εa,b) ◦ ηa,a�b = 1a�b, εa,a⊗b ◦ (a⊗ ηa,b) = 1a⊗b, (3.12)
π1
a,b ◦ ι1a,b = 1a, π2

a,b ◦ ι2a,b = 1b, (3.13)
π2
a,b ◦ ι1a,b = 0a,b, π1

a,b ◦ ι2a,b = 0b,a, (3.14)
ι1a,b ◦ π1

a,b + ι2a,b ◦ π2
a,b = 1a⊕b, (3.15)

f1 + (f2 + f3) = (f1 + f2) + f3, f1 + f2 = f2 + f1, f + 0a,a′ = f, (3.16)
(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f, g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2, (3.17)

0a′,b ◦ f = 0a,b, f ◦ 0b,a = 0b,a′ . (3.18)
αa⊗b,c,d ◦ αa,b,c⊗d = (αa,b,c ⊗ d) ◦ αa,b⊗c,d ◦ (a⊗ αb,c,d), (3.19)

λa⊗b = (λa ⊗ b) ◦ αI,a,b, (3.20)
αc,a,b ◦ σa⊗b,c ◦ αa,b,c = (σa,c ⊗ b) ◦ αa,c,b ◦ (a⊗ σb,c), (3.21)

00,0 = 10. (3.22)

The equalities (3.1) say that A is a category. The equalities (3.2)-(3.4) say that ⊗ and ⊕ are bifunctors, 
while a � is a functor. The equalities (3.5)-(3.7) say that α, λ and σ are natural isomorphisms. The 
equalities (3.8)-(3.11) say that ηa, εa, ι and π are natural. The equalities (3.12) are triangular equalities. 
The equalities (3.13)-(3.15) are biproduct equalities, while the equalities (3.16)-(3.18) say that A is enriched 
over the category Cmd. The coherence conditions are contained in (3.19)-(3.22).

The equalities (3.1), (3.2), (3.5)-(3.7), (3.19)-(3.21) say that A is a symmetric monoidal category. From 
(3.2), (3.4), (3.8)-(3.9), (3.12), with the help of [20, IV.1, Theorem 2(v)], it follows that for every a, the 
functor a � is a right adjoint to the functor a⊗, hence A is symmetric monoidal closed.

Since for every object a of A the arrows 00,a and 0a,0 exist, with the help of (3.18) and (3.22), one may 
conclude that 0 is a zero object, i.e. an initial and a terminal object of A. The following proposition, together 
with (3.13)-(3.14) shows that A is equipped with biproducts.

Proposition 3.1. For every a and b,

a
ι1a,b−→ a⊕ b

ι2a,b←− b, a
π1
a,b←− a⊕ b

π2
a,b−→ b

are coproduct and product diagrams in A, respectively.
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Proof. For f : a → c and g : b → c, the unique arrow h : a ⊕ b → c such that h ◦ ι1 = f and h ◦ ι2 = g is 
obtained as f ◦ π1 + g ◦ π2. Dually, for f : c → a and g : c → b, the unique arrow h : c → a ⊕ b such that 
π1 ◦ h = f and π2 ◦ h = g is obtained as ι1 ◦ f + ι2 ◦ g. Note that the uniqueness of h in both cases follows 
from (3.15), and also this equality is necessary for the uniqueness of h in either case, e.g. it follows from the 
uniqueness of h in the first case when we instantiate f by ι1a,b and g by ι2a,b. �

Hence, every SMCB category is symmetric monoidal closed with biproducts. On the other hand, it is 
straightforward to check that every symmetric monoidal closed category with biproducts has the SMCB 
structure.

By defining f � b : a′ � b → a � b, for f : a → a′, as

(a � εa′,b ◦ (a � (f ⊗ (a′ � b))) ◦ ηa,a′�b

one obtains a bifunctor � : Aop×A → A (see [20, IV.7, Theorem 3]). In this way, η and ε become dinatural, 
i.e. the following two equalities hold.

(a � (f ⊗ b)) ◦ ηa,b = (f � (a′ ⊗ b)) ◦ ηa′,b, (3.23)

εa,b ◦ (a⊗ (f � b)) = εa′,b ◦ (f ⊗ (a′ � b)). (3.24)

By [20, V.5, Theorem 1] and its dual we have the following results.

Proposition 3.2. For every a, b and c,

c � a
c�π1

a,b

←−−−− c � (a⊕ b)
c�π2

a,b

−−−−→ c � b, c⊗ a
c⊗ι1a,b

−−−−→ c⊗ (a⊕ b)
c⊗ι2a,b

←−−−− c⊗ b

are product and coproduct diagrams in A, respectively, while c � 0 and c ⊗ 0 are zero objects.

Corollary 3.3. For every a, b and c,

c � (a⊕ b) ∼= (c � a) ⊕ (c � b), c⊗ (a⊕ b) ∼= (c⊗ a) ⊕ (c⊗ b), c � 0 ∼= 0 ∼= c⊗ 0.

With the help of the above isomorphisms, one derives the following equalities.

f ⊗ (g1 + g2) = (f ⊗ g1) + (f ⊗ g2), (f1 + f2) ⊗ g = (f1 ⊗ g) + (f2 ⊗ g),

f � (g1 + g2) = (f � g1) + (f � g2), (f1 + f2) � g = (f1 � g) + (f2 � g),

f ⊗ 0b,b′ = 0a⊗b,a′⊗b′ = 0a,a′ ⊗ g,

f � 0b,b′ = 0a′�b,a�b′ = 0a,a′ � g.

4. A free SMCB category

Our presentation of SMCB categories is purely equational. This enables one to construct a SMCB category 
FP freely generated by an (infinite) set P . The objects of FP are the formulae built out of elements of P
and the constants I and 0, with the help of three binary connectives ⊗, ⊕ and �. In order to obtain the 
arrows of FP , we start with primitive terms which are of the form 1a, αa,b,c, λa, σa,b, ηa,b, εa,b, ιia,b, πi

a,b and 
0a,b, for all objects a, b and c of FP . The terms are built out of primitive terms with the help of operational 
symbols ⊗, ⊕, a �, for every object a of FP , + and ◦. (Each such term is equipped with the source and 
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the target, which are objects of FP , and constructions of terms with + and ◦ are restricted to appropriate 
sources and targets.) These terms are quotient by the congruence generated by the equalities (3.1)-(3.22). 
Hence, an arrow of FP is the equivalence class of a term.

Let Smcb be the category whose objects are SMCB categories and whose arrows are functors strictly 
preserving the SMCB structure. The forgetful functor from Smcb to the category Set of sets and functions, 
which maps a SMCB category to the set of its objects, has a left adjoint, the “free” functor F . Our category 
FP is the image FP of the set P under the functor F .

Definition 4.1. By induction on the complexity of an object a of FP , we define two finite sequences Ia =
〈ι0a, . . . , ιn−1

a 〉 and Πa = 〈π0
a, . . . , π

n−1
a 〉 of arrows of FP in the following way. If a is an element of P or 

either the constant I or 0, then n = 1 and Ia = 〈1a〉 = Πa. Let us assume that Ia1 = 〈ι01, . . . , ιn1−1
1 〉, 

Πa1 = 〈π0
1 , . . . , π

n1−1
1 〉 and Ia2 = 〈ι02, . . . , ιn2−1

2 〉, Πa2 = 〈π0
2 , . . . , π

n2−1
2 〉 are already defined.

⊗ If a = a1 ⊗ a2, then n = n1 · n2, and for 0 ≤ i < n1 · n2,

ιia = ι
�i/n2�
1 ⊗ ιi modn2

2 , πi
a = π

�i/n2�
1 ⊗ πi modn2

2 .

� If a = a1 � a2, then n = n1 · n2, and for 0 ≤ i < n1 · n2,

ιia = π
�i/n2�
1 � ιi modn2

2 , πi
a = ι

�i/n2�
1 � πi modn2

2 .

⊕ If a = a1 ⊕ a2, then n = n1 + n2, and for 0 ≤ i < n1 + n2,

ιia =
{

ι1a1,a2
◦ ιi1, 0 ≤ i < n1,

ι2a1,a2
◦ ιi−n1

2 , otherwise,
πi
a =

{
πi

1 ◦ π1
a1,a2

, 0 ≤ i < n1,

πi−n1
2 ◦ π2

a1,a2
, otherwise.

Remark 4.1. Note that when a = a1 ⊕ a2 we have that

ιia = ι1+si
a1,a2

◦ ιi−n1·si
1+si

, πi
a = πi−n1·si

1+si
◦ π1+si

a1,a2
, where si =

⌊
min{i, n1}

n1

⌋
.

Example 8. If n1 = 3 and n2 = 2, then

Ia1⊗a2 = 〈ι01 ⊗ ι02, ι
0
1 ⊗ ι12, ι

1
1 ⊗ ι02, ι

1
1 ⊗ ι12, ι

2
1 ⊗ ι02, ι

2
1 ⊗ ι12〉,

Πa1⊗a2 = 〈π0
1 ⊗ π0

2 , π
0
1 ⊗ π1

2 , π
1
1 ⊗ π0

2 , π
1
1 ⊗ π1

2 , π
2
1 ⊗ π0

2 , π
2
1 ⊗ π1

2〉,

Ia1�a2 = 〈π0
1 � ι02, π

0
1 � ι12, π

1
1 � ι02, π

1
1 � ι12, π

2
1 � ι02, π

2
1 � ι12〉,

Πa1�a2= 〈ι01 � π0
2 , ι

0
1 � π1

2 , ι
1
1 � π0

2 , ι
1
1 � π1

2 , ι
2
1 � π0

2 , ι
2
1 � π1

2〉,

Ia1⊕a2 = 〈ι1a1,a2
◦ ι01, ι1a1,a2

◦ ι11, ι1a1,a2
◦ ι21, ι2a1,a2

◦ ι02, ι2a1,a2
◦ ι12〉,

Πa1⊕a2 = 〈π0
1 ◦ π1

a1,a2
, π1

1 ◦ π1
a1,a2

, π2
1 ◦ π1

a1,a2
, π0

2 ◦ π2
a1,a2

, π1
2 ◦ π2

a1,a2
〉.

Example 9. Let x = (a ⊕ b) ⊕ c and y = ((a ⊕ b) ⊕ c) ⊗ (c ⊕ d), where a, b, c, d are elements of P . Then ιix
for 0 ≤ i < 3 and ιjy for 0 ≤ j < 6 are given in the following tables.
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ι0x ι1a⊕b,c ◦ ι1a,b

ι1x ι1a⊕b,c ◦ ι2a,b

ι2x ι2a⊕b,c

ι0y (ι1a⊕b,c ◦ ι1a,b) ⊗ ι1c,d

ι1y (ι1a⊕b,c ◦ ι1a,b) ⊗ ι2c,d

ι2y (ι1a⊕b,c ◦ ι2a,b) ⊗ ι1c,d

ι3y (ι1a⊕b,c ◦ ι2a,b) ⊗ ι2c,d

ι4y ι2a⊕b,c ⊗ ι1c,d

ι5y ι2a⊕b,c ⊗ ι2c,d

Remark 4.2. When a is built out of elements of P using only ⊕, the sequence Ia (Πa) consists of all the 
injections (projections) of the atoms of a, while this is not true when a contains ⊕ in the scope of ⊗ (or 
�). For every 0 ≤ i < n, the target of ιia and the source of πi

a are both equal to a, while the source ai of 
ιia is equal to the target of πi

a, and ai is ⊕-free. Moreover, if a is ⊕-free, then Ia = 〈1a〉 = Πa.

The following proposition has a straightforward proof.

Proposition 4.3. For every object a of FP

πj
a ◦ ιia =

{
1ai , i = j,

0ai,aj , otherwise,

n−1∑
i=0

ιia ◦ πi
a = 1a.

Corollary 4.4. For every object a of FP , the cocone (a, Ia) together with the cone (a, Πa) make a biproduct.

5. A matrix normalisation

Our next goal is to eliminate ⊕, ι and π from every arrow of FP , whose source and target are ⊕-
free. The following matrix normalisation of terms provides a solution. An alternative solution could be 
obtained via procedure akin to Kleene’s permutation of inference rules (see [16]). Namely, one could define 
a correspondence between ι’s and π’s in arrows whose source and target are ⊕-free, and then bring, by 
permutations based on naturality and functoriality, a corresponding pair together, in order to be eliminated. 
However, we find the following procedure more elegant.

For every arrow u : a → b of FP , where Ia = 〈ι0a, . . . , ιn−1
a 〉, Πb = 〈π0

b , . . . , π
m−1
b 〉, let Mu be the m × n

matrix whose ij entry is πi
b ◦u ◦ ιja. Let Xm1×n1 and Ym2×n2 be two matrices of arrows of FP . For • being ⊗

or �, following the definition of the Kronecker product of matrices, let K•(X, Y ) be the (m1 ·m2) ×(n1 ·n2)
matrix whose ij entry is

x�i/m2�,�j/n2� • yi modm2,j modn2 .

For example,

K•

((
x00 x01 x02
x10 x11 x12

)
,

(
y00 y01
y10 y11

))

is
⎛
⎜⎜⎜⎝

x00 • y00 x00 • y01 x01 • y00 x01 • y01 x02 • y00 x02 • y01
x00 • y10 x00 • y11 x01 • y10 x01 • y11 x02 • y10 x02 • y11
x10 • y00 x10 • y01 x11 • y00 x11 • y01 x12 • y00 x12 • y01
x • y x • y x • y x • y x • y x • y

⎞
⎟⎟⎟⎠ .
10 10 10 11 11 10 11 11 12 10 12 11
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For two such matrices X and Y , we define

X ⊗ Y =df K⊗(X,Y ), X � Y =df K�(XT , Y ),

while X ⊕ Y is the direct sum (
X 0
0 Y

)

of X and Y . If X and Y are of the same type having the corresponding elements in the same hom-sets, 
then X + Y is the matrix of the same type whose ij entry is xij + yij . If Xm×p and Yp×n, and for every 
0 ≤ i < m, 0 ≤ j < n the compositions xik ◦ ykj are defined for every 0 ≤ k < p, and belong to the same 
hom-set, then we define X ◦ Y as the m × n matrix whose ij entry is 

∑p−1
k=0 xik ◦ ykj .

Proposition 5.1. For • being ⊗, �, ⊕, + and ◦, we have

Mu1•u2 = Mu1 •Mu2 .

Proof. For the first three cases below, let us assume that ui : ai → bi and that Mui
is an mi × ni matrix, 

where i ∈ {1, 2}.

(1) If • is ⊗, then we have

(Mu1⊗u2)i,j = πi
b1⊗b2 ◦ (u1 ⊗ u2) ◦ ιja1⊗a2

= (π
� i
m2

�
1 ⊗ πi mod m2

2 ) ◦ (u1 ⊗ u2) ◦ (ι
� j
n2

�
1 ⊗ ιj mod n2

2 )

= (π
� i
m2

�
1 ◦ u1 ◦ ι

� j
n2

�
1 ) ⊗ (πi mod m2

2 ◦ u2 ◦ ιj mod n2
2 )

= (Mu1 ⊗Mu2)i,j .

(2) We proceed analogously when • is �. (Note that, for the sake of Corollary 5.3, since a1 � u2 = 1a1 �
u2, it suffices here to consider just the case when u1 is 1a1 .)

(3) If • is ⊕, then, by relying on Remark 4.1, we have

(Mu1⊕u2)i,j = πi−m1·si
1+si

◦ π1+si
b1,b2

◦ (u1 ⊕ u2) ◦ ι1+sj
a1,a2

◦ ιj−n1·sj
1+sj

= πi−m1·si
1+si

◦ u1+si ◦ π1+si
a1,a2

◦ ι1+sj
a1,a2

◦ ιj−n1·sj
1+sj

=

⎧⎪⎪⎨
⎪⎪⎩
πi

1 ◦ u1 ◦ ιj1, 0 ≤ i < m1, 0 ≤ j < n1,

πi−m1
2 ◦ u2 ◦ ιj−n1

2 , m1 ≤ i < m1 + m2, n1 ≤ j < n1 + n2,

0, otherwise,

= (Mu1 ⊕Mu2)i,j .

(4) If • is +, and u1, u2 : a → b, then we have

(Mu1+u2)i,j = πi
b ◦ (u1 + u2) ◦ ιja

= πi
b ◦ u1 ◦ ιja + πi

b ◦ u2 ◦ ιja
= (Mu1 + Mu2)i,j .



12 Z. Petrić, M. Zekić / Journal of Pure and Applied Algebra 225 (2021) 106533
(5) If • is ◦, and u1 : b → c, u2 : a → b, while Mu1 is a k×m and Mu2 is an m × n matrix, then, by relying 
on Proposition 4.3, we have

(Mu1 ◦Mu2)i,j =
m−1∑
l=0

πi
c ◦ u1 ◦ ιlb ◦ πl

b ◦ u2 ◦ ιja

= πi
c ◦ u1 ◦

[
m−1∑
l=0

ιlb ◦ πl
b

]
◦ u2 ◦ ιja

= πi
c ◦ u1 ◦ u2 ◦ ιja = (Mu1◦u2)i,j . �

Proposition 5.2. If u is of the form 1a, αa,b,c, λa, σa,b, ηa,b, εa,b, ιia,b, πi
a,b or 0a,b, then all the entries of 

the matrix Mu are of the form 1p, αp,q,r, λp, σp,q, ηp,q, εp,q and 0p,q, where p and q are ⊕-free.

Proof. (1) If u is 1a, then the ij entry of the matrix Mu is

(Mu)i,j = πi
a ◦ 1a ◦ ιja =

{
1ai , i = j,

0aj ,ai , otherwise.

(2) If u is αa,b,c, then for some i1, i2, i3 and j1, j2, j3

(Mu)i,j = πi
(a⊗b)⊗c ◦ αa,b,c ◦ ιja⊗(b⊗c)

= ((πi1
a ⊗ πi2

b ) ⊗ πi3
c ) ◦ αa,b,c ◦ (ιj1a ⊗ (ιj2b ⊗ ιj3c ))

=
{
αai1 ,bi2 ,ci3 , i1 = j1, i2 = j2, i3 = j3,

0aj1⊗(bj2⊗cj3 ),(ai1⊗bi2 )⊗ci3 , otherwise.

(3) We proceed analogously when u is σa or γa,b.

(4) If u is ηa,b, then for some i1, i2, i3, by using (3.8) and (3.23) we have

(Mu)i,j = πi
a�(a⊗b) ◦ ηa,b ◦ ι

j
b = (ιi1a � (πi2

a ⊗ πi3
b )) ◦ ηa,b ◦ ιjb

= ((πi2
a ◦ ιi1a ) � (ai2 ⊗ (πi3

b ◦ ιjb))) ◦ ηai2 ,bj

=
{
ηai1 ,bj , i1 = i2, i3 = j,

0bj ,ai1�(ai2⊗bi3 ), otherwise.

(5) We proceed analogously when u is εa,b.

(6) If u is ι1a,b, then (Mu)i,j = πi
a⊕b◦ι1a,b◦ιja, which is either πi1

a ◦π1
a,b◦ι1a,b◦ιja for some i1, or πi2

b ◦π2
a,b◦ι1a,b◦ιja, 

for some i2. Moreover,

πi1
a ◦ π1

a,b ◦ ι1a,b ◦ ιja =
{

1aj , j = i1,

0aj ,ai1 , otherwise,
πi2
b ◦ π2

a,b ◦ ι1a,b ◦ ιja = 0aj ,bi2 .

(7) We proceed analogously when u is ι2a,b, π1
a,b or π2

a,b.

(8) If u is 0a,b, then (Mu)i,j = πi
b ◦ 0a,b ◦ ιja = 0aj ,bi . �
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Corollary 5.3. Every entry of Mu is expressible without using ⊕, ι and π.

Proof. Since u is built out of terms of the form 1a, αa,b,c, λa, σa,b, ηa,b, εa,b, ιia,b, πi
a,b and 0a,b with the help 

of ⊗, a �, ⊕, + and ◦, one has just to apply Propositions 5.1 and 5.2. �
Corollary 5.4. Every arrow of FP whose source and target are ⊕-free is expressible without using ⊕, ι and 
π.

Proof. If the source and the target of u are ⊕-free, then by Remark 4.2, the only entry of Mu is u itself and 
it remains to apply Corollary 5.3. �
6. The graphical language

A special SMCB category, which serves as a model (or a graphical language) for the arrows of FP is 
introduced in this section. The essential ingredient of this category is the category 1Cob described in 
Example 7.

Let 1Cob+ be the category with the same objects as 1Cob, while the arrows of 1Cob+ from a to b are 
the finite (possibly empty) multisets of arrows of 1Cob from a to b. (We abuse the notation by using the 
set brackets {, } for multisets.) The identity arrow 1a : a → a is the singleton multiset {1a : a → a}, while 
the composition of {fj : a → b | j ∈ J} and {fk : b → c | k ∈ K} is

{fk ◦ fj : a → c | j ∈ J, k ∈ K}.

The category 1Cob+ is enriched over the category Cmd. The addition on hom-sets is the operation + 
(disjoint union) on multisets and the neutral is the empty multiset.

Let 1Cob⊕ be the biproduct completion of 1Cob+ constructed as in [23, Section 5.1]. The objects 
of 1Cob⊕ are the finite sequences 〈a0, . . . , an−1〉, n ≥ 0, of objects a0, . . . , an−1 of 1Cob. For example, 
〈+ + − + −−, +, − − +〉 is an object of 1Cob⊕. Note the distinction between the empty sequence ∅ and 
the sequence 〈∅〉 whose only member is the empty sequence of oriented points. The arrows of 1Cob⊕ from 
〈a0, . . . , an−1〉 to 〈b0, . . . , bm−1〉 are the m × n matrices whose ij entry is an arrow of 1Cob+ from aj to bi. 
This category has the role of graphical language for symmetric monoidal closed categories with biproducts.

Remark 6.1. The commutativity of diagrams is decidable in 1Cob⊕.

Proposition 6.2. The category 1Cob⊕ is dagger compact closed with dagger biproducts.

Proof. The category 1Cob+ is dagger compact closed. For arrows f and g of 1Cob+ given by the multisets 
{fi : a → b | i ∈ I} and {gj : c → d | j ∈ J} respectively, we define f ⊗ g as {fi ⊗ gj | i ∈ I, j ∈ J}. 
Similarly, f† is defined as {f†

i : b → a | i ∈ I}. This category is enriched over Cmd as a compact closed 
category, and it is straightforward to check that (f + g)† = f† + g† and 0† = 0. Now the claim follows from 
[23, Proposition 5.1]. �
Corollary 6.3. The category 1Cob⊕ is an SMCB category.

7. Coherence

This section contains the main result of our paper. We start with some auxiliary notions. The I-valued
and 0-valued objects of FP are inductively defined as follows.
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(1) I is I-valued and 0 is 0-valued;
(2) a ⊕ b is I-valued when one of a and b is I-valued and the other is 0-valued, and a ⊕ b is 0-valued when 

both are 0-valued;
(3) a ⊗ b (a � b) is I-valued when both a and b are I-valued, and a ⊗ b (a � b) is 0-valued when at least 

one of a and b is 0-valued.

Remark 7.1. If a is ⊕-free and I-valued, then a is built out of I, ⊗ and �, only.

An object a of FP is proper when for every subformula of a of the form b � c, if c is I-valued, then b
is either I-valued or 0-valued. An object a of FP is I-proper when for every subformula of a of the form 
b � c, if c is I-valued, then b is I-valued.

Remark 7.2. By the definition of ιia and πi
a, we have that if a is proper, then the source of ιia (the target of 

πi
a) is proper too.

Remark 7.3. If a is proper and ⊕-free, then either it is a zero object, or it contains no 0 and is I-proper.

Consider the function g from the set P of generators of FP to the objects of 1Cob⊕ that maps every 
element of P to the singleton sequence 〈+〉. Since FP is a SMCB category freely generated by the set P , 
and 1Cob⊕ is a SMCB category, there exists a unique SMCB functor (one that strictly preserves the SMCB 
structure) G : FP → 1Cob⊕, which extends the function g. We call an arrow of FP , which is expressed in 
pure symmetric monoidal closed language (free of ⊕, + and 0, ι, π-arrows) an SMC-arrow. Note that if u is 
an SMC-arrow, then Gu corresponds to the Kelly-Mac Lane graph of u.

For the proof of Theorem 7.5 below, we use the following version of the partial coherence theorem for 
symmetric monoidal closed categories proved by Kelly and Mac Lane [15, Theorem 2.4] (see also [26, Section 
1.1, second paragraph]).

Theorem 7.4 (SMC Coherence). If a and b are I-proper and f, g : a → b are SMC-arrows such that Gf = Gg, 
then f = g.

The following theorem is the main result of the paper.

Theorem 7.5 (SMCB Coherence). If a and b are proper and f, g : a → b are arrows of FP such that Gf = Gg, 
then f = g, i.e. the restriction of G to the full subcategory of FP on the set of proper objects is faithful.

Proof. Let us show that for every ιia ∈ Ia and πj
b ∈ Πb, we have that πj

b ◦ f ◦ ιia = πj
b ◦ g ◦ ιia. By 

Corollary 5.4, with the help of equalities (3.17)-(3.18) and the equalities listed at the end of Section 3, it 
follows that πj

b ◦ f ◦ ιia is either equal to 0ai,bj , or to 
∑n

k=1 fk, n ≥ 1, where every fk is an SMC-arrow. By 
the same reasons, πj

b ◦g ◦ ιia is either equal to 0ai,bj , or to 
∑m

k=1 gk, m ≥ 1, where every gk is an SMC-arrow.
If πj

b ◦ f ◦ ιia = 0ai,bj , then G(πj
b ◦ f ◦ ιia) is the empty multiset. From Gf = Gg we conclude that 

G(πj
b ◦ g ◦ ιia) must be the empty multiset too, and since G(

∑m
k=1 gk), for m ≥ 1, cannot be such, it follows 

that πj
b ◦ g ◦ ιia = 0ai,bj . We proceed analogously when πj

b ◦ g ◦ ιia = 0ai,bj .
If πj

b ◦ f ◦ ιia =
∑n

k=1 fk and πj
b ◦ g ◦ ιia =

∑m
k=1 gk, for n, m ≥ 1, where fk and gk are SMC-arrows, then 

from Gf = Gg, it follows that

{Gfk | 1 ≤ k ≤ n} = G

n∑
k=1

fk = G

m∑
k=1

gk = {Ggk | 1 ≤ k ≤ m}.

Hence, the multisets {Gfk | 1 ≤ k ≤ n} and {Ggk | 1 ≤ k ≤ m} have the same number of elements, 
i.e., n = m, and, without loss of generality, we may conclude that for every 1 ≤ k ≤ n, Gfk = Ggk. By 
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Remark 7.2, we have that the source and the target of fk and gk are proper, and since fk and gk are 
SMC-arrows, by Remark 7.3, they are I-proper. From Theorem 7.4, it follows that for every 1 ≤ k ≤ n, 
fk = gk, and hence, πj

b ◦ f ◦ ιia = πj
b ◦ g ◦ ιia.

Since the above holds for every ιia ∈ Ia and πj
b ∈ Πb, by Corollary 4.4, we conclude that f = g. �

8. The case of compact closed categories with biproducts

Along the lines of our proof of Theorem 7.5, one can prove an analogous result concerning compact closed 
categories with biproducts (CCB categories). The appropriate CCB language is obtained from the SMCB 
language as follows. The binary operation � on objects is replaced by the unary operation ∗. The unary 
operations a � on arrows are omitted. The families of arrows with components ηa,b and εa,b are replaced 
by the families of arrows with components ηa : I → a∗ ⊗ a and εa : a ⊗ a∗ → I. Eventually, the equalities 
(3.4), (3.8), (3.9) and (3.12) should be replaced by the equalities (2.1).

Let F ′
P be the CCB category freely generated by a set P , constructed with respect to the above language. 

For the function g from P to the set of objects of 1Cob⊕ defined as in Section 7, there is a unique CCB 
functor G : F ′

P → 1Cob⊕, which extends the function g. We call an arrow of F ′
P , which is expressed in pure 

compact closed language (free of ⊕, + and 0, ι, π-arrows) an CoC-arrow. Note that if u is a CoC-arrow, then 
Gu corresponds to the Kelly-Laplaza graph of u (see [14]).

In order to prove a coherence result for CCB categories we need to introduce some auxiliary notions and 
to modify definitions and results given in Sections 4 and 5. The contravariant functor ∗ is defined in the 
standard way—for f : a → b,

f∗ = λa∗ ◦ σa∗,I ◦ (a∗ ⊗ εb) ◦ αa∗,b,b∗ ◦ ((a∗ ⊗ f) ⊗ b∗) ◦ (ηa ⊗ b∗) ◦ λ−1
b∗ .

For every object a of F ′
P , one can define the sequences Ia and Πa, by replacing the item � in Definition 4.1

by

∗ If a = a∗1, then n = n1, and for 0 ≤ i < n1, ιia = (πi
1)∗, πi

a = (ιi1)∗.

It is straightforward to check that Proposition 4.3 and Corollary 4.4, with FP replaced by F ′
P , remain to 

hold.
By omitting the case (2) in the proof of Proposition 5.1 we obtain the analogous proposition for F ′

P .

Proposition 8.1. For • being ⊗, ⊕, + and ◦, we have

Mu1•u2 = Mu1 •Mu2 .

The following proposition is analogous to Proposition 5.2.

Proposition 8.2. If u is of the form 1a, αa,b,c, λa, σa,b, ηa, εa, ιia,b, πi
a,b or 0a,b, then all the entries of the 

matrix Mu are of the form 1p, αp,q,r, λp, σp,q, ηp, εp and 0p,q, where p and q are ⊕-free.

Proof. Just replace the cases (4) and (5) in the proof of Proposition 5.2 by (4′) and (5′) below.

(4′) If u is ηa, then the matrix Mu is a vector column and for some i1, i2 we have

(Mu)i,1 = πi
a∗⊗a ◦ ηa = ((ιi1a )∗ ⊗ πi2

a ) ◦ ηa
♣= ((ai1)∗ ⊗ (πi2

a ◦ ιi1a )) ◦ ηai1

=
{
ηai1 , i1 = i2,

0I,(ai1 )∗⊗ai2 , otherwise.
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Note that ♣ holds since for f : a → b, we have (f∗ ⊗ b) ◦ ηb = (a∗ ⊗ f) ◦ ηa, which is derived essentially by 
the right hand side of (2.1), with the help of (3.2), and symmetric monoidal coherence (see [19, Section 5], 
[20, XI.1, Theorem 1] and [8, Section 5.3]).

(5′) We proceed analogously when u is εa. �
The following result is related to [2, Theorem 21] but it is formulated and proved in a different manner. 

As usually (cf. [19, Theorem 3.1] and [27, Proposition 3]) it is difficult to give a full comparison of these 
two coherence results, even one may consider them as having the same “mathematical content”.

Theorem 8.3 (CCB Coherence). The functor G : F ′
P → 1Cob⊕ is faithful.

Proof. We start with f, g : a → b such that Gf = Gg and proceed as in the proof of Theorem 7.5 until we 
get that πj

b ◦ f ◦ ιia =
∑n

k=1 fk and πj
b ◦ g ◦ ιia =

∑n
k=1 gk, for n ≥ 1, where fk and gk are CoC-arrows and 

for every 1 ≤ k ≤ n, Gfk = Ggk. By relying on [14, Theorem 8.2], we conclude that for every 1 ≤ k ≤ n, 
fk = gk, and hence, πj

b ◦ f ◦ ιia = πj
b ◦ g ◦ ιia. It remains to apply Corollary 4.4 with FP replaced by F ′

P . �
Concerning the case of dagger compact closed categories with dagger biproducts (DCCB categories), the 

appropriate language is obtained from the CCB language by the following modifications. A unary operation 
† on arrows is added. The families of arrows α−1, λ−1, η and ι are omitted. The equalities f†† = f , (2.2), 
(2.3) (the third one) and (2.4) are added, and the arrows α−1

a,b,c, λ−1
a , ηa, ιia,b are replaced by α†

a,b,c, λ†
a, 

σa,a∗ ◦ ε†a, (πi
a,b)† in the equalities assumed for CCB categories.

Let F ′′
P be the DCCB category freely generated by a set P . Since it is also a CCB category, there is a 

unique CCB functor G′ : F ′
P → F ′′

P , which extends the identity function on P . This functor is an isomorphism 
that is identity on objects. On the other hand, there is a unique DCCB functor G′′ : F ′′

P → 1Cob⊕, which 
extends the function g. By the uniqueness, the above G is equal to the composition G′′ ◦G′, and since G is 
faithful, and G′ is an isomorphism, we have the following result.

Theorem 8.4 (DCCB Coherence). The functor G′′ : F ′′
P → 1Cob⊕ is faithful.

9. Switching between graphical languages

This section serves just as a sketch of our programme for a future work. It contains no precisely formulated 
results and is far from being self-contained.

The graphical language for symmetric monoidal closed categories consists of Kelly-Mac Lane graphs, 
i.e. the arrows of 1Cob. On the other hand, an appropriate graphical language for biproducts is the one 
given in [24, Section 6.3], which may be formalised through the category MatN (see Example 6). These two 
graphical languages do not cooperate well, as it was noted in [23, Section 3, last paragraph]. Our solution of 
SMCB coherence relies on a construction based on the category 1Cob and it is reasonable to ask whether 
this coherence could be obtained by relying on the category MatN instead.

One way to switch from the graphical language based on 1Cob to the one based on MatN is to use 
1-dimensional topological quantum field theories, which are all (with minor provisos) faithful according to 
[28]. In particular, the proof of the main result of [7] could be modified in order to show that there is a faithful 
functor from a monoidal closed category (without symmetry) with biproducts freely generated by a set of 
objects to the category MatN . This functor strictly preserves the structure of monoidal closed categories 
with biproducts. In order to construct such a functor, we start with one defined as G : FP → 1Cob⊕ in 
Section 7, save that now its source is a monoidal closed category with biproducts freely generated by a set 
of objects. By composing such G with a functor obtained as a modification of Brauer’s representation of 
Brauer’s algebras (see [6], [31], [11] and [9]) one obtains the desired faithful functor. The existence of such 
a functor in presence of symmetry is still an open problem for us.
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