
Journal of Pure and Applied Algebra 225 (2021) 106632
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Tridiagonal pairs of q-Racah type and the q-tetrahedron algebra

Paul Terwilliger
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706-1388, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 January 2020
Received in revised form 15 October 
2020
Available online 11 November 2020
Communicated by D. Nakano

MSC:
Primary: 17B37; secondary: 15A21

Keywords:
Tridiagonal pair
q-Tetrahedron algebra
Double lowering map
Spin model
Distance-regular graph
Spin Leonard pair

Let F denote a field, and let V denote a vector space over F with finite positive 
dimension. We consider an ordered pair of F-linear maps A : V → V and A∗ : V →
V such that (i) each of A, A∗ is diagonalizable; (ii) there exists an ordering {Vi}di=0
of the eigenspaces of A such that A∗Vi ⊆ Vi−1 + Vi + Vi+1 for 0 ≤ i ≤ d, where 
V−1 = 0 and Vd+1 = 0; (iii) there exists an ordering {V ∗

i }δi=0 of the eigenspaces 
of A∗ such that AV ∗

i ⊆ V ∗
i−1 + V ∗

i + V ∗
i+1 for 0 ≤ i ≤ δ, where V ∗

−1 = 0 and 
V ∗
δ+1 = 0; (iv) there does not exist a subspace U of V such that AU ⊆ U , A∗U ⊆ U , 

U �= 0, U �= V . We call such a pair a tridiagonal pair on V . We assume that A, A∗

belongs to a family of tridiagonal pairs said to have q-Racah type. There is an 
infinite-dimensional algebra �q called the q-tetrahedron algebra; it is generated by 
four copies of Uq(sl2) that are related in a certain way. Using A, A∗ we construct 
two �q-module structures on V . In this construction the two main ingredients are 
the double lowering map ψ : V → V due to Sarah Bockting-Conrad, and a certain 
invertible map W : V → V motivated by the spin model concept due to V. F. R. 
Jones.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This paper is about a linear-algebraic object called a tridiagonal pair, and its relationship to a certain 
infinite-dimensional algebra �q called the q-tetrahedron algebra. Before we explain our purpose in detail, 
we first define a tridiagonal pair. We will use the following terms. Let F denote a field, and let V denote a 
vector space over F with finite positive dimension. Let End(V ) denote the algebra consisting of the F -linear 
maps from V to V . For A ∈ End(V ) and a subspace U ⊆ V , we call U an eigenspace of A whenever U �= 0
and there exists θ ∈ F such that U = {v ∈ V |Av = θv}; in this case θ is the eigenvalue of A associated with 
U . We say that A is diagonalizable whenever V is spanned by the eigenspaces of A.

Definition 1.1. (See [15, Definition 1.1].) Let V denote a vector space over F with finite positive dimension. 
By a tridiagonal pair (or TD pair) on V , we mean an ordered pair A, A∗ of elements in End(V ) that satisfy 
the following four conditions.
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(i) Each of A, A∗ is diagonalizable.
(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (1)

where V−1 = 0 and Vd+1 = 0.
(iii) There exists an ordering {V ∗

i }δi=0 of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ), (2)

where V ∗
−1 = 0 and V ∗

δ+1 = 0.
(iv) There does not exist a subspace U of V such that AU ⊆ U , A∗U ⊆ U , U �= 0, U �= V .

The TD pair A, A∗ is said to be over F . We call V the underlying vector space.

Note 1.2. According to a common notational convention, A∗ denotes the conjugate-transpose of A. We are 
not using this convention. In a TD pair A, A∗ the linear maps A and A∗ are arbitrary subject to (i)–(iv) 
above.

We refer the reader to [29] for background information on TD pairs. In that article, the introduction 
summarizes the origin of the TD pair concept in algebraic graph theory, and Section 19 gives a comprehensive 
discussion of the current state of the art.

In order to motivate our results, we recall some basic facts about TD pairs. Let A, A∗ denote a TD pair 
on V , as in Definition 1.1. By [15, Lemma 4.5] the integers d and δ from (ii), (iii) are equal; we call this 
common value the diameter of the pair. For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) 
for the eigenspace Vi (resp. V ∗

i ). By [15, Theorem 11.1] the scalars

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1
θ∗i−1 − θ∗i

are equal and independent of i for 2 ≤ i ≤ d − 1. For this recurrence the solutions can be given in closed 
form [15, Theorem 11.2]. The “most general” solution is called q-Racah, and will be described shortly.

By construction, the vector space V has a direct sum decomposition into the eigenspaces {Vi}di=0 of A
and the eigenspaces {V ∗

i }di=0 of A∗. The vector space V has two more direct sum decompositions of interest, 
called the first split decomposition {Ui}di=0 and second split decomposition {U⇓

i }di=0. By [15, Theorem 4.6]
the first split decomposition satisfies

U0 + U1 + · · · + Ui = V ∗
0 + V ∗

1 + · · · + V ∗
i ,

Ui + Ui+1 + · · · + Ud = Vi + Vi+1 + · · · + Vd

for 0 ≤ i ≤ d. By [15, Theorem 4.6] the second split decomposition satisfies

U⇓
0 + U⇓

1 + · · · + U⇓
i = V ∗

0 + V ∗
1 + · · · + V ∗

i ,

U⇓
i + U⇓

i+1 + · · · + U⇓
d = V0 + V1 + · · · + Vd−i

for 0 ≤ i ≤ d. By [15, Theorem 4.6],
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(A− θiI)Ui ⊆ Ui+1, (A∗ − θ∗i I)Ui ⊆ Ui−1,

(A− θd−iI)U⇓
i ⊆ U⇓

i+1, (A∗ − θ∗i I)U
⇓
i ⊆ U⇓

i−1

for 0 ≤ i ≤ d, where U−1 = 0, Ud+1 = 0 and U⇓
−1 = 0, U⇓

d+1 = 0.

We now describe the q-Racah case. The TD pair A, A∗ is said to have q-Racah type whenever there exist 
nonzero a, b, q ∈ F such that q4 �= 1 and

θi = aqd−2i + a−1q2i−d, θ∗i = bqd−2i + b−1q2i−d

for 0 ≤ i ≤ d. The name q-Racah comes from a connection to the q-Racah polynomials; see [1], [31, 
Section 18], [32, Example 5.3]. For the rest of this section, assume that A, A∗ has q-Racah type with d ≥ 1.

In this paper, our purpose is to turn the vector space V into a module for the q-tetrahedron algebra �q. 
Over the next few paragraphs, we will describe the maps that get used and explain what �q is all about.

We introduce an invertible W ∈ End(V ) such that for 0 ≤ i ≤ d, Vi is an eigenspace of W with eigenvalue 
(−1)iaiqi(d−i). We remark that the idea behind W goes back to the spin model concept introduced by 
V. F. R. Jones [25]. In the interval since then, the idea was developed in the context of association schemes 
[3,22,23,28], distance-regular graphs [2,13], the subconstituent algebra [9,10], spin Leonard pairs [11], and 
Leonard triples [12,29,37]. See [30] for a comprehensive description of W in the context of spin models, 
distance-regular graphs, and spin Leonard pairs. We also remark that W 2 is closely related to the Lusztig 
automorphism of the q-Onsager algebra [4,38]; indeed W 2 = H where H is from [39, Section 3]. In the 
present paper, we will obtain a number of identities involving W±1; for example

W =
d∑

i=0

(−1)iqi2(A− θ0I)(A− θ1I) · · · (A− θi−1I)
(q2; q2)i(a−1q1−d; q2)i

,

W−1 =
d∑

i=0

(−1)iq−i2(A− θ0I)(A− θ1I) · · · (A− θi−1I)
(q−2; q−2)i(aqd−1; q−2)i

.

For the above sums, the denominator notation is explained in Section 6.

Next we recall the maps K, B. Following [19, Section 1.1], we define K, B ∈ End(V ) such that for 
0 ≤ i ≤ d, Ui (resp. U⇓

i ) is an eigenspace of K (resp. B) with eigenvalue qd−2i. The maps K, B are 
invertible. By [19, Section 1.1],

qKA− q−1AK

q − q−1 = aK2 + a−1I,
qBA− q−1AB

q − q−1 = a−1B2 + aI.

By [6, Theorem 9.9],

aK2 − a−1q − aq−1

q − q−1 KB − aq − a−1q−1

q − q−1 BK + a−1B2 = 0.

We will show that

A = aW−1KW + a−1WK−1W−1,

qW−1KWK−1 − q−1K−1W−1KW

q − q−1 = I,

qW−2KW 2K−1 − q−1K−1W−2KW 2

q − q−1 = I
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and also

A = a−1W−1BW + aWB−1W−1,

qW−1BWB−1 − q−1B−1W−1BW

q − q−1 = I,

qW−2BW 2B−1 − q−1B−1W−2BW 2

q − q−1 = I.

Next we discuss the maps M, N, Q. Following [7, Section 6] and [39, Section 7] we define

M = aK − a−1B

a− a−1 , N = a−1K−1 − aB−1

a−1 − a
.

We will show that W−1MW = WNW−1; denote this common value by Q. We will show that Q is diago-
nalizable with eigenvalues {qd−2i}di=0; in particular Q is invertible.

Next we recall the double lowering map ψ, due to Sarah Bockting-Conrad [5]. By [5, Lemma 11.2, 
Corollary 15.3],

ψUi ⊆ Ui−1, ψU⇓
i ⊆ U⇓

i−1 (0 ≤ i ≤ d).

By [6, Theorem 9.8], ψ is equal to each of

I −BK−1

q(aI − a−1BK−1) ,
I −KB−1

q(a−1I − aKB−1) ,

q(I −K−1B)
aI − a−1K−1B

,
q(I −B−1K)
a−1I − aB−1K

.

Expanding on [7, Lemma 6.8], we will show that

ψ + qAM−1 − q−1M−1A

q2 − q−2 = a + a−1

q + q−1 I,

ψ + qN−1A− q−1AN−1

q2 − q−2 = a + a−1

q + q−1 I.

We will also show that A commutes with ψ −Q−1, and that

WψW−1 + Q−1 = ψ + M−1, W−1ψW + Q−1 = ψ + N−1.

Next we recall the Casimir element Λ. Following [6, Lemma 7.2] we define

Λ = ψ(A− aK − a−1K−1) + q−1K + qK−1.

We call Λ the Casimir element, because A, A∗ induce a certain action of the quantum group Uq(sl2) on V
[6, Lemma 7.1] for which the action of the Casimir element of Uq(sl2) coincides with Λ [6, Lemma 7.2]. It is 
shown in [6, Lemmas 7.3, 8.3, 9.1] that Λ commutes with each of A, K, B, ψ. By this and the construction, 
Λ commutes with W, M, N, Q. We will show that

M−1 + qψA− q−1Aψ

q2 − q−2 = Λ
q + q−1 ,

N−1 + qAψ − q−1ψA

q2 − q−2 = Λ
q + q−1 .
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We will also show that

(ψ −Q−1)((q + q−1)I −A) = (a + a−1)I − Λ.

Next we recall the q-tetrahedron algebra �q. This infinite-dimensional algebra was introduced in [16], and 
used to study the TD pairs of q-geometric type. See [17,18,20,27,36,41] for subsequent work. The algebra �q

is defined by generators and relations. To describe the generators, let Z4 = Z/4Z denote the cyclic group 
of order 4. The algebra �q has eight generators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2}.

The defining relations for �q are given in Definition 15.1 below. In [16] we described the finite-dimensional 
irreducible �q-modules, under the assumption that q is not a root of unity. As explained in [20, Section 1]
these modules are a tensor product of evaluation �q-modules. In [20] we described the evaluation �q-
modules in detail. In the present paper we introduce a type of �q-module, said to be t-segregated; here t is 
a nonzero scalar parameter. These �q-modules are a bit more general than the evaluation �q-modules; see 
Section 16 below. We will show that on a t-segregated �q-module, the following four elements coincide and 
commute with everything in �q:

t(x01x23 − 1) + qx30 + q−1x12, t−1(x12x30 − 1) + qx01 + q−1x23,

t(x23x01 − 1) + qx12 + q−1x30, t−1(x30x12 − 1) + qx23 + q−1x01.

Let Υ denote the common value of the above four elements.

We now describe our two main results. In this description, we refer to the above TD pair A, A∗ on V that 
has q-Racah type. In our first main result, we show that V becomes an a-segregated �q-module on which 
the �q-generators act as follows:

generator x01 x12 x23 x30

action on V W−1KW WK−1W−1 Q−1 + WψW−1 Q−1 + W−1ψW

generator x02 x13 x20 x31

action on V Q K−1 Q−1 K

Moreover Υ = Λ on V . In our second main result, we show that V becomes an a−1-segregated �q-module 
on which the �q-generators act as follows:

generator x01 x12 x23 x30

action on V W−1BW WB−1W−1 Q−1 + WψW−1 Q−1 + W−1ψW

generator x02 x13 x20 x31

action on V Q B−1 Q−1 B

Moreover Υ = Λ on V .

This paper is organized as follows. In Section 2 we recall the notion of a tridiagonal system. In Section 3
we recall the q-Dolan/Grady relations and discuss their basic properties. In Section 4 we introduce a certain 
map that makes it easier to discuss elements in End(V ) that commute with A. In Section 5 we introduce 
the element W , and in Section 6 we display some identities involving W±1. In Section 7 we discuss the 
elements K, B and in Section 8 we discuss the elements M, N, Q. In Section 9 we describe how W, K, B, Q
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are related using the concept of an equitable triple. In Section 10 we discuss the double lowering map ψ, 
and in Section 11 we discuss the Casimir element Λ. In Section 12 we describe the element ψ −Q in some 
detail. In Section 13 we discuss how W, K are related and how W, B are related. In Section 14 we recall the 
algebra Uq(sl2) in its equitable presentation. In Section 15 we recall the q-tetrahedron algebra �q, and in 
Sections 16, 17 we discuss the t-segregated �q-modules. In Section 18 we give our main results, which are 
Theorems 18.1, 18.2. In Section 19 we give some suggestions for future research.

2. Tridiagonal systems

We now begin our formal argument. When working with a TD pair, it is often convenient to consider a 
closely related object called a TD system. We will review this notion after some notational comments. Recall 
the natural numbers N = {0, 1, 2, . . .} and integers Z = {0, ±1, ±2, . . .}. Recall the field F . Every vector 
space discussed in this paper is over F . Every algebra discussed in this paper is associative, over F , and has 
a multiplicative identity. A subalgebra has the same multiplicative identity as the parent algebra. For the 
rest of this paper, V denotes a vector space with finite positive dimension. Recall the algebra End(V ) from 
above Definition 1.1. Let A denote a diagonalizable element in End(V ). Let {Vi}di=0 denote an ordering of 
the eigenspaces of A. For 0 ≤ i ≤ d let θi denote the eigenvalue of A for Vi. Define Ei ∈ End(V ) such that 
(Ei − I)Vi = 0 and EiVj = 0 for j �= i (0 ≤ j ≤ d). Thus Ei is the projection from V onto Vi. We call 
Ei the primitive idempotent of A corresponding to Vi (or θi). Observe that (i) Vi = EiV (0 ≤ i ≤ d); (ii) 
EiEj = δi,jEi (0 ≤ i, j ≤ d); (iii) I =

∑d
i=0 Ei; (iv) A =

∑d
i=0 θiEi; (v) AEi = θiEi = EiA (0 ≤ i ≤ d). 

Moreover

Ei =
∏

0≤j≤d

j �=i

A− θjI

θi − θj
(0 ≤ i ≤ d). (3)

Let D denote the subalgebra of End(V ) generated by A. Note that {Ai}di=0 is a basis for the vector space 
D, and 

∏d
i=0(A − θiI) = 0. Moreover {Ei}di=0 is a basis for the vector space D. Now let A, A∗ denote a 

TD pair on V , as in Definition 1.1. An ordering of the eigenspaces of A (resp. A∗) is said to be standard
whenever it satisfies (1) (resp. (2)). We comment on the uniqueness of the standard ordering. Let {Vi}di=0
denote a standard ordering of the eigenspaces of A. By [15, Lemma 2.4], the ordering {Vd−i}di=0 is also 
standard and no further ordering is standard. A similar result holds for the eigenspaces of A∗. An ordering 
of the primitive idempotents of A (resp. A∗) is said to be standard whenever the corresponding ordering of 
the eigenspaces of A (resp. A∗) is standard.

Definition 2.1. (See [15, Definition 2.1].) By a tridiagonal system (or TD system) on V we mean a sequence

Φ = (A; {Ei}di=0;A∗; {E∗
i }di=0)

that satisfies (i)–(iii) below:

(i) A, A∗ is a TD pair on V ;
(ii) {Ei}di=0 is a standard ordering of the primitive idempotents of A;
(iii) {E∗

i }di=0 is a standard ordering of the primitive idempotents of A∗.

The TD system Φ is said to be over F . We call V the underlying vector space.

Let Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a TD system on V . Then the following is a TD system on V :

Φ⇓ = (A; {Ed−i}di=0;A∗; {E∗
i }di=0).
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For any object f attached to Φ, let f⇓ denote the corresponding object attached to Φ⇓.

Definition 2.2. Let Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) denote a TD system on V . For 0 ≤ i ≤ d let θi (resp. θ∗i ) 

denote the eigenvalue of A (resp. A∗) for the eigenspace EiV (resp. E∗
i V ). We call {θi}di=0 (resp. {θ∗i }di=0) 

the eigenvalue sequence (resp. dual eigenvalue sequence) of Φ.

Referring to Definition 2.2, we emphasize that {θi}di=0 are mutually distinct, and {θ∗i }di=0 are mutually 
distinct. By [15, Theorem 11.1] the expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1
θ∗i−1 − θ∗i

are equal and independent of i for 2 ≤ i ≤ d −1. For this recurrence the solutions can be expressed in closed 
form [15, Theorem 11.2]. The “most general” solution is called q-Racah, and described below.

Definition 2.3. Let Φ denote a TD system on V , with eigenvalue sequence {θi}di=0 and dual eigenvalue 
sequence {θ∗i }di=0. Then Φ is said to have q-Racah type whenever there exist nonzero a, b, q ∈ F such that 
q4 �= 1 and

θi = aqd−2i + a−1q2i−d, θ∗i = bqd−2i + b−1q2i−d (4)

for 0 ≤ i ≤ d.

From now until the end of Section 13, we fix a TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has 

q-Racah type, with eigenvalue sequence {θi}di=0 and dual eigenvalue sequence {θ∗i }di=0 as in Definition 2.3. 
To avoid trivialities we assume that d ≥ 1. Let D denote the subalgebra of End(V ) generated by A.

We mention some basic results for later use.

Lemma 2.4. The following hold:

(i) q2i �= 1 for 1 ≤ i ≤ d;
(ii) neither of a2, b2 is among q2d−2, q2d−4, . . . , q2−2d.

Proof. Use the sentence below Definition 2.2, along with Definition 2.3. �
Lemma 2.5. For 1 ≤ i ≤ d,

qθi−1 − q−1θi
q2 − q−2 = aqd−2i+1,

qθi − q−1θi−1

q2 − q−2 = a−1q2i−d−1.

Proof. By the form of the eigenvalue expressions in (4). �
Lemma 2.6. For 0 ≤ i, j ≤ d such that |i − j| = 1,

qθi − q−1θj
q2 − q−2

qθj − q−1θi
q2 − q−2 = 1. (5)

Proof. By Lemma 2.5. �
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Let X ∈ End(V ). Using I = E0 + · · · + Ed we have

X = IXI =
d∑

i=0

d∑
j=0

EiXEj .

With this result we routinely obtain the following three lemmas.

Lemma 2.7. For X ∈ End(V ) the following are equivalent:

(i) EiXEj = 0 for 0 ≤ i, j ≤ d;
(ii) X = 0.

Lemma 2.8. For X ∈ End(V ) the following are equivalent:

(i) EiXEj = 0 if i �= j (0 ≤ i, j ≤ d);
(ii) XEiV ⊆ EiV for 0 ≤ i ≤ d;
(iii) A commutes with X.

Lemma 2.9. For X ∈ End(V ) the following are equivalent:

(i) EiXEj = 0 if |i − j| > 1 (0 ≤ i, j ≤ d);
(ii) for 0 ≤ i ≤ d,

XEiV ⊆ Ei−1V + EiV + Ei+1V,

where E−1 = 0 and Ed+1 = 0.

Definition 2.10. Referring to Lemma 2.9, we say that X acts on the eigenspaces of A in a tridiagonal fashion
whenever the equivalent conditions (i), (ii) hold.

Example 2.11. The elements I, A, A∗ act on the eigenspaces of A in a tridiagonal fashion.

3. The q-Dolan/Grady relations

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In 

this section we consider how A and A∗ are related. Recall the notation

[n]q = qn − q−n

q − q−1 n ∈ Z.

For elements X, Y in any algebra, their commutator and q-commutator are given by

[X,Y ] = XY − Y X, [X,Y ]q = qXY − q−1Y X.

Note that

[X, [X,Y ]q]q−1 = X2Y − (q2 + q−2)XYX + Y X2,

[X, [X, [X,Y ]q]q−1 ] = X3Y − [3]qX2Y X + [3]qXYX2 − Y X3.
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Lemma 3.1. (See [15, Theorem 10.1].) Referring to the TD system Φ,

[A, [A, [A,A∗]q]q−1 ] = (q2 − q−2)2[A∗, A], (6)

[A∗, [A∗, [A∗, A]q]q−1 ] = (q2 − q−2)2[A,A∗]. (7)

The relations (6), (7) are called the q-Dolan/Grady relations. In the following results we explore their 
meaning.

Lemma 3.2. For X ∈ End(V ) the following are equivalent:

(i) [A, [A, [A, X]q]q−1 ] = (q2 − q−2)2[X, A];
(ii) A commutes with

X +
[A, [A,X]q]q−1

(q2 − q−2)2 . (8)

Proof. By the definition of the commutator map. �
Proposition 3.3. Let X denote an element of End(V ) that acts on the eigenspaces of A in a tridiagonal 
fashion. Then X satisfies the equivalent conditions (i), (ii) in Lemma 3.2.

Proof. We show that X satisfies Lemma 3.2(ii). Let Δ denote the expression in (8). To show that A
commutes with Δ, by Lemma 2.8 it suffices to show that EiΔEj = 0 if i �= j (0 ≤ i, j ≤ d). Let i, j be given 
with i �= j. We have EiΔEj = EiXEjcij where

cij = 1 + qθi − q−1θj
q2 − q−2

q−1θi − qθj
q2 − q−2 .

If |i − j| > 1 then EiXEj = 0. If |i − j| = 1 then cij = 0 by (5). In any case EiΔEj = 0. The result 
follows. �

Later in the paper, we will encounter pairs of elements in End(V ) that are related to each other in the 
following way.

Proposition 3.4. For X, Y ∈ End(V ) the following are equivalent:

(i) X acts on the eigenspaces of A in a tridiagonal fashion, and A commutes with

Y + qXA− q−1AX

q2 − q−2 . (9)

(ii) Y acts on the eigenspaces of A in a tridiagonal fashion, and A commutes with

X + qAY − q−1Y A

q2 − q−2 . (10)

Proof. Let C (resp. D) denote the expression in (9) (resp. (10)). Note that

X +
[A, [A,X]q]q−1

2 −2 2 = D − [A,C]q
2 −2 , (11)
(q − q ) q − q
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Y +
[A, [A, Y ]q]q−1

(q2 − q−2)2 = C − [D,A]q
q2 − q−2 . (12)

(i) ⇒ (ii) From the form of C, we see that Y acts on the eigenspaces of A in a tridiagonal fashion. Next we 
show that A commutes with D. By assumption, X acts on the eigenspaces of A in a tridiagonal fashion. By 
this and Proposition 3.3, A commutes with the expression on the left in (11). By assumption A commutes 
with C, so A commutes with [A, C]q. By these comments and (11), A commutes with D.
(ii) ⇒ (i) From the form of D, we see that X acts on the eigenspaces of A in a tridiagonal fashion. Next we 
show that A commutes with C. By assumption, Y acts on the eigenspaces of A in a tridiagonal fashion. By 
this and Proposition 3.3, A commutes with the expression on the left in (12). By assumption A commutes 
with D, so A commutes with [D, A]q. By these comments and (12), A commutes with C. �
4. The map X �→ X∨

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In 

this section, we introduce a map that will make it easier to discuss the elements in End(V ) that commute 
with A.

Definition 4.1. For X ∈ End(V ) define

X∨ =
d∑

i=0
EiXEi. (13)

Note that the map End(V ) → End(V ), X → X∨ is F -linear. Note also that A commutes with X∨ for all 
X ∈ End(V ). Next comes a stronger statement.

Lemma 4.2. For X ∈ End(V ) the following are equivalent:

(i) A commutes with X;
(ii) X = X∨.

Proof. By Lemma 2.8. �
Lemma 4.3. For X ∈ End(V ) the following (i)–(v) hold:

(i) (AX)∨ = AX∨;
(ii) (XA)∨ = AX∨;
(iii) [A, X]∨ = 0;
(iv) ([A, X]q)∨ = (q − q−1)AX∨;
(v) ([A, X]q−1)∨ = −(q − q−1)AX∨.

Proof. (i), (ii) For the given equation each side is equal to 
∑d

i=0 θiEiXEi.
(iii)–(v) By (i), (ii) above. �
Lemma 4.4. Let X denote an element of End(V ) that acts on the eigenspaces of A in a tridiagonal fashion. 
Then

X +
[A, [A,X]q]q−1

2 −2 2 =
(
I − A2

−1 2

)
X∨. (14)
(q − q ) (q + q )
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Proof. Let Δ denote the expression on the left in (14). The element A commutes with Δ by Proposition 3.3, 
so Δ = Δ∨ by Lemma 4.2. By Lemma 4.3, Δ∨ is equal to the expression on the right in (14). The result 
follows. �
5. The element W

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In this 

section we introduce a certain invertible W ∈ End(V ), and discuss how W is related to the map X → X∨

from Section 4.

Definition 5.1. Define

ti = (−1)iaiqi(d−i) (0 ≤ i ≤ d).

Note that t0 = 1 and td = (−1)dad.

Note 5.2. We caution the reader that the scalar ti in Definition 5.1 is a square root of the scalar ti in [39, 
Lemma 3.15].

Lemma 5.3. We have ti �= 0 for 0 ≤ i ≤ d. Moreover

ti/ti−1 = −aqd−2i+1 (1 ≤ i ≤ d).

Proof. By Definition 5.1. �
Lemma 5.4. For 0 ≤ i, j ≤ d such that |i − j| = 1,

tj
ti

+ qθi − q−1θj
q2 − q−2 = 0. (15)

Proof. Use Lemmas 2.5, 5.3. �
Definition 5.5. Define

W =
d∑

i=0
tiEi,

where the scalars {ti}di=0 are from Definition 5.1.

Lemma 5.6. The element W is invertible. Moreover

W−1 =
d∑

i=0
t−1
i Ei.

Proof. By Lemma 5.3 and Definition 5.5. �
Note 5.7. We acknowledge that the element W appeared earlier in the context of spin models [30, Defini-
tion 14.2]; spin Leonard pairs [11, Theorem 1.18], [30, Lemma 6.16]; and Leonard triples [12, Lemma 2.10], 
[29, Definition 16.3], [37, Definition 8.1]. In the context of TD pairs, we have W 2 = H where H is from [39, 
Section 3].
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Lemma 5.8. We have W±1 ∈ D.

Proof. By (3) and Definition 5.5. �
By Lemma 5.8 we see that W±1 are polynomials in A. These polynomials will be made explicit in 

Section 6.

Lemma 5.9. For X ∈ End(V ),

(W−1XW )∨ = X∨ = (WXW−1)∨.

Proof. By Lemma 4.3(i), (ii) and since W±1 ∈ D. �
Proposition 5.10. Let X denote an element of End(V ) that acts on the eigenspaces of A in a tridiagonal 
fashion. Then both

W−1XW + qAX − q−1XA

q2 − q−2 =
(
I + A

q + q−1

)
X∨, (16)

WXW−1 + qXA− q−1AX

q2 − q−2 =
(
I + A

q + q−1

)
X∨. (17)

Proof. We first verify (16). Let Δ denote the expression on the left in (16). We first show that A commutes 
with Δ. By Lemma 2.8 it suffices to show that EiΔEj = 0 if i �= j (0 ≤ i, j ≤ d). Let i, j be given with 
i �= j. Using the expression on the left in (16) we have EiΔEj = EiXEjcij , where

cij = tj
ti

+ qθi − q−1θj
q2 − q−2 .

If |i − j| > 1 then EiXEj = 0. If |i − j| = 1 then cij = 0 by (15). In any case EiΔEj = 0. Therefore A
commutes with Δ, so Δ = Δ∨ by Lemma 4.2. Using Lemmas 4.3(iv), 5.9 we see that Δ∨ is equal to the 
expression on the right in (16). We have verified (16). One similarly verifies (17). �
Corollary 5.11. Let X denote an element of End(V ) that acts on the eigenspaces of A in a tridiagonal 
fashion. Then

WXW−1 −W−1XW = [A,X]
q − q−1 . (18)

Proof. Subtract (16) from (17). �
The following is a variation on [38, Corollary 2.3].

Corollary 5.12. Let X denote an element of End(V ) that acts on the eigenspaces of A in a tridiagonal 
fashion. Then

W−2XW 2 = X + [A, [A,X]q]
(q − q−1)(q2 − q−2) , (19)

W 2XW−2 = X +
[A, [A,X]q−1 ]

−1 2 −2 . (20)
(q − q )(q − q )
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Proof. We first obtain (19). Recall that A commutes with W . In (18), multiply each side on the left by 
W−1 and the right by W . This yields

X −W−2XW 2 = [A,W−1XW ]
q − q−1 . (21)

By Proposition 5.10,

[A,W−1XW ] + [A, [A,X]q]
q2 − q−2 = 0. (22)

Combining (21), (22) we obtain (19). We similarly obtain (20). �
Proposition 5.13. Let X, Y denote elements of End(V ) that satisfy the equivalent conditions (i), (ii) in 
Proposition 3.4. Then

WXW−1 − Y = X −W−1YW,

and this common value commutes with A.

Proof. By (17), A commutes with

WXW−1 + qXA− q−1AX

q2 − q−2 . (23)

Combining (9), (23) we see that A commutes with WXW−1 − Y . We mentioned earlier that W is a 
polynomial in A. So W commutes with WXW−1 − Y . Consequently

WXW−1 − Y = W−1(WXW−1 − Y )W = X −W−1YW. �
We have a comment.

Lemma 5.14. We have

(i) t⇓i = td−i/td for 0 ≤ i ≤ d;
(ii) W⇓ = t−1

d W .

Proof. (i) Each side is equal to (−1)ia−iqi(d−i).
(ii) By Definition 5.5 and the construction,

W⇓ =
d∑

i=0
t⇓i Ed−i = t−1

d

d∑
i=0

td−iEd−i = t−1
d W. �

6. Some identities involving W±1

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. Recall 

the element W from Definition 5.5. In this section we obtain some identities involving W±1. Using these 
identities we express W±1 as a polynomial in A.

We recall some notation. For c, z ∈ F define

(c; z)n = (1 − c)(1 − cz) · · · (1 − czn−1) (n ∈ N).
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We will be discussing basic hypergeometric series, using the notation of [14,26].

Lemma 6.1. For 0 ≤ r ≤ s ≤ d,

ts
tr

=
s−r∑
i=0

(−1)iqi2(θs − θr)(θs − θr+1) · · · (θs − θr+i−1)
(q2; q2)i(a−1q2r+1−d; q2)i

, (24)

tr
ts

=
s−r∑
i=0

(−1)iq−i2(θs − θr)(θs − θr+1) · · · (θs − θr+i−1)
(q−2; q−2)i(aqd−2r−1; q−2)i

. (25)

Proof. To verify (24), evaluate the left-hand side using Definition 5.1 and the right-hand side using (4). The 
result becomes a special case of the basic Chu/Vandermonde summation formula [14, p. 354]:

(−1)s−ras−rq(s−r)(d−r−s) = 2φ1

(
q2s−2r, a2q2d−2r−2s

aqd−2r−1

∣∣∣∣ q−2; q−2
)
.

We have verified (24). To obtain (25) from (24), replace q 	→ q−1 and a 	→ a−1. �
Proposition 6.2. For 0 ≤ r ≤ d the following holds on ErV + Er+1V + · · · + EdV :

W = tr

d−r∑
i=0

(−1)iqi2(A− θrI)(A− θr+1I) · · · (A− θr+i−1I)
(q2; q2)i(a−1q2r+1−d; q2)i

, (26)

W−1 = t−1
r

d−r∑
i=0

(−1)iq−i2(A− θrI)(A− θr+1I) · · · (A− θr+i−1I)
(q−2; q−2)i(aqd−2r−1; q−2)i

. (27)

Proof. To verify (26), use Definition 5.5 and (24) to see that for r ≤ s ≤ d the EsV -eigenvalue for either 
side of (26) is equal to ts. We have verified (26). To verify (27), use Lemma 5.6 and (25) to see that for 
r ≤ s ≤ d the EsV -eigenvalue for either side of (27) is equal to t−1

s . We have verified (27). �
Proposition 6.3. The following holds on V :

W =
d∑

i=0

(−1)iqi2(A− θ0I)(A− θ1I) · · · (A− θi−1I)
(q2; q2)i(a−1q1−d; q2)i

,

W−1 =
d∑

i=0

(−1)iq−i2(A− θ0I)(A− θ1I) · · · (A− θi−1I)
(q−2; q−2)i(aqd−1; q−2)i

.

Proof. Set r = 0 in Proposition 6.2. �
We mention a variation on Lemma 6.1 and Propositions 6.2, 6.3.

Lemma 6.4. For 0 ≤ r ≤ s ≤ d,

tr
ts

=
s−r∑
i=0

(−1)iqi2(θr − θs)(θr − θs−1) · · · (θr − θs−i+1)
(q2; q2)i(aqd−2s+1; q2)i

(28)

ts
tr

=
s−r∑ (−1)iq−i2(θr − θs)(θr − θs−1) · · · (θr − θs−i+1)

(q−2; q−2)i(a−1q2s−d−1; q−2)i
(29)
i=0
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Proof. To verify (28), evaluate the left-hand side using Definition 5.1 and the right-hand side using (4). The 
result becomes a special case of the basic Chu/Vandermonde summation formula [14, p. 354]:

(−1)s−rar−sq(r−s)(d−r−s) = 2φ1

(
q2s−2r, a−2q2r+2s−2d

a−1q2s−d−1

∣∣∣∣ q−2; q−2
)
.

We have verified (28). To obtain (29) from (28), replace q 	→ q−1 and a 	→ a−1. �
Proposition 6.5. For 0 ≤ s ≤ d the following holds on E0V + E1V + · · · + EsV :

W = ts

s∑
i=0

(−1)iqi2(A− θsI)(A− θs−1I) · · · (A− θs−i+1I)
(q2; q2)i(aqd−2s+1; q2)i

,

W−1 = t−1
s

s∑
i=0

(−1)iq−i2(A− θsI)(A− θs−1I) · · · (A− θs−i+1I)
(q−2; q−2)i(a−1q2s−d−1; q−2)i

.

Proof. Similar to the proof of Proposition 6.2. �
Proposition 6.6. The following holds on V :

W = td

d∑
i=0

(−1)iqi2(A− θdI)(A− θd−1I) · · · (A− θd−i+1I)
(q2; q2)i(aq1−d; q2)i

,

W−1 = t−1
d

d∑
i=0

(−1)iq−i2(A− θdI)(A− θd−1I) · · · (A− θd−i+1I)
(q−2; q−2)i(a−1qd−1; q−2)i

.

Proof. Set s = d in Proposition 6.5. �
7. The elements K, B

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In 

this section we recall the elements K, B ∈ End(V ) and discuss their basic properties.

Definition 7.1. By a decomposition of V we mean a sequence {Vi}di=0 of nonzero subspaces whose direct sum 
is V .

For 0 ≤ i ≤ d define

Ui = (E∗
0V + E∗

1V + · · · + E∗
i V ) ∩ (EiV + Ei+1V + · · · + EdV ).

By [15, Theorem 4.6] the sequence {Ui}di=0 is a decomposition of V . We call {Ui}di=0 the first split decom-
position of V . By [15, Theorem 4.6] the following hold for 0 ≤ i ≤ d:

E∗
0V + E∗

1V + · · · + E∗
i V = U0 + U1 + · · · + Ui, (30)

EiV + Ei+1V + · · · + EdV = Ui + Ui+1 + · · · + Ud. (31)

Also by [15, Theorem 4.6],

(A− θiI)Ui ⊆ Ui+1 (0 ≤ i ≤ d− 1), (A− θdI)Ud = 0, (32)

(A∗ − θ∗i I)Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U0 = 0. (33)
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By these remarks and our comments above Definition 2.2, we obtain the following. For 0 ≤ i ≤ d,

U⇓
i = (E∗

0V + E∗
1V + · · · + E∗

i V ) ∩ (E0V + E1V + · · · + Ed−iV ).

The sequence {U⇓
i }di=0 is a decomposition of V . We call {U⇓

i }di=0 the second split decomposition of V . For 
0 ≤ i ≤ d,

E∗
0V + E∗

1V + · · · + E∗
i V = U⇓

0 + U⇓
1 + · · · + U⇓

i , (34)

E0V + E1V + · · · + Ed−iV = U⇓
i + U⇓

i+1 + · · · + U⇓
d . (35)

We have

(A− θd−iI)U⇓
i ⊆ U⇓

i+1 (0 ≤ i ≤ d− 1), (A− θ0I)U⇓
d = 0,

(A∗ − θ∗i I)U
⇓
i ⊆ U⇓

i−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U
⇓
0 = 0.

Definition 7.2. (See [19, Section 1.1].) Define K ∈ End(V ) such that for 0 ≤ i ≤ d, Ui is an eigenspace for 
K with eigenvalue qd−2i. Define B = K⇓. So for 0 ≤ i ≤ d, U⇓

i is an eigenspace for B with eigenvalue qd−2i.

By construction K, B are invertible. The elements A, K, B are related as follows. By [19, Section 1.1],

qKA− q−1AK

q − q−1 = aK2 + a−1I,
qBA− q−1AB

q − q−1 = a−1B2 + aI. (36)

By [6, Theorem 9.9],

aK2 − a−1q − aq−1

q − q−1 KB − aq − a−1q−1

q − q−1 BK + a−1B2 = 0. (37)

The equations (36), (37) can be reformulated as follows. By [8, Lemma 12.12],

qAK−1 − q−1K−1A

q − q−1 = a−1K−2 + aI,
qAB−1 − q−1B−1A

q − q−1 = aB−2 + a−1I. (38)

By [6, Theorem 9.10],

a−1K−2 − a−1q − aq−1

q − q−1 K−1B−1 − aq − a−1q−1

q − q−1 B−1K−1 + aB−2 = 0. (39)

We now bring in W .

Lemma 7.3. (See [39, Proposition 6.1].) We have

W−2KW 2 = a−1A− a−2K−1, W−2BW 2 = aA− a2B−1, (40)

W 2K−1W−2 = aA− a2K, W 2B−1W−2 = a−1A− a−2B. (41)

Proposition 7.4. We have

qW−2KW 2K−1 − q−1K−1W−2KW 2

q − q−1 = I, (42)

qKW 2K−1W−2 − q−1W 2K−1W−2K

q − q−1 = I (43)
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and

qW−2BW 2B−1 − q−1B−1W−2BW 2

q − q−1 = I, (44)

qBW 2B−1W−2 − q−1W 2B−1W−2B

q − q−1 = I. (45)

Proof. To verify (42), eliminate W−2KW 2 using the equation on the left in (40), and evaluate the result 
using the equation on the left in (38). To obtain (43), multiply each side of (42) on the left by W 2 and the 
right by W−2. The equations (44), (45) are similarly verified. �
Proposition 7.5. We have

(i) A = aW−1KW + a−1WK−1W−1;
(ii) A = a−1W−1BW + aWB−1W−1.

Proof. (i) In the equation W−2KW 2 = a−1A − a−2K−1, multiply each side on the left by W and the right 
by W−1. Evaluate the result using the fact that A, W commute.
(ii) In the equation W−2BW 2 = aA − a2B−1, multiply each side on the left by W and the right by W−1. 
Evaluate the result using the fact that A, W commute. �
Corollary 7.6. We have

W−1 aK − a−1B

a− a−1 W = W
a−1K−1 − aB−1

a−1 − a
W−1. (46)

Proof. Compare the two equations in Proposition 7.5. �
8. The elements M , N , Q

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. Recall 

the maps K, B from Definition 7.2. In this section we use K, B to define some elements M, N, Q ∈ End(V )
that will play a role in our theory.

Following [7, Section 6] and [39, Section 7] we define

M = aK − a−1B

a− a−1 , N = a−1K−1 − aB−1

a−1 − a
. (47)

By [7, Lemma 8.1], M is diagonalizable with eigenvalues {qd−2i}di=0. The same holds for N by Corollary 7.6. 
The elements M , N are invertible. By construction M⇓ = M and N⇓ = N . Also by construction,

KNB = M = BNK. (48)

Lemma 8.1. Each of M−1, N−1 acts on the eigenspaces of A in a tridiagonal fashion.

Proof. This holds for M−1 by [7, Lemma 10.3]. It holds for N−1, by Corollary 7.6 and since A commutes 
with W . �
Definition 8.2. By Corollary 7.6 we have

W−1MW = WNW−1; (49)
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this common value will be denoted by Q.

Lemma 8.3. The element Q is diagonalizable, with eigenvalues {qd−2i}di=0. Moreover Q is invertible.

Proof. By Definition 8.2 and the comments above Lemma 8.1. �
Lemma 8.4. We have Q⇓ = Q.

Proof. By Lemma 5.14(ii) and Definition 8.2, along with the last sentence before Lemma 8.1. �
Lemma 8.5. The element Q−1 acts on the eigenspaces of A in a tridiagonal fashion.

Proof. By Lemma 8.1, Definition 8.2, and since A commutes with W . �
9. Equitable triples

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. The 

two equations in Proposition 7.5 each express A as a sum of two terms. In this section we describe how 
these terms are related to the element Q from Definition 8.2. To facilitate this description, we will use the 
notion of an equitable triple.

Definition 9.1. (See [39, Definition 7.3].) An equitable triple on V is a 3-tuple X, Y, Z of invertible elements 
in End(V ) such that

qXY − q−1Y X

q − q−1 = I,
qY Z − q−1ZY

q − q−1 = I,
qZX − q−1XZ

q − q−1 = I.

Equitable triples are related to the quantum group Uq(sl2); see Section 14 below and [21], [33], [34].

Lemma 9.2. (See [39, Proposition 7.4].) Each of the following (i)–(iv) is an equitable triple:

(i) aA − a2K, M−1, K;
(ii) a−1A − a−2B, M−1, B;
(iii) K−1, N−1, a−1A − a−2K−1;
(iv) B−1, N−1, aA − a2B−1.

Proposition 9.3. Each of the following (i), (ii) is an equitable triple:

(i) WK−1W−1, Q−1, W−1KW ;
(ii) WB−1W−1, Q−1, W−1BW .

Proof. (i) Define X = aA −a2K, Y = M−1, Z = K. By Lemma 9.2(i) the three-tuple X, Y, Z is an equitable 
triple. Therefore the three-tuple W−1XW , W−1YW , W−1ZW is an equitable triple. Using Proposi-
tion 7.5(i) we obtain W−1XW = WK−1W−1. By construction W−1YW = Q−1 and W−1ZW = W−1KW . 
The result follows.
(ii) Similar to the proof of (i) above, using the equitable triple from Lemma 9.2(ii). �
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10. The double lowering map ψ

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In 

this section we recall the double lowering map ψ and discuss its basic properties.

Recall the maps K, B from Definition 7.2. By [6, Lemma 9.7], each of the following is invertible:

aI − a−1BK−1, a−1I − aKB−1,

aI − a−1K−1B, a−1I − aB−1K.

Lemma 10.1. (See [6, Theorem 9.8].) The following coincide:

I −BK−1

q(aI − a−1BK−1) ,
I −KB−1

q(a−1I − aKB−1) ,

q(I −K−1B)
aI − a−1K−1B

,
q(I −B−1K)
a−1I − aB−1K

.

Definition 10.2. (See [7, Definition 4.3].) Define ψ ∈ End(V ) to be the common value of the four expressions 
in Lemma 10.1.

Lemma 10.3. (See [6, Lemma 5.4].) Both

Kψ = q2ψK, Bψ = q2ψB.

Lemma 10.4. (See [5, Corollary 15.2].) We have ψ⇓ = ψ.

Lemma 10.5. (See [5, Lemma 11.2, Corollary 15.3].) We have

ψUi ⊆ Ui−1, ψU⇓
i ⊆ U⇓

i−1 (0 ≤ i ≤ d),

where U−1 = 0 and U⇓
−1 = 0.

Motivated by Lemma 10.5, the map ψ is often called the double lowering map for Φ.

Lemma 10.6. (See [5, Corollary 15.4].) The element ψ acts on the eigenspaces of A in a tridiagonal fashion.

Lemma 10.7. (See [7, Lemma 6.4].) The element M−1 is equal to each of the following:

K−1(I − a−1qψ), (I − a−1q−1ψ)K−1,

B−1(I − aqψ), (I − aq−1ψ)B−1.

Lemma 10.8. The element N−1 is equal to each of the following:

K(I − aq−1ψ), (I − aqψ)K,

B(I − a−1q−1ψ), (I − a−1qψ)B.

Proof. Use (48) and Lemma 10.7. �
The equation (50) below appears in [7, Lemma 6.8]; we will give a short proof for the sake of completeness.
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Proposition 10.9. We have

ψ + qAM−1 − q−1M−1A

q2 − q−2 = a + a−1

q + q−1 I, (50)

ψ + qN−1A− q−1AN−1

q2 − q−2 = a + a−1

q + q−1 I. (51)

Proof. We first obtain (50). Abbreviate X = aA − a2K and Y = M−1. The elements X, Y are the first 
two terms in the equitable triple from Lemma 9.2(i). So qXY − q−1Y X = (q − q−1)I. In this equation, 
eliminate the products KM−1, M−1K using the equations KM−1 = 1 −a−1qψ and M−1K = 1 −a−1q−1ψ

from Lemma 10.7. This yields (50). The equation (51) is similarly obtained, using the last two terms in the 
equitable triple from Lemma 9.2(iii). �
11. The Casimir element Λ

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In 

this section we recall the Casimir element Λ, and discuss its basic properties.

Lemma 11.1. (See [6, Lemmas 7.2, 8.2, 9.1].) The following coincide:

ψ(A− aK − a−1K−1) + q−1K + qK−1,

(A− aK − a−1K−1)ψ + qK + q−1K−1,

ψ(A− a−1B − aB−1) + q−1B + qB−1,

(A− a−1B − aB−1)ψ + qB + q−1B−1.

Definition 11.2. Let Λ denote the common value of the four expressions in Lemma 11.1.

Lemma 11.3. The element Λ commutes with each of A, W, K, B, M, N, Q, ψ.

Proof. It was shown in [6, Lemma 7.3, 8.3, 9.1] that Λ commutes with A, K, B, ψ. Now Λ commutes with 
W, M, N, Q by Lemma 5.8, line (47), and Definition 8.2. �

Motivated by [6, Lemmas 7.1,7.2] and Lemma 11.3, we call Λ the Casimir element for Φ.

Lemma 11.4. We have Λ⇓ = Λ.

Proof. By Lemmas 10.4, 11.1 and K⇓ = B. �
Lemma 11.5. We have

(i) Aψ = Λ − qN−1 − q−1M−1;
(ii) ψA = Λ − q−1N−1 − qM−1.

Proof. (i) By Definition 11.2 we have Λ = (A − aK − a−1K−1)ψ + qK + q−1K−1; evaluate this equation 
using M−1 = K−1(1 − a−1qψ) and N−1 = K(1 − aq−1ψ).
(ii) Similar to the proof of (i) above. �
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Proposition 11.6. We have

M−1 + qψA− q−1Aψ

q2 − q−2 = Λ
q + q−1 , (52)

N−1 + qAψ − q−1ψA

q2 − q−2 = Λ
q + q−1 . (53)

Proof. Use Lemma 11.5. �
12. The element ψ − Q−1

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In this 

section we investigate the element ψ −Q−1, where Q is from Definition 8.2 and ψ is from Definition 10.2.

Lemma 12.1. Each of the following pairs satisfy the equivalent conditions (i), (ii) in Proposition 3.4:

(i) ψ, M−1;
(ii) N−1, ψ.

Proof. By Lemmas 8.1, 10.6, 11.3 and Propositions 10.9, 11.6. �
Proposition 12.2. The element A commutes with ψ −Q−1. Moreover,

WψW−1 + Q−1 = ψ + M−1, W−1ψW + Q−1 = ψ + N−1. (54)

Proof. By Proposition 5.13, Definition 8.2, and Lemma 12.1. �
Proposition 12.3. We have

(ψ −Q−1)((q + q−1)I −A) = (a + a−1)I − Λ.

Proof. The element A commutes with I and Λ. So by Lemma 4.2, I = I∨ and Λ = Λ∨. By Proposition 12.2, 
A commutes with ψ −Q−1. So by Lemma 4.2,

ψ −Q−1 = ψ∨ − (Q−1)∨. (55)

By Lemma 5.9 and Definition 8.2,

(Q−1)∨ = (M−1)∨. (56)

For the equation (50), apply the map ∨ to each side and evaluate the result using Lemma 4.3 along with 
I = I∨; this yields

ψ∨ + A(M−1)∨

q + q−1 = a + a−1

q + q−1 I. (57)

For the equation (52), apply the map ∨ to each side and evaluate the result using Lemma 4.3 along with 
Λ = Λ∨; this yields

(M−1)∨ + Aψ∨

q + q−1 = Λ
q + q−1 . (58)

To finish the proof, subtract (58) from (57) and evaluate the result using (55), (56). �
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13. How W , K are related and how W , B are related

We continue to discuss the TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. In 

Proposition 7.4 we showed how W 2, K are related and how W 2, B are related. In the present section we 
show how W, K are related and how W, B are related. We will use an identity from Section 6.

Proposition 13.1. We have

aW−1KW − qI = K(aI − qWK−1W−1), (59)

aW−1KW − q−1I = (aI − q−1WK−1W−1)K. (60)

Proof. We first obtain (59). To this end, it is convenient to make a change of variables. In (59), eliminate 
W−1KW using Proposition 7.5(i), and in the result eliminate A using

R = A− aK − a−1K−1. (61)

This yields

(a−1I − qK)(WK−1 −K−1W ) = RW. (62)

We will verify (62) after a few comments. Recall the first split decomposition {Ui}di=0 of V . By Definition 7.2, 
K = qd−2iI on Ui for 0 ≤ i ≤ d. So for 0 ≤ i ≤ d the following holds on Ui:

aK + a−1K−1 = θiI. (63)

By (61), (63) we find that for 0 ≤ i ≤ d the following holds on Ui:

R = A− θiI. (64)

By (32) and (64),

RUi ⊆ Ui+1 (0 ≤ i ≤ d− 1), RUd = 0. (65)

By (65) and the construction,

RK = q2KR.

For 0 ≤ r ≤ d we show that (62) holds on Ur. Using (64), (65) we find that for 0 ≤ i ≤ d − r the following 
holds on Ur:

Ri = (A− θrI)(A− θr+1I) · · · (A− θr+i−1I). (66)

Also by (65) we have Rd−r+1 = 0 on Ur. By (31),

ErV + Er+1V + · · · + EdV = Ur + Ur+1 + · · · + Ud.

The above subspace contains Ur, so by Proposition 6.2 and (66) the following holds on Ur:

W = tr

d−r∑
i=0

(−1)iqi2Ri

(q2; q2)i(a−1q2r+1−d; q2)i
.
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We may now argue that on Ur,

(a−1I − qK)(WK−1 −K−1W ) = (a−1I − qK)tr
d−r∑
i=0

(−1)iqi2(RiK−1 −K−1Ri)
(q2; q2)i(a−1q2r+1−d; q2)i

= (a−1I − qK)tr
d−r∑
i=0

(−1)iqi2RiK−1(1 − q2i)
(q2; q2)i(a−1q2r+1−d; q2)i

= (a−1I − qK)tr
d−r∑
i=1

(−1)iqi2RiK−1(1 − q2i)
(q2; q2)i(a−1q2r+1−d; q2)i

= tr

d−r∑
i=1

(−1)iqi2Ri(a−1I − q1−2iK)K−1(1 − q2i)
(q2; q2)i(a−1q2r+1−d; q2)i

= −tr

d−r∑
i=1

(−1)iqi2Riq1−2i(1 − a−1q2r−d+2i−1)(1 − q2i)
(q2; q2)i(a−1q2r+1−d; q2)i

= tr

d−r∑
i=1

(−1)(i−1)q(i−1)2Ri

(q2; q2)i−1(a−1q2r+1−d; q2)i−1

= tr

d−r−1∑
i=0

(−1)iqi2Ri+1

(q2; q2)i(a−1q2r+1−d; q2)i

= tr

d−r∑
i=0

(−1)iqi2Ri+1

(q2; q2)i(a−1q2r+1−d; q2)i

= RW.

We have obtained (62), and (59) follows. Next we obtain (60). Let E denote the equation obtained by adding 
(59) to the equation in Proposition 7.5(i). Then W−1EW minus the equation in Proposition 7.5(i) is equal 
to (60) times a−1qK−1. This gives (60). �
Corollary 13.2. We have

qW−1KWK−1 − q−1K−1W−1KW

q − q−1 = I, (67)

qKWK−1W−1 − q−1WK−1W−1K

q − q−1 = I. (68)

Proof. To obtain (68), subtract (59) from (60). To obtain (67), multiply each side of (68) on the left by 
W−1 and the right by W . �
Proposition 13.3. We have

aI − qW−1BW = (aWB−1W−1 − qI)B, (69)

aI − q−1W−1BW = B(aWB−1W−1 − q−1I). (70)

Proof. Apply Proposition 13.1 to Φ⇓, and use K⇓ = B along with Lemma 5.14(ii). �
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Corollary 13.4. We have

qW−1BWB−1 − q−1B−1W−1BW

q − q−1 = I, (71)

qBWB−1W−1 − q−1WB−1W−1B

q − q−1 = I. (72)

Proof. Apply Corollary 13.2 to Φ⇓, and use K⇓ = B along with Lemma 5.14(ii). �
14. The algebra Uq(sl2)

In the previous sections we discussed a TD system Φ of q-Racah type. For the next four sections, we turn 
our attention to some algebras and their modules. In Section 18 we will return our attention to Φ. From 
now until the end of Section 17, fix 0 �= q ∈ F such that q4 �= 1. In this section we recall the algebra Uq(sl2)
in its equitable presentation. For more information on this presentation, see [21,33–35].

Definition 14.1. (See [21, Section 2].) The algebra Uq(sl2) is defined by generators x, y±1, z and relations 
yy−1 = 1 = y−1y,

qxy − q−1yx

q − q−1 = 1, qyz − q−1zy

q − q−1 = 1, qzx− q−1xz

q − q−1 = 1. (73)

We call x, y±1, z the equitable generators of Uq(sl2).

Lemma 14.2. (See [33, Lemma 2.15].) The following coincide:

qx + q−1y + qz − qxyz, q−1x + qy + q−1z − q−1zyx,

qy + q−1z + qx− qyzx, q−1y + qz + q−1x− q−1xzy,

qz + q−1x + qy − qzxy, q−1z + qx + q−1y − q−1yxz.

Definition 14.3. Let Λ denote the common value of the six expressions in Lemma 14.2. We call Λ the Casimir 
element of Uq(sl2).

Lemma 14.4. The element Λ generates the center of Uq(sl2). Moreover {Λi}i∈N forms a basis for this center, 
provided that q is not a root of unity.

Proof. By [24, Lemma 2.7, Proposition 2.18] and [33, Lemma 2.15]. �
Next we discuss the elements νx, νy, νz of Uq(sl2). Rearranging the relations (73) we obtain

q(1 − xy) = q−1(1 − yx), q(1 − yz) = q−1(1 − zy), q(1 − zx) = q−1(1 − xz).

Definition 14.5. (See [33, Definition 3.1].) Define

νx = q(1 − yz) = q−1(1 − zy),

νy = q(1 − zx) = q−1(1 − xz),

νz = q(1 − xy) = q−1(1 − yx).
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By Definition 14.5,

xy = 1 − q−1νz, yx = 1 − qνz,

yz = 1 − q−1νx, zy = 1 − qνx,

zx = 1 − q−1νy, xz = 1 − qνy.

It follows that

[x, y]
q − q−1 = νz,

[y, z]
q − q−1 = νx,

[z, x]
q − q−1 = νy.

By [33, Lemma 3.5],

xνy = q2νyx, yνz = q2νzy, zνx = q2νxz,

νzx = q2xνz, νxy = q2yνx, νyz = q2zνy.

By [33, Lemma 3.7],

[x, νx]
q − q−1 = y − z,

[y, νy]
q − q−1 = z − x,

[z, νz]
q − q−1 = x− y.

By [33, Lemma 3.10],

[νx, νy]q
q − q−1 = 1 − z2,

[νy, νz]q
q − q−1 = 1 − x2,

[νz, νx]q
q − q−1 = 1 − y2.

15. The q-tetrahedron algebra ���q

In this section we recall the q-tetrahedron algebra �q and review some of its properties. For more 
information on this algebra, see [16–18,20,27,36,41].

Let Z4 = Z/4Z denote the cyclic group of order 4.

Definition 15.1. [16, Definition 6.1]. Let �q denote the algebra defined by generators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2} (74)

and the following relations:

(i) For i, j ∈ Z4 such that j − i = 2,

xijxji = 1. (75)

(ii) For i, j, k ∈ Z4 such that (j − i, k − j) is one of (1, 1), (1, 2), (2, 1),

qxijxjk − q−1xjkxij

q − q−1 = 1. (76)

(iii) For i, j, k, � ∈ Z4 such that j − i = k − j = � − k = 1,

x3
ijxk� − [3]qx2

ijxk�xij + [3]qxijxk�x
2
ij − xk�x

3
ij = 0. (77)
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We call �q the q-tetrahedron algebra. The elements (74) are called the standard generators of �q. The 
relations (77) are called the q-Serre relations.

We just gave a presentation of �q by generators and relations. We find it illuminating to describe this 
presentation with a diagram. This diagram is a directed graph with vertex set Z4. Each standard generator 
xij is represented by a directed arc from vertex i to vertex j. The diagram looks as follows:

�

�

�

�
�

���
�

��

�
���

�
��

	
		


	
		

	
		�

	
		

0

12

3

The defining relations for �q can be read off the diagram as follows. For any two arcs with the same 
endpoints and pointing in the opposite direction, the corresponding generators are inverses. For any two 
arcs that create a directed path of length two, the corresponding generators r, s satisfy

qrs− q−1sr

q − q−1 = 1.

For any two arcs that are distinct and parallel (horizontal or vertical), the corresponding generators satisfy 
the q-Serre relations.

Lemma 15.2. There exists an automorphism ρ of �q that sends each standard generator xij to xi+1,j+1. 
Moreover ρ4 = 1.

Proof. By Definition 15.1. �
Lemma 15.3. (See [27, Proposition 4.3].) For i ∈ Z4 there exists an algebra homomorphism κi : Uq(sl2) → �q

that sends

x 	→ xi+2,i+3, y 	→ xi+3,i+1, y−1 	→ xi+1,i+3, z 	→ xi+1,i+2.

This homomorphism is injective.

Recall the Casimir element Λ of Uq(sl2), from Definition 14.3.

Definition 15.4. For i ∈ Z4 let Υi denote the image of Λ under the injection κi from Lemma 15.3.

The elements Υi from Definition 15.4 are not central in �q. However, we do have the following.

Lemma 15.5. For i ∈ Z4 the element Υi commutes with each of

xi+2,i+3, xi+3,i+1, xi+1,i+3, xi+1,i+2.

Proof. By Lemma 15.3 and since Λ is central in Uq(sl2). �
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16. The t-segregated ���q-modules

We continue to discuss the algebra �q from Definition 15.1. In [20] we introduced a type of �q-module, 
called an evaluation module. An evaluation module comes with a nonzero scalar parameter t, called the 
evaluation parameter. In [20, Lemmas 9.4, 9.5] we showed that on a t-evaluation �q-module the standard 
generators satisfy ten attractive equations involving the commutator map and t; these equations are given 
in Definition 16.1 below. It turns out that there exist nonevaluation �q-modules on which the ten equations 
are satisfied; this fact motivates the following definition.

Definition 16.1. For 0 �= t ∈ F , a �q-module is called t-segregated whenever it is nonzero, finite-dimensional, 
and the following equations hold on the module:

t(x01 − x23) = [x30, x12]
q − q−1 , t−1(x12 − x30) = [x01, x23]

q − q−1 (78)

and

t(x01 − x02) = [x30, x02]
q − q−1 , t−1(x12 − x13) = [x01, x13]

q − q−1 , (79)

t(x23 − x20) = [x12, x20]
q − q−1 , t−1(x30 − x31) = [x23, x31]

q − q−1 (80)

and

t−1(x30 − x20) = [x20, x01]
q − q−1 , t(x01 − x31) = [x31, x12]

q − q−1 , (81)

t−1(x12 − x02) = [x02, x23]
q − q−1 , t(x23 − x13) = [x13, x30]

q − q−1 . (82)

Recall from Definition 15.4 the elements {Υi}i∈Z4 in �q. We next consider how these elements act on 
a t-segregated �q-module. Our results on this topic are given in Lemmas 16.2–16.4 below. These lemmas 
are proven in [20, Lemmas 9.11, 9.12, 9.14] for a t-evaluation �q-module; however the proofs essentially use 
only the ten equations in Definition 16.1 and consequently apply to every t-segregated �q-module.

Lemma 16.2. Let V denote a t-segregated �q-module. Then the action of Υi on V is independent of i ∈ Z4. 
Denote this common action by Υ. Then on V ,

Υ = t(x01x23 − 1) + qx30 + q−1x12, Υ = t−1(x12x30 − 1) + qx01 + q−1x23,

Υ = t(x23x01 − 1) + qx12 + q−1x30, Υ = t−1(x30x12 − 1) + qx23 + q−1x01.

By Lemmas 15.5, 16.2 we find that on a t-segregated �q-module, the element Υ commutes with everything 
in �q.

Lemma 16.3. On a t-segregated �q-module,

Υ = (q + q−1)x30 + t

(
qx01x23 − q−1x23x01

q − q−1 − 1
)
,

Υ = (q + q−1)x01 + t−1
(
qx12x30 − q−1x30x12

−1 − 1
)
,

q − q
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Υ = (q + q−1)x12 + t

(
qx23x01 − q−1x01x23

q − q−1 − 1
)
,

Υ = (q + q−1)x23 + t−1
(
qx30x12 − q−1x12x30

q − q−1 − 1
)
.

Lemma 16.4. Let V denote a t-segregated �q-module. Then x01, x23 satisfy the following on V :

x2
01x23 − (q2 + q−2)x01x23x01 + x23x

2
01

= −(q − q−1)2(1 + t−1Υ)x01 + (q − q−1)(q2 − q−2)t−1,

x2
23x01 − (q2 + q−2)x23x01x23 + x01x

2
23

= −(q − q−1)2(1 + t−1Υ)x23 + (q − q−1)(q2 − q−2)t−1.

Moreover x12, x30 satisfy the following on V :

x2
12x30 − (q2 + q−2)x12x30x12 + x30x

2
12

= −(q − q−1)2(1 + tΥ)x12 + (q − q−1)(q2 − q−2)t,

x2
30x12 − (q2 + q−2)x30x12x30 + x12x

2
30

= −(q − q−1)2(1 + tΥ)x30 + (q − q−1)(q2 − q−2)t.

We remark that the relations in Lemma 16.4 are the Askey-Wilson relations [40,42].

17. How to construct a t-segregated ���q-module

We continue to discuss the algebra �q from Definition 15.1. In the previous section, we introduced the 
concept of a t-segregated �q-module. In this section, we show how to construct a t-segregated �q-module, 
starting with a nonzero finite-dimensional Uq(sl2)-module and a bit more.

Throughout this section, V denotes a nonzero finite-dimensional Uq(sl2)-module.

Assumption 17.1. Let 0 �= t ∈ F . Assume that there exists an invertible w ∈ End(V ) such that on V ,

tz − q = w(t− qx), tz − q−1 = (t− q−1x)w. (83)

Under Assumption 17.1, we will turn V into a t-segregated �q-module.

Lemma 17.2. Under Assumption 17.1, the following holds on the Uq(sl2)-module V :

xw = 1 − qtz + qtw,

wx = 1 − q−1tz + q−1tw,

w−1z = 1 − qt−1x + qt−1w−1,

zw−1 = 1 − q−1t−1x + q−1t−1w−1.

Proof. Use (83). �
Recall the elements νx, νy, νz of Uq(sl2) from Definition 14.5.
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Lemma 17.3. Under Assumption 17.1, the following holds on the Uq(sl2)-module V :

wνz = qw − qy + tzy − twy,

νzw = q−1w − q−1y + tyz − tyw,

νxw
−1 = qw−1 − qy + t−1yx− t−1yw−1,

w−1νx = q−1w−1 − q−1y + t−1xy − t−1w−1y.

Proof. Use Definition 14.5 and Lemma 17.2. �
Proposition 17.4. Under Assumption 17.1, V becomes a t-segregated �q-module on which the �q-generators 
act as follows:

generator x01 x12 x23 x30 x02 x13 x20 x31

action on V z x y + t−1νz y + tνx y−1 w−1 y w

Moreover Υ = Λ on V .

Proof. It is trivial to check that the relations (75) hold on V . Using Lemmas 17.2, 17.3 and the various 
relations below Definition 14.5, one routinely checks that the relations (76) and (78)–(82) hold on V . Next 
we check that the q-Serre relations (77) hold on V . Using Definitions 14.3, 14.5 one finds that on V ,

Λ = t(x01x23 − 1) + qx30 + q−1x12, Λ = t−1(x12x30 − 1) + qx01 + q−1x23,

Λ = t(x23x01 − 1) + qx12 + q−1x30, Λ = t−1(x30x12 − 1) + qx23 + q−1x01.

In other words, the four relations in Lemma 16.2 hold on V with Υ = Λ. Using this result, one finds that 
the relations in Lemmas 16.3, 16.4 hold on V with Υ = Λ. By these comments, the relations (77) hold on 
V . The last assertion of the proposition statement follows from the construction. �
18. The main results

In Sections 2–13 we discussed a TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah type. 

In this section, we return our attention to Φ. Recall the scalar a from Definition 2.3.

Theorem 18.1. For the above TD system Φ, the underlying vector space V becomes an a-segregated �q-module 
on which the �q-generators act as follows:

generator x01 x12 x23 x30

action on V W−1KW WK−1W−1 Q−1 + WψW−1 Q−1 + W−1ψW

generator x02 x13 x20 x31

action on V Q K−1 Q−1 K

Moreover Υ = Λ on V .

Proof. By Proposition 9.3(i) and Definition 14.1, the vector space V becomes a Uq(sl2)-module on which

x = WK−1W−1, y = Q−1, z = W−1KW. (84)
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Define w = K, and note that w is invertible. Also define t = a. The element w satisfies (83) by Proposi-
tion 13.1. Assumption 17.1 is now satisfied, so Proposition 17.4 applies. Next we show that on V ,

y + t−1νz = Q−1 + WψW−1, y + tνx = Q−1 + W−1ψW. (85)

Since y = Q−1 on V and also t = a, it suffices to show that on V ,

a−1νz = WψW−1, aνx = W−1ψW. (86)

The equation on the left in (86) is obtained using νz = q(1 − xy) with x, y from (84), along with Q−1 =
WN−1W−1 and K−1N−1 = I − aq−1ψ. The equation on the right in (86) is obtained using νx = q(1 − yz)
with y, z from (84), along with Q−1 = W−1M−1W and M−1K = I − a−1q−1ψ. We have shown that (85)
holds on V . It remains to show that Υ = Λ on V . To do this, by Proposition 17.4 it suffices to show that 
Λ = Λ on V . On V ,

Λ = qx + q−1y + qz − qxyz

= qx12 + q−1x20 + qx01 − qx12x20x01.

By Proposition 7.5(i) and the construction, A = ax01 +a−1x12 on V . The generators x01, x12 commute with 
Λ on V , so A commutes with Λ on V . The element W is a polynomial in A, so W commutes with Λ on V . 
We may now argue that on V ,

Λ = W (qx12 + q−1x20 + qx01 − qx12x20x01)W−1

= W (qx12(1 − x20x01) + q−1x20 + qx01)W−1

= qW 2K−1W−2(I −M−1K) + q−1M−1 + qK

= q(aA− a2K)(I −M−1K) + q−1M−1 + qK

= (A− aK)ψ + q−1K−1(1 − a−1qψ) + qK

= (A− aK − a−1K−1)ψ + qK + q−1K−1

= Λ. �
Theorem 18.2. For the above TD system Φ, the underlying vector space V becomes an a−1-segregated �q-
module on which the �q-generators act as follows:

generator x01 x12 x23 x30

action on V W−1BW WB−1W−1 Q−1 + WψW−1 Q−1 + W−1ψW

generator x02 x13 x20 x31

action on V Q B−1 Q−1 B

Moreover Υ = Λ on V .

Proof. Apply Theorem 18.1 to Φ⇓, and use B = K⇓ along with Lemmas 5.14(ii), 8.4, 10.4, 11.4. �
Note 18.3. Referring to the tables in Theorems 18.1, 18.2, for the action of x23 and x30 an alternative 
description is given in Proposition 12.2; see also Proposition 12.3.
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19. Suggestions for future research

In Sections 2–13 and 18 we discussed a TD system Φ = (A; {Ei}di=0; A∗; {E∗
i }di=0) on V that has q-Racah 

type. In this section we give some open problems concerning Φ. To motivate the first problem, we have some 
comments. Recall the map R from (61). Define

R− = WK−1W−1 −K−1, R+ = W−1KW −K.

By Proposition 13.1,

R+ = −a−1qKR− = −a−1q−1R−K. (87)

Therefore

R− = −aq−1K−1R+ = −aqR+K−1. (88)

By (87) and (88),

R−K = q2KR−, R+K = q2KR+.

Consequently

R±Ui ⊆ Ui+1 (0 ≤ i ≤ d− 1), R±Ud = 0.

Using Proposition 7.5(i) and (61),

R = aR+ + a−1R−. (89)

Using (87) or (88),

R−R+ = q2R+R−.

Problem 19.1. Investigate the algebraic and combinatorial significance of R±.

On the �q-module V in Theorem 18.1 we have A = ax01 + a−1x12, and on the �q-module V in The-
orem 18.2 we have A = a−1x01 + ax12. On these modules the value of b−1x23 + bx30 is the same, and it 
is natural to guess that this common value is equal to A∗. It turns out that this guess is false, but it does 
seem likely that A∗ − b−1x23 − bx30 is important in some way. This motivates the next problem.

Problem 19.2. Define

L = A∗ − b−1(M−1 + ψ) − b(N−1 + ψ).

Show that LK = q−2KL and LB = q−2BL. Show that

LUi ⊆ Ui−1 (1 ≤ i ≤ d), LU0 = 0,

LU⇓
i ⊆ U⇓

i−1 (1 ≤ i ≤ d), LU⇓
0 = 0.

Show that Lψ = ψL. Investigate how L is related to R± above.
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Problem 19.3. Find a relation involving only K±1 and Q±1.

Problem 19.4. How do A∗ and WA∗W−1 act on each other’s eigenspaces? It seems that the pair A∗, 
WA∗W−1 is not a TD pair in general. Find necessary and sufficient conditions on A, A∗ for the pair A∗, 
WA∗W−1 to be a TD pair.
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