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Using generalized enriched categories, in this paper we show that Rosický’s proof 
of cartesian closedness of the exact completion of the category of topological 
spaces can be extended to a wide range of topological categories over Set, like 
metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, 
and bitopological spaces. In order to do so we prove a sufficient criterion for 
exponentiability of (T , V )-categories and show that, under suitable conditions, every 
injective (T , V )-category is exponentiable in (T , V )-Cat.
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1. Introduction

As Lawvere has shown in his celebrated paper [24], when V is a closed category the category V -Cat of 
V -enriched categories and V -functors is also monoidal closed. This result extends neither to the cartesian 
structure nor to the more general setting of (T , V )-categories. Indeed, cartesian closedness of V does not 
guarantee cartesian closedness of V -Cat: take for instance the category of (Lawvere’s) metric spaces P+-Cat, 
where P+ is the complete real half-line, ordered with the ≥ relation, and equipped with the monoidal 
structure given by addition +; P+ is cartesian closed but P+-Cat is not (see [6] for details); and, even 
when the monoidal structure of V is the cartesian one, the category (T , V )-Cat of (T , V )-categories and 
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(T , V )-functors (see [11]) does not need to be cartesian closed, as it is the case of the category Top of 
topological spaces and continuous maps, that is (U , 2)-Cat for U the ultrafilter monad.

Rosický showed in [30] that Top is weakly cartesian closed, and, consequently, that its exact completion 
is cartesian closed. Weak cartesian closedness of Top follows from the existence of enough injectives in its 
full subcategory Top0 of T0-spaces and the fact that they are exponentiable, and this feature, together with 
several good properties of Top, gives cartesian closedness of its exact completion. More precisely, Rosický 
has shown in [30] the following theorem.

Theorem 1.1. Let C be a complete, infinitely extensive and well-powered category with (reg epi, mono)-factor-
izations such that f ×1 is an epimorphism whenever f is a regular epimorphism. Then the exact completion 
of C is cartesian closed provided that C is weakly cartesian closed.

In this paper we use the setting of (T , V )-categories, for a quantale V and a Set-monad T laxly extended 
to V -Rel, to conclude, in a unified way, that several topological categories over Set share with Top the 
cartesian closedness of the exact completion. This was recently used by Adámek and Rosický in the study 
of free completions of categories [2]. In fact, the category (T , V )-Cat is topological over Set [5,11], hence 
complete and with (reg epi, mono)-factorizations such that f × 1 is an epimorphism whenever f is, and 
it is infinitely extensive [28]. To assure weak cartesian closedness of (T , V )-Cat we consider two distinct 
scenarios, either restricting to the case that V is a frame – so that its monoidal structure is the cartesian 
one – or considering the case that the lax extension is determined by a T -algebraic structure on V , as 
introduced in [17] under the name of topological theory. In the latter case the proof generalizes Rosický’s 
proof for Top0, after observing that, using the Yoneda embedding of [7,18], every separated (T , V )-category 
can be embedded in an injective one, and, moreover, these are exponentiable in (T , V )-Cat. For general 
(T , V )-categories one proceeds again as in [30], using the fact that the reflection of (T , V )-Cat into its 
full subcategory of separated (T , V )-categories preserves finite products. As observed by Rosický, the exact 
completion of Top relates to the cartesian closed category of equilogical spaces [3]. Analogously, our approach 
leads to the study of generalized equilogical spaces, as developed in [29].

The paper is organized as follows. In Section 2 we introduce (T , V )-categories and list their properties 
used throughout the paper. In Section 3 we revisit the exponentiability problem in (T , V )-Cat, establishing 
a sufficient criterion for exponentiability which generalizes the results obtained in [17,21]. In Section 4 we 
study the properties of injective (T , V )-categories which will be used in the forthcoming section to conclude 
that, under suitable assumptions, injective (T , V )-categories are exponentiable (Theorem 5.8). This result 
will allow us to conclude, in Theorem 6.3, that (T , V )-Cat is weakly cartesian closed, and, finally, thanks 
to Theorem 1.1, that the exact completion of (T , V )-Cat is cartesian closed. We conclude our paper with 
a section on examples, which include, among others, metric spaces, approach spaces, probabilistic metric 
spaces, and bitopological spaces.

2. The category of (T , V )-categories

Throughout V is a commutative and unital quantale, i.e. V is a complete lattice with a symmetric 
and associative tensor product ⊗, with unit k and right adjoint hom, so that u ⊗ v ≤ w if, and only if, 
v ≤ hom(u, w), for all u, v, w ∈ V . Further assume that V is a Heyting algebra, so that u ∧ − also has a 
right adjoint, for every u ∈ V . We denote by V -Rel the 2-category of V -relations (or V -matrices), having 
as objects sets, as 1-cells V -relations r : X −→� Y , i.e. maps r : X × Y → V , and 2-cells ϕ : r → r′ given by 
componentwise order r(x, y) ≤ r′(x, y). Composition of 1-cells is given by relational composition. V -Rel has 
an involution, given by transposition: the transpose of r : X −→� Y is r◦ : Y −→� X with r◦(y, x) = r(x, y).

We fix a non-trivial monad T = (T, m, e) on Set satisfying (BC), i.e. T preserves weak pullbacks and the 
naturality squares of the natural transformation m are weak pullbacks (see [9]). In general we do not assume 
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that T preserves products. Later we will make use of the comparison map canX,Y : T (X × Y ) → TX × TY

defined by canX,Y (w) = (TπX(w), TπY (w)) for all w ∈ T (X × Y ), where πX and πY are the product 
projections. Moreover, we assume that T has an extension to V -Rel, which we also denote by T , in the 
following sense:

– there is a lax functor T : V -Rel → V -Rel which extends T : Set → Set;
– T (r◦) = (Tr)◦ for all V -relations r;
– the natural transformations e : 1V -Rel → T and m : T 2 → T become op-lax; that is, for every 

r : X −→� Y ,

eY · r ≤ Tr · eX , mY · TTr ≤ Tr ·mX .

X
eX

r ≤

TX

Tr

Y
eY

TY

TTX
mX

TTr ≤

TX

Tr

TTY
mY

TY

We note that our conditions are stronger than those used in [22].
A (T , V )-category is a pair (X, a), where X is a set and a : TX −→� X is a V -relation, such that

X
eX

1X

≤
TX

a

X

and T 2X
mX

Ta ≤

TX

a

TX
a

X

that is, the map a : TX ×X → V satisfies the conditions:

(R) for each x ∈ X, k ≤ a(eX(x), x);
(T) for each X ∈ T 2X, x ∈ TX, x ∈ X, Ta(X, x) ⊗ a(x, x) ≤ a(mX(X), x).

Given (T , V )-categories (X, a), (Y, b), a (T , V )-functor f : (X, a) → (Y, b) is a map f : X → Y such that

TX
Tf

a ≤

TY

b

X
f

Y

that is, for each x ∈ TX and x ∈ X, a(x, x) ≤ b(Tf(x), f(x)); f is said to be fully faithful when this inequality 
is an equality.

(T , V )-categories and (T , V )-functors form the category (T , V )-Cat. If (X, a : TX −→� X) satisfies 
(R) (and not necessarily (T)), we call it a (T , V )-graph. The category (T , V )-Gph, of (T , V )-graphs and 
(T , V )-functors, contains (T , V )-Cat as a full reflective subcategory.

We present the examples in detail in the last section. We mention here, however, that the leading ex-
amples are obtained when one considers the quantale 2 = ({0, 1}, ≤, &, 1) and Lawvere’s real half-line 
P+ = ([0,∞],≥,+, 0), the identity monad I and the ultrafilter monad U on Set. Thus we obtain the fol-
lowing examples:
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– (I, V )-Cat is the category of V -categories and V -functors; in particular, (I, 2)-Cat is the category Ord
of (pre)ordered sets and monotone maps, while (I, P+)-Cat is the category Met of Lawvere’s metric 
spaces and non-expansive maps (see [24]).

– (U , 2)-Cat is the category Top of topological spaces and continuous maps.
– (U , P+)-Cat is the category App of Lowen’s approach spaces and non-expansive maps (see [26]).

We recall (see [1, Definition 21.1]) that a functor G : A → B is said to be topological if every source 
(fi : B → GAi)i∈I in B has a unique G-initial lift (fi : A → Ai)i∈I . The following was proved in [5] (see 
also [11]).

Theorem 2.1. The forgetful functors (T , V )-Cat → Set and (T , V )-Gph → Set are topological.

This shows, in particular, that (see [1, Chapter 21] for details):

– (T , V )-Cat is complete and cocomplete.
– Monomorphisms in (T , V )-Cat are the morphisms whose underlying map is injective; therefore, since 

the (T , V )-structures on any set form a set, (T , V )-Cat is well-powered.
– Every topological category over Set has two factorization systems, (reg epi, mono) and (epi, reg mono); 

in (T , V )-Cat the former one is in general not stable (that is, regular epimorphisms need not be stable 
under pullback – Top is such an example), but the latter one is. Indeed, epimorphisms in (T , V )-Cat
are the (T , V )-functors which are surjective as maps, the forgetful functor (T , V )-Cat → Set preserves 
pullbacks, and surjective maps are stable under pullback in Set. Therefore, as f × 1Z is the pullback of 
f : X → Y along πY : Y × Z → Y , we conclude that f × 1Z is an epimorphism provided f is.

(T , V )-Cat has a natural structure of 2-category: for (T , V )-functors f, g : (X, a) → (Y, b), f ≤ g if 
g · a ≤ b · Tf . This condition can be equivalently written as k ≤ b(eY (f(x)), g(x)) for every x ∈ X (see [11]
for details). We write f 
 g if f ≤ g and g ≤ f .

Extensivity of (T , V )-Cat was studied in [28]:

Theorem 2.2. (T , V )-Cat is infinitely extensive.

In general (T , V )-Cat is not cartesian closed, while (T , V )-Gph is. In fact, the following was proved in 
[10]:

Theorem 2.3. (T , V )-Gph is a quasitopos.

We also note that the tensor product of V induces a canonical structure c on X × Y defined by

c(w, (x, y)) = a(TπX(w), x) ⊗ b(TπY (w), y),

where w ∈ T (X × Y ), x ∈ X, y ∈ Y . We put

(X, a) ⊗ (Y, b) = (X × Y, c),

and this construction is in an obvious way part of a functor ⊗ : (T , V )-Gph× (T , V )-Gph → (T , V )-Gph. 
However, the tensor product of two (T , V )-categories is in general not a (T , V )-category (see [17, 
Lemma 6.1]).

Weak cartesian closedness of (T , V )-Cat needs a thorough study of injective (T , V )-categories and some 
extra conditions. This is the subject of the following sections.
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3. Exponentiable (T , V )-categories

Recall that an object C of a category C with finite products is exponentiable whenever the functor 
C ×− : C → C has a right adjoint. The category C is cartesian closed if every object C of C is exponen-
tiable. Equivalently, if for each pair of objects A, B of C there exists an object 〈A, B〉 and a morphism 
ev : 〈A,B〉 ×A → B such that, for each morphism f : C × A → B there exists a unique morphism 
f : C → 〈A, B〉 with ev ·(f × 1A) = f . Dropping uniqueness of f gives the notion of weakly cartesian 
closed category.

In this section we present a sufficient condition for a (T , V )-category X to be exponentiable in (T , V )-Cat, 
which generalises [16, Theorem 4.3] and [17, Theorem 6.5]. To start, we recall that (T , V )-Cat can be fully 
embedded into the cartesian closed category (T , V )-Gph. Here, for (T , V )-graphs (X, a) and (Y, b), the 
exponential 〈(X, a), (Y, b)〉 has as underlying set

Z := {h : (X, a) × (1, e◦1) → (Y, b) | h is a (T , V )-functor},

which becomes a (T , V )-graph when equipped with the largest structure ba making the evaluation map

ev : Z ×X → Y, (h, x) �→ h(x)

a (T , V )-functor: for p ∈ TZ and h ∈ Z, put

ba(p, h) =
∨

{v ∈ V | ∀q ∈ (TπZ)−1(p), x ∈ X . a(TπX(q), x) ∧ v ≤ b(T ev(q), h(x))},

where πX and πZ are the product projections. Note that the supremum above is even a maximum since 
− ∧ − distributes over suprema.

Given V -relations r : X −→� X ′ and s : Y −→� Y ′, we define in V -Rel r � s : X × Y −→� X ′ × Y ′ by 
(r � s)((x, y), (x′, y′)) = r(x, x′) ∧ s(y, y′). That is, r � s = (π◦

X′ · r · πX) ∧ (π◦
Y ′ · s · πY ) in the ordered set 

V -Rel(X × Y, X ′ × Y ′).

Theorem 3.1. Assume that the diagram

T (X × Y )

T (r�s)

canX,Y

TX × TY

(Tr)�(Ts)

T (X ′ × Y ′)canX′,Y ′
TX ′ × TY ′

(3.i)

commutes, for all V -relations r : X −→� X ′ and s : Y −→� Y ′. Then a (T , V )-category (X, a) is exponentiable 
provided that ∨

x∈TX

(Ta(X, x) ∧ u) ⊗ (a(x, x) ∧ v) ≥ a(mX(X), x) ∧ (u⊗ v), (3.ii)

for all X ∈ TTX, x ∈ X and u, v ∈ V .

Proof. We show that the (T , V )-graph structure ba on Z is transitive, for each (T , V )-category (Y, b). To 
this end, let P ∈ TTZ, p ∈ TZ, h ∈ Z, x ∈ X and w ∈ T (Z × X) with TπZ(w) = mZ(P). We have to 
show that

(T (ba)(P, p) ⊗ ba(p, h)) ∧ a(TπX(w), x) ≤ b(T ev(w), h(x)).
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Since m has (BC), there is some Q ∈ TT (Z × X) with TTπZ(Q) = P and mZ×X(Q) = w. Hence, 
mX(TTπX(Q)) = TπX(w), and we calculate:

(T (ba)(P, p) ⊗ ba(p, h)) ∧ a(TπX(w), x)

≤
∨

x∈TX

((T (ba)(TTπZ(Q), p) ∧ Ta(TTπX(Q), x)) ⊗ (ba(p, h) ∧ a(x, x)) (by (3.ii))

≤
∨

x∈TX

∨
q∈can−1(p,x)

T (ba � a)(T canZ,X(Q), q) ⊗ (ba � a)(canZ,X(q), (h, x)) (using (3.i))

=
∨

q∈(TπZ)−1(p)

T (ba � a)(T canZ,X(Q), q) ⊗ (ba � a)(canZ,X(q), (h, x))

=
∨

q∈(TπZ)−1(p)

T (ba × a)(Q, q) ⊗ (ba × a)(q, (h, x))

≤
∨

q∈(TπZ)−1(p)

Tb(TT ev(Q), T ev(q)) ⊗ b(T ev(q), h(x))

≤ b(mY · TT ev(Q), h(x)) = b(T ev(w), h(x)). �
Remark 3.2. We note that the inequality canX′,Y ′ ·T (r � s) ≤ ((Tr) � (Ts)) · canX,Y is automatically true. 
Firstly, this inequality is equivalent to T (r � s) ≤ can◦

X′,Y ′ ·((Tr) � (Ts)) · canX,Y ; secondly,

T (r � s) = T ((π◦
X′ · r · πX) ∧ (π◦

Y ′ · s · πY ))

≤ T (π◦
X′ · r · πX) ∧ T (π◦

Y ′ · s · πY )

≤ can◦
X′,Y ′ ·((Tr) � (Ts)) · canX,Y .

It is worthwhile to notice that, when V is a frame, that is ⊗ = ∧, the condition above is equivalent to∨
x∈TX

Ta(X, x) ∧ a(x, x) ≥ a(mX(X), x),

for all X ∈ TTX and x ∈ X. Therefore:

Corollary 3.3. When V is a frame and (3.i) commutes for all V -relations r : X −→� X ′ and s : Y −→� Y ′, 
a (T , V )-category (X, a) is exponentiable provided that

a ·mX = a · Ta.

4. Injective and representable (T , V )-categories

In this section we recall an important class of (T , V )-categories, the so-called representable ones. More 
information on this type of (T , V )-categories can be found in [4,22]. We also recall from [7,17,18] that every 
injective (T , V )-category is representable.

Based on the lax extension of the Set-monad T = (T, m, e) to V -Rel, T admits a natural exten-
sion to a monad on V -Cat, in the sequel also denoted by T = (T, m, e) (see [32]). Here the functor 
T : V -Cat → V -Cat sends a V -category (X, a0) to (TX, Ta0), and eX : X → TX and mX : TTX → TX

become V -functors for each V -category X. The Eilenberg–Moore algebras for this monad can be described 
as triples (X, a0, α) where (X, a0) is a V -category and (X, α) is an algebra for the Set-monad T such 
that α : T (X, a0) → (X, a0) is a V -functor. For T -algebras (X, a0, α) and (Y, b0, β), a map f : X → Y

is a homomorphism f : (X, a0, α) → (Y, b0, β) precisely if f preserves both structures, that is, whenever 
f : (X, a0) → (Y, b0) is a V -functor and f : (X, α) → (Y, β) is a T -homomorphism.
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There are canonical adjoint functors

(V -Cat)T �

K

M

(T , V )-Cat.

The functor K associates to each X = (X, a0, α) in (V -Cat)T the (T , V )-category KX = (X, a), where a =
a0·α, and keeps morphisms unchanged. Its left adjoint M : (T , V )-Cat → (V -Cat)T sends a (T , V )-category 
(X, a) to (TX, Ta ·m◦

X , mX) and a (T , V )-functor f to Tf . Via the adjunction M � K one obtains a lifting 
of the Set-monad T = (T, m, e) to a monad on (T , V )-Cat, also denoted by T = (T, m, e).

In this setting we can define ‘duals’ in (V -Cat)T and carry them into (T , V )-Cat. Indeed, since 
T : V -Rel → V -Rel commutes with the involution (−)◦, for every T -algebra X = (X, a0, α) also (X, a◦0, α)
is a T -algebra. Moreover, if (X, a) is a (T , V )-category, we define Xop by mapping (X, a) into (V -Cat)T
via M , dualizing the image in (V -Cat)T , and then carrying it back to (T , V )-Cat; that is,

Xop = K((M(X, a))op) = (TX,mX · (Ta)◦ ·mX).

Since the monad T = (T, m, e) on (T , V )-Cat is lax idempotent (i.e., of Kock-Zöberlein type), an 
algebra structure α : TX → X on a (T , V )-category X is left adjoint to the unit eX : X → TX. We call 
a (T , V )-category X representable whenever eX : X → TX has a left adjoint in (T , V )-Cat; equivalently, 
whenever there is some (T , V )-functor α : TX → X with α · eX 
 1X , since then

eX · α = Tα · eTX ≥ Tα · TeX 
 1TX .

However, a left adjoint α : TX → X to eX is in general only a pseudo-algebra structure on X, that is,

α · eX 
 1X and α · Tα 
 α ·mX .

For every representable (T , V )-category (X, a), the structure a : TX −→� X can be decomposed as a = a0 ·α, 
where a0 = a · eX denotes the underlying V -category structure.

A (T , V )-category X is injective whenever, for each fully faithful h : A → B in (T , V )-Cat and each 
(T , V )-functor f : A → X, there is a (T , V )-functor g : B → X with g · h 
 f .

Proposition 4.1. Every injective (T , V )-category is representable.

Proof. Let X be an injective (T , V )-category. The (T , V )-functor eX : (X, a) → (TX, Ta ·m◦
X ·mX) is an 

embedding. Indeed, eX is injective because the monad T is non-trivial, and it is fully faithful:

e◦X · Ta ·m◦
X ·mX · TeX ≤ a · Ta ·m◦

X ≤ a ·mX ·m◦
X ≤ a.

Hence, there is a (T , V )-functor α : TX → X with α · eX 
 1X , and so X is representable. �
5. Injective (T , V )-categories are exponentiable

In Section 6 we will show that, under some conditions, (T , V )-Cat is weakly cartesian closed. Notably, 
we will use that every (T , V )-category can be embedded into an injective one; which, by the main result 
of this section, implies that every (T , V )-category can be embedded into an exponentiable one. We hasten 
to remark that this is easily seen to be fulfilled for T being the identity monad, witnessed by the Yoneda 
embedding (see [24])
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yX : X → PX := V Xop
.

Here PX is the free cocompletion of X; being cocomplete, PX is injective.
To treat the general case, we will consider from now on only extensions of the monad T to V -Rel given 

by a T -algebra structure ξ : TV → V on V , so that we are dealing with a strict topological theory in the 
sense of [17]. In this case, the extension of T : Set → Set to V -Rel is defined by

Tr : TX × TY → V

(x, y) �→
∨{

ξ · Tr(w)
∣∣∣ w ∈ T (X × Y ), TπX(w) = x, TπY (w) = y

}
for each V -relation r : X × Y → V .

In order to obtain a Yoneda embedding, we consider the T -algebra (V, hom, ξ) which is mapped by K
into the important (T , V )-category (V, homξ), where homξ = hom · ξ. The proof of the following result can 
be found in [7] and [18].

Theorem 5.1. If the extension of T to V -Rel is induced by a strict topological theory, then, for every 
(T , V )-category (X, a), the V -relation a : TX −→� X defines a (T , V )-functor

a : Xop ⊗X → (V,homξ).

Moreover, the ⊗-exponential mate yX = �a� : X → V Xop of a is fully faithful, and the (T , V )-category 
PX = V Xop is injective.

In fact, this construction defines a functor P : (T , V )-Cat → (T , V )-Cat and y = (yX)X is a natural 
transformation y : 1(T ,V )-Cat → P .

Since yX is fully faithful, when X is injective there exists a (T , V )-functor SupX : PX → X such that 
SupX ·yX 
 1X . As shown in [18, Theorem 2.7], SupX � yX . Moreover, for each (T , V )-category (X, a), yX
is one-to-one if, and only if, (X, a) is separated, i.e. for every f, g : (Y, b) → (X, a), f 
 g only if f = g

(see [23], for example). It follows immediately that, for an injective (T , V )-functor f : X → Y where Y is 
separated, also X is.

Lemma 5.2. The ⊗-exponential Y X is separated, for every separated (T , V )-category Y and every repre-
sentable (T , V )-category X; in particular, PX is separated, for every (T , V )-category X.

Proof. See [23, Corollary 4.12 (2)]. �
Corollary 5.3. Every separated (T , V )-category embeds into an injective (T , V )-category.

In Section 2 we introduced the tensor product X ⊗Y of (T , V )-graphs X and Y . We remark that, in the 
setting of a strict topological theory, X ⊗ Y is a (T , V )-category provided that X and Y are so (see [17]).

The result promised in the title of this section was shown in [19, Proposition 2.7] for the special case of 
⊗ = ∧:

Proposition 5.4. If the quantale V is a frame and (3.i) commutes for all V -relations r : X −→� X ′ and 
s : Y −→� Y ′, then every representable (T , V )-category is exponentiable. In particular, in this case every 
injective (T , V )-category is exponentiable.

To treat the general case, we will make use of the following conditions:
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Assumptions 5.5.

(1) The diagram (3.i) commutes, for all V -relations r : X −→� X ′ and s : Y −→� Y ′.
(2) For all u, v, w ∈ V ,

w ∧ (u⊗ v) =
∨

{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w};

or, equivalently, every injective V -category is exponentiable: see [20, Theorem 5.3].
(3) For every V -relation a : X −→� Y and u ∈ V ,

T (a⊗ u) = Ta⊗ u,

where a ⊗ u is the V -relation defined by (a ⊗ u)(x, y) = a(x, y) ⊗ u.
(4) The maps V ⊗ V

⊗−−−−−→ V and X
(−,u)−−−−→ X ⊗ V are (T , V )-functors, for all u ∈ V .

These morphisms induce an interesting action of V on every injective (T , V )-category (X, a) as follows. 
The (T , V )-functor

Xop ⊗X ⊗ V
a⊗1

V ⊗ V
⊗

V

induces a (T , V )-functor ã : X ⊗ V → PX. We denote the composite

X ⊗ V
ã

PX
SupX

X

by ⊕, and

X
(−,u)

X ⊗ V
ã

PX
SupX

X,

assigning to each x ∈ X an element x ⊕ u in X, by − ⊕ u.
Analogously we will write x ⊕u for T (− ⊕u)(x), for every x ∈ TX and u ∈ V . Note that (T , V )-functoriality 

of − ⊕ u can be written as

a(x, y) ≤ a(x⊕ u, y ⊕ u),

for every x ∈ TX and y ∈ X.

Lemma 5.6. Assuming 5.5 (4), for an injective (T , V )-category (X, a), with a = a0 ·α as usual, the following 
holds, for every x, y ∈ X, x ∈ TX and u ∈ V :

(1) a0(x ⊕ u, y) = hom(u, a0(x, y));
(2) a0(x, y ⊕ u) ≥ a0(x, y) ⊗ u;
(3) a(x ⊕ u, y) ≥ hom(u, a(x, y));
(4) a(x, y ⊕ u) ≥ a(x, y) ⊗ u.

Moreover, if, in addition, 5.5 (3) holds, then, for every X ∈ T 2X, y ∈ TX, u ∈ V ,

(5) Ta(X, y ⊕ u) ≥ Ta(X, y) ⊗ u.
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Proof. (1) For every x, y ∈ X and u ∈ V ,

a0(x⊕ u, y) = a0(SupX(ã(x, u)), y) (by definition of ⊕)

= [ã(x, u), yX(y)] (because SupX � yX)

=
∧

x∈TX

hom(ã(x, u)(x), yX(y)(x)) (by definition of [ , ])

=
∧

x∈TX

hom(a(x, x) ⊗ u, a(x, y)) (by definition of ã and yX(y))

= hom(u, a0(x, y)),

because, using the fact that a = a0 · α and

a0(α(x), x) ⊗ u⊗ hom(u, a0(x, y)) ≤ a0(α(x), x) ⊗ a0(x, y) ≤ a0(α(x), y),

for x ∈ TX, we can conclude that

hom(u, a0(x, y)) ≤
∧

x∈TX

hom(a0(α(x), x) ⊗ u, a0(α(x), y)).

Taking x = eX(x), we see that this inequality is in fact an equality as claimed.
(2) Since, by hypothesis, − ⊕ u is a (T , V )-functor, and so, in particular, a V -functor (X, a0) → (X, a0),

a0(x, y) ≤ a0(x⊕ u, y ⊕ u) = hom(u, a0(x, y ⊕ u)),

and then

a0(x, y) ⊗ u ≤ hom(u, a0(x, y ⊕ u)) ⊗ u ≤ a0(x, y ⊕ u).

(3) One has

k ≤ a0(α(x), α(x)) = a(x, α(x))
≤ a(x⊕ u, α(x) ⊕ u)
= a0(α(x⊕ u), α(x) ⊕ u).

Using (1) we conclude that

hom(u, a(x, y)) = a0(α(x) ⊕ u, y)
≤ a0(α(x⊕ u), α(x) ⊕ u) ⊗ a0(α(x) ⊕ u, y)
≤ a0(α(x⊕ u), y) = a(x⊕ u, y).

(4) follows directly from (2), while (5) follows from (4). �
Lemma 5.7. Let ϕ : V → W be a surjective quantale homomorphism; that is, ϕ preserves the tensor, the 
neutral element, and suprema. Then, if V satisfies condition 5.5 (2), so does W .

Theorem 5.8. Under Assumptions 5.5, every injective (T , V )-category is exponentiable in (T , V )-Cat.
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Proof. Let X ∈ T 2X, x ∈ X and u, v ∈ V . In order to conclude that∨
x∈TX

(Ta(X, x) ∧ u) ⊗ (a(x, x) ∧ v) ≥ a(mX(X), x) ∧ (u⊗ v),

we make use of Hypothesis 5.5 (2). Let u′, v′ ∈ V with u′ ≤ u, v′ ≤ v and u′ ⊗ v′ ≤ a(mX(X), x). First we 
note that

Ta(X, Tα(X) ⊕ u′) ∧ u ≥ (Ta(X, Tα(X)) ⊗ u′) ∧ u (by 5.6 (5))

= (Ta0(Tα(X), Tα(X)) ⊗ u′) ∧ u

≥ (k ⊗ u′) ∧ u = u′,

and

a(Tα(X) ⊕ u′, x) ≥ hom(u′, a(Tα(X), x)) (by 5.6 (3))

= hom(u′, a0(α(Tα(X)), x))

= hom(u′, a0(α(mX(X)), x))

= hom(u′, a(mX(X), x)).

Now, from u′ ⊗ v′ ≤ a(mX(X), x) and v′ ≤ v we get

v′ ≤ hom(u′, a(mX(X), x)) ∧ v ≤ a(Tα(X) ⊕ u′, x) ∧ v,

hence

u′ ⊗ v′ ≤ (Ta(X, Tα(X) ⊕ u′) ∧ u) ⊗ (a(Tα(X) ⊕ u′, x) ∧ v).

Therefore a(mX(X), x) ∧ (u⊗ v) ≤
∨

x∈TX

(Ta(X, x) ∧ u) ⊗ (a(x, x) ∧ v). �

Remark 5.9. Under Assumptions 5.5, it follows from Lemma 5.2 that the exponential 〈(X, a), (Y, b)〉 is 
separated, for all separated injective (T , V )-categories (X, a) and (Y, b). In fact, with a = a0 · α, the 
epimorphism (X, α) → (X, a) in (T , V )-Cat is mapped to the monomorphism

〈(X, a), (Y, b)〉 −−−−→ 〈(X,α), (Y, b)〉 = (Y, b)(X,α),

which proves that 〈(X, a), (Y, b)〉 is separated.

6. (T , V )-Cat is weakly cartesian closed

Building on the results of the previous section, in this section we show that, under some condi-
tions, (T , V )-Cat is weakly cartesian closed. We start by proving this property for the full subcategory 
(T , V )-Catsep of (T , V )-Cat of separated (T , V )-categories.

Theorem 6.1. Under Assumptions 5.5, (T , V )-Catsep is weakly cartesian closed.

Proof. For X, Y separated (T , V )-categories, consider the Yoneda embeddings yX : X → PX and 
yY : Y → PY , and the exponential 〈PX, PY 〉. The elements of its underlying set can be identified with 
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(T , V )-functors E × PX → PY (where E = (1, e◦1) is the generator of (T , V )-Cat), and the universal 
morphism ev : 〈PX, PY 〉 × PX → PY with the evaluation map: ev(ϕ, x) = ϕ(x) (where, for simplicity, we 
identify the set E × PX with PX). We can therefore consider

� X,Y �= {ϕ : E × PX → PY | ϕ(yX(X)) ⊆ yY (Y )},

with the initial structure with respect to the inclusion ι :� X, Y �→ 〈PX, PY 〉. Moreover, the morphism

� X,Y � ×X
ι×yX

〈PX,PY 〉 × PX
ev

PY

factors through yY via a morphism

� X,Y � ×X
ẽv

Y.

Next we show that this is a weak exponential in (T , V )-Catsep.
Given any separated (T , V )-category Z, and a (T , V )-functor f : Z×X → Y , by injectivity of PY there 

exists a (T , V )-functor f ′ : Z × PX → PY making the square below commute. Then, by universality of 
the evaluation map ev, there exists a unique (T , V )-functor f : Z → 〈PX, PY 〉 making the bottom triangle 
commute.

Z ×X
f

1Z×yX

Y

yY

Z × PX
f ′

f×1PX

PY

〈PX,PY 〉 × PX

ev

The map f : Z → 〈PX, PY 〉, assigning to each z ∈ Z a map f(z) : PX → PY , is such that f(z)(yX(x)) =
ev(f(z), yX(x)) = yY (f(z, x)); that is, f(z)(yX(X)) ⊆ yY (Y ), and this means that f(z) ∈� X, Y �. Hence 
we can consider the corestriction f̃ of f to � X, Y �, which is again a (T , V )-functor since � X, Y � has 
the initial structure with respect to 〈PX, PY 〉, so that the following diagram commutes.

� X,Y � ×X
ẽv

Y

Z ×X

f
f̃×1X

�

In order to show that (T , V )-Cat is weakly cartesian closed, we follow the proof of [30]. Hence, first we 
show that:

Proposition 6.2. The reflector R : (T , V )-Cat → (T , V )-Catsep preserves finite products.

Proof. We recall that, for any (T , V )-category (X, a), R(X, a) = (X̃, ̃a), with X̃ = X/ ∼, where x ∼ y if 
k ≤ a(eX(x), y) ∧ a(eX(y), x), and ã = ηX · a · (TηX)◦, with ηX : X → X̃ the projection. This structure 
makes ηX both an initial and a final morphism (see [22] for details).
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Let f : R(X × Y ) → RX ×RY be the unique morphism such that f · ηX×Y = ηX × ηY .

(X × Y, c)

ηX×ηY

ηX×Y

(R(X × Y ), c̃)

f

(RX ×RY, d)

From c(eX×Y (x, y), (x′, y′)) = a(eX(x), x′) ∧ b(eY (y), y′) it is immediate that (x, y) ∼ (x′, y′) in X × Y if, 
and only if, x ∼ x′ in X and y ∼ y′ in Y . Therefore, f is a bijection. Assuming the Axiom of Choice, so 
that T preserves surjections, we have, for every z ∈ T (R(X × Y )), (x, y) ∈ X × Y ,

c̃(z, [(x, y)]) = c(w, (x, y)) (for any w ∈ (TηX×Y )−1(z))
= d(T (ηX × ηY )(w), ([x], [y])) (because ηX × ηY is initial)
= d(Tf(z), ([x], [y]);

that is, f is initial and therefore an isomorphism. �
Theorem 6.3. Under Assumptions 5.5, (T , V )-Cat is weakly cartesian closed.

Proof. Given (T , V )-categories (X, a), (Y, b), to build the weak exponential � X, Y � we will show the 
cosolution set condition for the functor − × (X, a).

For each (T , V )-functor f : (Z, c) ×(X, a) → (Y, b) we take its reflection Rf : RZ×RX ∼= R(Z×X) → RY

and we factorise it through the weak evaluation in (T , V )-Catsep, Rf = ẽv · (Rf × 1RX), so that in the 
diagram below the outer rectangle commutes.

Then we define Zf = Z/ ∼ by

z ∼ z′ if both f(z, x) = f(z′, x), for every x ∈ X, and Rf(ηZ(z)) = Rf(ηZ(z′)),

and equip it with the final structure for the projection qf : Z → Zf . Then hf : Zf →� RX, RY �, with 
hf ([z]) = Rf(ηZ(z)), is a (T , V )-functor since its composition with qf is Rf · ηZ and qf is final. Then we 
factorise f via the surjection qf × 1X : Z × X → Zf × X as in the diagram below. Moreover, the map 
f̂ : Zf ×X → Y , with f̂([z], x) = f(z, x), is a (T , V )-functor because ηY · f̂ = ẽv · (hf × ηX) is and ηY is 
initial.

Z ×X
f

ηZ×1X

qf×1X

Y

ηYRZ ×X

Rf×1X

Zf ×X

f̂

hf×1X

(
∐

g Zg ×X) ∼= (
∐

g Zg) ×X

ev

� RX,RY � ×X
1×ηX

� RX,RY � ×RX
ẽv

RY
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Since the cardinality of Zf is bounded by the cardinality of the set | � RX, RY � | × |Y ||X|, as witnessed 
by the injective map

Zf → | � RX,RY � | × |Y ||X|,

[z] �→ (Rf(ηZ(z)), f(z,−))

there is only a set of possible (T , V )-categories Zf . Hence we can form its coproduct, as in the diagram 
above, and consider the induced (T , V )-functor ev : (

∐
g Zg) × X ∼=

∐
g(Zg × X) → Y (note that the 

isomorphism follows from extensivity of (T , V )-Cat). �
7. Examples

In this section we use Theorem 6.3 to present examples of weakly cartesian closed categories. Hence, in 
conjunction with the following theorem established in [30], we obtain examples of categories with cartesian 
closed exact completion since all other conditions of that theorem are trivially satisfied in these examples.

Theorem 7.1. Let C be a complete, infinitely extensive and well-powered category in which every morphism 
factorizes as a regular epi followed by a mono, and where f ×1 is an epimorphism for every regular epimor-
phism f : A → B in C. Then, if C is weakly cartesian closed, the exact completion Cex of C is cartesian 
closed.

We note that, in order to conclude that (T , V )-Cat is weakly cartesian closed, we have to check whether 
V and T satisfy Assumptions 5.5.

First we analyse examples where T is the identity monad. In this particular setting we only have to check 
that 5.5 (2) holds. The category V -Cat is always monoidal closed, as shown in [24]. Therefore, when V is a 
frame considered as a quantale, then V -Cat is cartesian closed. This is the case of 2, and so one concludes 
that Ord is cartesian closed. Moreover, for V the lattice ([0, ∞], ≥) with ⊗ = ∧, V -Cat is the category of 
ultrametric spaces, which is therefore also cartesian closed.

When V = P+, V -Cat is the category Met of Lawvere’s metric spaces [24], which is not cartesian closed 
(see [6] for details). However, the quantale P+ satisfies 5.5 (2), and so from Theorem 6.3 it follows that Met
is weakly cartesian closed.

Metric and ultrametric spaces can be also viewed as categories enriched in a quantale based on the 
complete lattice [0, 1] with the usual “less or equal” relation ≤, which is isomorphic to [0, ∞] via the 
map [0, 1] → [0, ∞], u �→ − ln(u) where − ln(0) = ∞. More in detail, we consider the following quantale 
operations on [0, 1] with neutral element 1.

(1) For ⊗ = ∗ being the ordinary multiplication, via the isomorphism [0, 1] 
 [0, ∞], this quantale is 
isomorphic to the quantale P+, hence [0, 1]-Cat 
 Met.

(2) For the tensor ⊗ = ∧ being infimum, the isomorphism [0, 1] 
 [0, ∞] establishes an equivalence between 
[0, 1]-Cat and the category of ultrametric spaces and non-expansive maps.

(3) Another interesting multiplication on [0, 1] is the Łukasiewicz tensor ⊗ = � given by

u� v = max(0, u + v − 1).

Via the lattice isomorphism [0, 1] → [0, 1], u �→ 1 − u, this quantale is isomorphic to the quantale 
[0, 1] with “greater or equal” relation ≥ and tensor u ⊗ v = min(1, u + v) truncated addition. Therefore 
[0, 1]-Cat is equivalent to the category of bounded-by-1 metric spaces and non-expansive maps. Moreover, 
with respect to the “greater or equal” relation and truncated addition on [0, 1], the map
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[0,∞] → [0, 1], u �→ min(1, u)

is a surjective quantale morphism; therefore, by Lemma 5.7, also [0, 1] with the Łukasiewicz tensor 
satisfies 5.5 (2).

(4) More generally, every continuous quantale structure ⊗ on the lattice [0, 1] (with Euclidean topology 
and the usual “less or equal” relation) with neutral element 1 satisfies 5.5 (2). This can be shown using 
the fact, proven in [13] and [27], that every such tensor ⊗ : [0, 1] × [0, 1] → [0, 1] is a combination of the 
three operations on [0, 1] described above. More precise:
(a) For u, v ∈ [0, 1] and e ∈ [0, 1] idempotent with u ≤ e ≤ v: u ⊗ v = min(u, v) = u.
(b) For every non-idempotent u ∈ [0, 1], there exist idempotents e and f with e < u < f and such 

that the interval [e, f ] (with the restriction of the tensor on [0, 1] and with neutral element f) is 
isomorphic to [0, 1] either with multiplication or Łukasiewicz tensor.

Now let w, u, v ∈ [0, 1]. We may assume u ≤ v. If u ⊗ v ≤ w, then clearly

w ∧ (u⊗ v) = u⊗ v =
∨

{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w}.

We consider now w < u ⊗ v ≤ u ≤ v. If w is idempotent, then

w = w ⊗ v, w ≤ u, v ≤ v;

otherwise there are idempotents e and f with e < w < f and [e, f ] is isomorphic to [0, 1] either with 
multiplication or Łukasiewicz tensor.
Case 1: v ≤ f . Then 5.5 (2) holds since w, u ⊗ v, u, v ∈ [e, f ].
Case 2: f < v. Then w = w ∧ v = w ⊗ v, w ≤ u and v ≤ v.
We conclude that [0, 1]-Cat is weakly cartesian closed, for every continuous quantale structure ⊗ on 
the lattice [0, 1] with neutral element 1.

Now let V = Δ be the quantale of distribution functions (see [20,8] for details). As observed in [20], it 
verifies 5.5 (2), and so we can conclude from Theorem 6.3 that the category Δ-Cat of probabilistic metric 
spaces and non-expansive maps is weakly cartesian closed.

When T is not the identity monad, some further work is need to guarantee Assumptions 5.5.

Theorem 7.2.

(1) The tensor product on the quantale V defines a (T , V )-functor ⊗ : V ⊗ V → V .
(2) Let u ∈ V satisfying u·! ≥ ξ · Tu.

T1 Tu

! ≥

TV

ξ

1
u

V

Then (−, u) : X → X × V is a (T , V )-functor, for every (T , V )-category X.
(3) Let u ∈ V satisfying u·! = ξ · Tu. Then T (r ⊗ u) = (Tr) ⊗ u, for every V -relation r : X −→� Y .

Proof. The first assertion is [18, Proposition 1.4(1)]. To see (2), assume that u ∈ V with u·! ≥ ξ · Tu. Let 
(X, a) be a (T , V )-category, x ∈ TX and x ∈ X. Considering the map X !−→ 1 u−→ V , we have to show that

a(x, x) ≤ a(x, x) ⊗ hom(T (u· !)(x), u),
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which follows immediately from u·! ≥ ξ ·Tu. Finally, to prove (3), let r : X −→� Y be a V -relation and u ∈ V

with u·! = ξ · Tu. Note that the V -relation r ⊗ u : X −→� Y is given by

X × Y
r−−−−→ V

〈1V ,u·!〉−−−−−−−−−→ V × V
⊗−−−−−→ V.

Hence, applying the Set-functor T to the functions r : X × Y → V and r ⊗ u : X × Y → V , we obtain

ξ · T (r ⊗ u) = ξ · T (⊗) · T 〈1V , u·!〉 · Tr

= ⊗ · (ξ × ξ) · canX,Y ·T 〈1V , u·!〉 · Tr

= ⊗ · 〈ξ, u·! · ξ〉 · Tr

= ⊗ · 〈1V , u·!〉 · ξ · Tr.

Therefore, returning to V -relations, we conclude that T (r ⊗ u) = (Tr) ⊗ u. �
Remark 7.3. If T1 = 1, then u·! = ξ · Tu for every u ∈ V .

In order to guarantee Assumptions 5.5 (1), we need an extra condition on ξ.

Proposition 7.4. Assume that

T (V × V )
T (∧)

〈ξ·Tπ1,ξ·Tπ2〉 ≤

TV

ξ

V × V
∧

V.

Then, for all V -relations r : X −→� X ′ and s : Y −→� Y ′,

T (X × Y )

T (r�s)

canX,Y

≥

TX × TY

Tr�Ts

T (X ′ × Y ′)canX′,Y ′
TX ′ × TY ′.

Proof. First we note that, from the preservation of weak pullbacks by T , it follows that the commutative 
diagram

T (A×B)
T (f×g)

canA,B

T (X × Y )

canX,Y

TA× TB
Tf×Tg

TX × TY

is also a weak pullback.
Let w ∈ T (X × Y ), x′ ∈ TX ′ and y′ ∈ TY ′. Put (x, y) = canX,Y (w). By the definition of the extension 

of T and since V is a Heyting algebra,



626 M.M. Clementino et al. / Journal of Pure and Applied Algebra 224 (2020) 610–629
Tr(x, x′) ∧ Ts(y, y′) =
∨{

ξ · Tr(w1) ∧ ξ · Ts(w2)
∣∣∣ w1 ∈ T (X ×X ′) : w1 �→ x,w1 �→ x′

w2 ∈ T (Y × Y ′) : w2 �→ y,w2 �→ y′

}
.

Note that in

T (X × Y ×X ′ × Y ′)

∼=

T (X × Y )

can

T (X ×X ′ × Y × Y ′)
T (πX×πY ) T (r×s)

can

T (V × V )

can

T (∧)

≤

TV

ξTX × TY T (X ×X ′) × T (Y × Y ′)
TπX×TπY Tr×Ts

TV × TV

ξ×ξ

V × V
∧

V

the left hand side is a weak pullback, the middle diagram commutes, and in the right hand side we have 
“lower path” ≤ “upper path” as indicated. Therefore, for such w1 ∈ T (X ×X ′) and w2 ∈ T (Y × Y ′), there 
exists some v ∈ T (X×X ′×Y ×Y ′) which projects to w ∈ T (X×Y ) and to (w1, w2) ∈ T (X×X ′) ×T (Y ×Y ′). 
Hence, taking also into account the definition of the V -relation T (r � s),

Tr(x, x′) ∧ Ts(y, y′) ≤
∨{

ξ · T (∧) · T (r × s)(v)
∣∣∣ v ∈ T (X × Y ×X ′ × Y ′);

v �→ w

v �→ x′, v �→ y′

}
≤

∨
{T (r � s)(w,w′) | w′ ∈ T (X ′ × Y ′), canX′,Y ′(w′) = (x′, y′)}. �

Remark 7.5. We note that the inequality

T (V × V )
T (∧)

〈ξ·Tπ1,ξ·Tπ2〉 ≥

TV

ξ

V × V
∧

V

is always true.

Corollary 7.6. If the quantale V satisfies Assumption 5.5 (2) and the diagrams

T (V × V )
T (∧)

〈ξ·Tπ1,ξ·Tπ2〉

TV

ξ

V × V
∧

V

and
T1 Tu

!

TV

ξ

1
u

V

commute, for all u ∈ V , then all Assumptions 5.5 are satisfied.

Let T be the ultrafilter monad U = (U, m, e). Then, when V is any of the quantales listed above but Δ, 
all the needed conditions are satisfied. Therefore, in particular we can conclude that:
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Examples 7.7.

(1) The category Top = (U , 2)-Cat of topological spaces and continuous maps is weakly cartesian closed
(as shown by Rosický in [30]).

(2) The category App = (U , P+)-Cat of approach spaces and non-expansive maps is weakly cartesian 
closed.

(3) In fact, for each continuous quantale structure on the lattice ([0, 1], ≤) 
 ([0, ∞], ≥), (U , [0, 1])-Cat
is weakly cartesian closed. In particular, the category of non-Archimedean approach spaces and non-
expansive maps studied in [12] is weakly cartesian closed.

(4) If V is a completely distributive complete lattice with ⊗ = ∧, then, with

ξ : UV → V, x �→
∧
A∈x

∨
A,

all the conditions of Theorem 6.3 are satisfied (see [17, Theorem 3.3]) and therefore (U , V )-Cat is 
weakly cartesian closed. In particular, with V = P2 being the powerset of a 2-element set, we obtain 
that the category BiTop of bitopological spaces and bicontinuous maps is weakly cartesian closed (see 
[22]).

Remark 7.8. For V = Δ the quantale of distribution functions, we do not know whether there is an appro-
priate compact Hausdorff topology ξ : UV → V satisfying the conditions of this section.

Now let T be the free monoid monad W = (W, m, e). For each quantale V , we consider

ξ : WV → V, (v1, . . . , vn) �→ v1 ⊗ · · · ⊗ vn, () �→ k

which induces the extension W : V -Rel → V -Rel sending r : X −→� Y to the V -relation Wr : WX −→� WY

given by

Wr((x1, . . . , xn), (y1, . . . , ym)) =
{
r(x1, y1) ⊗ · · · ⊗ r(xn, yn) if n = m,
⊥ if n �= m.

The category (W , 2)-Cat is equivalent to the category MultiOrd of multi-ordered sets and their morphisms 
(see [22]), more generally, (W , V )-categories can be interpreted as multi-V -categories and their morphisms. 
The representable multi-ordered sets are precisely the ordered monoids, which is a special case of [14,15]
describing monoidal categories as representable multi-categories (see also [4]). We recall that the separated 
injective multi-ordered sets are precisely the quantales (see [25] and also [31]), and we conclude:

Proposition 7.9. Every quantale is exponentiable in MultiOrd.

Theorem 7.10. If the quantale V is a frame, then (W , V )-Cat is weakly cartesian closed. In particular, 
MultiOrd is weakly cartesian closed.

Finally, for a monoid (H, ·, h), we consider the monad H = (− ×H, m, e), with mX : X×H×H → X×H

given by mX(x, a, b) = (x, a · b) and eX : X → X ×H given by eX(x) = (x, h). Here we consider

ξ : V ×H → V, (v, a) �→ v,

which leads to the extension − ×H : V -Rel → V -Rel sending the V -relation r : X −→� Y to the V -relation 
r ×H : X ×H −→� Y ×H with
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r ×H((x, a), (y, b)) =
{
r(x, y) if a = b,
⊥ if a �= b.

In particular, (H, 2)-categories can be interpreted as H-labelled ordered sets and equivariant maps.
For every quantale V and every v : 1 → V , the diagrams

V × V ×H
∧×1H

π1,2

V ×H

ξ=π1

V × V
∧

V

and
1 ×H

v×1H

!

V ×H

ξ

1
v

V

commute, therefore we obtain:

Theorem 7.11. For every quantale V satisfying Assumption 5.5 (2), the category (H, V )-Cat is weakly 
cartesian closed.
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