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Over a Cohen-Macaulay local ring we consider two extensions of the maximal Cohen-
Macaulay modules from the viewpoint of definable subcategories, which are closed 
under direct limits, direct products and pure submodules. After presenting these 
categories, we compare them and consider which properties they inherit from the 
maximal Cohen-Macaulay modules. We then consider some further properties of 
these classes and how they interact with the entire module category.
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1. Introduction

Over a commutative Noetherian local ring (R, m, k) of Krull dimension d, a finitely generated R-module 
M is maximal Cohen-Macaulay if every maximal M -sequence contained in m has length d. A classical 
theorem due to Rees shows that this is equivalent to asking for ExtiR(k, M) = 0 for all i < d. These 
equivalences fail when the assumption of M being finitely generated is removed, so there is no uniform way 
to define the maximal Cohen-Macaulay property beyond finitely generated R-modules. We investigate two 
possible extensions from the perspective of definable subcategories.

A definable subcategory is a class of modules that is closed under pure submodules, direct limits and 
direct products. These classes are in bijection with the closed sets of a topological space, called the Ziegler 
spectrum, whose underlying set is the set of isomorphism classes of indecomposable pure-injective modules. 
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Given any class of modules, there is a smallest definable subcategory containing it, which then corresponds 
to a closed subset of the Ziegler spectrum. Understanding the closed set corresponding to the class of 
maximal Cohen-Macaulay modules provides one motivation for this approach.

By considering the Ext-depth of a module, as described in 2.14, we consider the category

CohCM(R) := {M ∈ R-Mod : ExtiR(k,M) = 0 for all i < d} (1)

consisting of all R-modules whose Ext-depth is at least d. This is a definable subcategory and it is clear 
that its finitely generated modules are precisely the maximal Cohen-Macaulay modules. However, it is not 
clear that this is the smallest definable subcategory with this property.

Since definable subcategories are closed under direct limits, the class lim−−→CM(R), which consists of all 
modules that can be obtained as direct limits of directed systems of maximal Cohen-Macaulay modules, will 
be contained inside the class defined in (1). However, lim−−→CM(R) is not necessarily always a definable class, 
since it need not be closed under products. In [15, Theorem B], H. Holm showed that whenever R admits a 
canonical module Ω the class lim−−→CM(R) is a definable subcategory, and is the smallest definable subcategory 
extending the maximal Cohen-Macaulay modules, as well as providing several equivalent characterisations 
of the modules in this class. Using Holm’s characterisations, we are able to determine when the categories 
CohCM(R) and lim−−→CM(R) coincide.

Theorem (3.8). Let R be a Cohen-Macaulay ring. If dimR=1, then CohCM(R) = lim−−→CM(R). Moreover, if 
R admits a canonical module CohCM(R) = lim−−→CM(R) if and only if dimR = 1.

In assuming the existence of a canonical module, we can consider the canonical duality HomR(−, Ω). This 
functor plays a fundamental role in understanding the category of maximal Cohen-Macaulay R-modules, 
CM(R), as illustrated in the monographs [18] and [27]. Since both CohCM(R) and lim−−→CM(R) are extensions 
of CM(R), we aim to see which, if any, properties of this functor extend to these categories from CM(R). 
In particular, we show the following.

Theorem (3.9,3.10). If R is a Cohen-Macaulay ring admitting a canonical module Ω, then HomR(−, Ω) is an 
endofunctor on both lim−−→CM(R) and CohCM(R). Moreover, Ω is an injective object in both these categories.

One can partition both lim−−→CM(R) and CohCM(R) into the modules of finite and infinite Ext-depth. In the 
case of lim−−→CM(R), it is clear from Holm’s characterisation that the modules in lim−−→CM(R) whose Ext-depth 
is finite are precisely Hochster’s balanced big Cohen-Macaulay modules, see [8, Ch. 8]. We then consider how 
the canonical dual acts on this category. The modules of infinite depth are of interest in their own right, as 
they form a definable subcategory that contains no finitely generated modules but is still very much related 
to CM(R). We provide an in-depth example by considering the one-dimensional A∞ singularity.

We then consider some of the properties of both CohCM(R) and lim−−→CM(R), both categorical and ho-
mological. Since both these categories are definable, they are already covering and preenveloping. However, 
we are able to improve on this by replicating Holm’s result [15, Theorem D] to show the following:

Theorem (5.5). Let R be a Cohen-Macaulay ring. Then (CohCM(R), CohCM(R)⊥) is a perfect hereditary 
cotorsion pair in Mod-R.

This enables us to consider the CohCM(R)-dimension of a module, which is closely related to its Ext-depth. 
We also turn our attention to inverse limits and see how the inverse limit closure of CM(R) is related to 
lim−−→CM(R).

Lastly, we look at the special case when dim R = 1, where lim−−→CM(R) and CohCM(R) coincide. In this 
situation the modules of infinite Ext-depth have a particularly rich structure.
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Theorem (6.2). If R is a one-dimensional Cohen-Macaulay ring, then the class of infinite depth modules is 
a Grothendieck Abelian category.
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2. Background: depth and duality over local rings

For this section, (R, m, k) is a commutative Noetherian local ring of Krull dimension d. For an R-module 
M , an M -regular sequence, or simply M -sequence, is a sequence of elements x = x1, · · · , xn ∈ m such that 
the following conditions hold:

1. xi is a non-zerodivisor on M/(x1, · · · , xi−1) for all i = 1, · · · , n;
2. M/xM �= 0.

If only the first condition holds, we say that x is a weak M -sequence. Nakayama’s lemma shows that whenever 
M is a non-zero finitely generated R-module all weak M -sequences are automatically M -sequences. This is 
not the case for arbitrary R-modules. We say that a regular sequence is maximal if it cannot be extended.

When M ∈ mod-R, the category of finitely generated R-modules, a theorem due to Rees shows that all 
maximal M -sequences in m are of the same length.

Theorem 2.1. [8, Theorem 1.2.5] Let (R, m, k) be a Noetherian local ring and M a finitely generated 
R-module. Then all maximal M -sequences in m have the same length n, given by

n = inf{i ≥ 0 : ExtiR(k,M) �= 0}.

Definition 2.2. With the notation of the above theorem, we call the common length of all maximal 
M -sequences to be the depth of M , and we denote it dp M .

We state the following for clarity: if M is a finitely generated R-module, then

dp M = inf{i ≥ 0 : ExtiR(k,M) �= 0}.

Definition 2.3. Let R be as above. We say that a non-zero finitely generated R-module is maximal Cohen-
Macaulay, or simply Cohen-Macaulay, if the equivalent following conditions hold:

1. dp M = d;
2. ExtiR(k, M) = 0 for all 0 ≤ i < d;
3. Hi

m(M) = 0 for all i �= d.

We say that R is a Cohen-Macaulay ring if it is a Cohen-Macaulay module over itself. For convention we 
assume the zero module is Cohen-Macaulay.

Recall that for any R-module N , Hi
m(N) is the i-th local cohomology of N (with support in m), and is given 

by the formula
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Hi
m(N) = lim−−→

t

ExtiR(R/mt, N)

for every i ≥ 0.
If one wishes to extend the definition of Cohen-Macaulay from mod-R to Mod-R, the class of 

all R-modules, some immediate obstructions arise. For instance, if M is any R-module, the maximal 
M -sequences in m may no longer have the same length. Moreover, the equivalences of the above three 
conditions fails, as illustrated in the following example, due to Strooker.

Example 2.4. [24, p. 91] Let k be a field and R = k[[x, y]]. Set M =
⊕

R/(f), where the sum runs over all 
elements of m. Then the depth of M is zero, since no element of m is regular on M . Since R is a domain, 
the principal ideal (f) is free for every f ∈ m, so is Cohen-Macaulay. Applying the functor HomR(k, −) to 
the short exact sequence 0 −→ (f) −→ R −→ R/(f) −→ 0 shows that HomR(k, R/(f)) = 0. Consequently 
HomR(k, M) = 0 and inf{i ≥ 0 : ExtiR(k, M) �= 0} �= 0. In fact, the latter is actually equal to one.

In light of this, the notion of depth has been generalised using the invariant given in Rees’s theorem.

Definition 2.5. [24, 5.3.6] Let M be an arbitrary R-module. We define the Ext-depth of M , denoted E-dp M

as

E-dp M = inf{i ≥ 0 : ExtiR(k,M) �= 0}.

If the above integer does not exist, we say that the module has infinite Ext-depth.

Fortunately, the relationship between local cohomology and the Ext-functors does not restrict to finitely 
generated modules, so we can also use local cohomology to measure Ext-depth. More precisely, for all 
R-modules M , one has

E-dp M = inf{i ≥ 0 : Hi
m(M) �= 0}.

One can find a proof of this at [24, Prop. 5.3.15] or [17, Thm. 9.1]. In fact, this relationship extends to 
complexes of modules, as illustrated in [14], but this setting will not be used. This equality will at times 
have its advantages, due to properties of local cohomology, in particular we will use that Hi

m(N) = 0 for 
all i > dim R and all R-modules N (see [7, 6.1.2 Grothendieck’s Vanishing Theorem]). Consequently, if a 
module has finite Ext-depth, it is at most the Krull dimension of R. Much more information about local 
cohomology can be found in [7] and [17].

One can relate Ext-depth and depth for arbitrary R-modules. Indeed, for any R-module M , there is an 
inequality dp M ≤ E-dp M . Moreover, if E-dp(M) is finite, it is equal to dp M if and only if there is an 
M -sequence x = x1, · · · , xs ∈ m and a non-zero element z ∈ M/xM such that mz �= 0. Proofs of these 
claims can be found at [24, 5.3.7, 5.3.8].

Returning to the finitely generated case, in the situation where R is a Cohen-Macaulay ring we let CM(R)
denote the full subcategory of mod-R consisting of the Cohen-Macaulay modules. This category has been 
extensively studied and is well understood, as can be seen in the texts [27] and [18].

A class of Cohen-Macaulay rings that will be of particular interest to us will be those that admit a 
canonical module.

Definition 2.6. If (R, m, k) is a Cohen-Macaulay local ring, then a Cohen-Macaulay R-module Ω is said to 
be a canonical module if

dimk ExtiR(k,Ω) =
{

0 if i �= dim R,

1 if i = dim R.
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It is known that, if it exists, the canonical module is unique up to isomorphism, see [8, Theorem 3.3.4]. 
Necessary and sufficient conditions for the existence of the canonical module can be found at [8, Thm 3.3.6]; 
in particular, any complete local ring admits a canonical module. A notable subclass of Cohen-Macaulay 
rings admitting a canonical module are Gorenstein rings, for which we recall the definition.

Definition 2.7. A Cohen-Macaulay ring R is Gorenstein if it has finite injective dimension over itself.

There is alternative property that completely determines Gorenstein rings, that will be of some use.

Proposition 2.8. [8, 3.3.7] The following are equivalent for a Cohen-Macaulay ring R.

1. R is Gorenstein.
2. The canonical module Ω exists and is isomorphic to R.

Over a Cohen-Macaulay ring admitting a canonical module Ω, the functor (−)∗ := HomR(−, Ω) plays 
a special role in understanding the category CM(R), in particular its Auslander-Reiten theory. This is 
illustrated in great detail in the monograph [27]. While we will not need this much detail, there are a few 
properties of the functor that we will use.

Proposition 2.9. [8, 3.3.10] Let (R, m, k) be a Cohen-Macaulay ring admitting a canonical module Ω and let 
M ∈ CM(R). Then

1. M∗ = HomR(M, Ω) is a Cohen-Macaulay module.
2. ExtiR(M, Ω) = 0 for all i > 0.
3. The natural map M −→ M∗∗ is an isomorphism.

In particular, Ω is an injective cogenerator in CM(R).

Over a complete local ring, one can relate the canonical module with local cohomology using the following 
theorem.

Theorem 2.10 (Grothendieck local duality). [8, (proof of) 3.5.8] Let (R, m, k) be a complete Cohen-Macaulay 
ring of Krull dimension d. Then for all R-modules M and integers i there is a natural isomorphism

ExtiR(M,Ω) � HomR(Hd−i
m (M), E(k)),

where E(k) denotes the injective envelope of the residue field k. When M is finitely generated, there is a 
further isomorphism

Hd−i
m (M) � HomR(ExtiR(M,Ω), E(k)).

If M is any R-module, we will call the module M∨ := HomR(M, E(k)) the Matlis dual of M . We note that 
E(k) is an injective cogenerator in Mod-R.

The following result gives a few useful properties of the Matlis dual.

Proposition 2.11. [11, 3.4.1, 3.4.5-7] Let (R, m, k) be a complete Noetherian local ring and E(k) as above.

1. For every R module the canonical map M −→ M∨∨ is injective.
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2. If M is either a finitely generated or artinian, then M is reflexive, that is the canonical map M −→ M∨∨

is an isomorphism.
3. (−)∨ gives a duality between finitely generated R-modules and artinian R-modules.

The Matlis dual also gives us the following useful relations between Ext and Tor modules.

Lemma 2.12. [25, 1.2.11] Let (R, m, k) be a commutative Noetherian local ring and E(k) as above.

1. Let M and N be arbitrary R-modules, then for any i ≥ 0 there is an isomorphism

ExtiR(M,N∨) � (TorRi (M,N))∨.

2. Let M be a finitely generated module and N an arbitrary module. Then for any i ≥ 0 there is an 
isomorphism

TorRi (M,N∨) � (ExtiR(M,N))∨.

The above result is a specialisation of a much more general result, which is stated in its completeness 
in the given reference. Using the above dualities, we consider a dual notion to E-dp, again following the 
terminology of Strooker.

Definition 2.13. [24, p. 102] Let M be an R-module. Define the Tor-codepth of M , denoted by T-codp M , 
as

T-codp M = inf{i ≥ 0 : TorRi (k,M) �= 0}.

If no such integer exists, we say the module has infinite Tor-codepth.

Remark. Tor-codepth is also known as width, see [16, 1.9] and [26].

From the above lemma, it is clear that if E-dp M = t, then T-codp M∨ = t, and vice-versa, where t can be 
either finite or infinite. One can generalise the notions of Ext-depth and Tor-codepth as follows: if a ⊂ R is 
an ideal, define

E-dp(a,M) = inf{n ≥: ExtnR(R/a,M) �= 0}

and the dual notion for T-codp(a, M). We can relate Ext-depth and Tor-depth using the following useful 
result.

Proposition 2.14. [24, Cor. 6.1.8] Let R be a complete Noetherian local ring, a an ideal and M an R-module. 
Then E-dp(a, M) < ∞ if and only if T-codp(a, M) < ∞, and if this is the case then

E-dp(a,M) + T-codp(a,M) ≤ dim R.

We can use the left exactness of the Hom functor to see how Ext-depth behaves with respect to short exact 
sequences.

Lemma 2.15 (Depth lemma). [8, Prop. 9.1.2(e)] Let a be an ideal of R and 0 −→ L −→ M −→ N −→ 0 a 
short exact sequence of R-modules. Then
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E-dp(a,M) ≥ min{E-dp(a, L),E-dp(a, N)}

E-dp(a, L) ≥ min{E-dp(a,M),E-dp(a, N) + 1}

E-dp(a, N) ≥ min{E-dp(a, L) − 1,E-dp(a,M)}

3. Two definable subcategories of Cohen-Macaulay modules

Throughout this section, we will assume that (R, m, k) is a Cohen-Macaulay ring of Krull dimension d. 
We will not assume the existence of a canonical module. As illustrated in the previous section, there is 
an ambiguity when extending the definition of a Cohen-Macaulay R-module. Since for finitely generated 
modules depth and Ext-depth coincide, one can consider the subcategory of R-modules that satisfy the 
Ext-depth definition of Cohen-Macaulay. We will define CohCM(R) to be precisely these modules, that is

CohCM(R) = {M ∈ Mod-R : ExtiR(k,M) = 0 for all i < d}

= {M ∈ Mod-R : Hi
m(M) = 0 for all i < d}.

Lemma 3.1. CohCM(R) is a definable subcategory of Mod-R, that is it is closed under pure submodules, 
products and direct limits.

Proof. The residue field k is finitely presented, so by [19, Theorem 10.2.35.(c)] the functors ExtiR(k, −) :
mod-R −→ Ab are finitely presented for every i ≥ 0. Set X = {ExtiR(k, −) : 0 ≤ i < dim R}; then, by [19, 
Cor. 10.2.32], the subcategory X = {M ∈ Mod-R : FX = 0 for all F ∈ X} is a definable subcategory. But 
X is just CohCM(R) by definition. �
Clearly the finitely generated modules in CohCM(R) are just CM(R), so if one wants to consider extensions 
of CM(R) that are definable, CohCM(R) is a valid option. However, there will be a definable subcategory 
generated by CM(R), which we denote 〈CM(R)〉. This is the smallest definable subcategory containing 
CM(R), and is its closure under direct limits, direct products and pure submodules. Since CohCM(R)
is a definable subcategory containing CM(R) there is an inclusion of definable subcategories 〈CM(R)〉 ⊆
CohCM(R).

Proposition 3.2. Let R be a Cohen-Macaulay ring with a canonical module. The definable subcategory of 
Mod-R generated by CM(R) is lim−−→CM(R), the class of all R-modules that can be realised as a direct limit 
of modules in CM(R).

Proof. Since CM(R) is closed under finite direct sums, it suffices, by [19, Cor. 3.4.37], to show that CM(R)
is preenveloping in mod-R. But this is [15, Thm. C]. �
H. Holm characterised the modules in lim−−→CM(R) and his descriptions will enable us to consider its differences 
with CohCM(R). Before doing this, we need to recall some more definitions.

Definition 3.3. Let A be a Cohen-Macaulay ring admitting a canonical module Ω. The trivial extension of 
A by Ω is the ring A � Ω whose underlying abelian group is A ⊕ Ω and whose multiplication is given by

(a1, ω1)(a2, ω2) = (a1a2, a1ω2 + a2ω1),

for any r1, r2 ∈ A and ω1, ω2 ∈ Ω.



8 I. Bird / Journal of Pure and Applied Algebra 224 (2020) 106250
Restriction of scalars along the inclusion ring homomorphism i : A −→ A � Ω gives a functor U :
Mod-(A � Ω) −→ Mod-A called the underlying functor : if N is an A � Ω-module, then U(N) has the 
same abelian group as N , and the A-action is given by a · n = (a, 0)n for any a ∈ A, n ∈ N . U is an 
exact functor that commutes with both direct and inverse limits, see [13, 1.6, 1.7]. Doing the corresponding 
construction for the projection p : A � Ω −→ A gives a functor Z : Mod-A −→ Mod-(A � Ω) that shares 
the same properties as U , and since p ◦ i is identity on A, the composition UZ is the identity functor on 
Mod-A. Since we assumed A is commutative, it is clear that so is A � Ω. We can list some of its properties 
as a ring.

Theorem 3.4. Let A and Ω be as in the above definition.

1. A � Ω is a commutative Noetherian local ring.
2. A � Ω and A have the same Krull dimension.
3. A � Ω is a Gorenstein local ring.

The first two results can be found in [1, Thm. 3.2], while the third result can be found at [21, Theorem 7].
Two classes of Gorenstein modules will be particularly useful in understanding the category lim−−→CM(R). 

The definitions given here are not the traditional ones, which can be found in [11, Chapter 10], but are 
equivalent and suit our purposes.

Definition 3.5. Let R be a Gorenstein local ring.

1. [11, 11.5.3] A finitely generated R-module M is Gorenstein projective if ExtiR(M, R) = 0 for all i ≥ 1;
2. [11, 10.3.8] An R module M is Gorenstein flat if TorRi (M, E) = 0 for all injective R-modules E and all 

i ≥ 1.

We will state a brief lemma giving some properties showing how Gorenstein projective and flat modules 
relate to both each other and what we have already seen.

Lemma 3.6. Let R be a Gorenstein local ring.

1. M is a Gorenstein flat R-module if and only if M is the direct limit of a directed system of finitely 
presented Gorenstein projective R-modules.

2. Any finitely presented R-module is Gorenstein projective if and only if it is Cohen-Macaulay.

These statements (in more generality), and their proofs, can be found at [11, Theorem 10.3.8.4] and [11, 
Corollary 10.2.7] respectively. We are now in a position to give Holm’s description of lim−−→CM(R).

Theorem 3.7. [15, Thm. B] Let R be a Cohen-Macaulay ring admitting a canonical module Ω. The following 
are equivalent for an R-module M .

1. M is in lim−−→CM(R).
2. Every system of parameters for R is a weak M -sequence.
3. M is Gorenstein flat when viewed as an R � Ω-module, that is Z(M) ∈ GFlat(R � Ω).
4. For every R-sequence x, TorR1 (R/(x), M) = 0, where (x) is the ideal of R generated by x.
5. For every R-sequence x and i ≥ 1, TorRi (R/(x), M) = 0, where (x) is the ideal of R generated by x.
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Recall that a system of parameters for R is a set of d elements y = y1, · · · , yd in R such that √y = m. These 
are precisely the maximal R-sequences. Using Holm’s result, we are now in a position to directly compare 
the categories CohCM(R) and lim−−→CM(R), at least in the situation where R admits a canonical module.

Theorem 3.8. Let (R, m, k) be a Cohen-Macaulay ring. If dimR = 1 then lim−−→CM(R) and CohCM(R) coin-
cide. If R also admits a canonical module, then lim−−→CM(R) = CohCM(R) if and only if dimR = 1.

Proof. Assume dim R = 1 and M ∈ CohCM(R). We can write M = lim−−→Mi where each Mi is a finitely 
generated submodule of M , but since CohCM(R) is closed under submodules, each Mi ∈ CM(R), so 
M ∈ lim−−→CM(R), which proves the first claim.

Now assume that dim R > 1 and R admits a canonical module. Let x ∈ m be a regular element and 
p be a minimal prime of the principal ideal (x). By [3, Cor. 11.17], p is a height one prime, and since 
dim R > 1 it follows that p �= m. Consider the indecomposable injective module E := E(R/p). We claim 
that E ∈ CohCM(R) but not in lim−−→CM(R). Since E is injective, we have ExtiR(k, E) = 0 for all i > 0, so 
in order for E ∈ CohCM(R), it suffices to show HomR(k, E) = 0. Notice that any morphism k −→ E will 
factor through E(k), but since p �= m we have HomR(E(k), E) = 0, so it must be that HomR(k, E) = 0 and 
E ∈ CohCM(R). To show that E is not in lim−−→CM(R), we find a system of parameters that is not a weak 
E-sequence. Since x is a regular element of R, we may extend it to a system of parameters x. We claim x
is not a weak E-sequence. Indeed, since E = E(R/p), the unique associated prime of E is p, so there is an 
e ∈ E with p = Ann(e). Since, by construction, we have x ∈ p, it follows that xe = 0, so x is not a regular 
element on E, and therefore x is a system of parameters that is not a weak E-sequence. �
Therefore whenever dim R > 1 and R admits a canonical module, we have two different definable subcat-
egories of Mod-R, both of whose finitely generated modules coincide precisely with CM(R). We can then 
consider which properties of CM(R) are reflected in these larger categories in an attempt to further differ-
entiate between them. As stated, the canonical duality HomR(−, Ω) is vital in understanding CM(R). We 
will now see how this functor behaves on lim−−→CM(R) and CohCM(R).

Proposition 3.9. Let R be a complete Cohen-Macaulay ring. Then the functor HomR(−, Ω) is an endofunctor 
on lim−−→CM(R) and Ω is an injective object in the category.

Proof. Let M ∈ lim−−→CM(R). We show that if x is an R-sequence, then TorR1 (R/(x), Hom(M, Ω)) = 0. Since 
R is complete, by local duality we have

TorR1 (R/(x),Hom(M,Ω)) � TorR1 (R/(x),Hom(Hd
m(M), E(k))) � Ext1R(R/(x), Hd

m(M))∨ (2)

and since E(k) is an injective cogenerator, we see it is enough to show that Ext1R(R/(x), Hd
m(M)) = 0. 

Using the assumption M ∈ lim−−→CM(R), write M = lim−−→Mi where each Mi ∈ CM(R). As R/(x) is finitely 
generated and Hd

m(−) commutes with direct limits, we have an isomorphism

Ext1R(R/(x), Hd
m(M)) � lim−−→Ext1R(R/(x), Hd

m(Mi)).

We know that Hom(Mi, Ω) ∈ CM(R) for each Mi, and since CM(R) ⊂ lim−−→CM(R) we must have 
Ext1R(R/(x), Hd

m(Mi)) = 0 by considering the isomorphisms in (2). This shows the first result. Since R
is complete, all finitely generated modules are Matlis reflexive and therefore pure injective (see [11, Prop. 
5.3.7]). Therefore by [25, Lemma 3.3.4], if j ≥ 1 and M ∈ lim−−→CM(R), there is an isomorphism

ExtjR(M,Ω) � ExtjR(limMi,Ω) � lim ExtjR(Mi,Ω).
−−→ ←−−
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We know ExtjR(Mi, Ω) = 0 for all j ≥ 1 as Ω is injective in CM(R), hence ExtjR(M, Ω) = 0. This shows the 
second claim. �
This is a weaker result than for the finitely generated case, since Ω is no longer an injective cogenerator. 
Indeed, if M ∈ lim−−→CM(R) has infinite Ext-depth, we have HomR(M, Ω) � Hd

m(M)∨ = 0. We will consider 
the modules where this is not the case in due course. Let us now consider the corresponding result for 
CohCM(R).

Proposition 3.10. Let R be a complete Cohen-Macaulay ring of dimension d. Then Hom(−, Ω) is an endo-
functor on CohCM(R) and Ω is an injective object in this category.

Proof. Let M ∈ CohCM(R). If M has infinite Ext-depth then HomR(M, Ω) = 0 by the above discussion. 
Therefore we may assume that E-dp M = d = dim R. Since R is complete, we may use local duality 2.10
to show that ExtiR(k, Hd

m(M)∨) = 0 for all i < d, and thus M∗ ∈ CohCM(R). By considering the Ext-Tor 
relations given in 2.12, this is equivalent to showing that TorRi (k, Hd

m(M)) = 0 for all i < d. Since d is 
the cohomological dimension of R, by [7, 6.1.10] there is a natural isomorphism Hd

m(−) � − ⊗R Hd
m(R). 

Therefore

TorRi (k,Hd
m(M)) � TorRi (k,M ⊗R Hd

m(R)),

and we aim to show this is zero for all i < d. In order to do this, we will use a spectral sequence argument; 
in particular, we show that, with the given assumption on M , there is a Grothendieck spectral sequence

Ep,q
2 = TorRp (M,TorRq (k,Hd

m(R))) =⇒ TorRp+q(k,M ⊗Hd
m(R)) (3)

By [22, Thm. 10.59], such a spectral sequence exists if TorRi (M, Hd
m(R) ⊗ P ) = 0 for all i ≥ 1 and every 

projective R-module P . Since R is a local ring every projective module is free and as Tor commutes with 
direct sums, it suffices to show TorRi (M, Hd

m(R)) = 0 for all i ≥ 1. Yet

TorRi (M,Hd
m(R)) = 0 ⇐⇒ TorRi (M,Hd

m(R))∨ = 0 ⇐⇒ ExtiR(M,Hd
m(R)∨) = 0.

But since Ω is finitely generated, it is Matlis reflexive, so Hd
m(R)∨ � Ω, and as ExtiR(M, Ω) = 0 for all 

i ≥ 0 by 2.10 and assumption on the Ext-depth of M , it follows TorRi (M, Hd
m(R)) = 0. Therefore, for any 

M ∈ CohCM(R) with E-dp M = d the spectral sequence (3) exists. However, TorRi (k, Hd
m(R)) = 0 for all 

i �= d, since

TorRi (k,Hd
m(R))∨ � ExtiR(k,Hd

m(R)∨) � ExtiR(k,Ω),

and ExtiR(k, Ω) = 0 for all i �= d by virtue of Ω being the canonical module. Consequently, Ep,q
2 is zero 

whenever q �= d, so the spectral sequence collapses on the first page, giving isomorphisms

TorRp (M,TorRq (k,Hd
m(R))) � TorRp+q(k,M ⊗Hd

m(R))

In particular, as TorRp (M, TorRq (k, Hd
m(R))) = 0 for q �= d, we see TorRi (k, M ⊗ Hd

m(R)) = 0 for all i < d. 
That Ω is injective follows immediately from 2.10. �
Corollary 3.11. If E-dp(M) = d, then E-dp(M∗) = d.
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Proof. From the above proof, there is an isomorphism

Torp(M,Torq(k,Hd
m(R))) � Torp+q(k,Hd

m(M))

and the left hand side is zero whenever q �= d. If we show M⊗Tord(k, Hd
m(R)) �= 0, then TorRd (k, Hd

m(M)) �= 0, 
and therefore ExtdR(k, HomR(M, Ω)) �= 0 by 2.12. One can use local duality and Ext-Tor relations to show 
that Tord(k, Hd

m(R)) � k, and therefore Tord(k, Hd
m(R)) � k as k is a simple R-module. Since E-dp(M) =

d < ∞, we have T-codp(M) = 0. This shows M ⊗ Tord(k, Hd
m(R)) �= 0, proving the claim. �

Remark. In [10] a construction is given which shows that the functor HomR(−, Ω) restricts to a duality on 
a certain subcategory of CohCM(R), in fact a considerably more general result is given. We will restrict to 
the case when R is a d-dimensional Cohen-Macaulay ring with a canonical module Ω. Following [10, 6.1], 
define the m-adic completion functor to be

Λm(−) := lim←−−
t

(
R/mt ⊗R −

)

and its i-th left derived functors is Hm
i (−) and called the i-th local homology functor. For any R-module 

M , there is a canonical map ψM : M −→ Hm
0 (M). Celikbas and Holm define the class of relative Cohen-

Macaulay modules of cohomological dimension d with respect to m, denoted CMd
m(R), to consist of all 

R-modules M such that

1. Hi
m(M) = 0 for all i �= d;

2. The canonical map ψM is an isomorphism;
3. If ϕ : M −→ M∨∨ is the canonical embedding into the Matlis double dual, then Hi

m(cokerϕ) = 0 for 
all i ∈ Z.

It is shown in [10, Thm. 6.16] that the functor HomR(−, Ω) is a duality on the class CMd
m(R), which is 

clearly a subcategory of CohCM(R) from the first condition. �
Remark. There is a shorter alternative proof for both 3.10 and 3.11 without using spectral sequences, and 
the author is grateful to the referee for suggesting it.

Proof. By local duality, one can see that M ∈ CohCM(R) if and only if ExtiR(M, Ω) = 0 for i ≥ 0, meaning 
that RHomR(M, Ω) � HomR(M, Ω) in D(R). There is an equality

E-dp HomR(M,Ω) = T-codpM + E-dp Ω = T-codpM + d

by [26, Thm. 2.4]. Consequently E-dpHomR(M, Ω) ≥ d so is in CohCM(R). Moreover, if E-dpM = d, we 
know T-codpM = 0 by 2.14, hence E-dpHomR(M, Ω) = d. �
Given any definable subcategory D ⊂ Mod-R, there is a dual definable subcategory, which we denote Dd. 
This is the definable subcategory defined by the property that for any module M ∈ D we have M∨ ∈ Dd. It 
is indeed the case that this is a duality, since Ddd � D (see [19, Cor. 3.4.18]). We can use 2.12 to describe the 
dual definable subcategories of both CohCM(R) and lim−−→CM(R). Over any d-dimensional Cohen-Macaulay 
ring, the dual definable subcategory of CohCM(R) is

CohCM(R)d = {M ∈ Mod-R : TorRi (k,M) = 0 for all i < d},

while if R has a canonical module the dual definable subcategory of lim CM(R) is
−−→
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lim−−→CM(R)d = {M ∈ Mod-R : Ext1R(R/(x),M) = 0 for all R-sequences x}.

In the case that R is a Gorenstein ring, and we can associate lim−−→CM(R) with the category of Gorenstein 
flat R-modules, lim−−→CM(R)d is precisely the class of Gorenstein injective R-modules. This follows from [11, 
Thm. 10.3.8(7)] and [11, Cor. 10.3.9]. Information about Gorenstein injective modules can be found in [11, 
§10.1].

In the proof of the above theorem, we showed that if M ∈ CohCM(R), then TorRi (k, M ⊗R Hd
m(R)) = 0

for all i < d. This shows that − ⊗R Hd
m(R) gives us a functor CohCM(R) −→ CohCM(R)d. However, this 

functor is very far from a duality. The following result helps to see this.

Proposition 3.12. Let (R, m, k) be a d-dimensional Cohen-Macaulay ring and M an R-module with 
E-dp(M) = d. Then Hi

m(Hd
m(M)) � Hi+d

m (M) for all i ≥ 0.

Proof. Since Γm ◦Γm and Γm(E) is injective for any injective R-module E, there is a Grothendieck spectral 
sequence

Ep,q
2 = Hp

m(Hq
m(N)) =⇒ Hn

m(N)

for any R-module N . If E-dp(M) = d, then Hi
m(M) = 0 for all i �= d, so this spectral sequence is nonzero only 

if q = d. Consequently this collapses on the first page giving isomorphisms Hd+i
m (M) � Hi

m(Hd
m(M)). �

Consequently, if M ∈ CohCM(R), then M ⊗R Hd
m(R) ⊗R Hd

m(R) � Hd
m(Hd

m(M)) � H2d
m (M) = 0, showing 

that − ⊗R Hd
m(R) : CohCM(R) −→ CohCM(R)d is not a duality.

4. Ext-depth and lim−−→ CM(R)

Unless explicitly stated, for this section we assume that (R, m, k) is a d-dimensional Cohen-Macaulay 
R-module admitting a canonical module. So far we have only really considered Ext-depth in relation to 
CohCM(R), but it also plays an impact on lim−−→CM(R). Suppose M ∈ lim−−→CM(R) can be realised as M =
lim−−→Mi with each Mi ∈ CM(R), so we have an isomorphism ExtdR(k, M) � lim−−→ExtdR(k, Mi), and this module 
can be zero, meaning that E-dp(M) ∈ {d, ∞}. One can obtain an example of an infinite Ext-depth module in 
lim−−→CM(R) quite easily - indeed, if R is a Gorenstein ring, then E(R), the injective hull of R, is a flat module, 
and it is clear that every flat module lies in lim−−→CM(R). We will let lim−−→CM(R)∞ denote the subcategory of 
lim−−→CM(R) consisting of all infinite Ext-depth modules, and lim−−→CM(R)d denote the subcategory consisting 
of all modules with Ext-depth d. We will first turn our attention to lim−−→CM(R)d, and to do so we recall the 
following definition due to Hochster.

Definition 4.1. An R-module M is a balanced big Cohen-Macaulay module if every system of parameters is 
a regular sequence. We will let bbCM(R) denote the class of balanced big Cohen-Macaualy modules.

By Holm’s result 3.7 any balanced big Cohen-Macaualy module will be an element of lim−−→CM(R). Suppose 
y is a system of parameters for R. Since local cohomology is invariant under radical, there are isomorphisms 
of functors Hi

(y)(−) � Hi
m(−) for each i ≥ 0. In particular, if M ∈ lim−−→CM(R) has E-dp(M) = d, we see 

that Hd
(y)(M) �= 0, so T-codp(y, M) = 0 and thus M/yM �= 0. Since M ∈ lim−−→CM(R), we know that y is a 

weak M -sequence, and therefore we see that y is actually an M -sequence. Conversely, if E-dp(M) = ∞, it 
follows that T-codp(y, M) = ∞, so R/(y) ⊗M = 0 so y is not a regular M -sequence. Therefore we have 
shown the following.
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Lemma 4.2. Let R be a Cohen-Macaulay ring with a canonical module Ω. Then the modules in lim−−→CM(R)
of Ext-depth d coincide with the category of balanced big Cohen-Macaulay modules, that is

bbcm(R) = lim−−→CM(R)d.

This is not a definable subcategory of Mod-R, since it is not closed under direct limits, moreover, it is not 
closed under direct summands, nor does it contain the zero module. However, it is closed under direct sums 
and direct products. Since it contains the canonical module Ω, we can consider how the dual acts on it.

Proposition 4.3. Let (R, m, k) be a d-dimensional complete Cohen-Macaulay ring with canonical module Ω. 
If M is a balanced big Cohen-Macaulay R-module, the following hold:

1. M∗ = Hom(M, Ω) is also a balanced big Cohen-Macaulay module.
2. Ω is an injective cogenerator in bbCM(R).
3. If M does not have a direct summand of infinite depth, then the canonical morphism M −→ M∗∗ is 

injective.

Proof.

1. We know that M∗ ∈ lim−−→CM(R) so it suffices to show that E-dp(M) = d, but this is what 3.11 shows.
2. This follows from Grothendieck local duality.
3. The proof of this is essentially the same as the proof that M � M∗∗ for M ∈ CM(R). Indeed, if x is 

an R-sequence, we may extend it to a system of parameters which is then an M -sequence as M is a 
balanced big Cohen-Macaulay module. If M does not have a direct summand of infinite Ext-depth, we 
can reduce to the case that dim R = 0, as is done in [8, 3.3.10]. In this situation, Ω � E(k), and then 
M −→ M∨∨ is injective. �

Having considered lim−−→CM(R)d we will now turn our attention to lim−−→CM(R)∞. Notice that we can determine 
the Ext-depth of a module in lim−−→CM(R) by considering if the functor k⊗− vanishes on it: clearly E-dp(M) =
d if and only if k ⊗M �= 0.

Lemma 4.4. If R is a Cohen-Macaulay ring admitting a canonical module, then lim−−→CM(R)∞ is a definable 
subcategory of Mod-R.

Proof. Let X be the set of functors defining lim−−→CM(R), and X ′ = X∪{k⊗−}. This set of finitely presented 
functors determines lim−−→CM(R)∞. �
It is clear that there are no finitely generated modules in lim−−→CM(R)∞ but it is fully contained in lim−−→CM(R)
so is still completely determined by CM(R). For example, any flat module of infinite Ext-depth lies in 
lim−−→CM(R)∞, and there are no shortage of such modules: if R is a Gorenstein ring, for instance, and F is 
an arbitrary flat module, then the injective hull of F is also flat and is of infinite depth. A proof of this fact 
can be found at [11, Theorem 9.3.3(3)]. It is clear that there is an inclusion of lim−−→CM(R)∞ in lim−−→CM(R), 
and the nature of this inclusion is quite familiar.

Lemma 4.5. Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence of R-modules with L, M, N ∈
lim−−→CM(R). Then M ∈ lim−−→CM(R)∞ if and only if L, N ∈ lim−−→CM(R)∞.
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Proof. It is clear that lim−−→CM(R)∞ is extension closed. Suppose 0 −→ L −→ M −→ N −→ 0 is a short 
exact sequence of modules in lim−−→CM(R) such that M ∈ lim−−→CM(R)∞. By the assumptions on L, M and N
there is then an exact sequence

0 −→ ExtdR(k, L) −→ ExtdR(k,M) −→ ExtdR(k,N) −→ Extd+1
R (k, L) −→ Extd+1

R (k,M).

Since we assumed that E-dp(M) = ∞, we have ExtdR(k, M) = 0 = Extd+1
R (k, M), showing that ExtdR(k, L) =

0 and thus E-dp(L) = ∞. It immediately follows that E-dp(N) = ∞, which shows the result. �
Example 4.6. Let us consider the A∞ curve singularity R = k[[x, y]]/(x2). This is a complete one-dimensional 
Gorenstein ring, so lim−−→CM(R) = CohCM(R) = {M ∈ Mod-R : Hom(k, M) = 0}. Up to isomorphism, there 
are countably many Cohen-Macaulay R-modules, which were classified by Buchweitz, Greuel and Schreyer 
in [9]. They are:

1. the ring, R;
2. the ideals Ij := (x, yj), where j ≥ 1;
3. the ideal I∞ := xR.

Since R is a complete local ring, each of these is an indecomposable pure-injective R-module. The remaining 
indecomposable pure injective R-modules in lim−−→CM(R) were classified by Puninski in [20]. They are

1. Q = Q(R), the total quotient ring of R;
2. R, the integral closure of R in Q;
3. the Laurent series L := k((y)), viewed as an R-module through the morphism R −→ R/(x).

Let us now determine the Ext-depth of each of these indecomposable pure-injectives.

• Let us start with Q. Since R is a Gorenstein ring, Q is an injective R-module by [11, 9.3.3] and therefore 
ExtiR(k, Q) = 0. Consequently E-dp(Q) = ∞.

• Let us now consider L := k((y)). The quotient R −→ k[[y]] sends the maximal ideal m = (x, y) of R
to the maximal ideal (y) of k[[y]]. The independence theorem of local cohomology shows that for each 
i is an isomorphism Hi

m(L) � Hi
(y)(L)|R, where on the right hand side we view L as a k[[y]]-module. 

We know H0
m(L) = 0, and therefore H0

(y)(L) = 0 as a k[[y]]-module, since the ring homomorphism is 
just factoring by x. But we also know that k((y)) is an injective k[[y]] module for the same reason as in 
the case of Q, and therefore Hi

(y)(k((y))) = 0 for all i. It follows from the independence theorem that 
E-dp(L) = ∞.

• Lastly we consider R. We show that k ⊗R R �= 0, hence E-dp(R) = 1. In [20, Remark 2.1], it is shown 
that R ⊃ yR and yR is maximal. Thus R/yR � k, as k is the unique simple module. Since the sequence 
R −→ R/yR −→ 0 is exact, so is R⊗R k −→ R/yR⊗R k −→ 0, but R/yR⊗R k �= 0, which means that 
R⊗ k �= 0, which is what we wanted to show.

If one defines CohCM(R)d and CohCM(R)∞ in the obvious way, several of the results in this section and 
their proofs can be easily adapted to CohCM(R). We collate these here.

Proposition 4.7. Let R be a Cohen-Macaulay ring of dimension d.

1. If 0 −→ L −→ M −→ N −→ 0 is a short exact sequence of R-modules in CohCM(R), then M ∈
CohCM(R)∞ if and only if L, N ∈ CohCM(R)∞.
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2. CohCM(R)∞ is a definable subcategory of Mod-R containing no finitely generated R-modules.
3. If R admits a canonical module, then HomR(−, Ω) is an endofunctor on CohCM(R)d and Ω is injective 

in this category.

5. Some categorical properties of lim−−→ CM(R) and CohCM(R)

In this section, we will look at some of the categorical properties of lim−−→CM(R) and CohCM(R). Unless 
stated otherwise, (R, m, k) will be a Cohen-Macaulay ring. Since many of the properties we consider will 
not require a canonical module, we will explicitly state when we are assuming R admits one.

Definition 5.1. A subclass of R-modules G ⊂ Mod-R is preenveloping if for every M ∈ Mod-R there is a 
morphism ϕ : M −→ G with G in G such that for every morphism ψ : M −→ G′ with G′ ∈ G there is a 
α : G −→ G′ such that ψ = α ◦ ϕ.

M G′

G

ψ

ϕ
α

We say that G is enveloping, if whenever ψ = ϕ in the above diagram, then α ∈ Aut(G).

The dual notions are precovering and covering respectively.
For a class of R-modules A, we define

A⊥ = {M ∈ Mod-R : Ext1R(A,M) = 0 for all A ∈ A};
⊥A = {M ∈ Mod-R : Ext1R(M,A) = 0 for all A ∈ A}.

We say that a G-(pre)envelope ϕ : M −→ G is special if there is a short exact sequence

0 M G X 0ϕ

such that X ∈ ⊥G, while a F-precover γ : F −→ M is special if there is a short exact sequence

0 Y F M 0γ

with Y ∈ F⊥. The following result, known as Wakamatsu’s lemma, enables us to relate envelopes with 
special (pre)envelopes.

Lemma 5.2. [25, 2.1.13] Let M ∈ Mod-R and C an extension closed class of R-modules.

1. Let f : M −→ C be an injective C-envelope of M . Then f is special.
2. Let g : C −→ M be a surjective C-cover of M . Then g is special.

Definition 5.3. A pair C = (F , G) of classes of R-modules is called a cotorsion pair if F⊥ = G and ⊥G = F .

If C = (F , G) is a cotorsion pair, we say it is

1. hereditary if F is closed under kernels of epimorphisms;
2. perfect if F is covering and G is enveloping;
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3. closed if F is closed under direct limits.

We can relate some of these notions to the classes of modules we have previously seen: the following result 
is due to Holm.

Theorem 5.4. [15, Theorem D] Let R be a Cohen-Macaulay ring admitting a canonical module. Then the 
pair (lim−−→CM(R), lim−−→CM(R)⊥) is a perfect hereditary cotorsion pair on Mod-R. Moreover, lim−−→CM(R) is 
preenveloping in Mod-R.

In fact, the conclusion the lim−−→CM(R) is preenveloping follows immediately from the fact that lim−−→CM(R)
is the definable subcategory of Mod-R generated by CM(R), since all definable subcategories of Mod-R are 
preenveloping in Mod-R. We now show the corresponding result for CohCM(R).

Theorem 5.5. Let R be any Cohen-Macaulay ring. The pair

(CohCM(R),CohCM(R)⊥)

is a perfect hereditary closed cotorsion pair in Mod-R.

Before proving this, recall that a class F ⊂ Mod-R is a Kaplansky class if there is a cardinal λ such that for 
every module M ∈ F and x ∈ M there is a submodule N ⊂ M such that x ∈ N ⊂ M , both N, M/N ∈ F
and |N | ≤ λ.

Proof of 5.5. It is clear that CohCM(R) is extension closed and contains all the projective R-modules. 
Therefore by [12, Theorem 2.8], the result holds if CohCM(R) is a Kaplansky class. If λ > card(R) + ℵ0, 
then for every M ∈ CohCM(R) and x ∈ M , there is a pure submodule N of M such that x ∈ N ⊂ M with 
card(N) ≤ λ. Since CohCM(R) is definable, it follows that both N and M/N are both in CohCM(R); in 
particular, CohCM(R) is a Kaplansky class. �
The above theorem was already known in [16]. Indeed, combining [16, 1.9] and [16, Thm. 3.1] also yields 
the result. In fact, the proof of the above, combined with the results, enables a partial extension of 5.4. To 
show this, we prove a much more general result.

Proposition 5.6. Let R be a noetherian ring and C a class of finitely presented right R-modules containing 
R. Then (lim−−→ C, (lim−−→ C)⊥) is a perfect cotorsion pair in Mod-R.

Proof. By [16, 2.3] and [16, Thm. 3.1], the class lim−−→ C is closed under pure submodules and pure quotients. 
The proof of 5.5 only required closure of pure submodules and pure quotients, so it follows that lim−−→ C is a 
Kaplansky class containing all the projective R-modules. Since R is noetherian it is coherent, so we may 
apply [25, Thm. 4.5.6] which shows lim−−→ C = 	(C	), where

C	 = {M ∈ R-Mod : TorR1 (C,M) = 0 for all C ∈ C},

and we similarly define 	(C	). In particular, the class lim−−→ C is an extension closed Kaplansky class containing 
the projective R-modules. We therefore may apply [12, Theorem 2.8] to deduce the result. �
Corollary 5.7. If R is any Cohen-Macaulay ring, then (lim−−→CM(R), lim−−→CM(R)⊥) is a perfect cotorsion 
pair. �
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Unlike in 5.4, we cannot deduce that the above cotorsion pair is hereditary over an arbitrary Cohen-Macaulay 
ring, since it is not clear that it is closed under kernels of epimorphisms.

Every definable subcategory of Mod-R is covering and preenveloping, but 5.5 enables us to take special 
CohCM(R)-precovers and special CohCM(R)⊥-preenvelopes. Since the class is special precovering, we can 
take minimal left resolutions of any R-module in the obvious way.

Definition 5.8. Let M be an R-module, we will let L-dim(M) denote the minimal length of a left 
CohCM(R)-resolution.

Lemma 5.9. Let M be an R-module. Then E-dp(M) + L-dim(M) ≥ dim R.

Proof. Let us assume that L-dim(M) = n with 0 < n ≤ d, else there is nothing to prove. Then there is an 
exact sequence

L : 0 −→ Cn
ϕn−−→ Cn−1

ϕn−1−−−−→ · · · −→ C1
ϕ1−−→ C0

ϕ0−−→ M −→ 0

with each Ci ∈ CohCM(R). Since M � Im ϕ0 � C0/Ker ϕ0 � Coker ϕ1, there is a short exact sequence 
0 −→ Im ϕ1 −→ C0 −→ Coker ϕ1. Moreover, Im ϕ1 � C1/Ker ϕ1. Yet by exactness, Ker ϕ1 � Im ϕ2 �
C2/Ker ϕ2 � Coker ϕ3, so one obtains a second short exact sequence 0 −→ Coker ϕ3 −→ C1 −→ Im ϕ1 −→
0. Continuing this process, one can decompose L into a collection of short exact sequences

0 −→ Im ϕ2k+1 −→ C2k −→ Coker ϕ2k+1 −→ 0

0 −→ Coker ϕ2k+3 −→ C2k+1 −→ Im ϕ2k+1 −→ 0,

where M = Coker ϕ1. If n = 2m is even, then ϕn+1 is the zero map and consequently there is an isomorphism 
C2m � Coker ϕ2m+1. There are therefore n exact sequences to consider. By repeated application of the depth 
lemma (2.15), we see E-depth(Im ϕn−l) ≥ d −l for all l < n, and so E-depth(Im ϕ1) ≥ d +1 −n. By applying 
the depth lemma one final time to the exact sequence

0 −→ Im ϕ1 −→ C0 −→ M −→ 0,

we see that E-depth(M) ≥ d −n, hence E-depth(M) +n ≥ d. In the case when n is odd, an almost identical 
argument yields the same inequality. �
Corollary 5.10. Let M ∈ Mod-R be of finite Ext-depth, then L-dim(M) ≥ T-codp(M).

Proof. By the above, we have an inequality E-dp(M) + L-dim(M) ≥ dim R, but we also know that 
E-dp(M) + T-codp ≤ dim R by 2.14. Combing these inequalities gives the result. �
The categories CohCM(R) and CohCM(R)∞ also have some interesting properties in their own right, 
independently of their relationship to CM(R).

Proposition 5.11. Let R be a Cohen-Macauly ring of dimension at least one. Then CohCM(R) and 
CohCM(R)∞ are closed under injective hulls. Consequently both categories have enough injectives.

Proof. If p �= m is a prime ideal, then HomR(k, E(R/p)) = 0. Indeed, any morphism k −→ E(R/p) factors 
through E(k), but HomR(E(k), E(R/p)) = 0 by the assumption that p �= m. By Matlis’s results on injective 
modules, if M is an R-module its injective hull is of the form
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E(M) �
⊕

p∈Spec R

E(R/p)(Xp),

where card(Xp) = dimk(p)HomR(R/p, M)p. In particular, if E-dp(M) > 0 then Xm = 0 so HomR(k, E(M)) =
0 by the above reasoning. Consequently E(M) has infinite Ext-depth. Therefore E(M) ∈ CohCM(R)∞ for 
any M with E-dp(M) > 0, so CohCM(R) and CohCM(R)∞ are closed under injective hulls. �
Let us now turn our attention to inverse limits. Firstly, let’s see how the inverse limit closure relates to 
lim−−→CM(R).

Lemma 5.12. Let R be a complete Cohen-Macaulay ring. Then the inverse limit closure of CM(R), denoted 
lim←−−CM(R), is a subcategory of lim−−→CM(R).

Proof. Let (Mi, f
j
i )I be an inverse system of modules in CM(R) with inverse limit M . Since each Mi is 

finitely presented it is Matlis reflexive, so the inverse system can be realised as the dual of a directed system 
(Ni, g

j
i )I where Ni = M∨

i and gji = (f j
i )∨. Since lim−−→CM(R) consists of all modules vanishing on the set 

{TorR1 (R/(x), −) : x is an R-sequence}, we may apply 2.12 to show that its dual definable category consists 
of all modules vanishing on the set of functors

X = {Ext1R(R/(x),−) : x is an R-sequence}.

Since each Ni is in this dual definable subcategory, so is the directed limit of the system (Ni, g
j
i )I , which 

we denote by N . Then HomR(N, E(k)) ∈ lim−−→CM(R) by definition of the dual definable category, but

HomR(N,E(k)) = HomR(lim−−→Ni, E(k)) � lim←−−HomR(M∨
i , E(k)) = lim←−−Mi = M.

Consequently M ∈ lim−−→CM(R), which shows the claim. �
In particular, we see that lim−−→ lim←−−CM(R) ⊆ lim−−→CM(R). One may wonder if it is possible to swap the direct 
and inverse limits and reach the same conclusion, namely that lim−−→CM(R) is closed under inverse limits. In 
general, definable subcategories are not closed under inverse limits - for instance, over a Noetherian ring the 
category of injective R-modules is definable, but its inverse limit closure is the entire module category, see 
[5]. We now show that, with an assumption on Krull dimension, CohCM(R) is never closed under inverse 
limits.

Lemma 5.13. Let dim R ≥ 3 be a Cohen-Macaulay ring. Then CohCM(R) is not closed under inverse limits.

Proof. Since dim R ≥ 3, we can choose an R-module M such that 2 ≤ E-dp(M) < dim R. We will show 
that M can be realised as an inverse system of R-modules in CohCM(R). Consider the start of a minimal 
injective resolution of M

0 −→ M −→ E(M) −→ E1 (4)

where E1 is the injective hull of coker(M −→ E(M)). By the choice of M , it is clear that E(M) ∈
CohCM(R). Applying the depth lemma (2.15) to the short exact sequence 0 −→ M −→ E(M) −→
E(M)/M −→ 0 shows that E-dp(E(M)/M) ≥ 1 so E1 ∈ CohCM(R). Consequently (4) is a short ex-
act sequence in CohCM(R). Since CohCM(R) is closed under direct sums, one can apply [5, Cor. 11], which 
shows that M can be realised as an inverse limit of a countable inverse system of modules in CohCM(R). �
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In fact, one can draw a more general conclusion from Bergman’s corollary - namely that any class that 
is both closed under direct summands, direct products and is special preenveloping is not closed under 
inverse limits. Clearly any special preenveloping definable subcategory satisfies this property. Since E(k)
is not a member of CohCM(R) for any Cohen-Macaulay ring R, we cannot say that CohCM(R) is special 
preenveloping in Mod-R. However, it does contain sufficiently many injective R-modules to start to form 
certain injective resolutions, from which one can apply Bergman’s result, as done in the above proof.

Example 5.14. Let R = k[[x, y, z, w]] be a four-dimensional regular local ring. Then the module R/(x) has 
Ext-depth equal to three and is not Cohen-Macaulay as an R-module. Consequently we can use the above 
result to obtain R/(x) as an inverse limit of modules in CohCM(R).

There are, however, certain inverse systems in both lim−−→CM(R) and CohCM(R) whose inverse limits remain 
in their respective category.

Definition 5.15. [25, 3.5] A sequence of R-modules and homomorphisms of the form

T : · · · −→ Ti+1
ti−→ Ti

ti−1−−−→ · · · t1−→ T1
t0−→ T0

is called a tower.

Clearly given a tower T one can form an inverse system T ′ = {(Ti, ϕ
j
i )}N , where ϕi

i = IdTi
and for any 

i < j the morphism ϕj
i : Tj −→ Ti is given by the composition ϕj

i = ti ◦· · ·◦ tj−1. Following the construction 
given in [25, §3.1], given any tower T there is a map

ΦT :
∏
i∈N

Ti −→
∏
i∈N

Ti

whose kernel is the inverse limit of the inverse system T ′. In particular, if Coker ΦT = 0, then there is a 
short exact sequence of R-modules

0 −→ lim←−−Ti −→
∏
i∈N

Ti
ΦT−−→

∏
i∈N

Ti −→ 0. (5)

In order to give a situation when Coker ΦT = 0, we recall the Mittag-Leffler condition.

Definition 5.16. Let (Mi, fij)I be an inverse system of R-modules. We say the system satisfies the Mittag-
Leffler condition if for any i ∈ I there is a j ≥ i such that for any k ≥ j we have im fik = im fij .

Lemma 5.17. [25, 3.6] If T ′ satisfies the Mittag-Leffler condition, then Coker ΦT = 0.

We can now prove the following result without much difficulty.

Lemma 5.18. Let T be a tower in lim−−→CM(R) (resp. CohCM(R)). If the associated inverse system T ′ satisfies 
the Mittag-Leffler condition, then lim←−−Ti ∈ lim−−→CM(R) (resp. CohCM(R)).

Proof. We will prove the result for lim−−→CM(R). By our assumptions, the sequence (5) is exact. Since 
lim−−→CM(R) is definable, 

∏
i∈N Ti is also in lim−−→CM(R). If x is an R-sequence, applying the functor R/(x) ⊗−

to (5) shows that Tor1(R/(x), lim←−−Ti) = 0, showing lim←−−Ti ∈ lim−−→CM(R) by 3.7. �
Related to the Mittag-Leffler conditions on an inverse system of modules is the notion of a Mittag-Leffler 
module.
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Definition 5.19. Let Q be a class of R-modules. We say that an R-module M is Q-Mittag-Leffler if, for every 
collection {Ni}i∈I in Q, the canonical morphism

M ⊗
∏
i∈I

Ni −→
∏
i

(M ⊗Ni)

is injective. If Q = Mod-R, we say that an R-module is Mittag-Leffler.

Q-Mittag-Leffler modules were considered from a Model theoretic perspective by P. Rothmaler in [23] and 
from a more algebraic viewpoint by D. Herbera and L. Angeleri-Hügel and in [2].

Definition 5.20.

1. Let B be an R-module. A directed system (Mi, fij)I of R-modules is said to be B-stationary if the 
inverse system (HomR(Mi, B), HomR(fij , B))I satisfies the Mittag-Leffler condition 5.16.

2. If M is an R-module, we say it is B-stationary if there is a directed system (Mi, fij) of finitely presented 
R-modules with M = lim−−→Mi such that (Mi, fij) is B-stationary.

3. If B is a class of R-modules, we say M is B-stationary if it is B-stationary for all B ∈ B.

Proposition 5.21. Let R be a Gorenstein ring, then every module of finite injective dimension is 
lim−−→CM(R)-Mittag-Leffler. Moreover, a module is lim−−→CM(R)-Mittag-Leffler if and only if it is GInj-R-stati-
onary.

Proof. As R is Gorenstein, there is a cotorsion pair (I, GInj-R), where I denotes the class of modules of 
finite injective dimension and GInj-R is the category of Gorenstein injective modules (see [11, §10.1] for 
more details). Since R is Gorenstein, the class GInj-R is closed under direct limits [11, Lemma 11.1.2], 
and therefore direct sums. As R is Gorenstein, the class I is equal to the class of all modules of finite 
projective dimension, so we can conclude from [4, Prop. 4.1] that the cotorsion pair (I, GInj-R) is of finite 
type. Moreover, M ∈ lim−−→CM(R) if and only if Tor1(I, M) = 0 for every I ∈ I. The result then follows 
immediately from [2, Prop. 9.2] and [2, Theorem 9.5]. �
Remark. The above proof does not use any property of R apart from it having finite injective dimension 
over itself. Consequently the above result holds for any Iwanaga-Gorenstein ring if one replaces CM(R) with 
the class of finitely generated Gorenstein projective R-modules.

6. The dimension one case

For this section, we will let (R, m, k) denote a one-dimensional Cohen-Macaulay ring. Since dim R = 1, 
we have lim−−→CM(R) = CohCM(R) even when R does not admit a canonical module. Since lim−−→CM(R) =
{M ∈ Mod-R : HomR(k, M) = 0}, it is clear that lim−−→CM(R) is closed under submodules. Several inter-
esting phenomena occur in this situation that do not occur in higher dimensional cases, for example, since 
HomR(k, −) preserves inverse limits, we immediately get the following result.

Lemma 6.1. For R as above, lim−−→CM(R) is closed under inverse limits.

As we previously showed, lim−−→CM(R) is in general not closed under inverse limits when dim R ≥ 2. Recall 
that lim−−→CM(R)∞ consists of all R-modules of infinite Ext-depth. In this situation

lim CM(R) = {M ∈ Mod-R : HomR(k,M) = 0 = Ext1R(k,M)}.
−−→ ∞
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Recall from 4.5 that lim−−→CM(R)∞ sits inside lim−−→CM(R) in the manner of a Serre subcategory. In dimension 
one, this inclusion enables us to prove the following result, which is the main result of the section.

Theorem 6.2. Let dim R = 1, then lim−−→CM(R)∞ is a Grothendieck abelian category.

Proof. By [22, Prop. 5.92], in order to show lim−−→CM(R)∞ is abelian it suffices to show that lim−−→CM(R)∞ is 
closed under direct sums, contains a zero object and if f : M −→ N is a morphism in lim−−→CM(R)∞, then 
both Ker f and Coker f lie in lim−−→CM(R)∞. Clearly the first two hold. Suppose f : M −→ N is a morphism 
in lim−−→CM(R)∞. There are two associated short exact sequences S1 : 0 −→ Ker f −→ M −→ Im f −→ 0
and S2 : Im f −→ N −→ Coker f −→ 0, from which it is clear that both Ker f and Im f are elements of 
lim−−→CM(R). Applying 4.5 to S1 we see that Ker f and Im f are both in lim−−→CM(R)∞. Applying HomR(k, −)
to S2 shows that Coker f also has infinite Ext-depth. This shows that lim−−→CM(R)∞ is closed under kernels 
and cokernels, so is an Abelian category. We now show the Grothendieck conditions. Since lim−−→CM(R)∞ is 
definable, it is closed under coproducts so is cocomplete, and products so is complete. Suppose

{0 −→ Li −→ Mi −→ Ni −→ 0}I

is a directed system of short exact sequence with terms in lim−−→CM(R)∞, then it is also a directed system in 
Mod-R whose direct limit is the short exact sequence S : 0 −→ lim−−→Li −→ lim−−→Mi −→ lim−−→Ni −→ 0. Yet all 
three terms of this exact sequence lie in lim−−→CM(R)∞, so S is actually short exact sequence in lim−−→CM(R)∞. 
Lastly, we have to show that lim−−→CM(R)∞ contains a generator. Since lim−−→CM(R)∞ is definable, there is 
a set of objects X such that every object in lim−−→CM(R)∞ can be realised as the direct limit of a directed 
system in X (this is a consequence of the Downwards Löwenheim-Skolem theorem, see [19, §18.1.4] for more 
details). The module G = ⊕X∈XX acts as a generator for lim−−→CM(R)∞. Indeed, let M be a module in 
lim−−→CM(R)∞ and (Xi, fi,j)i,j∈I a directed system in X with direct limit M . By properties of direct limits, 
there is a pure epimorphism in lim−−→CM(R)∞ ⊕

i∈I

Xi −→ M.

There is then a projection G(I) −→ ⊕IXi and we may compose with π to obtain the required surjection 
G(I) −→ M . �
There is another way CohCM(R)∞ sits inside CohCM(R) which is also specific to the dimension one case. 
For this, we will need some definitions from exact categories. As both CohCM(R) and CohCM(R)∞ are 
extension closed, we can view them as exact categories where the exact structure is inherited from Mod-R. 
We will say that L ↪→ M � N is a conflation in CohCM(R) if 0 −→ L −→ M −→ N −→ 0 is exact in 
Mod-R, and similarly for CohCM(R)∞. We will say that a map L −→ M is an admissible monomorphism
if it arises in a conflation L ↪→ M � N , and we similarly define admissible epimorphism.

Definition 6.3. [6, Def. 2.15] Let D be an exact category. An exact full subcategory C ⊂ D is left filtering if 
every morphism X −→ F in D, with X ∈ C, factors through an admissible monomorphism X ↪→ F , with 
X ′ ∈ C:

X F

X ′

Proposition 6.4. When dim R = 1, CohCM(R)∞ is left filtering in CohCM(R).
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Proof. Let f : X −→ Y be a morphism in CohCM(R) with X ∈ CohCM(R)∞. Then there are two short 
exact sequences of R-modules

0 −→ Ker(f) −→ X −→ Im(f) −→ 0

0 −→ Im(f) −→ Y −→ Coker(f) −→ 0.

Since CohCM(R) is closed under submodules, we see that Ker(f) and Im(f) lie in CohCM(R), and therefore 
Ker(f) ↪→ X � Im(f) is a conflation in CohCM(R)∞ by applying 4.5. In particular, Ext1(k, Im(f)) = 0
in Mod-R. Applying the functor Hom(k, −) to the second exact sequence and then applying the depth 
lemma (2.15) shows that Coker(f) ∈ CohCM(R), so Im(f) ↪→ Y � Coker(f) is a conflation in CohCM(R). 
Therefore f : X −→ Y through the admissible monomorphism Im(f) ↪→ Y . �
Remark. The assumption of dim R = 1 is necessary for this result: if dim R > 1, then in general CohCM(R)
will not be closed under submodules, so one cannot usually form the conflation Ker(f) ↪→ X � Im(f) in 
CohCM(R), let alone CohCM(R)∞.
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