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We present a new eigenvalue method for solving a system of Laurent polynomial 
equations defining a zero-dimensional reduced subscheme of a toric compactification 
X of (C \{0})n. We homogenize the input equations to obtain a homogeneous ideal 
I in the Cox ring of X and generalize the eigenvalue, eigenvector theorem for root 
finding in affine space to compute homogeneous coordinates of the solutions. Several 
numerical experiments show the effectiveness of the resulting method. In particular, 
the method outperforms existing solvers in the case of (nearly) degenerate systems 
with solutions on or near the torus invariant prime divisors.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in science and engineering can be solved by finding the solutions of a system of (Laurent) 
polynomial equations. Here, we consider the important case where the number of solutions to the system is 
finite. There exist many different approaches to tackle this problem [1–3]. Symbolic tools such as Groebner 
bases focus on systems with coefficients in Q or in finite fields [4,5]. For many applications, it is natural 
to work in finite precision, floating point arithmetic. This is the case, for instance, when the coefficients 
are known approximately (e.g. from measurements) or when it is sufficient to compute solutions accurately 
up to a certain number of significant decimal digits. The most important classes of numerical solvers are 
homotopy algorithms [6–8] and algebraic methods such as resultant based algorithms [9–13] and normal 
form algorithms [14–18] which rewrite the problem as an eigenvalue problem. Homotopy solvers are very 
successful for systems with many variables of low degree, whereas algebraic solvers can handle high degree 
systems in few variables. The algorithm presented in this paper is a new, numerical normal form algorithm 
for solving square systems of Laurent polynomial equations. The approach distinguishes itself from existing 
methods by the interpretation of ‘solving’ the system: we compute the points defined by the input equations 
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on a toric compactification X of (C \ {0})n � TX ⊂ X via an eigenvalue computation. More specifically, we 
work in the Cox ring of X to find ‘homogeneous’ coordinates of the solutions. The motivation is that, even 
though generically all solutions lie in (C \{0})n, many problems encountered in applications are non-generic 
with respect to the Newton polytopes of the input equations. Solutions on or near X \ TX cause trouble 
for the stability of existing numerical algorithms, as we will show in our experiments, and the proposed 
algorithm is designed to handle such situations. The correctness of the algorithm depends on a conjecture 
regarding the regularity of a homogeneous ideal in the Cox ring of X. In the remainder of this section, we 
discuss some applications and give an overview of related work and of our main contributions. We conclude 
the section with an outline of this paper.

1.1. Applications

The applications we have in mind are problems that can be formulated as polynomial systems in only a 
few variables.

Many problems in computer vision, such as relative pose problems, require the solution of a system of 
polynomial equations [19,20]. In this context, there are often several different polynomial formulations for 
the same problem, with a different number of variables and a different degree of the equations. See [19, Sec. 
7.1.3] for a description of a relative pose problem by a square 7-dimensional system (6 quadratics and a 
cubic in 7 unknowns) and by a square 3-dimensional system (two cubics and a quintic in 3 unknowns).

Another application comes from molecular biology. In [21] the problem of computing all possible confor-
mations of several molecules is written in the form of a polynomial system in only two or three variables.

A problem encountered in many fields of engineering is that of finding the critical points of a function 
f , not necessarily polynomial, in a bounded domain Ω ⊂ Rn. A possible approach is to replace f by a 
polynomial f̃ , computed from samples, which approximates f on Ω and compute the critical points of f̃
instead. The problem is now reduced to a system of polynomial equations, and if f̃ is a good approximation of 
f in Ω, the solutions in Ω will be good approximations of the critical points of f . It is clear that high degrees 
lead to better approximations, but also to higher degree polynomial systems. See [12] for an application of 
this technique to solve one of the SIAM 100-Digit Challenge problems [22].

1.2. Related work

As stated above, solutions on or near the torus invariant prime divisors (i.e. the irreducible components 
of X \TX) cause trouble for numerical root finding in non-compact solution spaces such as Cn or (C \{0})n. 
In practice, for homotopy methods, such solutions are the reason for diverging paths, which often require 
a lot of unnecessary computational effort. Algebraic solvers such as the algorithms proposed in [17] and 
[18, §3, §4], as well as the classical resultant algorithms [9, Chapters 3 and 7] for computing multiplication 
matrices, require invertibility of a certain matrix: see for instance the matrix M11 in [9, Chapter 3, §6] or 
the matrix N|B in [18, Section 2]. In the presence of solutions on special divisors ‘at infinity’, these matrices 
are singular. In a numerical context, if these solutions are not exactly on, but near X \TX , homotopy paths 
‘diverge’ to large solutions, causing scaling and condition problems, and the algebraic algorithms require 
the inversion of an ill-conditioned matrix, causing large rounding errors. A partial solution is to homogenize 
the equations and solve the problem in X = Pn1 × · · · × Pnk , k ≥ 1, n1 + . . . + nk = n, which should be 
thought of as a compactification of Cn, such that a ‘solution’ is defined by n + k (multi-)homogeneous 
coordinates. This technique is used in total degree homotopies [6,23], multihomogeneous homotopies [24, 
Chapter 8] and in normal form methods such as [18, §5, §6] or [25]. However, depending on the support of 
the input equations, this standard way of homogenizing may introduce highly singular solutions on the torus 
invariant divisors, or even destroy 0-dimensionality. More general sparsity structures are taken into account 
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by polyhedral homotopies [26–28], toric or sparse resultants [10,9,29–32] and truncated normal forms [18, 
§4]. In [33] a method for dealing with diverging paths in a polyhedral homotopy is proposed.

In symbolic computing, modified sparse resultant methods have been introduced for solving degenerate 
systems symbolically [34,35]. Recently, specialized Groebner basis methods over semigroup algebras have 
been developed for exploiting sparsity structure [36].

1.3. Contributions

To the best of the author’s knowledge, Cox rings (other than the familiar ones corresponding to products 
of projective spaces) have not been applied for numerical root finding before. To do so may seem like a bad 
idea, because the dimension of the Cox ring is (possibly much) greater than that of X. However, because 
of its fine grading by the class group Cl(X) = Div(X)/ ∼ of Weil divisors modulo linear equivalence, this 
does not affect the computational complexity that much (see Remark 6.1). The input Laurent polynomial 
equations define a homogeneous ideal I of the Cox ring S =

⊕
α∈Cl(X) Sα with respect to this grading (this 

is detailed in Section 3). We will assume that I defines a zero-dimensional reduced subscheme VX(I) of X
which is contained in its largest simplicial open subset U (see Section 2). The regularity Reg(I) ⊂ Cl(X) of 
this ideal is defined in Section 4. In the same section, we conjecture a degree α ∈ Cl(X) that is in Reg(I)
(Conjecture 1). The correctness of the algorithm depends upon this conjecture, which is supported by some 
weaker results in Section 4 and by experimental evidence in Section 7. For this degree α ∈ Reg(I), let 
(S/I)α be the degree α part of the graded S-module S/I. We will construct a linear multiplication map
Mf : (S/I)α → (S/I)α with respect to a rational function f on X which is regular at the roots of I. Here 
is a simplified version of Theorem 5.1.

Theorem 1.1. Let VX(I) = {ζ1, . . . , ζδ} ⊂ U be reduced and let α, α0 ∈ Cl(X) be such that α, α+α0 ∈ Reg(I)
and there exists h0 ∈ Sα0 such that ζj /∈ VX(h0), j = 1, . . . , δ. Then for any g ∈ Sα0 , the multiplication map 
Mf : (S/I)α → (S/I)α with f = g/h0 has eigenvalues f(ζj).

For every monomial xbi ∈ Sα0 , we compute a multiplication matrix and denote its eigenvalues by λij, j =
1, . . . , δ. This way, we reduce the problem of finding Cox coordinates of ζj to finding one point on the affine 
variety defined by the simple binomial system {xbi = λij | xbi ∈ Sα0} (Corollary 5.1). This leads to a 
numerical linear algebra based algorithm for finding Cox coordinates (Algorithm 1). Unlike other numerical 
methods, the algorithm is robust in the situation where some of the ζj are on or near torus invariant prime 
divisors. We illustrate this in Section 7 with some examples.

1.4. Outline of the paper

The paper is organized as follows. In the next section we discuss some preliminaries on Cox rings and 
the classical eigenvalue, eigenvector theorem for polynomial root finding. Our problem setup is discussed 
in detail in Section 3. In Section 4 we introduce homogeneous Lagrange polynomials and their relation 
to multigraded regularity. Our main result is discussed in detail in Section 5. The resulting algorithm is 
presented in Section 6. Finally, in Section 7 we work out several numerical examples. Throughout the paper, 
we work with polynomials, varieties and vector spaces over C.

2. Preliminaries

In this section we give a brief introduction to the classical eigenvalue, eigenvector theorem and to 
complete toric varieties and their Cox rings. We denote by V (I) ⊂ Cn the affine variety of an ideal 
I ⊂ C[x1, . . . , xn] and by I(Y ) ⊂ C[x1, . . . , xn] the vanishing ideal of a set Y ⊂ Cn. If I is generated 
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by f1, . . . , fs ∈ C[x1, . . . , xn], we denote I = 〈f1, . . . , fs〉 and V (I) = V (〈f1, . . . , fs〉) = V (f1, . . . , fs). For 
a finite dimensional vector space W , W∨ = HomC(W, C) denotes its dual. For a linear endomorphism 
M : W → W of a finite dimensional vector space W , a right eigenpair is (λ, w) ∈ C × (W \ {0}) satisfying 
M(w) = λw. Analogously, a left eigenpair is given by (v, λ) ∈ (W∨ \ {0}) ×C satisfying v ◦M = λv.

2.1. The classical eigenvalue, eigenvector theorem for polynomial root finding

Let R = C[x1, . . . , xn] be the ring of n-variate polynomials with coefficients in C. Take fi ∈ R, i = 1, . . . , s
and let I = 〈f1, . . . , fs〉 be a zero-dimensional ideal in R. That is, V (I) = {z1, . . . , zδ} consists of δ < ∞
points in Cn. We assume for simplicity that all of the zi have multiplicity one or, equivalently, that I is 
radical. By [9, Chapter 2, Lemma 2.9] there exist polynomials �i ∈ R, i = 1, . . . , δ such that

�i(zj) =
{

0 i �= j

1 i = j
.

The �i are called Lagrange polynomials with respect to the set V (I). We define vj ∈ (R/I)∨ by vj(f + I) =
f(zj).

Lemma 2.1. The map ψ : R/I → Cδ : f + I 
→ (v1(f + I), . . . , vδ(f + I)) is an isomorphism of vector spaces.

Proof. The map ψ is clearly linear and injective. Surjectivity follows from ψ(�j + I) = ej with ej the j-th 
standard basis vector of Cδ. �

It follows from Lemma 2.1 that, under our assumptions, dimC(R/I) = δ. This is well known, see for 
instance [4, Chapter 5, §3, Proposition 7]. In particular, the map ψ defines coordinates on R/I and the 
residue classes of the Lagrange polynomials form a basis of R/I with dual basis vj , j = 1, . . . , δ. For g ∈ R, 
define the linear map Mg : R/I → R/I : f + I 
→ fg + I.

Theorem 2.1 (Eigenvalue, eigenvector theorem). The left and right eigenpairs of Mg are

(vj , g(zj)), (g(zj), �j + I), j = 1, . . . , δ.

Proof. See for instance [9, Chapter 2, Proposition 4.7]. �
Note that by definition, Mg1 ◦ Mg2 = Mg2 ◦ Mg1 for any g1, g2 ∈ R. Therefore, after fixing a basis for 

R/I, the matrices corresponding to any two multiplication maps commute and have common eigenspaces. 
Theorem 2.1 provides the following algorithm for finding the points in V (I):

1. compute the matrices Mx1 , . . . , Mxn
,

2. find the coordinates of the zi from their simultaneous eigenvalue decomposition.

For a more detailed exposition on multiplication matrices, we refer the reader to [9, Chapter 2], [2, Chapter 
4] and [1, Chapter 2].

2.2. Complete toric varieties and Cox rings

We will restrict ourselves to the discussion of only those aspects of toric varieties that are directly 
related to this paper. The reader who is unfamiliar with unexplained basic concepts can find an excellent 
introduction in [37] or [38]. For more information on Cox rings we refer to [37, Chapter 5] and the original 
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paper by Cox [39]. The n-dimensional algebraic torus (C∗)n = (C \ {0})n has character lattice M =
HomZ((C∗)n, C∗) � Zn and cocharacter lattice N = HomZ(M, Z) � Zn. An element m ∈ M gives 
χm : (C∗)n → C∗ such that if m corresponds to (m1, . . . , mn) ∈ Zn, χm(t) = tm = tm1

1 · · · tmn
n . Hence 

characters can be thought of as Laurent monomials and

C[M ] =
⊕
m∈M

C · χm � C[t±1
1 , . . . , t±1

n ].

Following [37], we denote NR = N⊗ZR � Rn and TN = N⊗ZC
∗ = (C∗)n. A complete, normal toric variety 

X with torus TN is given by a complete fan Σ in NR and we will sometimes emphasize this correspondence 
by writing X = XΣ. The set of d-dimensional cones of Σ is denoted Σ(d). In particular, we write Σ(1) =
{ρ1, . . . , ρk} for the rays of Σ and ui ∈ N for the primitive generator of ρi. It is convenient to think of the ui

as column vectors and to define the matrix F = [u1 u2 · · · uk] ∈ Zn×k. We will use Fij for the entry in row i, 
column j of F , Fi,: for the i-th row of F , F:,j = uj for the j-th column of F and F� for the transpose. Every 
ray ρi corresponds to a torus invariant prime divisor Di on XΣ and we have XΣ \ (

⋃k
i=1 Di) = TXΣ � TN . 

The class group Cl(XΣ) of XΣ, which is the group of Weil divisors modulo linear equivalence, is generated 
by the classes [Di] of the torus invariant prime divisors. The Picard group Pic(XΣ) ⊂ Cl(XΣ) consists of 
the classes of Weil divisors that are locally principal. Identifying 

⊕k
i=1 Z ·Di � Zk we have a short exact 

sequence

0 −→ M
F�
−→ Zk −→ Cl(XΣ) −→ 0

where Zk −→ Cl(XΣ) sends a torus invariant Weil divisor 
∑k

i=1 aiDi to its class [
∑k

i=1 aiDi] ∈ Cl(XΣ). 
Taking HomZ(−, C∗) and defining the reductive group G = HomZ(Cl(XΣ), C∗) we find that G is the kernel 
of the map

π : (C∗)k → TN : t 
→ (tF1,: , . . . , tFn,:). (2.1)

That is, G is the subgroup of (C∗)k given by

G = {g ∈ (C∗)k : gFi,: = 1, i = 1, . . . , n}

and π is constant on G-orbits. Let S = C[x1, . . . , xk] be the polynomial ring in k variables where each of 
the xi corresponds to a ray ρi ∈ Σ(1). For every cone σ ∈ Σ, denote by σ(1) the rays contained in σ. We 
are going to associate a monomial in S to each cone in Σ: for σ ∈ Σ, define xσ̂ =

∏
ρi /∈σ(1) xi. The irrelevant 

ideal K of Σ (or of XΣ) is the monomial ideal defined as

K =
〈
xσ̂ : σ ∈ Σ(n)

〉
⊂ S. (2.2)

The exceptional set of XΣ is Z = V (K) ⊂ Ck. The action of G on (C∗)k extends to an action on Ck \ Z. 
In [39], Cox proves that there is a good categorical quotient π : Ck \ Z → XΣ, constant on G-orbits, such 
that (2.1) is its restriction to (C∗)k. By the properties of good categorical quotients we have a bijection

{ closed G-orbits in Ck\Z } ↔ { points in XΣ }.

Moreover, π is an almost geometric quotient, meaning that there is a Zariski open subset U ⊂ XΣ such that 
π|π−1(U) : π−1(U) → U is a geometric quotient:

{ G-orbits in π−1(U) } ↔ { points in U }.
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The open set U is the toric variety XΣ′ ⊂ XΣ corresponding to the subfan Σ′ ⊂ Σ of simplicial cones of 
Σ (see [37, proof of Theorem 5.1.11]). Therefore, by the orbit-cone correspondence, X \ U is a union of 
TN -orbits of codimension at least 3 (cones of dimension 0, 1 or 2 are simplicial). If Σ is simplicial, the nicest 
possible bijection holds:

{ G-orbits in Ck\Z } ↔ { points in XΣ }.

In this case we write XΣ = (Ck \ Z)/G.

Example 2.1. The quotient construction of XΣ is a generalization of the familiar construction of Pn as 
the quotient Pn = (Cn+1 \ {0})/C∗. In this case S = C[x0, . . . , xn], K = 〈x0, . . . , xn〉, Z = {0} and 
G = HomZ(Cl(Pn), C∗) = HomZ(Z, C∗) = C∗ acts by g · (x0, . . . , xn) = (gx0, . . . , gxn), g ∈ G.

The ring S has a natural grading by Cl(XΣ):

deg(xa) = deg(xa1
1 · · ·xak

k ) = [
k∑

i=1
aiDi] ∈ Cl(XΣ), S =

⊕
α∈Cl(XΣ)

Sα, (2.3)

where Sα =
⊕

deg(xa)=α C ·xa. In fact, the only nonzero graded pieces correspond to ‘positive’ degrees, and 
one can write

Cl(XΣ)+ = {α ∈ Cl(XΣ) | α = n1 deg(x1) + · · · + nk deg(xk), ni ∈ N}, S =
⊕

α∈Cl(XΣ)+

Sα.

Similarly, we denote Pic(XΣ)+ = Cl(XΣ)+ ∩ Pic(XΣ). The graded pieces correspond to vector spaces of 
global sections of divisorial sheaves, that is, for α ∈ Cl(XΣ) with α = [D], D =

∑k
i=1 aiDi,

Sα � Γ(XΣ,OXΣ(D)) �
⊕

F�m+a≥0

C · χm. (2.4)

Here the direct sum ranges over all m such that elementwise, F�m + a ≥ 0, that is, 〈ui,m〉 + ai ≥ 0, i =
1, . . . , k where 〈·, ·〉 is the natural pairing between N and M . Denoting xF�m+a = x

〈u1,m〉+a1
1 · · ·x〈uk,m〉+ak

k , 
the isomorphism (2.4) is given by∑

F�m+a≥0

cmχm 
→
∑

F�m+a≥0

cmxF�m+a ∈ Sα, (2.5)

which is homogenization with respect to α. To see the analogy with the classical notion of homogenization, 
note that the action of G on Ck induces an action of G on S by (g · f)(x) = f(g−1 · x) for g ∈ G, f ∈ S. If 
f ∈ Sα, it is the image of some Laurent polynomial under (2.5) and we can write

(g · f)(x) =
∑

F�m+a≥0

cm(g−1 · x)F
�m+a = g−af(x) (2.6)

since by the definition of the reductive group gF
�m = 1. This shows that the number g−a does not depend on 

the representative divisor D we choose for α ∈ Cl(XΣ). It therefore makes sense to write g−α = g−(F�m+a). 
Equation (2.6) shows that the homogeneous components Sα ⊂ S with respect to the grading (2.3) are the 
eigenspaces of the action of G on S and that

VXΣ(f) = {p ∈ XΣ : f(x) = 0 for some x ∈ π−1(p)} ⊂ XΣ (2.7)
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Fig. 1. Fan and matrix of primitive ray generators of the Hirzebruch surface H2.

is well defined if f is homogeneous. An ideal I ⊂ S is called homogeneous if it is generated by homogeneous 
polynomials, and it is straightforward to extend (2.7) to define VXΣ(I). The ring S equipped with the 
grading (2.3) and the irrelevant ideal (2.2) is called the total coordinate ring, homogeneous coordinate ring
or Cox ring of XΣ.

Example 2.2. The complete fans Σ we will encounter in this paper are normal fans of full dimensional lattice 
polytopes [37, §2.3]. If

P = {m ∈ MR | 〈ui,m〉 ≥ −ai, i = 1, . . . , k}

is the minimal facet representation of a full dimensional lattice polytope P ⊂ MR, then its normal fan ΣP

defines a toric variety XΣP
, which we will often denote by X for simplicity of notation. There are bijective 

correspondences between rays in ΣP , facets of P , torus invariant prime divisors in X and indeterminates 
in the Cox ring. The matrix F contains the primitive inward pointing facet normals of P . For example, the 
toric variety of the standard n-simplex is Pn.

Example 2.3. As a running example, we will consider the problem of finding the intersections of two curves on 
the Hirzebruch surface H2. The associated fan Σ and the matrix F of ray generators are shown in Fig. 1. The 
Cox ring S = C[x1, x2, x3, x4] is graded by Cl(H2) � Z4/imF� � Z2, with deg(xb) = deg(xb1

1 xb2
2 xb3

3 xb4
4 ) =

(b1 − 2b2 + b3, b2 + b4). The reductive group and exceptional set are given by G = {(λ, μ, λ, λ2μ) | (λ, μ) ∈
(C∗)2} ⊂ (C∗)4 and Z = V (x1, x3) ∪ V (x2, x4) ⊂ C4 respectively. Since H2 is smooth, it is simplicial (in 
the notation from above U = H2) and Pic(H2) = Cl(H2).

3. Problem setup

In this section, we give a detailed description of the problem considered in this paper and we discuss our 
assumptions. We start from n given Laurent polynomials f̂1, . . . , f̂n ∈ C[M ] (that is, we consider square
systems). Denote

f̂j =
∑

cm,jχ
m

and let Pj ⊂ MR be the Newton polytope of f̂j : Pj = Conv(m ∈ M | cm,j �= 0) ⊂ MR. Let P = P1 + . . .+Pn

be the Minkowski sum of these polytopes. We assume that P is full-dimensional and we let X = XΣP
be 

the complete normal toric variety corresponding to its normal fan. To each Pj, we associate a basepoint 
free1 Cartier divisor DPj

on X, given by

1 For α = [D] ∈ Pic(X), we say that p ∈ X is a basepoint of Sα 
 Γ(X, OX(D)) if every global section of the associated line 
bundle OX(D) vanishes at p. The divisor D and its associated degree α ∈ Pic(X) are called basepoint free if Sα has no basepoints.
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DPj
=

k∑
i=1

aj,iDi, aj,i = − min
m∈Pj

〈ui,m〉

and we denote aj = (aj,1, . . . , aj,k) ∈ Zk, [DPj
] = αj ∈ Pic(X). For this construction, DPi+Pj

= DPi
+ DPj

and for J ⊂ {1, . . . , n}, PJ =
∑

j∈J Pj we have

Γ(X,OX(
∑
j∈J

DPj
)) = Γ(X,OX(DPJ )) =

⊕
m∈PJ∩M

C · χm. (3.1)

By definition, m ∈ Pj ∩M if and only if F�m + aj ≥ 0, so we have

f̂j =
∑

m∈Pj∩M

cm,jχ
m ∈ Γ(X,OX(DPj

)). (3.2)

Homogenizing with respect to αj according to (2.5) gives (see [40])

f̂j 
→ fj =
∑

m∈Pj∩M

cm,jx
F�m+aj ∈ Sαj

.

Equation (3.2) shows that f̂j is a global section of the line bundle given by OX(DPj
) [37, Chapter 6]. Its 

divisor of zeroes is the effective divisor div(f̂j) + DPj
, whose support is exactly VX(fj). This construction 

gives a homogeneous ideal I = 〈f1, . . . , fn〉 ⊂ S. We will make the following assumptions on I.

Assumption 1. VX(I) is zero-dimensional. We denote VX(I) = {ζ1, . . . , ζδ} ⊂ X.

Assumption 2. VX(I) ⊂ U ⊂ X, where U is the ‘simplicial part’ of X as in Subsection 2.2.

Assumption 3. I defines a reduced subscheme of U ⊂ X. That is, all points ζi are ‘simple roots’ of I.

It is clear that when n = 2, Assumption 2 can be dropped. For n = 3, U is the complement of finitely 
many points in X: one point for each vertex of P corresponding to a non-simplicial, full dimensional cone of 
ΣP . It follows that we can drop Assumption 2 also for n = 3, since ‘face systems’ corresponding to vertices 
do not contribute any solutions (see for instance the appendix in [27]). For n > 3, Assumption 2 can be 
dropped if X is simplicial. We will comment on Assumption 3 in Section 4 (Remark 4.1).

In order to say something more about the number δ in Assumption 1, we recall the definition of mixed 
volume. The n-dimensional mixed volume of a collection of n polytopes P1, . . . , Pn in MR � Rn, denoted 
MV(P1, . . . , Pn), is the coefficient of the monomial λ1λ2 · · ·λn in Voln(

∑n
i=1 λiPi). A formula for the mixed 

volume that will be useful is (see [41,42])

MV(P1, . . . , Pn) =
n∑

�=0

(−1)n−�
∑

J⊂{1,...,n}
|J |=�

|(P0 + PJ ) ∩M | , (3.3)

for any lattice polytope P0 ⊂ Rn corresponding to a basepoint free divisor DP0 . The following important 
theorem was named after Bernstein, Khovanskii and Kushnirenko and tells us what the number δ is.

Theorem 3.1 (BKK Theorem). Let I = 〈f1, . . . , fn〉 ⊂ S be a homogeneous ideal constructed as above. If I
defines δ < ∞ points on X, counting multiplicities, then δ is given by MV(P1, . . . , Pn). For generic choices 
of the coefficients of the fi, the number of roots in TX � TN = (C∗)n is exactly equal to MV(P1, . . . , Pn)
and they all have multiplicity one.
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Fig. 2. Newton polytopes involved in Example 3.1.

Proof. See [38, §5.5]. For sketches of the proof we refer to [9,43]. Other proofs can be found in Bernstein’s 
original paper [44] and in [27]. �

Theorem 3.1 is a generalization of Bézout’s theorem for projective space. Motivated by this result, for 
the rest of this article δ = MV(P1, . . . , Pn). We can represent each ζj ∈ VX(I) by a set of homogeneous 
coordinates zj = (zj1, . . . , zjk) ∈ Ck \ Z. Let π−1(ζj) = G · zj ⊂ Ck \ Z be the corresponding (k − n)-
dimensional closed G-orbit and let G · zj be the closure in Ck. It follows from our assumptions that

V (I) \ Z = G · z1 ∪ · · · ∪G · zδ and V (I) = G · z1 ∪ · · · ∪G · zδ ∪ Z ′,

with Z ′ ⊂ Z a closed subvariety. We define J = I(G · z1 ∪ · · · ∪ G · zδ) to be the ideal of the union of 
orbit closures, which is radical and saturated with respect to the irrelevant ideal K. The ideal J is the one 
investigated in [42] (in the simplicial case). It is clear that I ⊂ J . In some special cases where Z is very 
small, the ideals I and J coincide. This happens for instance for X = Pn or for any weighted projective 
space X = P (w0, . . . , wn).

Example 3.1. Let us consider the polynomials

f̂1 = 1 + t1 + t2 + t1t2 + t21t2 + t31t2,

f̂2 = 1 + t2 + t1t2 + t21t2.

We think of f̂1, f̂2 as elements of C[t±1
1 , t±1

2 ] � C[M ] with M = Z2 the character lattice of TN = (C∗)2. The 
polytopes P1, P2 and P are shown in Fig. 2. Note that the normal fan ΣP of P is the fan of Fig. 1, so the 
toric variety associated to this system is X = XΣP

= H2. We identify Cl(X) with Z2 as in Example 2.3. 
It is easy to check that α1 = [DP1 ] = [D3 + D4] = (1, 1) ∈ Cl(X) and α2 = [DP2 ] = [D4] = (0, 1) ∈ Cl(X). 
This gives the following homogeneous polynomials in the Cox ring S = C[x1, . . . , x4]:

f1 = x3x4 + x1x4 + x2x
3
3 + x1x2x

2
3 + x2

1x2x3 + x3
1x2,

f2 = x4 + x2x
2
3 + x1x2x3 + x2

1x2.

The mixed volume is δ = MV(P1, P2) = 3. To see that the ideal I = 〈f1, f2〉 satisfies our assumptions, we 
compute its primary decomposition.2

I =
〈
x1 + x3, x2x

2
3 + x4

〉
∩
〈
x1, x2x

2
3 + x4

〉
∩
〈
x3, x

2
1x2 + x4

〉
∩ 〈x2, x4〉

which gives the decomposition of the associated variety V (I) = G · z1 ∪ G · z2 ∪ G · z3 ∪ Z ′ with orbit 
representatives z1 = (−1, −1, 1, 1), z2 = (0, −1, 1, 1), z3 = (1, −1, 0, 1) and Z ′ = V (x2, x4) ⊂ Z. This shows 
that I defines the expected number of simple, isolated points on X = H2. The first solution ζ1 = π(z1) ∈ TN

lies in the torus, the others satisfy ζ2 = π(z2) ∈ D1, ζ3 = π(z3) ∈ D3. The ideal J in this example is the 
intersection of the first three primary components of I. We find J =

〈
x2

1x3 + x1x
2
3, f2

〉
.

2 We used Macaulay2 to perform the symbolic computations in this example [45].
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4. Multigraded regularity and homogeneous Lagrange polynomials

The regularity of a graded module measures its complexity (for instance, in terms of the degree of minimal 
generators). The notion of regularity has been studied in a multigraded context. The general situation 
is treated in [46]. The zero-dimensional case is further investigated in [42] and some more results in a 
multiprojective setting can be found in [25,47]. In our case, the regularity (as defined below) of the ideal I in 
Section 3 will determine in which graded piece Sα of the Cox ring S we can work to define our multiplication 
maps in Section 5. The ‘larger’ this graded piece (i.e. the larger the dimension of Sα as a C-vector space), the 
larger the matrices involved in the presented algorithm in Section 6. We will define homogeneous Lagrange 
polynomials and show how they are related to multigraded regularity. As in Subsection 2.1, these Lagrange 
polynomials and their dual basis will have a nice interpretation as eigenvectors of multiplication maps. For 
α ∈ Cl(X), we denote nα = dimC(Sα). Since X is complete, nα < ∞, ∀α ∈ Cl(X) [37, Proposition 4.3.8]. 
The ideals I, J ⊂ S are as defined in Section 3. In particular, I satisfies Assumptions 1-3. For α ∈ Cl(X), 
let Sα =

⊕nα

i=1 C · xbi , bi ∈ Nk and consider the map

Φα : Ck \ Z ��� Pnα−1 � P (S∨
α ) � P (Γ(X,OX(D))∨) : (x1, . . . , xk) 
→ (xb1 , . . . , xbnα ).

Note that Φα may have basepoints (hence the dashed arrow) and it is constant on G-orbits. We will say 
that α ∈ Cl(X) is basepoint free if Φα has no basepoints (this extends the definition for basepoint free 
α ∈ Pic(X) to the class group). We say that ζ ∈ U ⊂ X is a basepoint of Sα if π−1(ζ) are basepoints of 
Φα. The following lemma is straightforward and we omit the proof.

Lemma 4.1. Let α = [D] ∈ Cl(X) be such that no ζj is a basepoint of Sα. For generic h ∈ Sα, we have 
ζj /∈ VX(h), j = 1, . . . , δ.

Note that in particular, the condition of Lemma 4.1 is always satisfied for basepoint free α. The grading 
on S defines a grading on the quotient S/I: (S/I)α = Sα/Iα. It follows from Lemma 4.1 that for any 
α = [D] ∈ Cl(X) such that no ζj is a basepoint of Sα, the following C-linear map is well defined for generic 
h ∈ Sα:

ψα : (S/I)α → Cδ : f + Iα 
→
(
f

h
(z1), . . . ,

f

h
(zδ)

)
. (4.1)

We fix such a generic h ∈ Sα. Note that the definition of ψα does not depend on the choice of representative 
zj of G · zj . We will now investigate for which α ∈ Cl(X) the map ψα defines coordinates on (S/I)α, that 
is, for which α it is an isomorphism (note that this is independent of the choice of h satisfying ζj /∈ VX(h)). 
It is clear that for this to happen, we need dimC((S/I)α) = δ. The dimension of the graded parts of S/I is 
given by the multigraded analog of the Hilbert function [42].

Definition 4.1 (Hilbert function). For a homogeneous ideal I in the Cox ring S of X, the Hilbert function
of I is given by HFI : Cl(X) → N : α 
→ dimC((S/I)α).

We note that in [42], the Hilbert function of the scheme VX(I) is equal to HFJ as defined above. In order 
to state a necessary and sufficient condition for surjectivity of ψα, we will introduce a homogeneous analog 
of the Lagrange polynomials introduced in Subsection 2.1.

Definition 4.2 (homogeneous Lagrange polynomials). Let α ∈ Cl(X) be such that no ζj is a basepoint of Sα

and let h ∈ Sα be such that ζj /∈ VX(h), j = 1, . . . , δ. A set of elements �1, . . . , �δ ∈ Sα is called a set of
homogeneous Lagrange polynomials of degree α with respect to h if for j = 1, . . . , δ,
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1. ζi ∈ VX(�j), i �= j,
2. ζj ∈ VX(h − �j).

In terms of the homogeneous coordinates zj, a set of homogeneous Lagrange polynomials satisfies �j(zi) =
0, i �= j and �j(zj) = h(zj), j = 1, . . . , δ.

Remark 4.1. Let �j , j = 1, . . . , δ be a set of homogeneous Lagrange polynomials of degree α with respect 
to h. The cosets �j + Iα ∈ (S/I)α are a dual basis for the evaluation functionals vj ∈ (S/I)∨α given by 
vj : (S/I)α → C : f + Iα 
→ (f/h)(zj). If I defines points with multiplicities (the case of ‘fat points’, 
violating Assumption 3), a starting point would be to extend this set of evaluation functionals to a basis 
of (S/I)∨α, using analogs of differentiation operators. It is known that the theory for the affine root finding 
problem (Subsection 2.1) extends nicely in this way; see for instance [9, Chapter 4, Proposition 2.7], [2, 
Section 4.3] or [48]. We leave this for future research.

In what follows, we use the same function h to define ψα and a set of homogeneous Lagrange polynomials.

Proposition 4.1. Let α ∈ Cl(X) be such that no ζj is a basepoint of Sα. Then

1. ψα is injective if and only if Iα = Jα. In this case HFI(α) ≤ δ,
2. ψα is surjective if and only if there exists a set of homogeneous Lagrange polynomials of degree α. In 

this case HFI(α) ≥ δ.

Proof. Let f, h ∈ Sα such that ζj /∈ VX(h), j = 1, . . . , δ. If ψα is injective, then f ∈ Jα ⇒ ψα(f + Iα) =
0 ⇒ f ∈ Iα. So Jα ⊂ Iα and the other inclusion is trivial. Conversely, if Iα = Jα, then ψα(f + Iα) = 0 ⇒
f ∈ Jα ⇒ f ∈ Iα, so ψα is injective. The corresponding statement about HFI follows easily.
If ψα is surjective, take �j ∈ ψ−1

α (ej). Conversely, if �j , j = 1, . . . , δ is a set of homogeneous Lagrange 
polynomials of degree α, ψα(�j + Iα) = ej and ψα is surjective. Again, the statement about HFI follows 
easily. �
Corollary 4.1. If α ∈ Pic(X) is ample3 and I is radical, then ψα is injective.

Proof. In this case I = I(G · z1∪· · ·∪G · zδ∪Z ′) by the Nullstellensatz. Take f ∈ Jα. Since any polynomial 
in Sα for α ample vanishes on Z (Sα ⊂ K, see e.g. [49]), f vanishes on Z ′ ⊂ Z. Therefore f ∈ Iα and 
Jα ⊂ Iα ⊂ Jα. Now apply Proposition 4.1. �

The following proposition shows that the existence of homogeneous Lagrange polynomials of degree 
α ∈ Cl(X) is equivalent to the fact that the points Φα(zj) span a linear space of dimension δ− 1 in Pnα−1. 
Let pj ∈ Cnα be a set of homogeneous coordinates (in the standard sense) of Φα(zj) ∈ Pnα−1 and define 
the matrix Lα = [p1 · · · pδ] ∈ Cnα×δ.

Proposition 4.2. Let α ∈ Cl(X) be such that no ζj is a basepoint of Sα. There exists a set of Lagrange 
polynomials of degree α if and only if Lα has rank δ.

Proof. The rank of Lα is δ if and only if there exists a left inverse matrix L†
α ∈ Cδ×nα such that L†

αLα = idδ

is the δ × δ identity matrix. We will show that this is equivalent to the existence of a set of homogeneous 

3 A divisor D and its degree α = [D] are called very ample if D is basepoint free and X → P(Γ(X, OX(D))∨) is a closed 
embedding. If kD (or kα) is very ample for some k ≥ 1, then D (or α) is called ample. See [37, Chapter 6] for definitions and 
properties.
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Lagrange polynomials of degree α. Suppose that L†
α exists. The rows of L†

α should be interpreted as elements 
of Sα represented in the basis {xb1 , . . . , xbnα }. The columns of Lα are elements of S∨

α represented in the 
dual basis. Let the j-th row of L†

α correspond to �̃j ∈ Sα. It is clear from L†
αLα = idδ that

〈�̃j , pi〉 = �̃j(zi) =
{

1 i = j,

0 otherwise.

By Lemma 4.1, there is h ∈ Sα such that h(zj) �= 0, j = 1, . . . , δ. Then �j = h(zj)�̃j , j = 1, . . . , δ are 
a set of homogeneous Lagrange polynomials. Conversely, if a set of homogeneous Lagrange polynomials 
exists, construct a matrix L̃†

α by plugging the coefficients of �j into the j-th row. Then there is h ∈
Sα such that L̃†

αLα = diag(h(z1), . . . , h(zδ)) is an invertible diagonal matrix. The left inverse is L†
α =

diag(h(z1), . . . , h(zδ))−1L̃†
α. �

Based on these results, we make the following definition.

Definition 4.3 (Regularity). The regularity Reg(I) ⊂ Cl(X) of I is the subset of degrees α ∈ Cl(X) for which 
no ζj is a basepoint of Sα and the following equivalent conditions are satisfied:

1. ψα is an isomorphism,
2. HFI(α) = δ and Iα = Jα,
3. HFI(α) = δ and there exists a set of homogeneous Lagrange polynomials of degree α,
4. Iα = Jα and there exists a set of homogeneous Lagrange polynomials of degree α.

Theorem 4.1. If α ∈ Reg(I), α0 ∈ Cl(X)+ is such that no ζj is a basepoint of Sα0 and HFI(α + α0) = δ, 
then α + α0 ∈ Reg(I).

Proof. Let �j , j = 1, . . . , δ be a set of homogeneous Lagrange polynomials of degree α w.r.t. h ∈ Sα. It is 
easy to verify that for generic h0 ∈ Sα0 , h0�j , j = 1, . . . , δ is a set of homogeneous Lagrange polynomials of 
degree α + α0 w.r.t. hh0. �

If α ∈ Pic(X) is basepoint free and HFI(α) = δ, then to show that α ∈ Reg(I), by Proposition 4.2 it 
suffices to show that Lα is of rank δ. If α is ‘large enough’ (the associated polytope has enough lattice 
points), this seems reasonable to expect. Alternatively, by Proposition 4.1 it suffices to show that Iα = Jα. 
Based on experimental evidence we propose the following conjecture.

Conjecture 1. Let I = 〈f1, . . . , fn〉 ⊂ S be a homogeneous ideal obtained as in Section 3 such that VX(I)
is a zero-dimensional subscheme of U ⊂ X. Let αi = deg(fi) ∈ Pic(X) be the basepoint free degrees of the 
generators. Then α0 + α1 + . . . + αn ∈ Reg(I) for all α0 ∈ Cl(X)+ such that no ζj is a basepoint of Sα0 .

In the rest of this section, we prove some weaker results to support Conjecture 1 and we continue our 
running example by investigating the regularity.

We consider the question for which α ∈ Cl(X) we have HFI(α) = δ. The following theorem generalizes 
Theorem 3.16 in [42] in the case where Z is small enough.

Theorem 4.2. Let I = 〈f1, . . . , fn〉 ⊂ S be a homogeneous ideal obtained as in Section 3 such that VX(I)
is a zero-dimensional subscheme of U ⊂ X. Let αi = deg(fi) ∈ Pic(X) be the basepoint free degrees of the 
generators. If codim(Z) ≥ n then for all basepoint free α0 ∈ Pic(X)+, HFI(α0 + α1 + . . . + αn) = δ.
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Proof. Consider the Koszul complex

0 → S(−
n∑

i=1
αi) →

⊕
J⊂{1,...,n}
|J |=n−1

S(−αJ ) → · · · →
⊕

J⊂{1,...,n}
|J |=2

S(−αJ ) →
n⊕

i=1
S(−αi) → S

where αJ =
∑

i∈J αi and S(−α) is the Cox ring with twisted grading: S(−α)β = S(β−α). Since the orbit 
closures G · zj have dimension k − n and by assumption dim(Z) ≤ k − n, the fi form a regular sequence in 
S. Hence the Koszul complex is exact. Restricting to the degree α = α0 + α1 + . . . + αn part we get

0 → S(α0) →
⊕

J⊂{1,...,n}
|J |=n−1

S(α− αJ ) → · · · →
⊕

J⊂{1,...,n}
|J |=2

S(α− αJ ) →
n⊕

i=1
S(α− αi) → Sα.

Since α0 is basepoint free, it corresponds to a polytope P0 and we have by (2.4) and (3.1)

dimC(Sα0+αJ ) = |(P0 + PJ ) ∩M |

with PJ =
∑

i∈J Pi for any subset J ⊂ {0, . . . , n}. Counting dimensions we get

dimC((S/I)α) =
n∑

�=0

(−1)n−�
∑

J⊂{1,...,n}
|J |=�

|(P0 + PJ ) ∩M |,

and the right hand side is the formula (3.3) for the mixed volume δ = MV(P1, . . . , Pn). �
Note that the conditions of Theorem 4.2 are satisfied by all toric surfaces (n = 2). Here is an analogous 

result for the case where the system is ‘unmixed’ (in some sense) and the corresponding polytope is normal.

Theorem 4.3. Let I = 〈f1, . . . , fn〉 ⊂ S be a homogeneous ideal obtained as in Section 3 such that VX(I) is a 
zero-dimensional subscheme of X. Let αi = deg(fi) ∈ Pic(X) be the basepoint free degrees of the generators. 
If there is a basepoint free degree α	 ∈ Pic(X) corresponding to a normal polytope, such that αi = tiα	 for 
positive integers ti, then HFI(tα	) = δ for t ≥

∑n
i=1 ti.

Proof. The assumption on αi implies that Pi = tiP	 + mi for a normal polytope P	, lattice points mi and 
positive integers ti. We can assume without loss of generality that mi = 0, i = 1, . . . , n. We consider the 
embedding XA ⊂ P |A |−1 of X where A = P	∩M . More precisely, XA is the image of Φα�

[37, Proposition 
5.4.7]. Let um, m ∈ A be homogeneous coordinates on Pnα�−1 = P |A |−1. The toric ideal of XA is denoted 
IA ⊂ C[um, m ∈ A ] and the Z-graded coordinate ring of XA is C[XA ] = C[um, m ∈ A ]/IA . By [37, 
Theorem 5.4.8], we have Sαi

� C[XA ]ti and fi ∈ Sαi
corresponds to an element hi + IA ∈ C[XA ]ti . 

We define the homogeneous ideal I ′ = 〈h1 + IA , . . . , hn + IA 〉 ⊂ C[XA ]. By assumption, I ′ defines a 0-
dimensional subscheme of XA , so h1 + IA , . . . , hn + IA is a regular sequence in C[XA ]. The ring C[XA ] is 
arithmetically Cohen-Macaulay [37, Exercise 9.2.8], so the corresponding Koszul complex

0 → Kn → Kn−1 → · · · → K2 → K1 → C[XA ] with Kt =
⊕

J⊂{1,...,n}
|J |=t

C[XA ](−
∑
i∈J

ti)

is exact. Since P	 is a normal polytope, we have dimC(C[XA ]t) = |tP	∩M |. Counting dimensions and using 
the same formula as before for δ = MV(P1, . . . , Pn) = MV(P	, . . . , P	) we find that dimC((C[XA ]/I ′)t) = δ
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for t ≥
∑n

i=1 ti. Combining this with (C[XA ]/I ′)t � (S/I)tα�
(see [37, Theorem 5.4.8]) we get the desired 

result. �
We note that in the case where X is a product of projective spaces, stronger bounds than those of 

Theorem 4.2 and Theorem 4.3 are known [25].

Example 4.1. We continue Example 3.1. The polytope P = P1 + P2 (shown in Fig. 2) has 12 lattice points. 
Therefore nα = 12, with α = [DP ] ∈ Pic(X). Since δ = 3, Lα is a 12 × 3 matrix. Its rows are indexed by 
the monomials spanning Sα, and its columns by the representatives zj . The transpose is given by

L�
α =

x3
x
2
4

x1
x
2
4

x2
x
3
3
x4

x1
x2
x
2
3
x4

x
2
1
x2
x3
x4

x
3
1
x2
x4

x
2
2
x
5
3

x1
x
2
2
x
4
3

x
2
1
x
2
2
x
3
3

x
3
1
x
2
2
x
2
3

x
4
1
x
2
2
x3

x
5
1
x
2
2[ ]1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 z1

1 0 −1 0 0 0 1 0 0 0 0 0 z2

0 1 0 0 0 −1 0 0 0 0 0 1 z3

.

Consider h = 39(x3x
2
4 − x1x

2
4) ∈ Sα and note that h(zj) �= 0 for all j. A set of homogeneous Lagrange 

polynomials w.r.t. h is given by

2 L̃†
α

13
=

x3
x
2
4

x1
x
2
4

x2
x
3
3
x4

x1
x2
x
2
3
x4

x
2
1
x2
x3
x4

x
3
1
x2
x4

x
2
2
x
5
3

x1
x
2
2
x
4
3

x
2
1
x
2
2
x
3
3

x
3
1
x
2
2
x
2
3

x
4
1
x
2
2
x3

x
5
1
x
2
2[ ]0 0 0 2 −2 0 0 −2 2 −2 2 0 �1

2 0 −2 −1 1 0 2 1 −1 1 −1 0 �2
0 2 0 1 −1 −2 0 −1 1 −1 1 2 �3

,

which is related to the pseudo inverse of Lα by

L†
α = diag(h(z1), h(z2), h(z3))−1L̃†

α = diag(1/78, 1/39, 1/39)L̃†
α.

To check that Iα = Jα we compute HFI(α) = HFJ(α) = 3. Hence we have α ∈ Reg(I). In fact, in this 
example I is radical and α is ample, so Iα = Jα follows from Corollary 4.1.

5. A toric eigenvalue, eigenvector theorem

In this section, we will work with multiplication maps between graded pieces of S/I. Again, I is a homo-
geneous ideal in S obtained as in Section 3 satisfying Assumptions 1-3. For α, α0 ∈ Cl(X)+, a homogeneous 
element g ∈ Sα0 defines a linear map

Mg : (S/I)α → (S/I)α+α0 : f + Iα 
→ gf + Iα+α0

representing ‘multiplication with g’. Just as in the affine case, these multiplication maps will be the key 
ingredient to formulate our root finding problem as a linear algebra problem. We state a toric version 
of the eigenvalue, eigenvector theorem and show how the eigenvalues can be used to recover homogeneous 
coordinates of the solutions and equations for the corresponding G-orbits. Our main result uses the following 
Lemma.

Lemma 5.1. Let α, α0 ∈ Cl(X)+ be such that α, α + α0 ∈ Reg(I) and no ζj is a basepoint of Sα0 . Then for 
generic h0 ∈ Sα0 , Mh0 : (S/I)α → (S/I)α+α0 : f + Iα 
→ h0f + Iα+α0 is an isomorphism of vector spaces.
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Proof. Let ψα be given as in (4.1) for some h ∈ Sα. We can take hh0 ∈ Sα+α0 to define ψα+α0 . Then 
ψα+α0 ◦Mh0 = ψα shows that Mh0 is invertible. �
Theorem 5.1 (Toric eigenvalue, eigenvector theorem). Let α, α0 ∈ Cl(X)+ be such that α, α + α0 ∈ Reg(I)
and no ζj is a basepoint of Sα0 . Then for any g ∈ Sα0 , Mg/h0 = M−1

h0
◦Mg : (S/I)α → (S/I)α has eigenpairs

(
g

h0
(zj), �j + Iα

)
,

(
vj ,

g

h0
(zj)

)
, j = 1, . . . , δ,

where the �j + Iα are cosets of homogeneous Lagrange polynomials of degree α and the vj are the dual basis 
of (S/I)∨α.

Proof. The map Mh0 is an isomorphism by Lemma 5.1. We define ψα, ψα+α0 as in (4.1) with h ∈ Sα, 
hh0 ∈ Sα+α0 respectively. A straightforward computation shows that ψα+α0◦Mh0(�j+Iα) = ej . Analogously, 
we have ψα+α0 ◦Mg(�j+Iα) = g

h0
(zj)ej . It follows that h0(zj)Mg(�j+Iα) = g(zj)Mh0(�j+Iα), and therefore

Mg/h0(�j + Iα) = g

h0
(zj)(�j + Iα),

which proves the statement about the right eigenpairs, since the �j + Iα are linearly independent. For the 
statement about the left eigenpairs, note that for any f ∈ Sα

vj ◦Mg/h0(f + Iα) = vj ◦M−1
h0

(gf + Iα+α0)

and since Mh0 is an isomorphism, there is f̃ ∈ Sα such that gf−h0f̃ ∈ Iα+α0 . Therefore, for each zj ∈ V (I)
we have

gf − h0f̃

h0h
(zj) = 0 ⇒ f̃

h
(zj) = g

h0
(zj)

f

h
(zj)

and thus, since M−1
h0

(gf + Iα+α0) = f̃ + Iα, we have

vj ◦Mg/h0(f + Iα) = vj(f̃ + Iα) = g

h0
(zj)vj(f + Iα).

The vj are linearly independent, so this concludes the proof. �
Let Sα0 =

⊕nα0
i=1 C · xbi where α0 ∈ Cl(X)+ is such that no ζj is a basepoint of Sα0 . We now show 

how the eigenvalues of the Mxbi/h0 lead directly to a set of defining equations of G · zj , j = 1, . . . , δ if 
α0 is ‘large enough’. For every cone σ ∈ ΣP , we define Uσ = Ck \ V (xσ̂) = MaxSpec(Sxσ̂ ). Note that 
Ck \Z =

⋃
σ∈ΣP

Uσ. Let Dα0 be a representative divisor: α0 = [Dα0 ] = [
∑k

i=1 a0,iDi]. Let P0 ⊂ MR be the 
polytope {m ∈ MR | F�m + a0 ≥ 0}. If α0 ∈ Pic(X), then for every σ ∈ ΣP there is mσ ∈ P0 ∩M such 
that

〈ui,mσ〉 + a0,i = 0, ∀ρi ∈ σ(1), (5.1)

see for instance [39, Lemma 3.4] or [37, Theorem 4.2.8]. If Dα0 is not Cartier, such an mσ does not exist 
for every cone σ ∈ ΣP . We will denote the subset of cones for which mσ ∈ P0 satisfying (5.1) exists by 
Σ̃P ⊂ ΣP . This set is nonempty since {0} ∈ Σ̃P . We write P0 ∩ M = {m1, . . . , mnα0

}, bi = F�mi + a0

and bσ = F�mσ + a0. For all σ ∈ Σ̃P we denote P0 ∩ M − mσ = {m1 −mσ, . . . , mnα
−mσ} (note that 
0
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0 ∈ P0 ∩M −mσ) and σ∨ = {m ∈ MR | 〈u,m〉 ≥ 0, ∀u ∈ σ}, σ⊥ = {m ∈ MR | 〈u,m〉 = 0, ∀u ∈ σ}. We 
partition P0 ∩M −mσ into M⊥

σ = (P0 ∩M −mσ) ∩ σ⊥ and Mσ = (P0 ∩M −mσ) \M⊥
σ . The inclusion

NMσ + ZM⊥
σ =

⎧⎨⎩ ∑
m∈Mσ

cmm +
∑

m∈M⊥
σ

dmm | cm ∈ N, dm ∈ Z

⎫⎬⎭ ⊂ σ∨ ∩M

is clear. In what follows, we will show that if equality holds for some simplicial σ ∈ Σ̃P with zj ∈ Uσ, then 
α0 is ‘large enough’ to recover equations for G · zj from the eigenvalues of the Mxbi/h0 .

Theorem 5.2. Let z ∈ Uσ for a simplicial cone σ ∈ Σ̃P such that π(z) is not a basepoint of Sα0 . Take 
h0 ∈ Sα0 such that h0(z) �= 0 and let λi = zbi/h0(z), i = 1, . . . , nα0 . If σ∨ ∩ M = NMσ + ZM⊥

σ , then 
G · z ⊂ Uσ is the subvariety defined by the ideal〈

xbi−bσ − λi
h0(x)
xbσ

| i = 1, . . . , nα0

〉
⊂ Sxσ̂ .

To prove Theorem 5.2, we need the following auxiliary lemma.

Lemma 5.2. Let σ ∈ Σ̃P be a simplicial cone. For any point z ∈ Uσ, the orbit G · z is the subvariety defined 
by

G · z = {x ∈ Uσ | xF�m − zF
�m,m ∈ σ∨ ∩M} ⊂ Uσ.

If σ∨ ∩M = N{m1, . . . , mκ} + Z{mκ+1, . . . , ms}, then

{x ∈ Uσ | xF�m − zF
�m,m ∈ σ∨ ∩M} = {x ∈ Uσ | xF�mi − zF

�mi , i = 1, . . . , s}.

Proof. Note that xF�m − zF
�m ∈ Sxσ̂ , ∀m ∈ σ∨ ∩ M and mκ+1, . . . , ms ∈ σ⊥ ∩ M . The first statement 

is shown in the proof of Theorem 2.1 in [39]. For the second statement, the inclusion ‘⊂’ is obvious. To 
show the opposite inclusion, take m ∈ σ∨ ∩ M and write m = c1m1 + . . . + csms with c1, . . . , cκ ∈ N, 
cκ+1, . . . , cs ∈ Z. Then

xF�m =
κ∏

i=1
(xF�mi)ci

s∏
j=κ+1

(xF�mj )cj

and if xF�mi = zF
�mi , i = 1, . . . , s, it follows that xF�m = zF

�m. �
Proof of Theorem 5.2. It follows from Lemma 5.2 that G · z is the variety of〈

xF�(mi−mσ) − zF
�(mi−mσ) | i = 1, . . . , nα0

〉
=
〈
xbi−bσ − zbi−bσ | i = 1, . . . , nα0

〉
.

Write h0(x) =
∑nα0

i=1 cix
bi , ci ∈ C. It is easy to check that⎛⎜⎝

⎡⎣1
. . .

1

⎤⎦−

⎡⎢⎣ λ1
...

λnα0

⎤⎥⎦ [c1 . . . cnα0

]⎞⎟⎠
⎡⎢⎣ xb1−bσ − zb1−bσ

...
xbnα0

−bσ − zbnα0
−bσ

⎤⎥⎦ =

⎡⎢⎣ xb1−bσ − λ1
h0(x)
xbσ

...
xbnα0

−bσ − λnα0

h0(x)
xbσ

⎤⎥⎦
and for generic ci, the matrix on the left is invertible (it’s invertible for ci = 0, so the determinant is a 
nonzero polynomial in the ci). �
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Theorem 5.3. Let z ∈ Uσ with σ ∈ Σ̃P simplicial be such that π(z) is not a basepoint of Sα0 and σ∨ ∩M =
NMσ + ZM⊥

σ . For generic h0 ∈ Sα0 satisfying h0(z) �= 0, the variety

Yz = V

(
xbi − zbi

h0(z)
, i = 1, . . . , nα0

)
⊂ Ck

is nonempty and Yz ⊂ G · z.

The proof of Theorem 5.3 uses the following lemma.

Lemma 5.3. If α0 ∈ Cl(X)+ is such that σ∨ ∩ M = NMσ + ZM⊥
σ for some σ ∈ Σ̃P , then α0 is not a 

torsion element of Cl(X).

Proof. Suppose uα0 = 0 for some u > 0. Then F�m + ua0 = 0 for some m ∈ M , and therefore F�(m/u) +
a0 = 0. Since ΣP is complete, this means that P0 = {m/u} and P0 either has 1 lattice point (if m/u ∈ M , 
in which case α0 = 0), or it has none. Since α0 ∈ Cl(X)+, we can assume 0 ∈ P0 and this must be the only 
lattice point in P0. Then σ∨ ∩M = NMσ + ZM⊥

σ = {0}. But σ∨ has dimension n because σ is strongly 
convex ([37, Proposition 1.2.12]), so this is a contradiction. �
Proof of Theorem 5.3. Since α0 is not a torsion element of Cl(X) (Lemma 5.3), we have the exact sequence

0 −→ Z −→ Cl(X) −→ Cl(X)/(Z · α0) −→ 0

where Z → Cl(X) sends u 
→ uα0 ∈ Cl(X). Taking HomZ(−, C∗) shows that G → C∗ : g 
→ gα0 is surjective 
(because C∗ is divisible). Therefore we can find g ∈ G such that gα0 = h0(z)−1 and thus h0(g · z) = 1. 
Every x ∈ Yz satisfies xbi − (g · z)bi = 0, i = 1, . . . , nα0 : this follows from (g · z)bi = zbi/h0(z). In particular, 
xbσ = (g · z)bσ �= 0 (z ∈ Uσ and hence g · z ∈ Uσ since Uσ is G-invariant) and therefore x satisfies 
xbi−bσ = (g · z)bi−bσ , i = 1, . . . nα0 . By Lemma 5.2 it follows that g · z ∈ Yz ⊂ G · z. �

Recall that we took α0 such that no ζj is a basepoint of Sα0 . We conclude this section with the following 
immediate corollary of Theorems 5.2 and 5.3.

Corollary 5.1. Let λij = zbij /h0(zj) be the j-th eigenvalue of the i-th multiplication map Mxbi/h0 . For 
j = 1, . . . , δ, assume that zj ∈ Uσj

for a simplicial cone σj ∈ Σ̃P satisfying σ∨
j ∩M = NMσj

+ZM⊥
σj

. The 
ideal 〈

xbi−bσj − λij
h0(x)
xbσj

| i = 1, . . . , nα0

〉
⊂ Sxσ̂j

defines the orbit G · zj ⊂ Uσj
, and for any point z′j ∈ V (xbi −λij , i = 1, . . . , nα0) ⊂ Uσj

, we have π(z′j) = ζj.

Corollary 5.1 implies that we can find homogeneous coordinates of the solutions from the eigenvalues 
λij by solving a system of binomial equations if P0 ‘has enough lattice points’. Concretely, for every point 
zj there has to be a cone σj ∈ Σ̃P such that zj ∈ Uσj

and σ∨
j ∩ M = NMσj

+ ZM⊥
σj

. Note that if all 
solutions are in the torus, then zj ∈ Uσ for σ = {0} ∈ Σ̃P and this condition translates to the fact that 
Z(P0 ∩ M − m) = M for some m ∈ P0 ∩ M . If P0 is very ample, then α0 ∈ Pic(X), so Σ̃P = ΣP and 
σ∨ ∩M = NMσ + ZM⊥

σ holds for all σ ∈ ΣP [37, Proposition 1.3.16]. We will elaborate on how to solve 
this system of binomial equations in the next section.
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6. Algorithm

In this section we present an eigenvalue algorithm for computing homogeneous coordinates of the points 
in VX(I), where I is an ideal satisfying Assumptions 1-3. As in Theorem 5.1, let α, α0 ∈ Cl(X)+ be such 
that α, α + α0 ∈ Reg(I) and no ζj is a basepoint of Sα0 . In practice, we will take α = α1 + · · · + αn where 
αi = deg(fi) (by Conjecture 1) and α0 ‘large enough’ to recover all solutions (Corollary 5.1). We denote

Sα0 =
nα0⊕
i=1

C · xbi .

We have that HFI(α) = HFI(α + α0) = δ. Given a generic h0 ∈ Sα0 and a surjective linear map N :
Sα+α0 → Cδ with kerN = Iα+α0 , we define

Nh0 : Sα → Cδ : f 
→ N(h0f)

and assume that Nh0 is surjective as well. Such a map N can be computed directly from the input equations. 
We will come back to this later. Let N∗ : B → Cδ be the restriction of Nh0 to a subspace B ⊂ Sα of 
dimension δ such that N∗ is invertible, and let

Ni : B → Cδ : f 
→ N(xbif), i = 1, . . . , nα0 .

Theorem 6.1. The map ν : B � (S/I)α : g 
→ g+ Iα is an isomorphism of vector spaces and the linear maps 
(N∗)−1 ◦Ni : B → B satisfy ν ◦ (N∗)−1 ◦Ni = Mxbi/h0 ◦ ν where Mxbi/h0 are the maps from Theorem 5.1.

Proof. By Lemma 5.1, h0f ∈ Iα+α0 if and only if f ∈ Iα. Therefore kerNh0 = Iα. The first statement 
follows from Sα = B ⊕ kerNh0 . Since kerN = Iα+α0 , N is well defined mod Iα+α0 . We define

Ñ : (S/I)α+α0 → Cδ : f + Iα+α0 
→ N(f).

Since Ñ is a surjective linear map between δ-dimensional vector spaces, it is invertible. For g ∈ B, N∗(g) =
N(h0g) = (Ñ ◦Mh0)(g+ Iα) so ν ◦ (N∗)−1 = (Ñ ◦Mh0)−1. Analogously we find Ni(g) = (Ñ ◦Mxbi )(g+ Iα). 
The theorem follows from (ν◦(N∗)−1◦Ni)(g) = ((Ñ ◦Mh0)−1◦(Ñ ◦Mxbi ))(g+Iα) = (M−1

h0
◦Mxbi ◦ν)(g). �

Theorem 6.1 tells us that, identifying B with (S/I)α, the homogeneous multiplication operators are given 
by (N∗)−1 ◦Ni. After fixing a basis B for B the multiplication operators are commuting δ× δ matrices and 
we can compute their simultaneous diagonalization to find the values λij = zbij /h0(zj).

We now show how the map N can be computed from the input equations. Our strategy is based on 
techniques for computing Truncated Normal Forms (TNFs), as introduced in [18]. We use the notation 
V = Sα+α0 , Vi = Sα+α0−αi

and by the Resultant map Res : V1 × · · · × Vn → V we mean the linear map

(q1, . . . , qn) 
→ q1f1 + . . . + qnfn.

When represented in matrix form, using monomial bases for the vector spaces involved, this map looks 
a lot like the resultant matrices coming from Macaulay and toric resultants [9, Chapters 3 and 7]. Since 
imRes = Iα+α0 , the cokernel map of Res is a map N : V → Cδ � V/imRes with the properties we need.

The next step is to find the homogeneous coordinates of VX(I) from the λij . Suppose that zj ∈ Uσj
for 

σj ∈ Σ̃P and that α0 is such that σ∨
j ∩M = NMσj

+ ZM⊥
σj

. By Corollary 5.1, it remains to compute one 
point on the variety V (xbi − λij , i = 1, . . . , nα0) for j = 1, . . . , δ. If ζj ∈ TX , we can do this efficiently using 
only linear algebra as follows. Let A = [b1 · · · bnα

] ∈ Zk×nα0 be the matrix of exponents and compute 

0
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Algorithm 1 Computes the Cox coordinates of the points defined by I = 〈f1, . . . , fn〉.
1: Res ← Matrix of the resultant map V1 × · · · × Vn → V
2: N ← Matrix of the cokernel V → Cδ of Res
3: h0 ← Generic element of Sα0

4: Construct a matrix of Nh0

5: Find B ⊂ Sα such that (Nh0 )|B is invertible
6: N∗ ← (Nh0 )|B
7: Construct a matrix of Ni, 1 ≤ i ≤ nα0

8: for i = 1, . . . , nα0 do
9: Mxbi /h0

← (N∗)−1Ni

10: end for
11: Compute λij , 1 ≤ i ≤ nα0 , 1 ≤ j ≤ δ by sim. diag. of the Mxbi /h0
12: for j = 1, . . . , δ do
13: J̃j ←

〈
xbi − λij , 1 ≤ i ≤ nα0

〉
⊂ S

14: if (mini |λij |)/(
∑nα0

i=1 |λij |2)1/2 > tol then
15: Find one point zj ∈ Ck on V (J̃j) using SNF
16: else
17: Find one point zj ∈ Ck on V (J̃j) using Newton iteration
18: end if
19: end for
20: return z1, . . . , zδ

its Smith normal form: UAV = S with U, V unimodular and S = [diag(m1, . . . , mr, 0, . . . , 0) 0] ∈ Zk×nα0 , 
where mi|mi+1. We make the substitution of variables x� = yU1�

1 · · · yUk�

k to obtain the equivalent system of 
equations given by yUbi = λij . Applying the invertible transformation given by the matrix V , this simplifies 
to

ym�

� =
nα0∏
i=1

λVi�
ij , � = 1, . . . , r and 1 =

nα0∏
i=1

λVi�
ij , r < � ≤ k.

This imposes no conditions on y�, � > r, so we can put y� = 1, � > r. Taking the logarithm then shows that

log y = [log y1 · · · log yk] = [w 0k−r]

where w = [log λ1j · · · log λnα0j
][V:,1 · · · V:,r]diag(1/m1, . . . , 1/mr) and 0k−r is a row vector of length k− r

with zero entries. To find the homogeneous coordinates, we only need to invert our change of coordinates 
and the logarithm:

log x = [log x1 · · · log xk] = log y U, x� = elog x� , � = 1, . . . , k.

Taking the logarithm has some advantages for the implementation: it reduces all computations to some 
matrix multiplications and it may prevent overflow. When ζj is not in the torus, some of the λij may be 
zero. In this case, to compute a point on V (xbi −λij , i = 1, . . . , nα0), we may use a simple Newton iteration, 
for instance. In the nearly degenerate situation, where λij is close to zero for some i, the approach above 
suffers from rounding errors. We take this into account by using the Smith normal form technique when 
(mini |λij |)/(

∑nα0
i=1 |λij |2)1/2 > tol, where | · | denotes the modulus and tol is a predefined tolerance. This 

leads to Algorithm 1.
In line 5 of the algorithm, the choice of the subspace B is important for the numerical stability. A good 

choice is using QR factorization with optimal column pivoting as in [17,18] which results in a basis for 
(S/I)α consisting of monomials in S. An alternative is using the singular value decomposition, in which 
case B is the orthogonal complement of Iα in Sα [50, Section 3]. We use the SVD for the experiments in 
this article.

Algorithm 1 requires some computations involving polytopes. If one is interested in solving many systems 
with the same structure, it is advantageous to do these computations in an ‘offline’ phase. The ‘online’ 
algorithm then takes a basis of Sα0 , Sα and Sα+α0 , a facet representation of P and P0 and the mixed 
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volume δ = MV(P1, . . . , Pn) as inputs. The ‘offline’ version of the algorithm computes all this information 
from the input equations, and generates an α0 such that Z(P0 ∩M −m) = M . This is enough to find (at 
least) all solutions in the torus by Corollary 5.1.

To retrieve the coordinates in (C∗)n of toric solutions from their homogeneous coordinates, we use the 
map (2.1).

Remark 6.1. We conclude this Section with a remark on the complexity of Algorithm 1 as compared to 
the TNF algorithm of [18]. The first step in both algorithms is to compute the cokernel of a resultant map 
Res. Since for both algorithms the monomials indexing the vector space V in the definition of Res are the 
lattice points contained in a slightly enlarged version of the polytope P = P1 + . . . + Pn, this step takes 
roughly the same computation time for both algorithms. Even though the Cox ring has dimension k > n, 
the dimensions of its graded pieces correspond to the lattice points contained in n-dimensional polytopes. 
This is an important observation, because for larger problems, the computation of the cokernel of Res is 
the most expensive step of the algorithm. Next, both algorithms compute the multiplication matrices from 
this cokernel. This is more expensive for the algorithm in this paper: there are more multiplication maps. 
Another important difference is that for the TNF algorithm, the eigenvalues of the multiplication maps 
immediately give the coordinates of the solutions, whereas Algorithm 1 processes these eigenvalues to find 
the homogeneous coordinates (line 12-19). We conclude that Algorithm 1 is computationally more expensive 
overall. This should be considered the price that is payed for being more robust in nearly degenerate 
situations, which is the main objective in this paper. However, the increase of complexity is not dramatic: 
systems with thousands of solutions can be solved within reasonable time (see Subsection 7.3), and there is 
certainly room for performance optimization in the current Matlab implementation, which is tested in the 
next Section.

7. Examples

Algorithm 1 is implemented in Matlab. Polymake is used for computations involving polytopes [51], except 
for the mixed volume, which is computed using PHCpack [7]. In this section, we test the implementation 
on several examples and compare the results with those of some other polynomial system solvers. All 
computations are done in double precision arithmetic on an 8 GB RAM machine with an intel Core 17-
6820HQ CPU working at 2.70 GHz. To measure the quality of an approximate solution, we compute the 
residual as defined in [17, Section 7] as a measure for the relative backward error. In double precision 
arithmetic, a residual of order 10−16 is the best one can hope for. The goal of the experiments is to show 
that Algorithm 1 meets our objectives: it finds all solutions with good accuracy within reasonable time. In 
particular, it does so for (nearly) degenerate systems with solutions on or near the exceptional divisors of 
X that cannot be solved by other state of the art solvers.

7.1. Points on H2

We finish our running example by using Algorithm 1 to compute homogeneous coordinates of the solutions 
of the system defined in Example 2.3. We use tol = 10−12, α = α1 + α2. For α0 = α2, Algorithm 1 finds 
three solutions. All three residuals are of order 10−16.

To illustrate the results, we use the moment map

μ : Ck \ Z → P : x 
→ 1∑
m∈P∩M |xF�m+a|

∑
m∈P∩M

|xF�m+a|m,

where | · | denotes the modulus. The map μ is constant on G-orbits and takes a point x ∈ Ck \ Z to a 
convex combination of the lattice points of P . It has the property that torus invariant prime divisors are 
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Fig. 3. Left: images in P of the real part of V (f1) ( ) and V (f2) ( ) from Example 2.3 under the moment map μ. The 
images of the computed real solutions are shown as black dots ( ). Right: same picture for a different system. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Newton polytopes of the equations of the eight point radial distortion problem.

sent to their corresponding facets and (C∗)k is sent to the interior of P . More information can be found in 
[38, Section 4.2] and [52, Section 2]. Fig. 3 shows that two of the computed solutions lie on divisors and 
one is in the torus. The image under μ of all of the solutions must lie on an intersection of the images of 
V (f1) \Z, V (f2) \Z (but not all intersections correspond to solutions). As an illustration, we have included 
the same picture for a system with more solutions in the right part of the same figure. The polytopes for this 
system are P1 = [0, 4] × [0, 4] and P2 = 5Δ2 where Δ2 is the standard simplex. There are δ = 40 solutions, 
12 of them are real.

7.2. A problem from computer vision

One of the so-called ‘minimal problems’ in computer vision is the problem of estimating radial distortion 
from eight point correspondences in two images. In [53], Kukelova and Pajdla propose a formulation of this 
problem as a system of 3 polynomial equations in 3 unknowns. The Newton polytopes are visualized in 
Fig. 4. The mixed volume is δ = MV(P1, P2, P3) = 17 and the matrix of facet normals is

F =
[0 −1 −1 0 1 0

1 −1 −1 0 0 0
0 0 −1 1 0 −1

]
,

so the Cox ring S has dimension 6. We assign random real coefficients drawn from a standard normal 
distribution to all lattice points in the polytopes and solve the system using Algorithm 1. We first run the 
offline version, which generates the polytope P0. In this case, P0 is the standard simplex. All 17 solutions 
are found with a residual of order 10−16 within ±0.1 s (using the online version of the algorithm). To show 
the robustness of Algorithm 1 in the nearly degenerate case, i.e. the case where there are solutions on or 
near the torus invariant prime divisors, we perform the following experiment. Consider the lattice points
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Fig. 5. Minimal and maximal residual for different values of the parameter e for the parametrized eight point radial distortion 
problem, for Algorithm 1 ( ) and the toric TNF algorithm ( ).

F3 = {m ∈ P1 ∩M | 〈u3,m〉 + 3 = 0}, G3 = (P1 ∩M) \ F3.

The points in F3 are the lattice points on the facet of P1 corresponding to u3 = (−1, −1, −1). Set

ĝi =
∑

m∈F3

cm,iχ
m +

∑
m∈G3

cm,iχ
m, i = 1, 2

with cm,i real numbers drawn from a standard normal distribution. Now let f̂1 = ĝ1 and

f̂2(e) =
∑

m∈F3

(10−ecm,2 + (1 − 10−e)cm,1)χm +
∑
m∈G3

cm,2χ
m, e ∈ [0,∞).

The equation f̂2 = 0 is parametrized by the real parameter e. The third equation f̂3 = 0 is chosen randomly. 
When e = 0, f̂2 = ĝ2 and the system is generic, as before. When e → ∞, the part of f̂2 corresponding to 
F3 converges to the part of f̂1 corresponding to F3, meaning that there will be solutions ‘at infinity’ on 
the divisor D3. We solve the system for e = 0, 1/2, 1, 3/2, . . . , 16 and compute both the maximal residual 
rmax and the minimal residual rmin for the 17 solutions found by Algorithm 1 with tol = 10−4 and the 
solutions found by the toric version of the Truncated Normal Form (TNF) algorithm [18]. The TNF solver 
computes the multiplication matrices for the input equations (in the classical sense) using heuristically ‘the 
best possible basis’ from a numerical point of view. The numerical results in [18,50] motivate the choice 
of this method as a reference. The result of the experiment is shown in Fig. 5. Note that not only the 
residuals of the solutions approaching the divisor deteriorate for the TNF algorithm. Accuracy is lost on 
all solutions. The reason is that even for the ‘best’ basis selected by this algorithm, the computation of 
the classical multiplication matrices is ill-conditioned because the system is nearly degenerate. Looking at 
the computed Cox coordinates, we see that for three of the solutions, the coordinate x3 goes to zero as e
increases, so 3 out of 17 solutions approach the divisor D3.

One can perform the same experiment for any other facet of P1. However, in order to find the solutions 
on the divisors, the polytope P0 must be large enough and it might not be sufficient that its lattice points 
generate the lattice (Corollary 5.1). Repeating the same experiment, but this time using F2 instead of 
F3, the solutions in the torus are still found with good accuracy by Algorithm 1. Accuracy is lost on 
the solutions approaching D2. The reason is that the standard simplex does not ‘show’ this facet. Using 
P0 = Conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2)) we find homogeneous coordinates of 
all solutions.
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Table 1
Results for generic systems with mixed supports.

n NZ dmax δ k nα0 OFFLINE ONLINE
t Dmean Dmax t Dmean Dmax

2 20 10 144 12 3 1.9e+1 15 14 2.0e-1 15 14
2 20 20 505 14 4 2.4e+1 14 12 1.9e+0 14 11
2 20 30 1268 15 3 5.8e+1 14 12 1.9e+1 14 12
2 20 40 2390 16 3 2.6e+2 14 11 1.4e+2 14 13
2 20 50 3275 16 3 3.7e+2 14 12 2.3e+2 14 11
2 20 60 4469 12 3 7.8e+2 11 7 5.2e+2 11 8
2 40 30 1522 15 3 9.5e+1 14 11 3.4e+1 14 10
2 60 30 1670 15 4 1.2e+2 14 12 5.3e+1 14 12
2 200 30 1672 10 3 1.1e+2 15 10 6.0e+1 15 9

3 5 3 18 21 4 2.2e+1 14 12 1.1e-1 15 13
3 5 5 136 36 4 3.9e+1 14 9 6.3e-1 14 13
3 10 5 190 60 5 3.5e+1 15 7 2.1e+0 15 11
3 10 7 592 63 5 1.3e+2 14 10 3.2e+1 15 7

4 5 3 81 106 6 6.9e+1 14 11 3.7e+1 14 11

7.3. Generic problems

To give an idea of the computation time and the type of systems Algorithm 1 can handle, we perform 
the following experiment. Consider the parameters n, NZ, dmax ∈ N \ {0}. For j = 1, . . . , n we generate 
a set Aj ⊂ Zn of NZ lattice points by selecting NZ points in Nn with coordinates drawn uniformly from 
{0, 1, . . . , dmax} and shifting these points by substracting the first point from all other points. Then for each 
m ∈ Aj we generate a random real number cm,j drawn from a standard normal distribution and we set

f̂j =
∑

m∈Aj

cm,jχ
m.

If two or more points m ∈ Aj coincide, we add the cm,j together, so NZ is an upper bound for the number 
of terms in f̂j . We use Algorithm 1 to compute the Cox coordinates of the solutions of the resulting system 
and their image under (2.1). In Table 1 we report the number of solutions δ, the dimension k of the Cox 
ring, the number nα0 for the automatically generated α0, and, for both the offline and the online solver, 
the maximal residual rmax, the geometric mean of the residuals of all solutions rmean and the computation 
time t (in seconds). The residuals are represented by Dmean = �− log10 rmean� and Dmax = �− log10 rmax�. 
It follows from Bernstein’s second theorem [44,27] that solutions on divisors can only occur if the involved 
polytopes have common tropisms corresponding to positive dimensional faces. An important case in which 
this may happen is the unmixed case in which all input polytopes are equal. We repeat the experiment, but 
this time we keep the supports A = A1 = . . . = An fixed. Table 2 shows some results. Of course, for this 
type of systems, the dimension of the Cox ring (or, equivalently, the number of facets of the Minkowski sum 
of the input polytopes) is lower and the system of binomial equations from Corollary 5.1 is easier to solve.

7.4. Comparison with homotopy methods

As discussed in the introduction, homotopy continuation methods provide very successful numerical 
solvers for systems of small degrees in large numbers of variables. Algebraic methods prove to be more 
robust in the case of high degrees and small dimensions, see for instance the numerical experiments in 
[18]. In this sense, these two important classes of numerical solvers are complementary to each other. As an 
illustration, we repeat the mixed experiment from Subsection 7.3 for three challenging 2-dimensional systems 
and compare the results with two homotopy implementations that are considered state of the art: Bertini 
(v1.6) [6] and PHCpack (v2.4.64) [7]. For both these solvers, we use standard double precision settings and 
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Table 2
Results for generic systems with unmixed supports.

n NZ dmax δ k nα0 OFFLINE ONLINE
t Dmean Dmax t Dmean Dmax

2 20 60 3638 7 3 5.8e+2 13 11 3.8e+2 13 10

3 10 10 834 14 6 3.5e+2 13 12 1.9e+2 13 12

4 6 3 15 7 8 3.3e+1 15 15 8.4e-1 15 14
4 6 4 28 6 11 4.3e+1 14 13 5.4e+0 15 14
4 6 5 216 9 7 5.7e+2 12 11 2.7e+2 12 11
4 6 6 339 8 6 1.5e+3 6 4 2.0e+3 6 5

5 6 3 10 6 8 7.5e+1 15 14 1.0e+1 15 15

Table 3
Results for generic systems using Algorithm 1 and the homotopy packages PHCpack and Bertini.

n NZ dmax δ Algorithm 1 PHCpack Bertini

k nα0 tOFFLINE tONLINE δ̂ t δ̂ t δ̂

2 20 20 622 14 3 4.4e+1 2.8e+0 622 1.7e+0 597 2.2e+1 605
2 200 30 1700 14 3 1.5e+2 7.1e+1 1700 1.3e+1 1671 4.9e+2 1119
2 800 40 3117 9 3 3.5e+2 2.3e+2 3117 7.7e+1 3055 7.6e+3 2832

the backward errors of the computed solutions are of the order of the machine precision because these solvers 
intrinsically use Newton refinement. The results are reported in Table 3. For each solver, the number δ̂ is 
the number of correctly computed solutions (with residual < 10−9). Note that both homotopy solvers miss 
some solutions for all these problems. PHCpack is very efficient for this type of generic problems because it 
implements polyhedral homotopies [27,28]. This means in practice that exactly δ paths are tracked. Bertini 
tracks 1258, 3135 and 6320 paths for the first, second and third problem respectively. This experiment shows 
that even for generic systems, for large δ and small n the state of the art homotopy algorithms do not find 
all solutions. The method introduced in this paper aims at solving (nearly) degenerate, non-generic systems. 
In practice, this often means that there are ‘large solutions’. To show that such situations cause trouble for 
homotopy methods, even for small δ, we consider the experiment of Subsection 7.2. Solving the system for 
e = 4.5 using Algorithm 1 we find three solutions whose coordinates have a modulus of order 104. PHCpack 
and Bertini both find only 14 solutions (the homotopy solvers give up on the paths converging to the ‘large 
solutions’).

8. Conclusion

We have presented a toric eigenvalue, eigenvector theorem that allows to compute homogeneous coor-
dinates of solutions of systems of Laurent polynomial equations (satisfying the assumptions in Section 3) 
on a natural toric compactification X of (C∗)n. This results in a numerical linear algebra based algorithm 
that proves to be robust in the case of (nearly) degenerate systems with solutions on the torus invariant 
prime divisors. The algorithm is particularly successful for small dimensions n and large degrees. It relies 
on a conjecture related to the regularity of I (Conjecture 1), which is checked numerically to be true in all 
of the presented experiments and supported by some weaker results in Section 4.
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