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We introduce twisted Steinberg algebras over a commutative unital ring R. These 
generalise Steinberg algebras and are a purely algebraic analogue of Renault’s 
twisted groupoid C*-algebras. In particular, for each ample Hausdorff groupoid G
and each locally constant 2-cocycle σ on G taking values in the units R×, we study 
the algebra AR(G, σ) consisting of locally constant compactly supported R-valued 
functions on G, with convolution and involution “twisted” by σ. We also introduce a 
“discretised” analogue of a twist Σ over a Hausdorff étale groupoid G, and we show 
that there is a one-to-one correspondence between locally constant 2-cocycles on G
and discrete twists over G admitting a continuous global section. Given a discrete 
twist Σ arising from a locally constant 2-cocycle σ on an ample Hausdorff groupoid 
G, we construct an associated twisted Steinberg algebra AR(G; Σ), and we show 
that it coincides with AR(G, σ−1). Given any discrete field Fd, we prove a graded 
uniqueness theorem for AFd

(G, σ), and under the additional hypothesis that G is 
effective, we prove a Cuntz–Krieger uniqueness theorem and show that simplicity 
of AFd

(G, σ) is equivalent to minimality of G.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Steinberg algebras have become a topic of great interest for algebraists and analysts alike since their 
independent introduction in [34] and [10]. Before Steinberg algebras were specified by name, they appeared 
in the details of many constructions of groupoid C*-algebras, such as those in [14,19,20,28]. Not only have 
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these algebras provided useful insight into the analytic theory of groupoid C*-algebras, they give rise to 
interesting examples of ∗-algebras; for example, all Leavitt path algebras and Kumjian–Pask algebras can 
be realised as Steinberg algebras. Moreover, Steinberg algebras have served as a bridge to facilitate the 
transfer of concepts and techniques between the algebraic and analytic settings; see [5] for one such case.

Thirty years prior to the introduction of Steinberg algebras, Renault [30] initiated the study of twisted 
groupoid C*-algebras. These are a generalisation of groupoid C*-algebras in which multiplication and invo-
lution are twisted by a T -valued 2-cocycle on the groupoid. Twisted groupoid C*-algebras have since proved 
extremely valuable in the study of structural properties for large classes of C*-algebras. In particular, work 
of Renault [31], Tu [35], and Barlak and Li [3] has revealed deep connections between twisted groupoid C*-
algebras and the UCT problem from the classification program for C*-algebras. For more work on twisted 
C*-algebras associated to graphs and groupoids, see [2,4,11,17,18,21–25,33].

Given the success of non-twisted Steinberg algebras and the far-reaching significance of C*-algebraic 
results relating to twisted groupoid C*-algebras, we expect that a purely algebraic analogue of twisted 
groupoid C*-algebras will supply several versatile classes of ∗-algebras to the literature, as well as a new 
avenue to approach important problems in C*-algebras.

Throughout, let R be a discrete commutative unital ring with units R×. Let Cd denote the ring of complex 
numbers endowed with the discrete topology, and let Td denote the complex unit circle endowed with the 
discrete topology. In this article, we introduce the notion of a twisted Steinberg algebra AR(G, σ) constructed 
from an ample Hausdorff groupoid G and a locally constant R×-valued 2-cocycle σ on G. Our construction 
generalises the Steinberg algebra AR(G), and provides a purely algebraic analogue of the twisted groupoid 
C*-algebra C∗(G, σ) in the case where R = Cd.

In the non-twisted setting, the complex Steinberg algebra and the C*-algebra associated to an ample 
Hausdorff groupoid G are both built from the convolution algebra Cc(G) of continuous compactly sup-
ported complex-valued functions on G. The complex Steinberg algebra A(G) is the ∗-subalgebra of Cc(G)
consisting of locally constant functions, and the full (or reduced) groupoid C*-algebra C∗(G) (or C∗

r (G)) is 
the closure of Cc(G) with respect to the full (or reduced) C*-norm (see [32, Chapter 9]). It turns out (see 
[10, Proposition 4.2]) that A(G) sits densely inside of both the full and the reduced C*-algebras. There-
fore, the definition of a twisted complex Steinberg algebra should result in the same inclusions; that is, 
the twisted complex involutive Steinberg algebra should sit ∗-algebraically and densely inside the twisted 
groupoid C*-algebra. However, to even make sense of that goal, one must first choose between two methods 
of constructing a twisted groupoid C*-algebra. The first involves twisting the multiplication on C∗(G) by a 
continuous T -valued 2-cocycle σ, and was introduced by Renault in [30].

In [30], Renault also observed that the structure of a twisted groupoid C*-algebra with multiplication in-
corporating a 2-cocycle σ could be realised instead by first twisting the groupoid itself, and then constructing 
an associated C*-algebra. This is achieved by forming a split groupoid extension

G(0) × T ↪→ G×σ T � G,

where multiplication and inversion on the groupoid G ×σ T both incorporate a T -valued 2-cocycle σ on 
G, and then defining the twisted groupoid C*-algebra to be the completion of the algebra of T -equivariant 
functions on Cc(G × T ) under a C*-norm. A few years later, while developing a C*-analogue of Feldman–
Moore theory, Kumjian [18] observed the need for a more general construction arising from a locally split 
groupoid extension

G(0) × T ↪→ Σ � G,

where Σ is not necessarily homeomorphic to G ×T . It turns out that when G is a second-countable ample 
Hausdorff groupoid, a folklore result (Theorem 4.10) tells us that every twist over G does arise from a 
T -valued 2-cocycle on G.
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Therefore, our first task is to define twisted Steinberg algebras with respect to both notions of a twist. 
This is the focus of Sections 3 and 4. In Section 3, we define the twisted Steinberg algebra AR(G, σ) by 
taking an ample Hausdorff groupoid G and twisting the multiplication of the classical Steinberg algebra 
AR(G) using a locally constant R×-valued 2-cocycle σ on G. We then show that ACd

(G, σ) sits densely 
inside the twisted groupoid C*-algebra C∗(G, σ). In Section 4.3, we give an alternative construction of a 
twisted Steinberg algebra built using a twist Σ over G, and then verify that these two definitions of twisted 
Steinberg algebras agree when the twist over G arises from a 2-cocycle.

In order to construct a twisted complex Steinberg algebra using a twist over a groupoid, we are forced to 
first “discretise” our groupoid extension by replacing the standard topology on T with the discrete topology. 
Though this may seem a little artificial to a C*-algebraist, this change is indeed necessary, as we explain 
in Remark 4.20. (Nonetheless, this should not come as too much of a surprise, given the purely algebraic 
nature of Steinberg algebras.) Thus, Section 4.1 is dedicated to introducing these discretised groupoid twists 
and establishing in this setting the aforementioned folklore result for an arbitrary commutative unital ring 
R (Theorem 4.10). Then in Section 4.2, we flesh out the relationships between these twists over groupoids 
and the cohomology theory of groupoids.

Section 5 provides several examples of twisted Steinberg algebras, including a notion of twisted Kumjian–
Pask algebras. The final two sections of the paper are devoted to proving several important results in 
Steinberg algebras in the twisted setting, when R is a (discrete) field. In Section 6 we prove a twisted version 
of the Cuntz–Krieger uniqueness theorem for effective groupoids (Theorem 6.1), and we show that when R
is a discrete field and G is effective, simplicity of AR(G, σ) is equivalent to minimality of G (Theorem 6.2). 
Finally, in Section 7, we show that twisted Steinberg algebras inherit a graded structure from the underlying 
groupoid, and we prove a graded uniqueness theorem for twisted Steinberg algebras (Theorem 7.2).

2. Preliminaries

In this section we introduce some notation, and we recall relevant background information on topological 
groupoids, continuous 2-cocycles, and twisted groupoid C*-algebras. Throughout this article, G will always 
be a locally compact Hausdorff topological groupoid with composable pairs G(2) ⊆ G ×G, range and source 
maps r, s : G → G, and unit space G(0) := r(G) = s(G). We will refer to such groupoids as Hausdorff 
groupoids. For all γ ∈ G, we have r(γ) = γγ−1 and s(γ) = γ−1γ, where multiplication (or composition) of 
groupoid elements is evaluated from right to left. We write G(3) for the set of composable triples in G; that 
is,

G(3) := {(α, β, γ) : (α, β), (β, γ) ∈ G(2)}.

For each x ∈ G(0), we define

Gx := s−1(x), Gx := r−1(x), and Gx
x := Gx ∩Gx.

For any two subsets U and V of a groupoid G, we define

Us×r V := (U × V ) ∩G(2), UV := {αβ : (α, β) ∈ Us×r V }, and U−1 := {α−1 : α ∈ U}.

We call a subset B of G a bisection if there exists an open subset U of G containing B such that r|U and 
s|U are homeomorphisms onto open subsets of G. We say that G is étale if r (or, equivalently, s) is a local 
homeomorphism. If G is étale, then G(0) is open in G, and both Gx and Gx are discrete in the subspace 
topology for any x ∈ G(0). The range and source maps of an étale groupoid are both open, and hence so is 
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the multiplication map (see [32, Lemma 8.4.11]1). Moreover, G is étale if and only if G has a basis of open 
bisections (see [32, Lemma 8.4.9]). We say that G is ample if it has a basis of compact open bisections. If G
is étale, then G is ample if and only if its unit space G(0) is totally disconnected (see [15, Proposition 4.1]).

If B and D are compact open bisections of an ample Hausdorff groupoid, then B−1 and BD are also 
compact open bisections. In fact, the collection of compact open bisections forms an inverse semigroup under 
these operations (see [28, Proposition 2.2.4]).

The isotropy of a groupoid G is the set

Iso(G) := {γ ∈ G : r(γ) = s(γ)} =
⋃

x∈G(0)

Gx
x.

We say that G is principal if Iso(G) = G(0), and that G is effective if the topological interior of Iso(G) is 
equal to G(0). We say that G is topologically principal if the set {x ∈ G(0) : Gx

x = {x}} is dense in G(0). Every 
principal étale groupoid is effective and topologically principal. If G is a Hausdorff étale groupoid, then G
is effective if it is topologically principal, and the converse holds if G is additionally second-countable (see 
[5, Lemma 3.1]). We will often work with Hausdorff groupoids that are étale, ample, or second-countable, 
but we will explicitly state these assumptions.

Before we describe algebras of functions defined on a groupoid, a few remarks on preliminary point-set 
topology and notation are in order. Given topological spaces X and Y , a function f : X → Y is said to 
be locally constant if every element of X has an open neighbourhood U such that f |U is constant. Every 
locally constant function is continuous, and if Y has the discrete topology, then every continuous function 
f : X → Y is locally constant. Throughout, let R be a commutative unital ring endowed with the discrete 
topology, and write R× for the subgroup of units in R.

Given a topological space X and a topological ring Z, we define the support of a function f : X → Z to 
be the set

supp(f) := {x ∈ X : f(x) �= 0} = f−1(Z\{0}).

If f is continuous, then its support is open, and if f is locally constant, then its support is clopen. We say 
that f is compactly supported if supp(f) is compact.

As motivation for our definition of a twisted Steinberg algebra, it will be helpful to briefly recall the 
construction of groupoid C*-algebras and Steinberg algebras, and to describe the ways in which twisted 
groupoid C*-algebras have been defined in the literature.

We begin by describing groupoid C*-algebras, which were introduced by Renault in [30]. In the discussion 
that follows, it will suffice to restrict our attention to the setting in which the underlying Hausdorff groupoid 
G is second-countable and étale. Although the étale assumption is not required, this setting is general enough 
to include a plethora of examples, including the Cuntz–Krieger algebras of all compactly aligned topological 
higher-rank graphs (see [36, Theorem 3.16]).

Given a second-countable Hausdorff étale groupoid G, the convolution algebra Cc(G) is the complex 
∗-algebra

Cc(G) := {f : G → C : f is continuous and supp(f) is compact},

equipped with multiplication given by the convolution product

1 Although the argument given in [32, Lemma 8.4.11] is for second-countable groupoids, it can be adapted to work without the 
second-countability hypothesis by replacing sequences with nets.
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(f ∗ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

f(α) g(β) =
∑

η∈Gs(γ)

f(γη) g(η−1),

and involution given by f∗(γ) := f(γ−1). The full groupoid C*-algebra C∗(G) is defined to be the completion 
of Cc(G) in the full C*-norm, and the reduced groupoid C*-algebra C∗

r (G) is defined to be the completion 
of Cc(G) in the reduced C*-norm (see [32, Chapter 9] for the details).

The first conception of a twisted groupoid C*-algebra was also introduced by Renault in [30]. In this 
setting, the “twist” refers to a continuous T -valued 2-cocycle on G, which is incorporated into the definitions 
of the multiplication and involution of the convolution algebra Cc(G). Given an arbitrary commutative 
unital topological ring R, a (continuous) 2-cocycle is a continuous function σ : G(2) → R× that satisfies the 
2-cocycle identity:

σ(α, β)σ(αβ, γ) = σ(α, βγ)σ(β, γ),

for all (α, β, γ) ∈ G(3), and is normalised, in the sense that

σ(r(γ), γ) = 1 = σ(γ, s(γ)),

for all γ ∈ G. We say that the 2-cocycles σ, τ : G(2) → R× are cohomologous if there is a continuous function 
b : G → R× satisfying b(x) = 1 for all x ∈ G(0), and

σ(α, β) τ(α, β)−1 = b(α) b(β) b(αβ)−1

for all (α, β) ∈ G(2). We may also define 2-cocycles taking values in a particular subgroup T of R×, and 
in this case two 2-cocycles are cohomologous if there is a function b taking values in T and satisfying the 
condition above. Cohomology of continuous 2-cocycles on G is an equivalence relation. The equivalence 
class of a continuous 2-cocycle σ under this relation is called its cohomology class. Note that if we omit 
the requirement that a 2-cocycle be normalised, it turns out that every 2-cocycle that is not normalised is 
cohomologous to one that is normalised (see, for example, [6, Footnote 1, Page 1262]). Thus, since we show 
in Lemma 3.5 that cohomologous 2-cocycles give isomorphic twisted Steinberg algebras, it makes sense for 
us to just assume that all 2-cocycles are normalised.

Given a 2-cocycle σ : G(2) → T , the twisted convolution algebra Cc(G, σ) is the complex ∗-algebra that 
is equal as a vector space to Cc(G), but has multiplication given by the twisted convolution product

(f ∗σ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β) =
∑

η∈Gs(γ)

σ(γη, η−1) f(γη) g(η−1),

and involution given by

f∗(γ) := σ(γ, γ−1) f(γ−1).

The 2-cocycle identity guarantees that the multiplication is associative, and the assumption that the 2-
cocycle is normalised implies that the twist is trivial when either multiplying or applying the involution to 
functions supported on G(0). The full twisted groupoid C*-algebra C∗(G, σ) is defined to be the completion 
of Cc(G, σ) in the full C*-norm, and the reduced twisted groupoid C*-algebra C∗

r (G, σ) is defined to be 
the completion of Cc(G, σ) in the reduced C*-norm (see [30, Chapter II.1] for the details). There is also a 
∗-algebra norm on Cc(G, σ), called the I-norm, which is given by
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‖f‖I,σ := max
{

sup
u∈G(0)

{ ∑
γ∈Gu

|f(γ)|
}
, sup

u∈G(0)

{ ∑
γ∈Gu

|f(γ)|
}}

,

for all f ∈ Cc(G, σ). The I-norm dominates the full norm on Cc(G, σ).
Renault [30] also introduced an alternative construction of these twisted groupoid C*-algebras involving 

twisting the groupoid itself, via a split groupoid extension

G(0) × T ↪→ G×σ T � G,

called a twist over G. In 1986, Kumjian generalised this construction to give twisted groupoid C*-algebras 
whose twists are not induced by T -valued 2-cocycles. In particular, the extension Σ of G by G(0) ×T need 
not admit a continuous global section P : G → Σ. In Section 4.1 we develop a “discretised” version of this 
more general notion of a twist, whose definition is in line with [7] when G is a discrete group. Since our 
definition is almost identical to Kumjian’s (with the difference being the choice of topology on T ≤ C×), 
we refer the reader to Definition 4.1 for a more precise definition of a twist over a Hausdorff étale groupoid. 
Given a twist

G(0) × T ↪→ Σ � G,

over a Hausdorff étale groupoid G, one constructs a ∗-algebra by defining an (untwisted) convolution and 
involution on the subspace of Cc(Σ) consisting of T -equivariant functions. Completing this ∗-algebra with 
respect to the full (or reduced) C*-norm yields the full (or reduced) twisted groupoid C*-algebra C∗(G, Σ)
(or C∗

r (G, Σ)). (See [31] or [32, Chapter 11] for more details.)
We conclude this section with the definition of Steinberg algebras, which were originally introduced in 

[34,10], and are a purely algebraic analogue of groupoid C*-algebras. Let G be an ample Hausdorff groupoid, 
and let 1B denote the characteristic function of B from G to R. The Steinberg algebra associated to G is

AR(G) := spanR{1B : G → R : B is a compact open bisection of G}
= {f : G → R : f is continuous and supp(f) is compact},

equipped with multiplication given by the convolution product

(f ∗ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

f(α) g(β) =
∑

η∈Gs(γ)

f(γη) g(η−1).

The complex Steinberg algebra A(G) := ACd
(G) is a ∗-algebra with involution given by f∗(γ) := f(γ−1). 

It is shown in [34,10] that A(G) is dense in Cc(G) with respect to both the full and reduced C*-norms.

3. Twisted Steinberg algebras arising from locally constant 2-cocycles

In this section we introduce the twisted Steinberg algebra AR(G, σ) over a discrete commutative unital 
ring R (or A(G, σ) when R = Cd) associated to an ample Hausdorff groupoid G and a continuous 2-cocycle 
σ : G(2) → T ≤ R×. As an R-module, the twisted Steinberg algebra is identical to the untwisted version 
defined in Section 2. That is,

AR(G, σ) := spanR{1B : G → R : B is a compact open bisection of G};

we now emphasise that we are viewing R with the discrete topology.
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Lemma 3.1. Let G be an ample Hausdorff groupoid, and let Cc(G, R) denote the collection of continuous 
compactly supported functions f : G → R. For any continuous 2-cocycle σ : G(2) → T ≤ R×, we have the 
following:

(a) AR(G, σ) = Cc(G, R) = {f : G → R : f is locally constant and supp(f) is compact} as R-modules;
(b) for any f ∈ AR(G, σ), there exist λ1, . . . , λn ∈ R\{0} and mutually disjoint compact open bisections 

B1, . . . , Bn ⊆ G such that f =
∑n

i=1 λi1Bi
.

Proof. Part (a) follows from the characterisations of the Steinberg algebra AR(G) given in [34, Definition 4.1 
and Remark 4.2], because AR(G, σ) and AR(G) agree as R-modules. Similarly, part (b) follows from [8, 
Lemma 2.2]. �

From now on, we will use the characterisations of AR(G, σ) as an R-module given in Lemma 3.1(a) 
interchangeably with the definition.

We equip AR(G, σ) with a multiplication that incorporates the 2-cocycle σ into its definition, thereby 
distinguishing AR(G, σ) from AR(G). If we additionally assume that there is an involution r 
→ r on the 
ring R, and that T is a subgroup of R× such that z = z−1 for each z ∈ T and the 2-cocycle σ is T -valued, 
then we may also define an involution ∗ on AR(G, σ) that will make AR(G, σ) into a ∗-algebra. We call such 
an involution on R a T -inverse involution.

Proposition 3.2. Let R be a commutative unital ring, let G be an ample Hausdorff groupoid, and let σ : G(2) →
R× be a continuous 2-cocycle. There is a multiplication (called (twisted) convolution) on the R-module 
AR(G, σ), given by

(f ∗σ g)(γ) :=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β) =
∑

η∈Gs(γ)

σ(γη, η−1) f(γη) g(η−1),

under which AR(G, σ) is an R-algebra. Suppose additionally that R has a T -inverse involution r 
→ r for 
some T ≤ R× and that σ is T -valued. Then there is an involution on AR(G, σ), given by

f∗(γ) := σ(γ, γ−1)−1 f(γ−1),

under which AR(G, σ) is a ∗-algebra over R. We call AR(G, σ) the twisted Steinberg algebra over R asso-
ciated to the pair (G, σ).

The complex twisted Steinberg algebra A(G, σ) := ACd
(G, σ) is a dense ∗-subalgebra of the complex 

twisted convolution algebra Cc(G, σ) with respect to the I-norm and the full and reduced C*-norms.

Remarks 3.3.

(1) If the 2-cocycle σ is trivial (in the sense that σ
(
G(2)) = {1}), then AR(G, σ) is identical to AR(G) as 

an R-algebra.
(2) We often write f ∗ g or fg to denote the convolution product f ∗σ g of functions f, g ∈ AR(G, σ) if the 

intended meaning is clear.
(3) If f, g ∈ AR(G, σ), then supp(fg) ⊆ supp(f) supp(g). If B and D are compact open bisections of G

such that supp(f) = B and supp(g) = D, then supp(fg) = BD, and when AR(G, σ) is a ∗-algebra, 
supp(f∗) = B−1.

(4) From the 2-cocycle identity, one can readily verify that σ(γ, γ−1) = σ(γ−1, γ) for any γ ∈ G.
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Proof of Proposition 3.2. As R-modules, AR(G, σ) ∼= AR(G). We first show that AR(G, σ) is closed under 
the twisted convolution. Fix f, g ∈ AR(G, σ). By Lemma 3.1(b), there exist mutually disjoint compact open 
bisections B1, . . . , Bm, C1, . . . , Cn ⊆ G and scalars λ1, . . . , λm, μ1, . . . , μn ∈ R\{0} such that

f =
m∑
i=1

λi1Bi
and g =

n∑
j=1

μj1Cj
.

We claim that fg ∈ AR(G, σ). Since G is étale and f and g have compact support, for each γ ∈ G, the set{
(α, β) ∈ G(2) : αβ = γ and σ(α, β) f(α) g(β) �= 0

}
is finite (see [32, Proposition 9.1.1]). Since σ is locally constant, we can assume that for all i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}, there exists νi,j ∈ R× such that σ(α, β) = νi,j for all (α, β) ∈ (Bi)s×r (Cj) (because 
otherwise we can further refine the bisections to ensure that this is true). Thus, for all γ ∈ G, we have

(f ∗σ g)(γ) =
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β)

=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β)
(

m∑
i=1

λi1Bi
(α)

)⎛⎝ n∑
j=1

μj1Cj
(β)

⎞⎠

=
∑

(α,β)∈G(2),
αβ=γ

m∑
i=1

n∑
j=1

νi,j λi μj 1Bi
(α) 1Cj

(β)

=
m∑
i=1

n∑
j=1

νi,j λi μj 1BiCj
(γ).

Hence f ∗σ g ∈ AR(G, σ). The remainder of the verification that AR(G, σ) is an R-algebra is similar to [30, 
Proposition II.1.1].

Suppose now that R has a T -inverse involution r 
→ r for some T ≤ R×. We show that f∗ ∈ AR(G, σ). 
Since σ is locally constant, we can assume that for all i ∈ {1, . . . , m}, there exists κi ∈ T such that 
σ(γ, γ−1) = κi for all γ ∈ Bi (because otherwise we can further refine the bisections to ensure that this is 
true). Thus, for all γ ∈ G, we have

f∗(γ) = σ(γ, γ−1)−1 f(γ−1) = σ(γ, γ−1)
(

m∑
i=1

λi 1Bi
(γ−1)

)
=

m∑
i=1

κi λi 1B−1
i

(γ).

Hence f∗ ∈ AR(G, σ).
Clearly the proposed involution distributes across sums, and (λf)∗ = λf∗ for all λ ∈ R. Fix γ ∈ G. Since 

the involution on R restricts to inversion on T , we see that

(f∗)∗ (γ) = σ(γ, γ−1)−1 f∗(γ−1) = σ(γ, γ−1)−1 σ(γ−1, γ)−1 f(γ) = f(γ).

Furthermore, we have

(f ∗σ g)∗(γ) = σ(γ, γ−1)−1 (f ∗σ g)(γ−1)
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=
∑

(α,β)∈G(2),

αβ=γ−1

σ(γ, γ−1)−1 σ(α, β)−1 f(α) g(β), (3.1)

and

(g∗ ∗σ f∗)(γ) =
∑

(η,ζ)∈G(2),
ηζ=γ

σ(η, ζ)σ(η, η−1)−1 g(η−1)σ(ζ, ζ−1)−1 f(ζ−1)

=
∑

(α,β)∈G(2),

αβ=γ−1

σ(β−1, α−1)σ(β−1, β)−1 σ(α−1, α)−1 f(α) g(β). (3.2)

Using several applications of the 2-cocycle identity and that σ is normalised, we see that

σ(α, β)σ(γ, γ−1) = σ(α, β)σ(αβ, β−1α−1)

= σ(α, ββ−1α−1)σ(β, β−1α−1)

= σ(α, α−1)σ(β, β−1α−1)σ(β−1, α−1)σ(β−1, α−1)−1

= σ(α, α−1)σ(β, β−1)σ(ββ−1, α−1)σ(β−1, α−1)−1

= σ(α−1, α)σ(β−1, β)σ(β−1, α−1)−1. (3.3)

Thus, we deduce from equations (3.1), (3.2), and (3.3) that (f ∗σ g)∗ = g∗ ∗σ f∗, and so AR(G, σ) is a 
∗-algebra over R.

Finally, since ACd
(G, σ) and ACd

(G) agree as vector spaces, it follows from [28, Proposition 2.2.7] that 
ACd

(G, σ) is dense in Cc(G, σ) with respect to the I-norm, and hence also with respect to the full and 
reduced C*-norms, since they are both dominated by the I-norm. �

Note that we used that σ is locally constant in order to show that AR(G, σ) is closed under the twisted 
convolution and involution.

In the untwisted Steinberg algebra setting, given compact open bisections B and D of G, we have 
1B1D = 1BD. This is not the case in the twisted setting, due to the presence of the 2-cocycle in the 
convolution formula. Instead, we have the following properties concerning the generators 1B of the twisted 
Steinberg algebra AR(G, σ).

Lemma 3.4. Let G be an ample Hausdorff groupoid, and let σ : G(2) → R× be a continuous 2-cocycle. Suppose 
that B and D are compact open bisections of G.

(a) For all (α, β) ∈ Bs×r D, we have

(1B1D)(αβ) = σ(α, β) 1B(α) 1D(β) = σ(α, β) 1BD(αβ) = σ(α, β).

(b) If B ⊆ G(0) or D ⊆ G(0), then 1B1D = 1BD.

Suppose that R has a T -inverse involution r 
→ r for some T ≤ R× and that σ is T -valued.

(c) For all γ ∈ G, we have 1∗B(γ) = σ(γ, γ−1)−1 1B−1(γ).
(d) We have 1B1∗B = 1r(B) and 1∗B1B = 1s(B).
(e) We have 1B1∗B1B = 1B and 1∗B1B1∗B = 1∗B.
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Proof. (a) This follows immediately from the definition of the twisted convolution product because B and 
D are bisections.

(b) Suppose that B ⊆ G(0) or D ⊆ G(0), and fix γ ∈ G. If γ ∈ BD, then γ = αβ for some pair (α, β) ∈
Bs×r D. Since σ is normalised, we have σ(α, β) = 1, and so

(1B1D)(γ) = σ(α, β) 1B(α) 1D(β) = 1B(α) 1D(β) = 1BD(γ).

If γ /∈ BD, then (1B1D)(γ) = 0 = 1BD(γ). Thus 1B1D = 1BD.
(c) If γ ∈ B−1, then we have

1∗B(γ) = σ(γ, γ−1)−1 1B(γ−1) = σ(γ, γ−1)−1 1B−1(γ).

If γ /∈ B−1 = supp(1∗B), then

1∗B(γ) = 0 = 1B−1(γ) = σ(γ, γ−1)−1 1B−1(γ).

(d) We know that supp(1B1∗B) = BB−1 = r(B), and for all γ ∈ B, we have

(1B1∗B)(r(γ)) = (1B1∗B)(γγ−1)

= σ(γ, γ−1) 1B(γ) 1∗B(γ−1)

= σ(γ, γ−1) 1B(γ)σ(γ−1, γ)−1 1B−1(γ−1) (using part (c))

= 1

= 1r(B)(r(γ)).

Similarly, we have supp(1∗B1B) = B−1B = s(B), and so for all γ ∈ B, we have

(1∗B1B)(s(γ)) = (1∗B1B)(γ−1γ)

= σ(γ−1, γ) 1∗B(γ−1) 1B(γ)

= σ(γ−1, γ)σ(γ−1, γ)−1 1B−1(γ−1) 1B(γ) (using part (c))

= 1

= 1s(B)(s(γ)).

(e) Parts (b) and (d) imply that

1B1∗B1B = 1r(B)1B = 1r(B)B = 1B , and 1∗B1B1∗B = 1s(B)1∗B .

Hence supp(1∗B1B1∗B) = s(B)B−1 = B−1. For all γ ∈ B, we have

(1∗B1B1∗B)(γ−1) = σ(s(γ), γ−1) 1s(B)(s(γ)) 1∗B(γ−1) = 1∗B(γ−1),

and so 1∗B1B1∗B = 1∗B . �
The proof of the following result is inspired by the proof of [30, Proposition II.1.2].

Lemma 3.5. Let G be an ample Hausdorff groupoid, and let σ, τ : G(2) → T ≤ R× be two continuous 2-
cocycles whose cohomology classes coincide. Then AR(G, σ) is isomorphic to AR(G, τ). If R has a T -inverse 
involution, then AR(G, σ) is ∗-isomorphic to AR(G, τ).
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Proof. For this proof, we will use ∗ to denote convolution, in order to distinguish it from the pointwise 
product.

Since σ is cohomologous to τ , there is a continuous function b : G → T satisfying b(x) = 1 for all x ∈ G(0), 
and

σ(α, β) τ(α, β)−1 = b(α) b(β) b(αβ)−1, (3.4)

for all (α, β) ∈ G(2).
For each f ∈ AR(G, σ) = Cc(G, R), let θ(f) denote the pointwise product bf . Since bf : G → R

is continuous and satisfies supp(bf) = supp(f), we have bf ∈ Cc(G, R) = AR(G, τ). We claim that 
θ : AR(G, σ) → AR(G, τ) is an R-algebra isomorphism. It is clear that θ is R-linear. We must show that θ
respects the twisted convolution operation, and that it respects the involution in the case where R has a 
T -inverse involution.

For all (α, β) ∈ G(2), equation (3.4) implies that

σ(α, β) b(αβ) = τ(α, β) b(α) b(β). (3.5)

Hence, for all f, g ∈ AR(G, σ) and γ ∈ G, we have(
θ(f) ∗τ θ(g)

)
(γ) =

∑
(α,β)∈G(2),

αβ=γ

τ(α, β) θ(f)(α) θ(g)(β)

=
∑

(α,β)∈G(2),
αβ=γ

τ(α, β) b(α)f(α) b(β) g(β)

=
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) b(αβ) f(α) g(β) (using equation (3.5))

= b(γ)
∑

(α,β)∈G(2),
αβ=γ

σ(α, β) f(α) g(β)

=
(
b(f ∗σ g)

)
(γ)

= θ(f ∗σ g)(γ).

Therefore, θ is an R-algebra homomorphism.
We now show that θ is a bijection. Define b−1 : G → T by b−1(γ) := b(γ)−1. For each h ∈ AR(G, τ), we 

have b−1h ∈ AR(G, σ), and so θ(b−1h) = bb−1h = h. Hence θ is surjective. To see that θ is injective, suppose 
that f, g ∈ AR(G, σ) satisfy θ(f) = θ(g). Then f = b−1bf = b−1θ(f) = b−1θ(g) = b−1bg = g. Therefore, θ
is an R-algebra isomorphism.

Now suppose that R has a T -inverse involution r 
→ r. For all γ ∈ G, letting α = γ and β = γ−1 in 
equation (3.4) gives

σ(γ, γ−1) τ(γ, γ−1)−1 = b(γ) b(γ−1) b(γγ−1)−1 = b(γ) b(γ−1),

and hence

b(γ)σ(γ, γ−1)−1 = τ(γ, γ−1)−1 b(γ−1). (3.6)

Thus, for all f ∈ AR(G, σ) and γ ∈ G, we have
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θ(f∗)(γ) = b(γ) f∗(γ)

= b(γ)σ(γ, γ−1)−1 f(γ−1)

= τ(γ, γ−1)−1 b(γ−1) f(γ−1) (using equation (3.6))

= (bf)∗(γ)

= θ(f)∗(γ),

and so θ is a ∗-isomorphism. �
Proposition 3.6. Let G be an ample Hausdorff groupoid, and let σ : G(2) → T ≤ R× be a continuous 2-cocycle. 
The set

{1B : G → R : B is a nonempty compact open subset of G(0)}

forms a local unit for AR(G, σ). That is, for any finite collection f1, . . . , fn ∈ AR(G, σ), there exists a 
compact open subset E of G(0) such that

1E fi = fi = fi 1E ,

for each i ∈ {1, . . . , n}.

Proof. Since multiplication by 1E for E ⊆ G(0) is not affected by the 2-cocycle, this follows from the 
analogous non-twisted result [9, Lemma 2.6]. �
4. Twisted Steinberg algebras arising from discrete twists

There is another (often more general) notion of a twisted groupoid C*-algebra which is constructed from a 
“twist” over the groupoid itself; that is, from a locally split groupoid extension of a Hausdorff étale groupoid 
G by G(0) × T . In this section, we define a discretised algebraic analogue of this twist and its associated 
twisted Steinberg algebra. The primary modification is to replace the topological group T with a discrete 
subgroup T of R×. Many of the results in Sections 4.1 and 4.2 have roots or inspiration in Kumjian’s study 
of groupoid C*-algebras built from groupoid extensions in [18].

The results in Sections 4.1 and 4.2 also hold in the classical setting with the same proofs. If one is interested 
in T -valued 2-cocycles, replacing T with T (endowed with the standard topology) will not change any of 
the algebraic arguments therein, and the topological arguments carry through mutatis mutandis. As our 
ultimate focus is algebraic, we present all of our results in terms of T .

4.1. Discrete twists over Hausdorff étale groupoids

The definition of a twist over a Hausdorff étale groupoid, which we refer to as a classical twist, can be 
found in [32, Definition 11.1.1]. The following is our discretised version.

Definition 4.1. Let G be a Hausdorff étale groupoid, let R be a commutative unital ring, and let T ≤ R×. 
A discrete twist by T over G is a sequence

G(0) × T
i
↪→ Σ

q
� G,

where the groupoid G(0)×T is regarded as a trivial group bundle with fibres T , Σ is a Hausdorff groupoid with 
Σ(0) = i

(
G(0)×{1}

)
, and i and q are continuous groupoid homomorphisms that restrict to homeomorphisms 

of unit spaces, such that the following conditions hold.
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(a) The sequence is exact, in the sense that i({x} × T ) = q−1(x) for every x ∈ G(0), i is injective, and q is 
a quotient map.2

(b) The groupoid Σ is a locally trivial G-bundle, in the sense that for each α ∈ G, there is an open bisection 
Bα of G containing α, and a continuous map Pα : Bα → Σ such that
(i) q ◦ Pα = idBα

; and
(ii) the map (β, z) 
→ i(r(β), z) Pα(β) is a homeomorphism from Bα × T to q−1(Bα).

(c) The image of i is central in Σ, in the sense that i(r(ε), z) ε = ε i(s(ε), z) for all ε ∈ Σ and z ∈ T .

We denote a discrete twist over G either by (Σ, i, q), or simply by Σ. We identify Σ(0) with G(0) via 
q|Σ(0) . A continuous map Pα : Bα → Σ is called a (continuous) local section if it satisfies condition (b)(i). 
A (classical) twist over G has the same definition as above, with the exception that T is replaced by T .

In brief, we think of a discrete twist by T over G as a locally split extension Σ of G by G(0) × T , where 
the image of G(0) × T under i is central in Σ.

Example 4.2. If G is a discrete group, then a discrete twist over G as defined above is a central extension 
of G.

The following result contains several additional properties of discrete twists, which are consequences of 
Definition 4.1.

Lemma 4.3. Let G be a Hausdorff étale groupoid, and let (Σ, i, q) be a discrete twist by T ≤ R× over G. 
Then the following conditions hold.

(a) The groupoid Σ is étale.
(b) The map i is a homeomorphism onto an open subset of Σ.
(c) The open bisections and continuous local sections in Definition 4.1(b) can be chosen so that Pα(G(0) ∩

Bα) ⊆ Σ(0) for each α ∈ G.
(d) If G is ample, then the open bisections in Definition 4.1(b) can be chosen to be compact.

Proof. For part (a), we will show that the range map on Σ is a local homeomorphism. For this, fix ε ∈ Σ. It 
suffices to find an open neighbourhood Uε ⊆ Σ of ε such that r|Uε

is a homeomorphism onto an open subset of 
Σ. By Definition 4.1(b) there exist an open bisection Bq(ε) of G containing q(ε), and a continuous local section 
Pq(ε) : Bq(ε) → Σ, such that the map φq(ε) : Bq(ε)×T → q−1(Bq(ε)) given by φq(ε)(β, z) := i(r(β), z) Pq(ε)(β)
is a homeomorphism. For each (β, z) ∈ Bq(ε) × T , we have q

(
φq(ε)(β, z)

)
= q

(
Pq(ε)(β)

)
= β. Since ε ∈

q−1(Bq(ε)), there is a unique zε ∈ T such that φq(ε)(q(ε), zε) = ε. Define Uε := φq(ε)
(
Bq(ε) × {zε}

)
. Then 

ε ∈ Uε, and since T has the discrete topology and φq(ε) is an open map onto an open subset of Σ, Uε is an open 
subset of Σ. Since q(Uε) = Bq(ε), we have r(Uε) = (q|Σ(0))−1(r(q(Uε))

)
= (q|Σ(0))−1(r(Bq(ε))). Thus r(Uε) is 

open in Σ, because the range map in G is open and q|Σ(0) is continuous. To see that r|Uε
is injective, suppose 

that r(ζ) = r(η) for some ζ, η ∈ Uε. Then q(ζ), q(η) ∈ Bq(ε) and r(q(ζ)) = q(r(ζ)) = q(r(η)) = r(q(η)), and 
so q(ζ) = q(η) since r|Bq(ε) is injective. Thus, we have ζ = φq(ε)(q(ζ), zε) = φq(ε)(q(η), zε) = η, and so r|Uε

is injective. Therefore, Σ is étale.
For part (b), note that the image of i is q−1(G(0)), which is open in Σ because q is continuous and G(0)

is an open subset of G. Since i is injective and continuous by definition, we need only show that i is an open 
map. Fix z ∈ T and an open set U ⊆ G(0). Then U is open in G because G(0) is open in G. Since T has 

2 Although it is not explicitly stated in [32, Definition 11.1.1] that the groupoid homomorphism q : Σ → G is a quotient map and 
satisfies q(i(x, z)) = x for every (x, z) ∈ G(0) × T , it follows from the definition.
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the discrete topology, it suffices to show that i(U ×{z}) is open in Σ. Fix x ∈ U . By Definition 4.1(b) there 
exist an open bisection Bx of G containing x, and a continuous local section Px : Bx → Σ, such that the 
map φx : Bx × T → q−1(Bx) given by φx(γ, w) := i(r(γ), w) Px(γ) is a homeomorphism. Since φx|(Bx∩U)×T

is a homeomorphism onto q−1(Bx ∩ U), we may assume that Bx ⊆ U ⊆ G(0). For each y ∈ Bx, we have 
φx(y, 1) = i(y, 1) Px(y) = Px(y), and so Px(Bx) = φx(Bx × {1}). Since T has the discrete topology and 
φx is an open map onto an open subset of Σ, we deduce that Px(Bx) is an open subset of Σ. For each 
y ∈ Bx ⊆ G(0), we have φx(y, z) = i(y, z) Px(y), and hence

i(Bx × {z}) = φx(Bx × {z})Px(Bx)−1.

Since φx and inversion in Σ are homeomorphisms and part (a) implies that multiplication in Σ is an open 
map, we deduce that i(Bx × {z}) is an open subset of Σ. Therefore,

i(U × {z}) =
⋃
x∈U

i(Bx × {z})

is an open subset of Σ, and hence i is a homeomorphism.
For part (c), fix α ∈ G. By Definition 4.1(b) there exist an open bisection Dα of G containing α, and a 

continuous local section Sα : Dα → Σ, such that the map φSα
: (β, z) 
→ i(r(β), z) Sα(β) is a homeomorphism 

from Dα × T to q−1(Dα).
There are two cases to consider. First, suppose that α ∈ G\G(0). Define Bα := Dα\G(0) and Pα := Sα|Bα

. 
Since G is Hausdorff, G(0) is closed, and hence Bα is open. It follows from the definitions of Dα and Sα

that Bα is a bisection of G containing α, and that Pα is a continuous map satisfying q ◦ Pα = idBα
. 

Since G(0) ∩ Bα = ∅, we trivially have Pα(G(0) ∩ Bα) ⊆ Σ(0). Alternatively, suppose that α ∈ G(0). 
Define Bα := G(0) ∩ Dα and Pα := (q|Σ(0))−1|Bα

. Since G is étale, G(0) is open, and hence Bα is open. 
It follows from the definition of Dα that Bα is a bisection of G containing α. Since Bα ⊆ G(0) and 
q restricts to a homeomorphism of unit spaces, Pα is a continuous map satisfying q ◦ Pα = idBα

and 
Pα(G(0) ∩Bα) = (q|Σ(0))−1(Bα) ⊆ Σ(0).

We now show that condition (b)(ii) of Definition 4.1 is still satisfied in both cases. Define φPα
(β, z) :=

i(r(β), z) Pα(β) for all (β, z) ∈ Bα × T . To see that φPα
is injective, suppose that φPα

(β, z) = φPα
(γ, w) for 

some (β, z), (γ, w) ∈ Bα × T . Since i(G(0) × T ) = q−1(G(0)) and q ◦Pα = idBα
, we have β = q

(
φPα

(β, z)
)

=
q
(
φPα

(γ, w)
)

= γ, and hence

i(r(β), z) = φPα
(β, z)Pα(β)−1 = φPα

(γ,w)Pα(β)−1 = i(r(γ), w) = i(r(β), w).

It follows from the injectivity of i that z = w, and hence φPα
is injective. To see that φPα

is surjective, 
fix ε ∈ q−1(Bα), and let β := q(ε). Then q

(
ε Pα(β)−1) = q(ε)β−1 = r(β), and so ε Pα(β)−1 ∈ q−1(r(β)). 

Hence Definition 4.1(a) implies that there exists z ∈ T such that ε Pα(β)−1 = i(r(β), z). Thus φPα
(β, z) =

i(r(β), z) Pα(β) = ε, and so φPα
is surjective.

If α ∈ G\G(0), then φPα
= φSα

|Bα×T , and it follows that φPα
is open and continuous. If α ∈ G(0), then 

Bα ⊆ G(0), and φPα
(y, z) = i(y, z) (q|Σ(0))−1(y) for all (y, z) ∈ Bα × T . Part (a) implies that multiplication 

in Σ is open, and it follows from the fact that the maps i and (q|Σ(0))−1 and multiplication in Σ are all open 
and continuous that φPα

is also open and continuous. Therefore, in either case, φPα
: Bα × T → q−1(Bα) is 

a homeomorphism.
Part (d) is immediate, because every ample groupoid has a basis of compact open bisections. �
We define a notion of an isomorphism of discrete twists in an analogous way to the classical version.
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Definition 4.4. Let G be a Hausdorff étale groupoid. We say that two discrete twists (Σ, i, q) and (Σ′, i′, q′)
by T ≤ R× over G are isomorphic if there exists a groupoid isomorphism3 ψ : Σ → Σ′ such that the following 
diagram commutes.

G(0) × T Σ G

G(0) × T Σ′ G

i q

ψ

i′ q′

It is natural to ask whether there is a correspondence between discrete twists over a groupoid and locally 
constant 2-cocycles which can be used to “twist” the multiplication in Steinberg algebras, given the shared 
terminology. As one familiar with the literature would expect, we can readily build a twist over a Hausdorff 
étale groupoid from a locally constant 2-cocycle. To demonstrate this, we adapt the construction outlined 
in [32, Example 11.1.5] to the setting where the continuous 2-cocycle maps into a discrete group T ≤ R×

(rather than T ).

Example 4.5. Let G be a Hausdorff étale groupoid, and let σ : G(2) → T ≤ R× be a continuous 2-cocycle. 
Let G ×σ T be the set G × T endowed with the product topology, with multiplication given by

(α, z)(β,w) := (αβ, σ(α, β) zw),

and inversion given by

(α, z)−1 := (α−1, σ(α, α−1)−1 z−1) = (α−1, σ(α−1, α)−1 z−1),

for all (α, β) ∈ G(2) and z, w ∈ T . Then G ×σ T is a Hausdorff groupoid. In fact, unlike in the classical 
setting, G being étale implies that G ×σ T is étale, because for each z ∈ T and bisection U of G, r|U×{z} is 
a homeomorphism onto r(U) × {1}. Define i : G(0) × T → G ×σ T by i(x, z) := (x, z), and q : G ×σ T → G

by q(γ, z) := γ. Then q is easily verified to be a quotient map, and since σ is normalised, i is an injective 
groupoid homomorphism. Just as in [32, Example 11.1.5], it is routine to then check that (G ×σ T, i, q) is a 
discrete twist by T over G.

Example 4.5 shows that any locally constant 2-cocycle on a Hausdorff étale groupoid G gives rise to a 
discrete twist over G; the converse is true when G is additionally second-countable and ample. The proof 
of this fact and its consequences will be the focus of the remainder of this subsection.

Before we proceed, we need two technical results regarding the left and right group actions of T on Σ
that are induced by the map i : G(0) × T → Σ. Identifying Σ(0) with G(0), these actions are given by

z · ε := i(r(ε), z) ε and ε · z := ε i(s(ε), z),

for each z ∈ T and ε ∈ Σ. Since the image of i is central in Σ, we have z ·ε = ε ·z, and (z ·ε)(w ·δ) = (zw) ·(εδ)
for all (ε, δ) ∈ Σ(2) and z, w ∈ T .

Lemma 4.6. Let G be a Hausdorff étale groupoid. Suppose that (Σ1, i1, q1) and (Σ2, i2, q2) are discrete twists 
by T ≤ R× over G, and that ψ : Σ1 → Σ2 is an isomorphism of twists, as defined in Definition 4.4. Then 
ψ respects the action of T , in the sense that ψ(z · ε) = z · ψ(ε) for all z ∈ T and ε ∈ Σ1.

3 We say that ψ : Σ → Σ′ is a groupoid isomorphism if it is a homeomorphism such that ψ(δε) = ψ(δ)ψ(ε) for all (δ, ε) ∈ Σ(2).
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Proof. Since ψ : Σ1 → Σ2 is an isomorphism of twists, we have i2 = ψ ◦ i1. Thus, for all z ∈ T and ε ∈ Σ1, 
we have ψ(z · ε) = ψ

(
i1(r(ε), z) ε

)
= i2(r(ε), z) ψ(ε) = z · ψ(ε). �

The following result is inspired by [32, Lemma 11.1.3].

Lemma 4.7. Let G be a Hausdorff étale groupoid, and let (Σ, i, q) be a discrete twist by T ≤ R× over G. 
Suppose that δ, ε ∈ Σ satisfy q(δ) = q(ε). Then r(δ) = r(ε), and there is a unique z ∈ T such that ε = z · δ.

Proof. Fix δ, ε ∈ Σ such that q(δ) = q(ε). Then q(r(δ)) = r(q(δ)) = r(q(ε)) = q(r(ε)), and hence r(δ) = r(ε), 
because q restricts to a homeomorphism of unit spaces. Thus q(εδ−1) = q(ε)q(ε)−1 = r(q(ε)) ∈ G(0), and 
hence there is a unique element z ∈ T such that εδ−1 = i

(
r(q(ε)), z

)
. By identifying Σ(0) with G(0), we 

obtain ε = i(r(ε), z) δ = z · δ. �
Notice that in the case where Σ is the twist G ×σ T described in Example 4.5, we can check Lemma 4.7

directly. Identifying Σ(0) = G(0) × {1} with G(0), we have

z · (α,w) = i(r(α), z)(α,w) = (r(α), z)(α,w) = (α, zw),

for all z ∈ T and (α, w) ∈ Σ. If q(δ) = q(ε) for some δ, ε ∈ Σ, then δ = (α, w1) and ε = (α, w2) for some 
α ∈ G and unique w1, w2 ∈ T . Since T is a group, there is a unique z ∈ T such that zw1 = w2, and hence 
z · δ = (α, zw1) = ε.

Our key tool in what follows will be a (continuous) global section; that is, a continuous map P : G → Σ
satisfying q ◦ P = idG and P (G(0)) ⊆ Σ(0) = i(G(0) × {1}). Our next result shows that every discrete 
twist admitting a continuous global section is isomorphic to a discrete twist coming from a locally constant 
2-cocycle, as described in Example 4.5. Parts of this result are inspired by the analogous classical versions 
in [18, Section 4] and [32, Chapter 11].

Proposition 4.8. Let G be a Hausdorff étale groupoid, and let (Σ, i, q) be a discrete twist by T ≤ R× over G. 
Suppose that Σ is topologically trivial, in the sense that it admits a continuous global section P : G → Σ. 
Then the following conditions hold.

(a) The continuous global section P preserves composability, and induces a continuous 2-cocycle σ : G(2) →
T satisfying

P (α)P (β)P (αβ)−1 = i
(
r(α), σ(α, β)

)
,

for all (α, β) ∈ G(2).
(b) For all (α, β) ∈ G(2), we have

P (α)P (β) = σ(α, β) · P (αβ) and P (α)−1 = σ(α, α−1)−1 · P (α−1).

(c) Let (G ×σ T, iσ, qσ) be the discrete twist from Example 4.5. The map φP : G ×σ T → Σ defined by 
φP (α, z) := z · P (α) gives an isomorphism of the twists G ×σ T and Σ.

Proof. For (a), fix (α, β) ∈ G(2). Since q ◦ P = idG and q is a groupoid homomorphism that restricts to a 
homeomorphism of unit spaces, we have

q(s(P (α))) = s(q(P (α))) = s(α) = r(β) = r(q(P (β))) = q(r(P (β))),

and hence (P (α), P (β)) ∈ Σ(2). We have
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q
(
P (α)P (β)P (αβ)−1) = q(P (α)) q(P (β)) q(P (αβ))−1 = αβ(αβ)−1 = r(α) = q

(
P (r(α))

)
,

and so Lemma 4.7 implies that there is a unique element σ(α, β) ∈ T such that

P (α)P (β)P (αβ)−1 = σ(α, β) · P (r(α)) = i
(
r(α), σ(α, β)

)
. (4.1)

Therefore, σ(α, β) = (π2 ◦ i−1)
(
P (α)P (β)P (αβ)−1), where π2 is the projection of G(0) × T onto the second 

coordinate. Since i is a homeomorphism onto its image by Lemma 4.3(b), we deduce that σ is continuous 
because it is a composition of continuous functions.

To check that σ satisfies the 2-cocycle identity, we fix (α, β, γ) ∈ G(3) and show that

σ(β, γ) = σ(α, β)σ(αβ, γ)σ(α, βγ)−1.

Since the image of i is central in Σ, we have

i
(
r(α), σ(β, γ)

)
P (α) = P (α) i

(
s(α), σ(β, γ)

)
= P (α) i

(
r(β), σ(β, γ)

)
. (4.2)

Using equation (4.2) for the first equality below and equation (4.1) for the second and fourth equalities, we 
obtain

i
(
r(α), σ(β, γ)

)
= P (α) i

(
r(β), σ(β, γ)

)
P (α)−1

= P (α)P (β)P (γ)P (βγ)−1P (α)−1

=
(
P (α)P (β)P (αβ)−1)(P (αβ)P (γ)P (αβγ)−1)(P (αβγ)P (βγ)−1P (α)−1)

= i
(
r(α), σ(α, β)

)
i
(
r(αβ), σ(αβ, γ)

)
i
(
r(α), σ(α, βγ)

)−1

= i
(
r(α), σ(α, β)σ(αβ, γ)σ(α, βγ)−1).

Thus, by the injectivity of i, we deduce that σ satisfies the 2-cocycle identity.
To see that σ is normalised, first note that for all α in G,

q
(
i
(
r(α), σ(r(α), α)

))
= q

(
i
(
r(α), σ(α, s(α))

))
= q

(
i(r(α), 1)

)
= r(α), (4.3)

and i(r(α), 1) ∈ Σ(0). Moreover, by equation (4.1), we have

i
(
r(α), σ(r(α), α)

)
= P (r(α))P (α)P (r(α)α)−1 = P (r(α)) ∈ Σ(0),

and, since P (s(α)) ∈ Σ(0),

i
(
r(α), σ(α, s(α))

)
= P (α)P (s(α))P (αs(α))−1 = P (α)P (α)−1 = r(P (α)) ∈ Σ(0).

Since q restricts to a homeomorphism of unit spaces and i is injective, we deduce from equation (4.3) that 
for all α ∈ G,

σ(r(α), α) = σ(α, s(α)) = 1.

For (b), fix (α, β) ∈ G(2). Then equation (4.1) implies that

P (α)P (β) = i
(
r(αβ), σ(α, β)

)
P (αβ) = σ(α, β) · P (αβ),

and also that
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P (α)P (α−1)P (αα−1)−1 = i
(
r(α), σ(α, α−1)

)
.

Since P (αα−1)−1 = P (r(α)) ∈ Σ(0), we deduce that

P (α)−1 = P (α−1) i
(
r(α), σ(α, α−1)

)−1 = P (α−1) · σ(α, α−1)−1 = σ(α, α−1)−1 · P (α−1).

For (c), define φP : G ×σT → Σ by φP (α, z) := z ·P (α) = i(r(α), z) P (α). Then φP is continuous, because 
it is the pointwise product of the continuous maps i ◦ (r× id) and P ◦ π1 from G ×σ T to Σ, where π1 is the 
projection of G ×σ T onto the first coordinate. To see that φP is injective, suppose that (α, z), (β, w) ∈ G(2)

satisfy φP (α, z) = φP (β, w). Then

α = q(i(r(α), z)) q(P (α)) = q(φP (α, z)) = q(φP (β,w)) = q(i(r(β), w)) q(P (β)) = β.

Therefore,

i(r(α), z) = φP (α, z)P (α)−1 = φP (β,w)P (β)−1 = i(r(β), w) = i(r(α), w),

and since i is injective, we have z = w. Thus φP is injective. To see that φP is surjective, fix ε ∈ Σ. Since 
q(ε) = q

(
P (q(ε))

)
, Lemma 4.7 implies that there exists a unique element zε ∈ T such that

φP (q(ε), zε) = zε · P (q(ε)) = i(r(ε), zε)P (q(ε)) = ε.

Thus φP is surjective, and we have zε = π2
(
i−1(ε P (q(ε))−1)), where π2 is the projection of G(0) × T onto 

the second coordinate. Since φ−1
P (ε) = (q(ε), zε) and Lemma 4.3(b) implies that i−1 is continuous on the 

image of i, we deduce that φ−1
P is continuous, because it is a composition of continuous maps. Hence φP is 

a homeomorphism.
To see that φP is also a groupoid homomorphism, fix (α, β) ∈ G(2) and z, w ∈ T . Then, using part (b) 

for the third equality, we have

φP (α, z)φP (β,w) = (z · P (α))(w · P (β))

= (zw) · (P (α)P (β))

= (zw) ·
(
σ(α, β) · P (αβ)

)
=

(
σ(α, β)zw

)
· P (αβ)

= φP

(
αβ, σ(α, β)zw

)
= φP

(
(α, z)(β,w)

)
.

Hence φP is a groupoid isomorphism.
We conclude by showing that φP ◦ iσ = i and q ◦ φP = qσ. Recall from Example 4.5 that iσ : G(0) × T →

G ×σ T is the inclusion map and qσ : G ×σ T → G is the projection onto the first coordinate. Fix α ∈ G and 
w ∈ T . Since P (r(α)) ∈ Σ(0), we have

(φP ◦ iσ)(r(α), w) = φP (r(α), w) = i(r(α), w)P (r(α)) = i(r(α), w),

and

(q ◦ φP )(α,w) = q
(
i(r(α), w)P (α)

)
= r(α)α = α = qσ(α,w).

Therefore, Σ and G ×σ T are isomorphic as twists over G. �
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As one might expect, all discrete twists constructed from locally constant 2-cocycles (as in Example 4.5) 
are topologically trivial, as we now prove.

Lemma 4.9. Let G be a Hausdorff étale groupoid, and let σ : G(2) → T ≤ R× be a continuous 2-cocycle. 
The twist (G ×σ T, i, q) described in Example 4.5 is topologically trivial, and the map S : γ 
→ (γ, 1) is a 
continuous global section from G to G ×σ T that induces σ.

Proof. It is clear that S : G → G ×σ T is a continuous global section, and so G ×σ T is topologically trivial. 
By Proposition 4.8(a), S induces a continuous 2-cocycle ω : G(2) → T satisfying S(α)S(β)S(αβ)−1 =
i
(
r(α), ω(α, β)

)
= (r(α), ω(α, β)), for all (α, β) ∈ G(2). To see that S induces σ, fix (α, β) ∈ G(2). Then

(r(α), ω(α, β)) = S(α)S(β)S(αβ)−1

= (α, 1)(β, 1)(αβ, 1)−1

= (αβ, σ(α, β))
(
(αβ)−1, σ(αβ, (αβ)−1)−1)

=
(
r(αβ), σ(αβ, (αβ)−1)σ(α, β)σ(αβ, (αβ)−1)−1)

= (r(α), σ(α, β)).

Therefore, σ = ω, and so S induces σ. �
Together, Proposition 4.8 and Lemma 4.9 give us a one-to-one correspondence between discrete twists 

over a Hausdorff étale groupoid G that admit a continuous global section and discrete twists over G arising 
from locally constant 2-cocycles on G.

As we shall see in Theorem 4.10, it turns out that all discrete twists over a second-countable ample 
Hausdorff groupoid G admit a continuous global section. We are grateful to Elizabeth Gillaspy for alerting 
us to this folklore fact for T = Td, citing conversations with Alex Kumjian. Because we know of no proofs 
in the literature, we give a detailed proof here in the discrete setting.

Theorem 4.10. Let G be a second-countable ample Hausdorff groupoid, and let (Σ, i, q) be a discrete twist by 
T ≤ R× over G. Then Σ is topologically trivial.

In order to prove Theorem 4.10, we need the following lemma.

Lemma 4.11. Let G be a second-countable ample Hausdorff groupoid, and suppose that U is an open cover 
of G. Then U has a countable refinement {Bj}∞j=1 of mutually disjoint compact open bisections that form a 
cover of G.

Proof. Let U be an open cover of G. By possibly passing to a refinement, we may assume that U consists 
of compact open bisections. Since G is second-countable, it is Lindelöf, and so we may assume that U =
{Dj}∞j=1, where each Dj is a compact open bisection of G. Define B1 := D1, and for each n ≥ 2, define 
Bn := Dn\ ∪n−1

i=1 Bi. Then each Bj is a compact open bisection contained in Dj, and {Bj}∞i=j forms a 
disjoint cover of G. �
Proof of Theorem 4.10. Recall from Definition 4.1(b) that for each α ∈ G, there exists an open bisection 
Dα ⊆ G containing α, and a continuous local section Pα : Dα → Σ such that the map φα : Dα×T → q−1(Dα)
given by φα(β, z) := i(r(β), z) Pα(β) = z · Pα(β) is a homeomorphism. Since G is ample, we may assume 
that each Dα is compact, by Lemma 4.3(d). By Lemma 4.3(c), we may assume that Pα(G(0) ∩Dα) ⊆ Σ(0)

for each α ∈ G. By Lemma 4.11, {Dα}α∈G has a countable refinement {Bj}∞j=1 consisting of mutually 
disjoint compact open bisections that form a cover of G. For each j ≥ 1, choose αj ∈ G such that Bj ⊆ Dαj

, 
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and define Pj := Pαj
|Bj

. For each β ∈ G, there is a unique jβ ≥ 1 such that β ∈ Bjβ , and hence the map 
P : G → Σ given by P (β) := Pjβ (β) is well-defined. Since q(P (β)) = q(Pjβ (β)) = β = idG(β) for all β ∈ G, 
and Pj(G(0)∩Bj) ⊆ Σ(0) for each j ≥ 1, P is a global section. To see that P is continuous, let U be an open 
subset of Σ. Then P−1(U) = ∪∞

j=1 P
−1
j (U) = ∪∞

j=1
(
P−1
αj

(U) ∩ Bj

)
. Since each Pαj

is continuous and each 
Bj is open, P−1(U) is open in G. Hence P is a continuous global section, and Σ is topologically trivial. �
4.2. Twists and 2-cocycles

In this section we restrict our attention to discrete twists arising from locally constant 2-cocycles, and 
we investigate the relationships between such twists. In particular, we prove the following theorem.

Theorem 4.12. Let G be a Hausdorff étale groupoid, and let σ, τ : G(2) → T ≤ R× be continuous 2-cocycles. 
The following are equivalent:

(1) G ×σ T ∼= G ×τ T ;
(2) σ is cohomologous to τ ; and
(3) σ is induced by a continuous global section P : G → G ×τ T .

We will split the proof of this theorem into three lemmas. This proof has notable overlap with [18, 
Section 4] for the case where R = Cd and T = Td, particularly for the equivalence of (2) and (3). However, 
the two formulations are sufficiently different to warrant independent treatment here.

The following lemma expands on an argument given in [32, Remark 11.1.6] showing that the cohomology 
class of a continuous 2-cocycle σ : G(2) → T ≤ R× can always be recovered from the discrete twist G ×σ T .

Lemma 4.13. Let G be a Hausdorff étale groupoid, and let τ : G(2) → T ≤ R× be a continuous 2-cocycle. 
Suppose that P : G → G ×τ T is a continuous global section, and that σ : G(2) → T is the induced continuous 
2-cocycle satisfying

i
(
r(α), σ(α, β)

)
= P (α)P (β)P (αβ)−1

for all (α, β) ∈ G(2), as in Proposition 4.8. Then σ is cohomologous to τ .

Proof. To see that σ is cohomologous to τ , we will find a continuous function b : G → T satisfying b(x) = 1
for all x ∈ G(0), and

σ(α, β) = τ(α, β) b(α) b(β) b(αβ)−1

for all (α, β) ∈ G(2). For each γ ∈ G, let b(γ) be the unique element of T such that P (γ) = (γ, b(γ)). Since 
P (G(0)) ⊆ G(0) × {1}, we have b(x) = 1 for all x ∈ G(0). Since b = π2 ◦ P , where π2 is the projection of 
G ×τ T onto the second coordinate, b is continuous. For all (α, β) ∈ G(2), we have

i
(
r(α), σ(α, β)

)
= P (α)P (β)P (αβ)−1

= (α, b(α)) (β, b(β)) (αβ, b(αβ))−1

=
(
αβ, τ(α, β) b(α) b(β)

)(
(αβ)−1, τ(αβ, (αβ)−1)−1 b(αβ)−1)

=
(
αβ(αβ)−1, τ(αβ, (αβ)−1) τ(α, β) b(α) b(β) τ(αβ, (αβ)−1)−1 b(αβ)−1)

=
(
r(α), τ(α, β) b(α) b(β) b(αβ)−1).

Thus, noting that i : G(0) × T → G ×σ T is the inclusion map, we deduce that



B. Armstrong et al. / Journal of Pure and Applied Algebra 226 (2022) 106853 21
σ(α, β) = τ(α, β) b(α) b(β) b(αβ)−1

for all (α, β) ∈ G(2), as required. �
We now show that cohomologous locally constant 2-cocycles give rise to isomorphic twists.

Lemma 4.14. Let G be a Hausdorff étale groupoid, and let σ, τ : G(2) → T ≤ R× be continuous 2-cocycles. 
If σ is cohomologous to τ , then the discrete twists G ×σ T and G ×τ T are isomorphic.

Proof. Suppose that σ is cohomologous to τ . Then there is a continuous function b : G → T satisfying 
b(x) = 1 for all x ∈ G(0), and

b(αβ)σ(α, β) = τ(α, β) b(α) b(β) (4.4)

for all (α, β) ∈ G(2). Define ψ : G ×σ T → G ×τ T by ψ(α, z) := (α, b(α)z). Then ψ is bijective, with inverse 
given by ψ−1(α, z) := (α, b(α)−1z). Since ψ(α, z) = (r(α), b(α))(α, z), ψ is continuous, because it is the 
pointwise product of the continuous map (r × b) ◦ π1 and the identity map, where π1 is the projection 
of G ×σ T onto the first coordinate. A similar argument shows that ψ−1 is continuous, and thus ψ is a 
homeomorphism.

To see that ψ is a groupoid homomorphism, fix (α, β) ∈ G(2) and z, w ∈ T . Using equation (4.4) for the 
third equality, we obtain

ψ((α, z)(β,w)) = ψ(αβ, σ(α, β) zw)

= (αβ, b(αβ)σ(α, β) zw)

= (αβ, τ(α, β) b(α) b(β) zw)

= (α, b(α)z) (β, b(β)w)

= ψ(α, z)ψ(β,w),

as required.
We have now shown that G ×σT and G ×τ T are isomorphic as groupoids. To see that they are isomorphic 

as discrete twists, let iσ : G(0) × T → G ×σ T and iτ : G(0) × T → G ×τ T be the inclusion maps, and let 
qσ : G ×σ T → G and qτ : G ×τ T → G be the projections onto the first coordinate. Since b(x) = 1 for all 
x ∈ G(0), we have

ψ(iσ(x, z)) = (x, b(x)z) = (x, z) = iτ (x, z),

and

qτ (ψ(α, z)) = qτ (α, b(α)z) = α = qσ(α),

for all x ∈ G(0), α ∈ G, and z ∈ T . Therefore, ψ is an isomorphism of the twists G ×σ T and G ×τ T . �
Finally, we show that if σ and τ are locally constant 2-cocycles on G giving rise to isomorphic discrete 

twists G ×σ T and G ×τ T , then G ×τ T admits a continuous global section that induces σ.

Lemma 4.15. Let G be a Hausdorff étale groupoid, and let σ, τ : G(2) → T ≤ R× be continuous 2-cocycles. 
If (G ×σ T, iσ, qσ) and (G ×τ T, iτ , qτ ) are isomorphic as twists, then σ is induced by a continuous global 
section P : G → G ×τ T .



22 B. Armstrong et al. / Journal of Pure and Applied Algebra 226 (2022) 106853
Proof. Suppose that ψ : G ×σT → G ×τ T is an isomorphism of twists. By Lemma 4.9, the map S : γ 
→ (γ, 1)
is a continuous global section from G to G ×σ T that induces σ, in the sense that

S(α)S(β)S(αβ)−1 = iσ
(
r(α), σ(α, β)

)
(4.5)

for all (α, β) ∈ G(2).
Define P := ψ ◦S : G → G ×τ T . We claim that P is a continuous global section. Since S is a continuous 

global section and ψ is a groupoid isomorphism, P is continuous and P (G(0)) ⊆ G(0) × {1}. Recall from 
Example 4.5 that qσ : G ×σ T → G and qτ : G ×τ T → G are the projections onto the first coordinate. Since 
ψ is an isomorphism of twists, we have

qτ ◦ P = qτ ◦ (ψ ◦ S) = (qτ ◦ ψ) ◦ S = qσ ◦ S = idG,

and hence P is a continuous global section.
We now show that P induces σ. By Proposition 4.8(a), P induces a continuous 2-cocycle ω : G(2) → T

satisfying

P (α)P (β)P (αβ)−1 = iτ
(
r(α), ω(α, β)

)
(4.6)

for all (α, β) ∈ G(2). Together, equations (4.6) and (4.5) imply that

iτ
(
r(α), ω(α, β)

)
= P (α)P (β)P (αβ)−1

= ψ
(
S(α)S(β)S(αβ)−1)

= ψ
(
iσ
(
r(α), σ(α, β)

))
= iτ

(
r(α), σ(α, β)

)
,

for all (α, β) ∈ G(2). Since iσ and iτ are both injective, we deduce that σ = ω, and hence σ is induced 
by P . �

We now combine these three lemmas to prove our main theorem for this section.

Proof of Theorem 4.12. Lemma 4.15 gives (1) =⇒ (3), Lemma 4.13 gives (3) =⇒ (2), and Lemma 4.14
gives (2) =⇒ (1). �

We conclude this section with a corollary of Theorem 4.12.

Corollary 4.16. Let G be a Hausdorff étale groupoid, and let Σ be a topologically trivial discrete twist by 
T ≤ R× over G. Suppose that σ, τ : G(2) → T are continuous 2-cocycles that are induced by continuous 
global sections Pσ, Pτ : G → Σ, as in Proposition 4.8(a). Then σ is cohomologous to τ .

Proof. By Proposition 4.8(c), we have G ×σ T ∼= Σ ∼= G ×τ T , and hence Theorem 4.12 implies that σ is 
cohomologous to τ . �
4.3. Twisted Steinberg algebras arising from discrete twists

In this section we give a construction of a twisted Steinberg algebra AR(G; Σ) coming from a topologically 
trivial discrete twist Σ over an ample Hausdorff groupoid G. We prove that if two such twists are isomorphic, 
then they give rise to isomorphic twisted Steinberg algebras. We also prove that if Σ ∼= G ×σ T for some 
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continuous 2-cocycle σ : G(2) → T ≤ R×, then the twisted Steinberg algebras AR(G; Σ) and AR(G, σ−1) are 
R-algebraically isomorphic, where σ−1 is the continuous T -valued 2-cocycle (α, β) 
→ σ(α, β)−1.

Definition 4.17. Let G be an ample Hausdorff groupoid, and let (Σ, i, q) be a topologically trivial discrete 
twist by T ≤ R× over G. We say that f ∈ C(Σ, R) is T -equivariant if f(z · ε) = z f(ε) for all z ∈ T and 
ε ∈ Σ, and we define

AR(G; Σ) := {f ∈ C(Σ, R) : f is T -equivariant and q(supp(f)) is compact}.

We first show that AR(G; Σ) is an R-module under the pointwise operations inherited from C(Σ, R).

Lemma 4.18. Let G be an ample Hausdorff groupoid, and let (Σ, i, q) be a topologically trivial discrete twist 
by T ≤ R× over G. Then AR(G; Σ) is an R-submodule of C(Σ, R).

Proof. Fix f, g ∈ AR(G; Σ) and λ ∈ R. Then λf +g is continuous and T -equivariant. Since q
(
supp(λf +g)

)
is contained in the compact set q(supp(f)) ∪ q(supp(g)), we deduce that q

(
supp(λf + g)

)
has compact 

closure. Hence λf + g ∈ AR(G; Σ). �
Since we are assuming that the twist Σ is topologically trivial, it necessarily admits a continuous global 

section P : G → Σ. We now show that Definition 4.17 can be rephrased in terms of any such P .

Lemma 4.19. Let G be an ample Hausdorff groupoid, and let (Σ, i, q) be a topologically trivial discrete twist 
by T ≤ R× over G. Let P : G → Σ be any continuous global section. Then

AR(G; Σ) = {f ∈ C(Σ, R) : f is T -equivariant and f ◦ P ∈ Cc(G,R)}.

Proof. Fix f ∈ C(Σ, R). Then f ◦ P is continuous. It suffices to show that q(supp(f)) = supp(f ◦ P ), 
because then q(supp(f)) is compact if and only if f ◦ P ∈ Cc(G, R). By Proposition 4.8(c), we know that 
Σ = {z · P (α) : (α, z) ∈ G × T}. Therefore, we have

q(supp(f)) = {q(ε) : ε ∈ Σ, f(ε) �= 0}
= {q(z · P (α)) : (α, z) ∈ G× T, f(z · P (α)) �= 0}
= {α : (α, z) ∈ G× T, z f(P (α)) �= 0}
= {α ∈ G : (f ◦ P )(α) �= 0}
= supp(f ◦ P ),

as required. �
Remarks 4.20 (On the relationship with the classical setting).

(1) It is crucial here that we are dealing with discrete twists. Suppose that σ is a T -valued 2-cocycle on 
an ample Hausdorff groupoid G that is continuous with respect to the standard topology on T , and 
consider the classical twist G ×σ T over G. Suppose that f ∈ C(G ×σ T ) is a T -equivariant function 
that is locally constant. Then, for any α ∈ G, there is an open subset V of G containing α and an open 
subset W of T containing 1 such that f is constant on V ×W . Since W is open in the standard topology 
on T , we have W �= {1}. For each z ∈ W\{1}, we have

f(α, 1) = f(α, z) = f(z · (α, 1)) = z f(α, 1),
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and hence f |G×{1} ≡ 0. But this implies that f(β, w) = 0 for all (β, w) ∈ G ×σ T , because f is 
T -equivariant. In other words, if singleton sets are not open in T , then the only locally constant T -
equivariant function on G ×σ T is the zero function.

(2) It is also crucial that Definition 4.17 differs from the C*-algebraic analogue defined in [32, Defini-
tion 11.1.7 and Theorem 11.1.11], which is a C*-completion of the subalgebra of continuous compactly 
supported T -equivariant functions on a (classical) twist over G. To see why the compact-support condi-
tion would not be appropriate in the discrete setting, suppose that G is an ample Hausdorff groupoid, 
and that σ : G(2) → Td is a continuous 2-cocycle. Since Td has the discrete topology, nonzero functions 
in ACd

(G; G ×σ Td) are not compactly supported. To see this, fix f ∈ ACd
(G; G ×σ Td) such that 

f(α, w) �= 0 for some (α, w) ∈ G ×σ Td. Then, for all z ∈ Td, we have

f(α, z) = f(α, z ww) = f
(
(z w) · (α,w)

)
= z w f(α,w) �= 0.

Thus {α} × Td is a closed subset of supp(f) which is not compact (because Td is not compact), and 
hence f is not compactly supported.

Proposition 4.21. Let G be an ample Hausdorff groupoid, and let (Σ, i, q) be a topologically trivial discrete 
twist by T ≤ R× over G. Let P : G → Σ be any continuous global section. There is a multiplication (called 
convolution) on the R-module AR(G; Σ), given by

(f ∗Σ g)(ε) :=
∑

γ∈Gs(q(ε))

f(εP (γ)) g(P (γ)−1), (4.7)

under which AR(G; Σ) is an R-algebra. We call AR(G; Σ) the twisted Steinberg algebra associated to the 
pair (G, Σ). If R has a T -inverse involution r 
→ r, then there is also an involution on AR(G; Σ), given by

f∗(ε) := f(ε−1),

under which AR(G; Σ) is a ∗-algebra over R.

Proof. By Lemma 4.18, AR(G; Σ) is an R-module. We first show that the multiplication formula given in 
equation (4.7) is well-defined. To see this, fix f, g ∈ AR(G; Σ), and suppose that P, S : G → Σ are continuous 
global sections. For each γ ∈ G, we have q(P (γ)) = γ = q(S(γ)), and hence by Lemma 4.7, there exists a 
unique zγ ∈ T such that P (γ) = zγ · S(γ). Fix ε ∈ Σ and γ ∈ Gs(q(ε)). Since f and g are T -equivariant, we 
have

f(εP (γ)) g(P (γ)−1) = f
(
zγ · (εS(γ))

)
g
(
z−1
γ · S(γ)−1)

= zγ f(εS(γ)) z−1
γ g(S(γ)−1)

= f(εS(γ)) g(S(γ)−1),

and so the sum defining f ∗Σ g is independent of the choice of continuous global section. To see that 
the sum in equation (4.7) is finite, observe that since f and g are T -equivariant, Lemma 4.7 implies that 
εP (γ) ∈ supp(f) if and only if q(ε)γ ∈ q(supp(f)), and P (γ)−1 ∈ supp(g) if and only if γ−1 ∈ q(supp(g)). 
Since q(supp(f)) and q(supp(g)) are compact and Gs(q(ε)) is discrete, it follows that the set{

γ ∈ Gs(q(ε)) : f(εP (γ)) g(P (γ)−1) �= 0
}

⊆ Gs(q(ε)) ∩ q(ε)−1q(supp(f)) ∩ q(supp(g))−1

is finite, and hence f ∗Σ g is well-defined.



B. Armstrong et al. / Journal of Pure and Applied Algebra 226 (2022) 106853 25
To see that AR(G; Σ) is an R-algebra, we will just show that it is closed under the multiplication, as 
it is routine to check that the multiplication satisfies all of the other necessary properties. Recall that by 
Proposition 4.8, P induces a continuous 2-cocycle σ : G(2) → T ≤ R× such that the map φP : G ×σ T → Σ
given by φP (α, z) := z · P (α) is an isomorphism of twists. Fix f, g ∈ AR(G; Σ), and define fP := f ◦ P

and gP := g ◦ P . By Lemma 4.19, fP and gP are elements of Cc(G, R), which is equal (as an R-module) to 
AR(G, σ−1), by Lemma 3.1(a). We will express the product f ∗Σ g in terms of fP ∗σ−1 gP , which we know 
is an element of AR(G, σ−1), by Proposition 3.2. Fix (α, z) ∈ G ×σ T . Using T -equivariance for the second 
and fourth equalities and Proposition 4.8(b) for the third equality below, we obtain

(f ∗Σ g)(z · P (α)) =
∑

β∈Gs(q(z·P (α)))

f
(
(z · P (α))P (β)

)
g(P (β)−1)

=
∑

β∈Gs(α)

z f(P (α)P (β)) g(P (β)−1)

= z
∑

β∈Gs(α)

f
(
σ(α, β) · P (αβ)

)
g
(
σ(β, β−1)−1 · P (β−1)

)
= z

∑
β∈Gs(α)

σ(α, β)σ(β, β−1)−1 fP (αβ) gP (β−1). (4.8)

We also have

(fP ∗σ−1 gP )(α) =
∑

β∈Gs(α)

σ−1(αβ, β−1) fP (αβ) gP (β−1). (4.9)

Since σ is normalised and satisfies the 2-cocycle identity, we have

σ(α, β)σ(αβ, β−1) = σ(α, ββ−1)σ(β, β−1) = σ(β, β−1),

and hence

σ(α, β)σ(β, β−1)−1 = σ(αβ, β−1)−1 = σ−1(αβ, β−1), (4.10)

for each β ∈ Gs(α). Together, equations (4.8), (4.9), and (4.10) imply that

(f ∗Σ g)(φP (α, z)) = (f ∗Σ g)(z · P (α)) = z (fP ∗σ−1 gP )(α). (4.11)

Define ψf,g
P : G ×σT → R by ψf,g

P (α, z) := z (fP ∗σ−1gP )(α). Since fP , gP ∈ AR(G, σ−1), we have fP ∗σ−1gP ∈
AR(G, σ−1) ⊆ C(G, R). Thus ψf,g

P is continuous. Since φP is a homeomorphism and f ∗Σ g = ψf,g
P ◦φ−1

P , we 
deduce that f∗Σg ∈ C(Σ, R). Taking z = 1 in equation (4.11) shows that (f∗Σg) ◦P = fP ∗σ−1gP ∈ Cc(G, R), 
and Lemma 4.19 implies that this is equivalent to showing that q(supp(f ∗Σ g)) is compact. Finally, to see 
that f ∗Σ g is T -equivariant, fix z ∈ T and ε ∈ Σ. Then ε = w · P (β) for a unique pair (β, w) ∈ G ×σ T . 
Thus, equation (4.11) implies that (f ∗Σ g)(ε) = w (fP ∗σ−1 gP )(β), and hence

(f ∗Σ g)(z · ε) = (f ∗Σ g)
(
(zw) · P (β)

)
= z w (fP ∗σ−1 gP )(β) = z (f ∗Σ g)(ε).

Therefore, f ∗Σ g ∈ AR(G; Σ), and so AR(G; Σ) is an R-algebra.
Suppose now that R has a T -inverse involution r 
→ r. We show that f∗ ∈ AR(G; Σ). Since f is continuous, 

f∗ is a composition of continuous maps, and so f∗ ∈ C(Σ, R). For all z ∈ T and ε ∈ Σ, we have

f∗(z · ε) = f((z · ε)−1) = f
(
(z−1) · (ε−1)

)
= z−1f(ε−1) = z f∗(ε),
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and so f∗ is T -equivariant. Since supp(f∗) = (supp(f))−1 and q is a continuous homomorphism, we have 
q(supp(f∗)) ⊆

(
q(supp(f))

)−1, and hence q(supp(f∗)) is compact because it is a closed subset of a compact 
set. Thus f∗ ∈ AR(G; Σ). Routine calculations show that the map f 
→ f∗ satisfies all of the properties of an 
involution on AR(G; Σ), since r 
→ r is an involution on R. Therefore, AR(G; Σ) is a ∗-algebra over R. �

We now show that isomorphic twists give rise to isomorphic twisted Steinberg algebras.

Proposition 4.22. Let G be an ample Hausdorff groupoid. Suppose that (Σ1, i1, q1) and (Σ2, i2, q2) are topo-
logically trivial discrete twists by T ≤ R× over G. If ψ : Σ1 → Σ2 is an isomorphism of twists, then the map 
Φ: f 
→ f ◦ ψ is an isomorphism from AR(G; Σ2) to AR(G; Σ1). If R has a T -inverse involution, then Φ is 
a ∗-isomorphism.

Proof. We first show that f ◦ ψ ∈ AR(G; Σ1) for each f ∈ AR(G; Σ2). Let P1 : G → Σ1 be a continuous 
global section, and define P2 := ψ ◦ P1 : G → Σ2. Then P2 is continuous, P2(G(0)) ⊆ ψ

(
Σ(0)

1
)

= Σ(0)
2 , and 

since q2 ◦ ψ = q1,

q2 ◦ P2 = q2 ◦ (ψ ◦ P1) = (q2 ◦ ψ) ◦ P1 = q1 ◦ P1 = idG .

Hence P2 is a continuous global section. Fix f ∈ AR(G; Σ2) ⊆ C(Σ2, R). Since ψ is continuous, f ◦ ψ ∈
C(Σ1, R). By Lemma 4.6, ψ respects the action of T , and hence the T -equivariance of f implies that f ◦ψ is 
T -equivariant. Moreover, Lemma 4.19 implies that f ◦ψ◦P1 = f ◦P2 ∈ Cc(G, R), and thus f ◦ψ ∈ AR(G; Σ1).

Therefore, there is a map Φ: AR(G; Σ2) → AR(G; Σ1) given by Φ(f) := f ◦ ψ. Routine calculations 
show that Φ is a homomorphism, and that if R has a T -inverse involution, then Φ is a ∗-homomorphism. 
Furthermore, Φ is bijective with inverse given by Φ−1(g) = g ◦ ψ−1, and hence Φ is an isomorphism (or a 
∗-isomorphism). �

By Proposition 4.8, we know that for every topologically trivial discrete twist Σ over an ample Hausdorff 
groupoid G, there is a continuous 2-cocycle σ : G(2) → T ≤ R× such that Σ ∼= G ×σ T . Hence AR(G; Σ)
is isomorphic to AR(G; G ×σ T ), by Proposition 4.22. We now prove that AR(G; Σ) is also isomorphic to 
AR(G, σ−1).

Theorem 4.23. Let G be an ample Hausdorff groupoid, and let Σ be a topologically trivial discrete twist by 
T ≤ R× over G. Let P : G → Σ be a continuous global section, and let σ : G(2) → T be the continuous 
2-cocycle induced by P , as in Proposition 4.8(a). The map Ψ: f 
→ f ◦P is an isomorphism from AR(G; Σ)
to AR(G, σ−1). If R has a T -inverse involution, then Ψ is a ∗-isomorphism.

Remark 4.24. In the C*-setting, some authors (for example, [6]) define the twisted groupoid C*-algebra 
C∗(G; Σ) to be a C*-completion of the set of T -contravariant functions in Cc(Σ), rather than T -equivariant 
functions; that is,

{f ∈ Cc(Σ) : f(z · ε) = z f(ε) for all z ∈ T , ε ∈ Σ},

rather than

{f ∈ Cc(Σ) : f(z · ε) = z f(ε) for all z ∈ T , ε ∈ Σ}.

As a consequence of this definition, the C*-analogue of Theorem 4.23 gives an isomorphism between C∗(G; Σ)
and C∗(G, σ), rather than C∗(G; Σ) and C∗(G, σ−1). Similarly, an alternate definition of AR(G; Σ) consisting 
of T -contravariant functions would result in AR(G; Σ) being isomorphic to AR(G, σ).
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Proof of Theorem 4.23. By Lemma 3.1(a), AR(G, σ−1) and Cc(G, R) agree as R-modules, and hence 
Lemma 4.19 implies that

AR(G; Σ) = {f ∈ C(Σ, R) : f is T -equivariant and f ◦ P ∈ AR(G, σ−1)}. (4.12)

Therefore, there is a map Ψ: AR(G; Σ) → AR(G, σ−1) given by Ψ(f) := f ◦ P .
To see that Ψ is injective, suppose that Ψ(f) = Ψ(g) for some f, g ∈ AR(G; Σ). Fix (α, z) ∈ G ×σ T . 

Since f and g are T -equivariant, we have

f(z · P (α)) = z f(P (α)) = z Ψ(f)(α) = z Ψ(g)(α) = z g(P (α)) = g(z · P (α)). (4.13)

By Proposition 4.8(c), we have Σ = {z ·P (α) : (α, z) ∈ G ×σ T}, and so equation (4.13) implies that f = g, 
and hence Ψ is injective.

To see that Ψ is surjective, fix h ∈ AR(G, σ−1), and recall from Proposition 4.8(c) that the map φP : G ×σ

T → Σ given by φP (α, z) := z ·P (α) is an isomorphism of twists. Define f : Σ → R by f(z ·P (α)) := z h(α), 
and f̃ : G ×σ T → R by f̃(α, z) := z h(α). Since h ∈ C(G, R), we have f̃ ∈ C(G ×σ T, R), and hence 
f = f̃ ◦ φ−1

P ∈ C(Σ, R) because φ−1
P is continuous. For all α ∈ G and z, w ∈ T , we have

f
(
z · (w · P (α))

)
= f

(
(zw) · P (α)

)
= z w h(α) = z f(w · P (α)),

and so f is T -equivariant. We also have f ◦ P = h ∈ AR(G, σ−1), and thus equation (4.12) implies that 
f ∈ AR(G; Σ). Since Ψ(f) = f ◦ P = h, Ψ is surjective.

It is clear that Ψ is R-linear. We claim that Ψ is an R-algebra isomorphism. Fix f, g ∈ AR(G; Σ). In 
the notation introduced in the proof of Proposition 4.21, we have Ψ(f) = fP and Ψ(g) = gP , and hence 
equation (4.11) implies that for all α ∈ G, we have

Ψ(f ∗Σ g)(α) = (f ∗Σ g)(P (α)) =
(
Ψ(f) ∗σ−1 Ψ(g)

)
(α).

So Ψ(f ∗Σ g) = Ψ(f) ∗σ−1 Ψ(g), and thus Ψ is an isomorphism.
Suppose now that R has a T -inverse involution r 
→ r. To see that Ψ is a ∗-isomorphism, we must show 

that Ψ(f∗) = Ψ(f)∗. Fix α ∈ G. By Proposition 4.8(b), we have

P (α)−1 = σ−1(α, α−1) · P (α−1),

and hence

Ψ(f∗)(α) = f∗(P (α)) = f
(
P (α)−1

)
= f

(
σ−1(α, α−1) · P (α−1)

)
. (4.14)

We also have

Ψ(f)∗(α) =
(
σ−1(α, α−1)

)−1 Ψ(f)(α−1)

= σ−1(α, α−1) f(P (α−1))

= f
(
σ−1(α, α−1) · P (α−1)

)
. (4.15)

Together, equations (4.14) and (4.15) imply that Ψ(f∗) = Ψ(f)∗. �
Corollary 4.25. Let G be an ample Hausdorff groupoid, and let σ : G(2) → T ≤ R× be a continuous 2-
cocycle. There is an isomorphism Ψ: AR(G; G ×σ T ) → AR(G, σ−1) such that Ψ(f)(γ) = f(γ, 1) for all 
f ∈ AR(G; G ×σ T ) and γ ∈ G. If R has a T -inverse involution, then Ψ is a ∗-isomorphism.
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Proof. By Lemma 4.9, the map S : γ 
→ (γ, 1) is a continuous global section from G to G ×σ T that induces 
σ, and so the result follows from Theorem 4.23. �
Remark 4.26. If G is an ample Hausdorff groupoid, then G ×σTd is also an ample Hausdorff groupoid for any 
continuous 2-cocycle σ : G(2) → Td, and hence there is an associated (untwisted) complex Steinberg algebra 
A(G ×σTd). As a vector space, A(G ×σTd) is equal to Cc(G ×σTd, Cd) and is dense in C∗

r (G ×σTd), by [10, 
Proposition 4.2] and [34, Proposition 5.7]. Moreover, by Theorem 4.23, we have A(G; G ×σTd) ∼= A(G, σ−1), 
and we know from Proposition 3.2 that A(G, σ−1) is dense in C∗

r (G, σ−1). We saw in Remark 4.20(2) that 
the only compactly supported function in A(G; G ×σ Td) ⊆ C(G ×σ Td, Cd) is the zero function, and hence

A(G; G×σ Td) ∩ A(G×σ Td) = {0}.

However, this does not preclude C∗
r (G, σ−1) from embedding into C∗

r (G ×σ Td). It would be interesting to 
know how these two C*-algebras are related.

5. Examples of twisted Steinberg algebras

In this section we discuss two important classes of examples of twisted Steinberg algebras: twisted group 
algebras and twisted Kumjian–Pask algebras.

5.1. Twisted discrete group algebras

Suppose that R is a discrete commutative unital ring and that G is a topological group (that is, G is a 
group endowed with a topology with respect to which multiplication and inversion are continuous.) Then 
G is an ample groupoid if and only if G has the discrete topology, in which case, any R×-valued 2-cocycle 
on G is locally constant. One defines a twist over a discrete group G via a split extension by an abelian 
group A, as in [7, Chapter IV.3]. When A = R×, the twist gives rise to an R×-valued 2-cocycle on G, 
with which one can define a twisted group R-algebra. The twisted convolution and involution defined in 
Proposition 3.2 generalise those of classical twisted group algebras over R×, and hence our twisted Steinberg 
algebras generalise these twisted (discrete) group algebras. Interesting open questions about this class of 
algebras still exist, even for finite groups. (See, for example, [26].) Moreover, twisted group C*-algebras (as 
studied in [27]) have featured prominently in the study of C*-algebras associated with groups and group 
actions; in particular, they have proved essential in establishing superrigidity results for certain nilpotent 
groups (see [13]).

5.2. Twisted Kumjian–Pask algebras

For each finitely aligned higher-rank graph (or k-graph) Λ, there is both a C*-algebra C∗(Λ) called the 
Cuntz–Krieger algebra (see [29]) and a dense subalgebra KP(Λ) called the Kumjian–Pask algebra (see [1,12]) 
encoding the structure of the graph. Letting GΛ denote the boundary-path groupoid defined in [19,16,36], 
we have

C∗(Λ) ∼= C∗(GΛ) and KP(Λ) ∼= A(GΛ).

Twisted higher-rank graph C*-algebras were introduced and studied in a series of papers by Kumjian, Pask, 
and Sims [21–24], and they provide a class of (somewhat) tractable examples that can be used to demonstrate 
more general C*-algebraic phenomena. (See also [2,17,33].) We introduce twisted Kumjian–Pask algebras 
for row-finite higher-rank graphs with no sources using a twisted Steinberg algebra approach.
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Let Λ be a row-finite higher-rank graph with no sources, and let c be a continuous T -valued 2-cocycle on 
Λ, as defined in [23, Definition 3.5]. Then C∗(Λ, c) is the C*-algebra generated by a universal Cuntz–Krieger 
(Λ, c)-family, as defined in [23, Definition 5.2]. In [23, Theorem 6.3(iii)], the authors describe how Λ and c
give rise to a 2-cocycle σc : G(2)

Λ → T such that

C∗(Λ, c) ∼= C∗(GΛ, σc).

By the last two sentences of the proof of [23, Lemma 6.3], the 2-cocycle σc is normalised and locally constant. 
We define

KP(Λ, c) := A(GΛ, σc),

and call this the (complex) twisted Kumjian–Pask algebra associated to the pair (Λ, c). By Proposition 3.2, 
KP(Λ, c) is dense in C∗(Λ, c).

In [23, Definition 5.2], Kumjian, Pask, and Sims construct C∗(Λ, c) using a generators-and-relations model 
involving the same generating partial isometries {tλ : λ ∈ Λ} as C∗(Λ), but with the relation tμtν = tμν
replaced by tμtν = c(μ, ν) tμν . We expect that there is a similar construction of KP(Λ, c) using these 
generators and relations, but we do not pursue this here.

6. A Cuntz–Krieger uniqueness theorem and simplicity of twisted Steinberg algebras of effective 
groupoids

In this section we extend the Cuntz–Krieger uniqueness theorem and a part of the simplicity characteri-
sation for Steinberg algebras from [5] to the twisted Steinberg algebra setting. Throughout this section, we 
will assume that G is an effective ample Hausdorff groupoid, and that R = Fd is a field endowed with the 
discrete topology.

Theorem 6.1 (Cuntz–Krieger uniqueness theorem). Let Fd be a discrete field, let G be an effective ample 
Hausdorff groupoid, and let σ : G(2) → F×

d be a continuous 2-cocycle. Suppose that Q is a ring and that 
π : AFd

(G, σ) → Q is a ring homomorphism. Then π is injective if and only if π(1V ) �= 0 for every nonempty 
compact open subset V of G(0).

Proof. It is clear that if π is injective, then π(1V ) �= 0 for every nonempty compact open subset V of G(0). 
Suppose that π is not injective. Then there exists f ∈ AFd

(G, σ) such that f �= 0 and π(f) = 0. We aim to 
find a nonempty compact open subset V of G(0) such that π(1V ) = 0. Since σ is locally constant, we can 
use Lemma 3.1(b) to write f =

∑
D∈F aD1D, where F is a finite collection of disjoint nonempty compact 

open bisections of G such that σ(α−1, α) is constant for all α ∈ D, and aD ∈ Fd\{0}, for each D ∈ F . Let 
g := 1D−1

0
f for some D0 ∈ F . Then g ∈ ker(π), because π is a homomorphism. Fix α ∈ D0, and define 

cD0 := σ(α−1, α) aD0 �= 0. Then

g(s(α)) = g(α−1α) = σ(α−1, α) 1D−1
0

(α−1) f(α) = σ(α−1, α) aD0 = cD0 �= 0. (6.1)

Define g0 : G → Fd by

g0(γ) :=
{
g(γ) if γ ∈ G(0)

0 if γ ∈ G\G(0).

Then g0 ∈ Cc(G, Fd) = AFd
(G, σ) by Lemma 3.1(a), and supp(g0) = G(0) ∩ supp(g). Define H := supp(g −

g0) ⊆ G\G(0). Equation (6.1) implies that s(α) ∈ supp(g0). Since G is ample and effective, [5, Lemma 3.1]
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implies that there is a nonempty compact open subset V of supp(g0) ∩s(D0) such that V HV = ∅. Therefore, 
since supp(1V (g − g0)1V ) ⊆ V HV , we have 1V (g − g0)1V = 0, and hence equation (6.1) implies that

1V g 1V = 1V g0 1V = cD0 1V . (6.2)

Thus, using that π(g) = 0, we deduce from equation (6.2) that

π(1V ) = c−1
D0

π(cD0 1V ) = c−1
D0

π(1V )π(g)π(1V ) = 0,

as required. �
Given a groupoid G, we call a subset U ⊆ G(0) invariant if, for any γ ∈ G, we have

s(γ) ∈ U ⇐⇒ r(γ) ∈ U.

We say that a topological groupoid G is minimal if G(0) has no nontrivial open invariant subsets. Equiva-
lently, G is minimal if and only if s(r−1(x)) = G(0) for every x ∈ G(0).

Theorem 6.2. Let Fd be a discrete field, let G be an effective ample Hausdorff groupoid, and let σ : G(2) → F×
d

be a continuous 2-cocycle. Then AFd
(G, σ) is simple if and only if G is minimal.

Proof. Suppose that G is minimal, and let I be a nonzero ideal of AFd
(G, σ). Then I is the kernel of some 

noninjective ring homomorphism of AFd
(G, σ), and so Theorem 6.1 implies that there is a compact open 

subset V ⊆ G(0) such that 1V ∈ I. We claim that the ideal generated by 1V is the whole of AFd
(G, σ). Since 

the twisted convolution product of characteristic functions on the unit space is the same as the untwisted 
convolution product, the proof follows directly from the arguments used in the proof of [8, Theorem 4.1].

For the converse, suppose that G is not minimal. Then there exists a nonempty open invariant subset 
U � G(0). The set

GU := s−1(U) = {γ ∈ G : s(γ) ∈ U} = {γ ∈ G : r(γ) ∈ U}

is a proper open subgroupoid of G, and so we can view I := AFd

(
GU , σ|G(2)

U

)
as a proper subset of AFd

(G, σ). 
Since U is a nonempty open set and G is ample, we can find a nonempty compact open bisection B of G
contained in U , and thus I �= {0}, because 1B ∈ I. We claim that I is an ideal of AFd

(G, σ). Since the 
vector-space operations are defined pointwise, it is straightforward to check that I is a subspace. To see 
that I is an ideal, fix f ∈ I and g ∈ AFd

(G, σ). Since U is invariant, we have

supp(fg) ⊆ supp(f) supp(g) ⊆ GU G ⊆ GU ,

and so fg ∈ I. Similarly, gf ∈ I, and thus I is an ideal. (In fact, if AFd
(G, σ) is a ∗-algebra, then I is a 

∗-ideal.) �
Remark 6.3. By [5, Theorem 4.1], the untwisted complex Steinberg algebra A(G) is simple if and only if G
is minimal and effective. Note that Theorem 6.2 does not give necessary and sufficient conditions on G and 
σ for simplicity of twisted Steinberg algebras. This is a hard problem. We expect, as in the C*-setting of [23, 
Remark 8.3], that there exist simple twisted Steinberg algebras for which the groupoid G is not effective.
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7. Gradings and a graded uniqueness theorem

In this section we describe the graded structure that twisted Steinberg algebras inherit from the under-
lying groupoid, and we prove a graded uniqueness theorem. The arguments are similar to those used in the 
untwisted setting (see [8]). Let Γ be a discrete group, and suppose that c : G → Γ is a continuous groupoid 
homomorphism (or 1-cocycle). Then we call G a Γ-graded groupoid, and we define Gγ := c−1(γ) for each 
γ ∈ Γ. Since c is continuous and Γ is discrete, each Gγ is clopen. Since c is a homomorphism, we have

G−1
γ = Gγ−1 and Gζ Gη ⊆ Gζη

for all γ, ζ, η ∈ Γ. Note that all groupoids are graded with respect to the groupoid homomorphism into the 
trivial group.

Proposition 7.1. Let G be an ample Hausdorff groupoid, and let σ : G(2) → R× be a continuous 2-cocycle. 
Suppose that Γ is a discrete group and c : G → Γ is a continuous groupoid homomorphism. For each γ ∈ Γ, 
define the set of homogeneous elements of degree γ by

AR(G, σ)γ := {f ∈ AR(G, σ) : supp(f) ⊆ Gγ}.

Then AR(G, σ) is a Γ-graded algebra.

Proof. It is clear that AR(G, σ)γ is an R-submodule of AR(G, σ), for each γ ∈ Γ. Since AR(G, σ) and 
AR(G) agree as R-modules, the argument used in the proof of [8, Lemma 2.2] can be used to show that 
every f ∈ AR(G, σ) can be expressed as an R-linear combination of homogeneous elements. Thus, to see 
that

AR(G, σ) =
⊕
γ∈Γ

AR(G, σ)γ ,

it suffices to show that any finite collection

{fi ∈ AR(G, σ)γi
: 1 ≤ i ≤ n, and each γi is distinct from the others}

is linearly independent. But this is clear, because supp(fi) ∩ supp(fj) = ∅ when i �= j. Fix ζ, η ∈ Γ. For all 
f ∈ AR(G, σ)ζ and g ∈ AR(G, σ)η, we have

supp(fg) ⊆ supp(f) supp(g) ⊆ Gζ Gη ⊆ Gζη,

and hence

AR(G, σ)ζ AR(G, σ)η ⊆ AR(G, σ)ζη. �
As in the untwisted setting [8, Theorem 3.4], the graded uniqueness theorem follows from the Cuntz–

Krieger uniqueness theorem. Note that if e is the identity of Γ, then Ge is a clopen subgroupoid of G, and 
so we can identify AR(G, σ)e with AR(Ge, σ), just as we can identify AR(Ge) with AR(G)e.

Theorem 7.2 (Graded uniqueness theorem). Let Fd be a discrete field, let G be an ample Hausdorff groupoid, 
and let σ : G(2) → F×

d be a continuous 2-cocycle. Let Γ be a discrete group with identity e, and suppose that 
c : G → Γ is a continuous groupoid homomorphism such that the subgroupoid Ge is effective. Suppose that 
Q is a Γ-graded ring and that π : AFd

(G, σ) → Q is a graded ring homomorphism. Then π is injective if and 
only if π(1K) �= 0 for every nonempty compact open subset K of G(0).
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Proof. It is clear that if π is injective, then π(1K) �= 0 for every nonempty compact open subset K of G(0). 
Suppose that π is not injective. We claim that there exists f ∈ AFd

(Ge, σ) such that f �= 0 and π(f) = 0. 
To see this, fix g ∈ ker(π) such that g �= 0. By the proof of Proposition 7.1, g can be expressed as a finite 
sum of homogeneous elements; that is, g =

∑
γ∈F gγ , where F is a finite subset of Γ, and gγ ∈ AFd

(G, σ)γ
for each γ ∈ F . Thus, ∑

γ∈F

π(gγ) = π
( ∑

γ∈F

gγ

)
= π(g) = 0.

Since π is graded, we have π(gγ) ∈ Qγ for each γ ∈ Γ. Thus π(gγ) = 0 for each γ ∈ Γ, because elements 
of different graded subspaces of Q are linearly independent. Since g �= 0, we can choose γ ∈ F such that 
gγ �= 0. Since gγ is locally constant and Gγ is open, there exists a compact open bisection B ⊆ Gγ such 
that gγ(B) = {k}, for some k ∈ Fd\{0}. Define f := 1B−1 gγ . Since π is a homomorphism and G is graded, 
we have f ∈ AFd

(Ge, σ) ∩ ker(π). For all α ∈ B, we have

f(s(α)) = f(α−1α) = σ(α−1, α) 1B−1(α−1) gγ(α) = σ(α, α−1) k �= 0,

and hence f �= 0. Thus the restriction πe of π to AFd
(Ge, σ) is not injective.

Since G(0) ⊆ Ge and we have assumed that the groupoid Ge is effective, we can apply Theorem 6.1 to the 
restricted homomorphism πe to obtain a nonempty compact open subset K ⊆ G(0) such that π(1K) = 0, as 
required. �
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