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1. Introduction

Complex reflection groups are finite groups generated by complex reflections. Recall that a complex 
reflection is a linear transformation of finite order that fixes a hyperplane pointwise. These groups include 
finite real relection groups, also known as finite Coxeter groups. It is well known that every complex reflection 
group is a direct product of irreducible ones. The irreducible complex reflection groups have been classified 
by Shephard and Todd [20] in 1954. The classification includes the general 3-parameter series G(de, e, n)
that can be easily described in terms of monomial matrices and 34 exceptional groups denoted by G4, G5, 
· · · , G37.

Broué, Malle and Rouquier [6] managed to attach a complex braid group to each complex reflection group. 
This generalizes the notion of Artin groups attached to finite Coxeter groups. Extending earlier results in 
[5], they also managed to generalize the definition of the (Iwahori–)Hecke algebra for real reflection groups 
to arbitrary complex reflection groups by using their definition of the complex braid group. Actually, the 
Hecke algebra is defined as a quotient of the complex braid group algebra by some polynomial relations. It 
is believed that nice properties of these objects in the case of real reflection groups could be extended to 
the general case of complex reflection groups. In [6], it was stated a number of important conjectures about 
the complex braid groups and the Hecke algebras.

One of these interesting conjectures is the so-called “BMR freeness conjecture”. It states that the Hecke 
algebra is a free module of rank equal to the order of the associated complex reflection group. This property 
is valid for the (Iwahori–)Hecke algebra attached to any finite real reflection group (see [3]), where a basis is 
constructed from geodesic normal forms in the finite Coxeter group due to Matsumoto’s property (see [16]). 
The BMR freeness conjecture can be easily reduced to the case of irreducible complex reflection groups. 
During the past two decades, a proof of this conjecture for each case of the classification of Shephard and 
Todd has been established involving the results of a number of authors. As we are interested in the case 
of the general series of complex reflection groups, we mention that this conjecture has been established for 
G(d, 1, n) (see Ariki–Koike [2] and Bremke–Malle [4]) and for G(de, e, n) by Ariki (see [1] and Appendix A.2 
of [19]). A list of references for the proof of the BMR freeness conjecture can be found in the next section.

An important constraint in the proof of this conjecture, and in the theory of Hecke algebras for complex 
reflection groups in general, is the failure of an analogue of Matsumoto’s property. That is, we are not able 
to easily establish a canonical basis of the Hecke algebra. The proof of the BMR freeness conjecture was 
obtained by sometimes tedious and lengthy computations in order to explicitly construct bases for the Hecke 
algebras. It is then of importance to find nice bases for these algebras. In this paper, we construct bases 
for the Hecke algebras attached to the complex reflection groups G(e, e, n) and G(d, 1, n). We also establish 
that these bases never coincide with the Ariki basis [1] for the case of G(e, e, n) and with the Ariki–Koike 
basis [2] for G(d, 1, n).

In order to establish these bases, our attention is firstly shifted to the complex reflection groups G(de, e, n). 
We construct geodesic normal forms for these groups by using the presentations of Corran–Picantin [10]
and Corran–Lee–Lee [9] of G(e, e, n) and G(de, e, n) for d > 1, respectively. The geodesic normal forms are 
easy to describe. They generalize our construction in [18] for G(e, e, n) to all the cases of the general series 
of complex reflection groups.

We establish that these geodesic normal forms provide bases for the Hecke algebras attached to G(e, e, n)
and G(d, 1, n). Since these bases are constructed from geodesic normal forms in the complex reflection 
groups, they are natural bases for the associated Hecke algebras. Note that the geodesic normal forms for 
G(e, e, n) have been already used in our previous work [18] in order to construct intervals in G(e, e, n) that 
give rise to nice structures (called interval Garside structures) for the associated complex braid groups.

The article is organized as follows. In Section 2, we provide a basic background material and recall 
the BMR freeness conjecture. The geodesic normal forms for the complex reflection groups G(de, e, n) are 
constructed in Section 3, which sets the stage for our later work. The techniques used are elementary and 
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the associated combinatorial characterizations are very explicit. In Section 4, the attention shifts to the 
Hecke algebras. Actually, we establish presentations for the Hecke algebras attached to G(de, e, n), by using 
the presentations of Corran–Picantin and Corran–Lee–Lee of the associated complex braid groups that we 
recall in the same section. The remaining part of the article establishes that the geodesic normal forms 
constructed in Section 3 provide natural bases for the Hecke algebras associated with the groups G(e, e, n)
and G(d, 1, n).

2. Definitions and preliminaries

Let W be a finite subgroup of GLn(C) (n ≥ 1). A complex reflection s of W is an element of finite order 
d ≥ 2 such that Ker(s − 1) is a hyperplane. Let R be the set of complex reflections of W . We say that W
is a complex reflection group if it is generated by R. Let A := {Ker(s − 1) s.t. s ∈ R} be the hyperplane 
arrangement and X := Cn \

⋃
A be the hyperplane complement. The complex reflection group W acts 

naturally on X. Let X/W be its space of orbits. The complex braid group B attached to W is defined as 
follows. For details about this definition, we refer to [6].

Definition 2.1. The complex braid group attached to W is the fundamental group

B := π1(X/W ).

Recall that a complex reflection s ∈ W is called distinguished if its only nontrivial eigenvalue is 
exp(2iπ/o(s)), where o(s) denotes the order of s. For the standard notion of braided reflections that we use 
in the next definition, the reader may check [6]. We are ready to define the Hecke algebra associated with 
W (see [6] and [14]).

Definition 2.2. Let R = Z[as,i, a−1
s,0, 0 ≤ i ≤ o(s) − 1], where s runs over the distinguished reflections, with 

the convention as,i = as′,i if s and s′ are conjugates in W . The Hecke algebra H(W ) attached to the complex 
reflection group W is the quotient of the complex braid group algebra RB by the relations

σo(s) − as,o(s)−1σ
o(s)−1 − · · · − as,0 = 0,

for each braided reflection σ associated with s.

Note that it is enough to choose one such relation per conjugacy class of distinguished reflections, as all 
the corresponding braided reflections are conjugates in B (see [6]).

The BMR freeness conjecture proposed by Broué, Malle and Rouquier [6] in 1998 states that the Hecke 
algebra H(W ) attached to W is a free R-module of rank equal to the order of W . After two decades, the 
BMR freeness conjecture is proven through the results of a number of authors. Thus, we have the following 
theorem.

Theorem 2.3. The Hecke algebra H(W ) is a free R-module of rank |W |.

The BMR freeness conjecture can be easily reduced to the case where W is irreducible. It is true for the 
(Iwahori–)Hecke algebra attached to any finite Coxeter group (see Lemma 4.4.3 of [11]). Ariki and Koike 
[2] proved it for the case of G(d, 1, n). Note that a basis for the Hecke algebra associated with G(d, 1, n) is 
also given in [4]. Ariki defined in [1] a Hecke algebra for G(de, e, n) by a presentation with generators and 
relations. He also proved that it is a free module of rank |G(de, e, n)|. The Hecke algebra defined by Ariki 
is isomorphic to the Hecke algebra defined by Broué, Malle, and Rouquier in [6] for G(de, e, n). The details 
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why this is true can be found in Appendix A.2 of [19]. Hence one gets a proof of Theorem 2.3 for the general 
series of complex reflection groups.

Concerning the exceptional complex reflection groups, Marin proved the conjecture for G4, G25, G26, and 
G32 in [12] and [13]. Marin and Pfeiffer proved it for G12, G22, G24, G27, G29, G31, G33, and G34 in [15]. In 
her PhD thesis and in the article that followed (see [7] and [8]), Chavli proved the validity of this conjecture 
for G5, G6, · · · , G16. Recently, Marin proved the conjecture for G20 and G21 (see [14]) and finally Tsushioka 
for G17, G18 and G19 (see [21]). Hence we obtain a proof of Theorem 2.3 for all the cases of irreducible 
complex reflection groups.

3. Geodesic normal forms for G(de, e, n)

This section sets the stage for our later work by establishing a set of geodesic normal forms for the 
complex reflection groups G(de, e, n), using the generating sets introduced by Corran–Picantin [10] and 
Corran–Lee–Lee [9] for G(e, e, n) and G(de, e, n) for d > 1, respectively. The case of G(e, e, n) has been 
already done in our previous work (see Section 3 of [18]). We generalize the combinatorial techniques used 
there to the case of G(de, e, n) for d > 1. We obtain natural and explicit geodesic normal forms for these 
groups.

3.1. Presentations for G(de, e, n)

The complex reflection group G(de, e, n) is the group of monomial matrices whose nonzero entries are 
de-th roots of unity and their product is a d-th root of unity.

Set d = 1 and let e ≥ 1 and n ≥ 2. Corran–Picantin discovered in [10] a presentation of the complex 
reflection group G(e, e, n) that is defined as follows.

Definition 3.1. The complex reflection group G(e, e, n) is defined by a presentation with generators: {ti | i ∈
Z/eZ} ∪ {s3, s4, · · · , sn} and relations:

1. titi−1 = tjtj−1 for i, j ∈ Z/eZ,
2. tis3ti = s3tis3 for i ∈ Z/eZ,
3. sjti = tisj for i ∈ Z/eZ and 4 ≤ j ≤ n,
4. sisi+1si = si+1sisi+1 for 3 ≤ i ≤ n − 1,
5. sisj = sjsi for |i − j| > 1,
6. t2i = 1 for i ∈ Z/eZ and s2j = 1 for 3 ≤ j ≤ n.

The matrices in G(e, e, n) that correspond to the generators of this presentation are given by ti �−→

ti :=

⎛
⎝ 0 ζ−i

e 0
ζie 0 0
0 0 In−2

⎞
⎠ for 0 ≤ i ≤ e− 1, and sj �−→ sj :=

⎛
⎜⎝
Ij−2 0 0 0

0 0 1 0
0 1 0 0
0 0 0 In−j

⎞
⎟⎠ for 3 ≤ j ≤ n. To 

avoid confusion, we use regular letters for matrices and bold letters for words over the generating set of the 
presentation of Corran–Picantin.

Remark 3.2.

1. For e = 1 and n ≥ 2, we obtain the classical presentation of the symmetric group Sn.
2. For e = 2 and n ≥ 2, we obtain the classical presentation of the Coxeter group of type Dn.
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Fig. 1. Diagram for the presentation of G(d, 1, n).

The attention shifts now to the case d > 1. Let d > 1, e ≥ 1 and n ≥ 2. There exists a presentation of 
the complex reflection group G(de, e, n) discovered by Corran–Lee–Lee in [9].

Definition 3.3. The complex reflection group G(de, e, n) is defined by a presentation with set of generators: 
X = {z} ∪ {ti | i ∈ Z/deZ} ∪ {s3, s4, · · · , sn} and relations as follows.

1. zti = ti−ez for i ∈ Z/deZ,
2. zsj = sjz for 3 ≤ j ≤ n,
3. Relations 1 to 5 of Definition 3.1 by replacing e by de,
4. zd = 1, t2

i = 1 for i ∈ Z/deZ, and s2
j = 1 for 3 ≤ j ≤ n.

The generators of this presentation correspond to the following n × n matrices. The generator ti is 

represented by the matrix ti =

⎛
⎝ 0 ζ−i

de 0
ζide 0 0
0 0 In−2

⎞
⎠ for i ∈ Z/deZ, z by the diagonal matrix z =

Diag(ζd, 1, · · · , 1) where ζd = exp(2iπ/d), and sj by the transposition matrix sj = (j − 1, j) for 3 ≤ j ≤ n. 
To avoid confusion, we use regular letters for matrices and bold letters for words over X. Denote by X the 
set {z, t0, t1, · · · , tde−1, s3, · · · , sn}.

Proposition 3.4. Let e = 1. The presentation given in Definition 3.3 is equivalent to the classical presentation 
of the complex reflection group G(d, 1, n) that can be described by the following well-known diagram (see 
[6]).

Proof. Let e = 1. Relation 1 of Definition 3.3 becomes zt1 = t0z, that is t1 = z−1t0z. Also by Relation 3 of 
Definition 3.3, we have tk = z−kt0zk for 1 ≤ k ≤ d − 1. If we remove t1, · · · , td−1 from the set of generators 
and replace every occurrence of tk in the defining relations with z−kt0zk for 1 ≤ k ≤ d − 1, we recover the 
classical presentation of the complex reflection group G(d, 1, n). Note that we replace t0 by s2 in the set of 
generators of this presentation. �
Remark 3.5. For d = 2, the presentation described by the diagram of Fig. 1 corresponds to the presentation 
of the Coxeter group of type Bn.

From now on, we set the following convention.

Convention 3.6. A decreasing-index expression of the form sisi−1 · · · si′ is the empty word when i < i′ and an 
increasing-index expression of the form sisi+1 · · · si′ is the empty word when i > i′. Similarly, in G(de, e, n), 
a decreasing-index product of the form sisi−1 · · · si′ is equal to In when i < i′ and an increasing-index 
product of the form sisi+1 · · · si′ is equal to In when i > i′, where In is the identity n × n matrix. We also 
set that z0 is the empty word.

3.2. Minimal word representatives

Consider the complex reflection group G(de, e, n) with d > 1, e > 1 and n ≥ 2. The case of G(d, 1, n) will 
be established in the next subsection. Recall that X denotes the set of the generators of the presentation of 
Corran–Lee–Lee of G(de, e, n) and X the set of the corresponding matrices.
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Denote by �(w) the word length over X of the word w ∈ X∗. Let us recall the following definition.

Definition 3.7. Let w be an element of G(de, e, n). We define �(w) to be the minimal word length �(w) of a 
word w over X that represents w. A reduced expression of w is any word representative of w of word length 
�(w).

Our aim is to represent each element of G(de, e, n) by a reduced word over X. This requires the elaboration 
of a combinatorial technique in order to determine a reduced expression decomposition over X of an element 
of G(de, e, n).

We introduce Algorithm 1 below that produces a word RE(w) over X for a given element w in G(de, e, n). 
This algorithm generalizes the one introduced in Section 3 of our previous work [18] that corresponds to the 
case of G(e, e, n). Note that we use Convention 3.6 in the elaboration of the algorithm. Later on, we prove 
that its output RE(w) is a reduced expression over X of w ∈ G(de, e, n).

Let wn := w ∈ G(de, e, n). For i from n to 2, the i-th step of Algorithm 1 transforms the block diagonal 

matrix 

(
wi 0
0 In−i

)
into a block diagonal matrix 

(
wi−1 0

0 In−i+1

)
∈ G(de, e, n). Actually, for 2 ≤ i ≤ n, 

there exists a unique c with 1 ≤ c ≤ n such that wi[i, c] �= 0. At each step i of Algorithm 1, if wi[i, c] = 1, 
we shift it into the diagonal position [i, i] by right multiplication by transpositions. If wi[i, c] �= 1, we shift 
it into the first column by right multiplication by transpositions, transform it into 1 by right multiplication 
by an element of {t0, t1, · · · , tde−1}, and then shift the 1 obtained into the diagonal position [i, i]. Finally, 
we get w1 = ζkd for some 0 ≤ k ≤ d − 1, where ζkd is equal to the product of the nonzero entries of w. By 

multiplying 

(
w1 0
0 In−1

)
on the right by z−k, we get the identity matrix In.

Example 3.8. We apply Algorithm 1 to w :=

⎛
⎜⎝
ζ9 0 0 0
0 0 1 0
0 0 0 ζ9
0 ζ9 0 0

⎞
⎟⎠ ∈ G(9, 3, 4).

Step 1 (i = 4, k = 0, c = 1): w′ := ws2 =

⎛
⎜⎝

0 ζ9 0 0
0 0 1 0
0 0 0 ζ9
ζ9 0 0 0

⎞
⎟⎠, then w′ := w′t1 =

⎛
⎜⎝
ζ2
9 0 0 0
0 0 1 0
0 0 0 ζ9
0 1 0 0

⎞
⎟⎠, then 

w′ := w′s3s4 =

⎛
⎜⎜⎝
ζ2
9 0 0 0
0 1 0 0
0 0 ζ9 0
0 0 0 1

⎞
⎟⎟⎠.

Step 2 (i = 3, k = 1, c = 3): w′ := w′s3s2 =

⎛
⎜⎝

0 ζ2
9 0 0

0 0 1 0
ζ9 0 0 0
0 0 0 1

⎞
⎟⎠, then w′ := w′t1 =

⎛
⎜⎝
ζ3
9 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, then 

w′ := w′s3 =

⎛
⎜⎝
ζ3
9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠.

Step 3 (i = 2, k = 0, c = 2): w′ =

⎛
⎜⎜⎝

ζ3
9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ζ3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠.

Step 4 (k = 1): w′ := w′z−1 = I4.
Hence RE(w) = zs3t1s2s3s4s3t1s2 = zs3t1t0s3s4s3t1t0 (since s2 = t0).
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Input : w, a matrix in G(de, e, n) with d > 1, e > 1, and n ≥ 2.
Output : RE(w), a word over X.

Local variables: w′, RE(w), i, U , V , c, k.

Initialisation: U := [1, ζde, ζ2
de, ..., ζe−1

de ] (U [1] = 1), V := [1, ζd, ζ2
d, · · · , ζd−1

d ] (V [1] = 1),
s2 := t0, s2 := t0, RE(w) := ε: the empty word, w′ := w.

for i from n down to 2 do
c := 1; k := 0;

while w′[i, c] = 0 do
c := c + 1;

end
#Then w′[i, c] is the root of unity on the row i;
while U [k + 1] �= w′[i, c] do

k := k + 1;
end
#Then w′[i, c] = ζk

de.

if k �= 0 then
w′ := w′scsc−1 · · · s3s2tk; #Then w′[i, 2] = 1;
RE(w) := tks2s3 · · · scRE(w);
c := 2;

end
w′ := w′sc+1 · · · si−1si; #Then w′[i, i] = 1;
RE(w) := sisi−1 · · · sc+1RE(w);

end
k := 0;
while V [k + 1] �= w′[1, 1] do

k := k + 1;
end
#Then w′[1, 1] = ζk

d ;
w′ := w′z−k; #Then w′ = In;
if k �= 0 then

RE(w) = zkRE(w);
end
Return RE(w);

Algorithm 1: A word over X corresponding to a matrix w ∈ G(de, e, n).

The next lemma follows immediately from Algorithm 1. It explains how we can easily obtain the blocks 
defined in the algorithm.

Lemma 3.9. For 2 ≤ i ≤ n, suppose wi[i, c] �= 0. The block wi−1 is obtained by

• removing the row i and the column c from wi, then by
• multiplying the first column of the new matrix by wi[i, c].

Moreover, if we denote by ai the unique nonzero entry on the row i of w, we have w1 =
n∏

i=1
ai = ζkd for 

0 ≤ k ≤ d − 1.

Example 3.10. Let w be as in Example 3.8, where n = 4. The block w3 is obtained by removing the row 

number 4 and the second column from w4 = w, to obtain 

(
ζ9 0 0
0 1 0
0 0 ζ9

)
, then by multiplying the first 

column of this matrix by ζ9. The same can be said for the other block w2. Finally, the block w1 is equal to 
ζ3 which corresponds to the product of the nonzero entries of w.

Definition 3.11. Let 1 ≤ i ≤ n. Let wi[i, c] �= 0 for 1 ≤ c ≤ i.
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• If w1 = ζkd with 0 ≤ k ≤ d − 1, we define RE1(w) to be the word zk.
• If wi[i, c] = 1, we define REi(w) to be the word

sisi−1 · · · sc+1 (decreasing-index expression).
• If wi[i, c] = ζkde with k �= 0, we define REi(w) to be the word

si · · · s3tk if c = 1,
si · · · s3tkt0 if c = 2,
si · · · s3tkt0s3 · · · sc if c ≥ 3.

The output RE(w) of Algorithm 1 is a concatenation of the words RE1(w), RE2(w), · · · , and REn(w)
obtained at each step i from n to 1 of Algorithm 1. Then, we have RE(w) = RE1(w)RE2(w) · · ·REn(w).

Example 3.12. Let w be defined as in Example 3.8. We have

RE(w) = z︸︷︷︸
RE1(w)

s3t1t0s3︸ ︷︷ ︸
RE3(w)

s4s3t1t0︸ ︷︷ ︸
RE4(w)

.

In this example, RE2(w) is the empty word.

Proposition 3.13. Let w ∈ G(de, e, n). The word RE(w) given by Algorithm 1 is a word representative over 
X of w ∈ G(de, e, n).

Proof. Let w ∈ G(de, e, n) such that the product of all the nonzero entries of w is equal to ζkd for some 
0 ≤ k ≤ d − 1. Algorithm 1 transforms the matrix w into In by multiplying it on the right by elements 
of X. We get wx1 · · ·xr−1xr = In, where x1, · · · , xr−1 are elements of X \ {z} and xr = z−k. Hence 
w = x−1

r x−1
r−1 · · ·x−1

1 = zkxr−1 · · ·x1 since x2
i = 1 for 1 ≤ i ≤ r − 1. The output RE(w) of Algorithm 1 is 

RE(w) = zkxr−1 · · ·x1. Hence it is a word representative over X of w ∈ G(de, e, n). �
The following proposition will prepare us to prove that the output of Algorithm 1 is a reduced expression 

over X of a given element w ∈ G(de, e, n).

Proposition 3.14. Let w be an element of G(de, e, n). For all x ∈ X, we have

�(RE(xw)) ≤ �(RE(w)) + 1.

Proof. For 1 ≤ i ≤ n, there exists a unique ci such that w[i, ci] �= 0. We denote w[i, ci] by ai. We have 
n∏

i=1
ai = ζkd for some 0 ≤ k ≤ d − 1.

Case 1. a = 1 Suppose x = si for 3 ≤ i ≤ n.

A similar case is done in our previous work [18]. We get (1), (2), (3), and (4) as in the proof of Proposition 
3.11 (Case 1) in [18]. For completeness, we include this part of the proof in this article.

Set w′ := siw. Since the left multiplication by the matrix x exchanges the rows i − 1 and i of w and the 
other rows remain the same, by Definition 3.11 and Lemma 3.9, we have:

REi+1(xw)REi+2(xw) · · ·REn(xw) = REi+1(w)REi+2(w) · · ·REn(w),

RE2(xw)RE3(xw) · · ·REi−2(xw) = RE2(w)RE3(w) · · ·REi−2(w).

Then, in order to prove our property, we have to compare �1 := �(REi−1(w)REi(w)) and �2 :=
�(REi−1(xw)REi(xw)).
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Subcase 1.1. Suppose ci−1 < ci. By Lemma 3.9, the rows i − 1 and i of the blocks wi and w′
i are of the 

form:

wi :
i

i− 1
.. c .. c′ .. i

bi−1
ai

w′
i :

i

i− 1
.. c .. c′ .. i

bi−1

ai

with c < c′ and where we write bi−1 instead of ai−1 since ai−1 may change when applying Algorithm 1 if 
ci−1 = 1, that is ai−1 on the first column of w (see the second item of Lemma 3.9).

We will discuss different cases depending on the values of ai and bi−1.

• Suppose ai = 1.
– Suppose bi−1 = 1.

We have REi(w) = si · · · sc′+2sc′+1 and REi−1(w) = si−1 · · · sc+2sc+1. Furthermore, we have 
REi(xw) = si · · · sc+2sc+1 and REi−1(xw) = si−1 · · · sc′+1sc′ .
It follows that �1 = ((i − 1) − (c + 1) + 1) + (i − (c′ + 1) + 1) = 2i − c − c′ − 1 and �2 = ((i − 1) − c′ +
1) + (i − (c + 1) + 1) = 2i − c − c′ hence �2 = �1 + 1.

– Suppose bi−1 = ζkde for some 1 ≤ k ≤ de− 1.
We have REi(w) = si · · · sc′+2sc′+1 and REi−1(w) = si−1 · · · s3tkt0s3 · · · sc. Furthermore, we have 
REi(xw) = si · · · s3tkt0s3 · · · sc and REi−1(xw) = si−1 · · · sc′ .
It follows that �1 = (((i − 1) − 3 + 1) + 2 + (c − 3 + 1)) + (i − (c′ + 1) + 1) = 2i + c − c′ − 3 and 
�2 = ((i − 1) − c′ + 1) + ((i − 3 + 1) + 2 + (c − 3 + 1)) = 2i + c − c′ − 2 hence �2 = �1 + 1.

It follows that

if ai = 1, then �(RE(siw)) = �(RE(w)) + 1. (1)

• Suppose now that ai = ζkde with 1 ≤ k ≤ de− 1.
– Suppose bi−1 = 1.

We have REi(w) = si · · · s3tkt0s3 · · · sc′ and REi−1(w) = si−1 · · · sc+1.
Also, we have REi(xw) = si · · · sc+1 and REi−1(xw) = si−1 · · · s3tkt0s3 · · · sc′−1.
It follows that �1 = ((i − 1) − (c + 1) − 1) + ((i − 3 + 1) + 2 + (c′ − 3 + 1)) = 2i − c + c′ − 5 and 
�2 = (((i − 1) − 3 + 1) + 2 + ((c′ − 1) − 3 + 1)) + (i − (c + 1) − 1) = 2i − c + c′ − 6 hence �2 = �1 − 1.

– Suppose bi−1 = ζk
′

de for some 1 ≤ k′ ≤ de− 1.
We have REi(w) = si · · · s3tkt0s3 · · · sc′ and REi−1(w) = si−1 · · · s3tk′t0s3 · · · sc.
Also, we have REi(xw) = si · · · s3tk′t0s3 · · · sc and REi−1(xw) = si−1 · · · s3tkt0s3 · · · sc′−1.
It follows that �1 = ((i − 1) − 3 + 1) + 2 + (c − 3 + 1) + (i − 3 + 1) + 2 + (c′ − 3 + 1) = 2i + c + c′ − 5
and �2 = ((i − 1) − 3 + 1) + 2 + ((c′ − 1) − 3 + 1) + (i − 3 + 1) + 2 + (c − 3 + 1) = 2i + c + c′ − 6 hence 
�2 = �1 − 1.

It follows that

if ai �= 1, then �(RE(siw)) = �(RE(w)) − 1. (2)

Subcase 1.2. Suppose ci−1 > ci. Recall that w′ = siw. If w′[i − 1, c′i−1] and w′[i, c′i] denote the nonzero 
entries of w′ on the rows i − 1 and i, respectively, we have w′[i − 1, c′i−1] = ai and w′[i, c′i] = ai−1. For w′, 
we have c′i−1 < c′i, in which case the preceding analysis would give:
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if ai−1 = 1, then �(RE(si(siw))) = �(RE(siw)) + 1,
if ai−1 �= 1, then �(RE(si(siw))) = �(RE(siw)) − 1.

Hence, since s2
i = 1, we get the following:

if ai−1 = 1, then �(RE(siw)) = �(RE(w)) − 1. (3)

if ai−1 �= 1, then �(RE(siw)) = �(RE(w)) + 1. (4)

Case 2. Suppose x = ti for 0 ≤ i ≤ de− 1.

Set w′ := tiw. By the left multiplication by ti, we have that the last n −2 rows of w and w′ are the same. 
Hence, by Definition 3.11 and Lemma 3.9, we have:
RE3(xw)RE4(xw) · · ·REn(xw) = RE3(w)RE4(w) · · ·REn(w). In order to prove our property in this case, we 
should compare �1 := �(RE1(w)RE2(w)) and �2 := �(RE1(xw)RE2(xw)).

Subcase 2.1. Consider the case where c1 < c2. Since c1 < c2, by Lemma 3.9, the blocks w2 and w′
2 are 

of the form: w2 =
(
b1 0
0 a2

)
and w′

2 =
(

0 ζ−i
de a2

ζideb1 0

)
with b1 instead of a1 since a1 may change when 

applying Algorithm 1 if c1 = 1.

• Suppose a2 = 1.
We have b1 = ζkd hence �1 = k. We also have RE2(xw) = ti+ke and RE1(xw) = zk. Hence we get 
�2 = k + 1. It follows that when c1 < c2,

if a2 = 1, then �(RE(tiw)) = �(RE(w)) + 1. (5)

• Suppose a2 = ζk
′

de for some 1 ≤ k′ ≤ de− 1.
We have b1 = ζke−k′

de . We get RE2(w) = tk′t0 and RE1(w) = zk. Thus, �1 = k + 2. We also get 
RE2(xw) = tke+i−k′ and RE1(xw) = zk. Thus, �2 = k + 1. It follows that when c1 < c2,

if a2 �= 1, then �(RE(tiw)) = �(RE(w)) − 1. (6)

Subcase 2.2. Consider the case where c1 > c2. Since c1 > c2, by Lemma 3.9, the blocks w2 and w′
2 are 

of the form: w2 =
(

0 a1
b2 0

)
and w′

2 =
(
ζ−i
de b2 0
0 ζidea1

)
with b2 instead of a2 since a2 may change when 

applying Algorithm 1 if c2 = 1.

• Suppose a1 �= ζ−i
de .

We have �1 = k + 1, and since ζidea1 �= 1, we have �2 = k + 2. Hence when c1 > c2,

if a1 �= ζ−i
de , then �(RE(tiw)) = �(RE(w)) + 1. (7)

• Suppose a1 = ζ−i
de . We have b2 = ζi+ek

de . We get �1 = k + 1 and �2 = k. Hence when c1 > c2,

if a1 = ζ−i
de , then �(RE(tiw)) = �(RE(w)) − 1. (8)

Case 3: Suppose x = z.

Set w′ := zw. By the left multiplication by z, we have that the last n − 1 rows of w and w′ are the same. 
Hence, by Definition 3.11 and Lemma 3.9, we have:
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RE2(xw)RE3(xw) · · ·REn(xw) = RE2(w)RE3(w) · · ·REn(w). In order to prove our property in this case, we 
should compare �1 := �(RE1(w)) and �2 := �(RE1(xw)).

We get w1 is equal to b1 and w′
1 = ζdb1 with b1 instead of a1 since a1 may change when applying 

Algorithm 1 if c1 = 1. We have b1 =
n∏

i=1
ai = ζkd for some 0 ≤ k ≤ d − 1. Hence if k �= d − 1, we get �1 = k

and �2 = k + 1 and if k = d − 1, we get �1 = d − 1 and �2 = 0. It follows that

�(RE(zw)) ≤ �(RE(w)) + 1. � (9)

The next proposition establishes that Algorithm 1 produces geodesic normal forms for G(de, e, n).

Proposition 3.15. Let w be an element of G(de, e, n). The word RE(w) is a reduced expression over X of w.

Proof. We must prove that �(w) = �(RE(w)). Let x1x2 · · ·xr be a reduced expression over X of w. Hence 
�(w) = �(x1x2 · · ·xr) = r. Since RE(w) is a word representative over X of w, we have �(RE(w)) ≥
�(x1x2 · · ·xr) = r.

We prove that �(RE(w)) ≤ r. Write w as x1x2 · · ·xr where x1, x2, · · · , xr are the matrices of 
G(de, e, n) corresponding to x1, x2, · · · , xr. By Proposition 3.14, we have: �(RE(w)) = �(RE(x1x2 · · ·xr)) ≤
�(RE(x2x3 · · ·xr)) + 1 ≤ �(RE(x3 · · ·xr)) + 2 ≤ · · · ≤ r. Hence �(RE(w)) is equal to �(w). This establishes 
that RE(w) is a reduced expression over X of w. �
Remark 3.16. Geodesic normal forms for the complex reflection groups G(e, e, n) have been already estab-
lished in our previous work [18]. They are explicitly defined by an algorithm (similar to Algorithm 1). Let 
w ∈ G(e, e, n). The output of the algorithm is the word also denoted by RE(w) and defined as a concate-
nation of the words RE2(w), RE3(w), · · · , REn(w) introduced as in Definition 3.11. It describes a minimal 
word representative of the element w ∈ G(e, e, n).

As a direct consequence of Algorithm 1 and Proposition 3.15, the next statement characterizes the 
elements of G(de, e, n) that are of maximal length over the generating set of Corran–Lee–Lee.

Proposition 3.17. Let d > 1, e > 1 and n ≥ 2. The maximal length of an element of G(de, e, n) over the 
generating set of Corran–Lee–Lee is n(n− 1) + d− 1. It is realized for diagonal matrices w such that for 
all 2 ≤ i ≤ n, we have w[i, i] = ζki

de with 1 ≤ ki ≤ de − 1 and w[1, 1] = ζxde with x + (k2 · · · kn) = e(d − 1). A 
minimal word representative of such an element is of the form

zd−1(tk2t0)(s3tk3t0s3) · · · (sn · · · s3tkn
t0s3 · · · sn),

with 1 ≤ k2, · · · , kn ≤ de − 1. The number of elements that are of maximal length is then (de − 1)(n−1).

3.3. The case of G(d, 1, n)

We establish a similar construction for the case of G(d, 1, n) for d > 1 and n ≥ 2. We recall the diagram 
of the presentation of G(d, 1, n):

d

z
2

s2

2

s3

2

sn−1

2

sn

Denote by X the set {z, s2, · · · , sn} of the generators. The generator z corresponds to the matrix z :=
Diag(ζd, 1, · · · , 1) in G(d, 1, n) with ζd = exp(2iπ/d) and sj corresponds to the transposition matrix sj :=
(j − 1, j) for 2 ≤ j ≤ n. Denote by X the set {z, s2, s3, · · · , sn} of these matrices.
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Input : w, a matrix in G(d, 1, n), with d > 1 and n ≥ 2.
Output : RE(w), a word over X.

Local variables: w′, RE(w), i, U , c, k.

Initialisation: U := [1, ζd, ζ2
d, · · · , ζd−1

d ] (U [1] = 1), RE(w) := ε: the empty word, w′ := w.

for i from n down to 1 do
c := 1; k := 0;

while w′[i, c] = 0 do
c := c + 1;

end
#Then w′[i, c] is the root of unity on the row i;
while U [k + 1] �= w′[i, c] do

k := k + 1;
end
#Then w′[i, c] = ζk

d .

if k �= 0 then
w′ := w′scsc−1 · · · s3s2z

−k; #Then w′[i, 2] = 1;
RE(w) := zks2s3 · · · scRE(w);
c := 1;

end
w′ := w′sc+1 · · · si−1si; #Then w′[i, i] = 1;
RE(w) := sisi−1 · · · sc+1RE(w);

end
Return RE(w);

Algorithm 2: A word over X corresponding to an element w ∈ G(d, 1, n).

We define Algorithm 2 that produces a word RE(w) for each matrix w of G(d, 1, n). This Algorithm 
is different than Algorithm 1. Let us explain the steps of the algorithm. Let wn := w ∈ G(d, 1, n). For i

from n to 1, the i-th step of the algorithm transforms the block diagonal matrix 

(
wi 0
0 In−i

)
into a block 

diagonal matrix 

(
wi−1 0

0 In−i+1

)
∈ G(d, 1, n). Let wi[i, c] �= 0 be the nonzero coefficient on the row i of 

wi. If wi[i, c] = 1, we shift it into the diagonal position [i, i] by right multiplication by transpositions. If 
wi[i, c] = ζkd with k ≥ 1, we shift it into position [i, 1] by right multiplication by transpositions, followed by 
a right multiplication by z−k, then we shift the 1 obtained in position [i, 1] into the diagonal position [i, i]
by right multiplication by transpositions. Let us illustrate these operations by the following example.

Example 3.18. Let w :=

⎛
⎝ 0 ζ3 0

0 0 ζ2
3

ζ2
3 0 0

⎞
⎠ ∈ G(3, 1, 3).

Step 1 (i = 3, k = 2, c = 1): w′ := wz−2 =
(0 ζ3 0

0 0 ζ2
3

1 0 0

)
, then

w′ := w′s2s3 =

⎛
⎝ζ3 0 0

0 ζ2
3 0

0 0 1

⎞
⎠.

Step 2 (i = 2, k = 2, c = 1): w′ := w′s2 =
( 0 ζ3 0
ζ2
3 0 0
0 0 1

)
, then w′ := w′z−2 =

(0 ζ3 0
1 0 0
0 0 1

)
, then 

w′ := w′s2 =

⎛
⎝ ζ3 0 0

0 1 0
0 0 1

⎞
⎠.

Step 3 (i = 1, k = 1, c = 1): w′ := w′z−1 = I3.
Hence RE(w) = zs2z2s2s3s2z2.
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The next lemma follows directly from Algorithm 2.

Lemma 3.19. For 2 ≤ i ≤ n, let wi[i, c] �= 0 be the nonzero coefficient on the row i of wi. The block wi−1 is 
obtained by removing the row i and the column c from wi. Moreover, w1 is equal to the nonzero entry on 
the first row of w.

Definition 3.20. Let 1 ≤ i ≤ n. Let wi[i, c] �= 0 for 1 ≤ c ≤ i.

• If w1 = ζkd for some 0 ≤ k ≤ d − 1 (this is equal to the nonzero entry on the first row of w), we define 
RE1(w) to be the word zk.

• If wi[i, c] = 1, we define REi(w) to be the word
sisi−1 · · · sc+1 (decreasing-index expression).

• If wi[i, c] = ζkd with k �= 0, we define REi(w) to be the word
si · · · s3zk if c = 1,
si · · · s3s2zks2s3 · · · sc if c ≥ 2.

As for Algorithm 1, the output of Algorithm 2 is equal to RE1(w)RE2(w) · · ·REn(w). In Example 3.18, 
we have RE(w) = z︸︷︷︸

RE1(w)

s2z2s2︸ ︷︷ ︸
RE2(w)

s3s2z2︸ ︷︷ ︸
RE3(w)

.

The proof of the next proposition is similar to the proof of Proposition 3.13 and is left to the reader.

Proposition 3.21. Let w ∈ G(d, 1, n). The word RE(w) given by Algorithm 2 is a word representative over 
X of w ∈ G(d, 1, n).

The following proposition enables us to prove that the output of Algorithm 2 is a reduced expression 
over X of a given element w ∈ G(d, 1, n).

Proposition 3.22. Let w be an element of G(d, 1, n). For all x ∈ X, we have

�(RE(xw)) ≤ �(RE(w)) + 1.

Proof. Consider x = si with 2 ≤ i ≤ n. This case is done in the same way as Case 1 in the proof of Propo-
sition 3.14. Consider now x = z. This case is done this time as Case 3 of the proof of Proposition 3.14. �

Applying the arguments used before in the proof of Proposition 3.15, we deduce that RE(w) is a reduced 
expression over X of w ∈ G(d, 1, n). Hence Algorithm 2 produces geodesic normal forms for G(d, 1, n).

As a direct application, the next statement characterizes the elements of G(d, 1, n) that are of maximal 
length. Note that this statement was also observed in [4].

Proposition 3.23. Let d > 1 and n ≥ 2. There exists a unique element of maximal length of G(d, 1, n). Its 
minimal word representative is of the form

zd−1(s2zd−1s2)(s3s2zd−1s2s3) · · · (sn · · · s2zd−1s2 · · · sn).

Its length is then equal to n(n + d − 2).

Remark 3.24. When d = 2, the group G(2, 1, n) is the Coxeter group of type Bn. By Proposition 3.23, the 
longest element is of the form
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z(s2zs2)(s3s2zs2s3) · · · (sn · · · s2zs2 · · · sn).

Its length is equal to n2 which is already known for Coxeter groups of type Bn, see Example 1.4.6 of [11].

4. The Hecke algebras H(de, e, n)

The Hecke algebras H(de, e, n) attached to the general series of complex reflection groups G(de, e, n)
are defined as quotients of the corresponding complex braid group algebras by some polynomial relations. 
Let B(de, e, n) denote the complex braid group attached to G(de, e, n), as defined in [6]. We establish 
presentations for the Hecke algebras H(de, e, n) by using the presentations of Corran–Picantin [10] and 
Corran–Lee–Lee [9] of the complex braid groups B(e, e, n) and B(de, e, n) for d > 1, respectively.

4.1. The Hecke algebras H(e, e, n)

Corran–Picantin introduced in [10] a presentation for the complex braid groups B(e, e, n). Although 
we are not going to use this result, we mention that they also established nice structures (called Garside 
structures) for these groups. The presentation of Corran–Picantin is as follows.

Definition 4.1. Let e ≥ 1 and n ≥ 2. The group B(e, e, n) is defined by a presentation with set of generators 
{ti | i ∈ Z/eZ} ∪{s3, s4, · · · , sn} in bijection with {ti | i ∈ Z/eZ} ∪ {s3, s4, · · · , sn} and relations 1 to 5 of 
Definition 3.1.

Adding the quadratic relations to all the generators, we get the presentation of Corran–Picantin of 
G(e, e, n) given earlier in Definition 3.1.

The next definition establishes a presentation of the Hecke algebra H(e, e, n) attached to the group 
G(e, e, n), by using the presentation of Corran–Picantin of the complex braid group B(e, e, n).

Definition 4.2. Let e ≥ 1 and n ≥ 2. We exclude the case (n = 2, e even), see Remark 4.3 below. Let 
R0 = Z[a]. The unitary associative Hecke algebra H(e, e, n) is defined as the quotient of the group algebra 
R0(B(e, e, n)) by the following relations:

1. t2i − ati − 1 = 0 for i ∈ Z/eZ,
2. s2

j − asj − 1 = 0 for 3 ≤ j ≤ n,

where {ti | i ∈ Z/eZ} ∪ {sj | 3 ≤ j ≤ n} is the set of generators of the presentation of Corran–Picantin of 
B(e, e, n). Then, a presentation of H(e, e, n) is obtained by adding these relations to those of the presentation 
of Corran–Picantin given in Definition 4.1.

Remark 4.3. For the case (n = 2, e even), there exist two conjugacy classes of the reflections ti, for i ∈ Z/eZ

in the complex reflection group. In this case, we define the Hecke algebra H(e, e, 2) in the same way as in 
Definition 4.2 over R0 = Z[a1, a2] with two types of polynomial relations for each conjugacy class of the 
ti’s: t2i − a1ti − 1 = 0 for the first conjugacy class and t2j − a2tj − 1 = 0 for the second.

Note that we use the polynomial ring R0 instead of the usual Laurent polynomial ring R introduced 
in Definition 2.2 and we use normalized polynomial relations in the definition of H(e, e, n). Actually, by a 
result of Marin (see Proposition 2.3 in [14]) applied to the case of G(e, e, n), the BMR freeness conjecture for 
this case is equivalent to the fact that H(e, e, n) is a free R0-module of rank equal to the order of G(e, e, n). 
We will also use a polynomial ring and normalized relations in the definition of the Hecke algebras attached 
to all the groups G(de, e, n) in the next subsection.
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4.2. The general case

Corran–Lee–Lee [9] established a presentation for the complex braid group B(de, e, n) that give rise to 
nice structures (called quasi-Garside structures) for these groups. The presentation is defined as follows.

Definition 4.4. Let d > 1, e ≥ 1 and n ≥ 2. The group B(de, e, n) is defined by a presentation with set of 
generators {z} ∪ {ti | i ∈ Z} ∪ {s3, s4, · · · , sn} in bijection with {z} ∪ {ti | i ∈ Z/deZ} ∪ {s3, s4, · · · , sn}
and relations 1 to 3 of Definition 3.3.

Note that B(de, e, n) is isomorphic to B(2e, e, n) for d > 1. The parameter d makes an appearance 
when it comes to the complex reflection group G(de, e, n). Adding the relation zd = 1 and the quadratic 
relations to all the other generators of the presentation of Corran–Lee–Lee of B(de, e, n), we obtain the 
presentation of G(de, e, n) given earlier in Definition 3.3. Actually, with the additional relation zd = 1, we 
have ti+de = zdti+de = tiz

d = ti for all i ∈ Z.
Note that for e = 1, it is readily checked that the presentation of Corran–Lee–Lee is equivalent to the 

classical presentation of B(d, 1, n) that is isomorphic to B(2, 1, n) for d > 1. Note that we replace t0 by s2
in the set of generators. The (well-known) diagram that describes the classical presentation of B(d, 1, n) is 
the following.

z s2 s3 sn−1 sn

We are ready to establish a presentation of the Hecke algebra H(de, e, n) attached to the group G(de, e, n), 
by using the presentation of Corran–Lee–Lee of the complex braid group B(de, e, n). Similarly to the case 
of H(e, e, n), we also define the Hecke algebra H(de, e, n) over a polynomial ring R0 and use normalized 
polynomial relations.

Definition 4.5. Let d > 1, e ≥ 1 and n ≥ 2. We exclude the case (n = 2, e even), see Remark 4.6 below. Let 
R0 = Z[a, b1, b2, · · · , bd−1]. The unitary associative Hecke algebra H(de, e, n) is defined as the quotient of 
the group algebra R0(B(de, e, n)) by the following relations:

1. zd − b1z
d−1 − b2z

d−2 − · · · − bd−1z − 1 = 0,
2. t2i − ati − 1 = 0 for i ∈ Z,
3. s2

j − asj − 1 = 0 for 3 ≤ j ≤ n,

where {z} ∪ {ti | i ∈ Z} ∪ {sj | 3 ≤ j ≤ n} is the set of generators of the presentation of Corran–Lee–Lee 
of B(de, e, n). Then, a presentation of H(de, e, n) is obtained by adding these relations to those given in 
Definition 4.4.

Remark 4.6. When (n = 2, e even), the Hecke algebra H(de, e, 2) can be defined over R0[a1, a2, b1, b2, · · · ,
bd−1] in the same way as in the previous definition, but with two types of polynomial relations for the ti’s 
(due to the existence of two conjugacy classes of the ti’s in G(de, e, 2)), as established before in Remark 4.3.

Remark 4.7. The generators of Corran–Picantin for B(e, e, n) and of Corran–Lee–Lee for B(de, e, n) include 
the generators of Broué–Malle–Rouquier t0, t1, s3, s4, · · · , sn for B(e, e, n) and z, t0, t1, s3, s4, · · · , sn for 
B(de, e, n) that are distinguished braided reflections (see [6]). By Relation 1 of Definition 3.1 and Relation 
3 of Definition 3.3, the generators ti (i �= 0, 1) are all conjugate to either t0 or t1. Hence their corresponding 
braided reflections are conjugate in the corresponding complex braid group (see also [6]). The definition of 
H(e, e, n) and H(de, e, n) then coincides with Marin’s definition of H0 (see the paragraph after Theorem 
2.2 in [14]), as it is defined to be the quotient of the complex braid group algebra over R0 by the same 
normalized polynomial relations.



16 G. Neaime / Journal of Pure and Applied Algebra 225 (2021) 106500
5. Bases for the Hecke algebras H(e, e, n)

The Hecke algebra H(e, e, n) is described in Definition 4.2 by a presentation with generating set 
{t0, t1, · · · , te−1, s3, · · · , sn}. It is defined over R0 = Z[a]. Note that we will replace t0 by s2 in some 
cases in order to simplify notations. Using the geodesic normal forms of G(e, e, n) introduced in Section 3, 
we construct a natural basis for H(e, e, n) that is different from the one introduced by Ariki in [1].

Let us define the following subsets of H(e, e, n):

Λ2 = {1,
tk for 0 ≤ k ≤ e− 1,
tkt0 for 1 ≤ k ≤ e− 1},

and for 3 ≤ i ≤ n,

Λi = {1,
si · · · si′ for 3 ≤ i′ ≤ i,

si · · · s3tk for 0 ≤ k ≤ e− 1,
si · · · s3tks2 · · · si′ for 1 ≤ k ≤ e− 1 and 2 ≤ i′ ≤ i}.

Define Λ = Λ2 · · ·Λn to be the set of the products a2 · · · an, where a2 ∈ Λ2, · · · , an ∈ Λn. Remark that 
this set corresponds to all the reduced words RE(w) of the form RE2(w)RE3(w) · · ·REn(w) introduced in 
Section 3 (see Definition 3.11 and Remark 3.16). Recall that R0 = Z[a] (see Definition 4.2). The aim of this 
section is to establish the following.

Theorem 5.1. The set Λ provides an R0-basis of the Hecke algebra H(e, e, n) for e ≥ 1 and n ≥ 2.

In order to prove this theorem, it is shown in Proposition 2.3(i) of [14] that it is enough to find a spanning 
set of H(e, e, n) over R0 of |G(e, e, n)| elements. This is a general fact about Hecke algebras associated to 
complex reflection groups. We have |Λ2| = 2e, |Λ3| = 3e, · · · , and |Λn| = ne by the definition of Λ2, · · · , and 
Λn. Thus, |Λ| is equal to en−1n! that is the order of G(e, e, n). If we manage to prove that Λ is a spanning 
set of H(e, e, n) over R0, then we get Theorem 5.1. Denote by Span(S) the sub-R0-module of H(e, e, n)
generated by S.

We prove Theorem 5.1 by induction on n ≥ 2. Propositions 5.4 and 5.6 below correspond to the cases n = 2
and n = 3, respectively. Suppose that Λ2 · · ·Λn−1 is an R0-basis of H(e, e, n − 1). As mentioned before, in 
order to prove that Λ = Λ2 · · ·Λn is an R0-basis of H(e, e, n), it is enough to show that it is an R0-generating 
set of H(e, e, n), that is Λ stable under left multiplication by t0, · · · , te−1, s3, · · · , sn. Since Λ2 · · ·Λn−1 is 
an R0-basis of H(e, e, n − 1), the set Λ2 · · ·Λn is stable under left multiplication by t0, · · · , te−1, s3, · · · , 
sn−1. We prove that it is stable under left multiplication by sn, that is sn(a2 · · · an) = a2 · · · an−2sn(an−1an)
belongs to Span(Λ) for a2 ∈ Λ2, · · · , an ∈ Λn by checking all the different possibilities for an−1 ∈ Λn−1 and 
an ∈ Λn.

Assume n > 3. If an−1 = 1 or an = 1, it is readily checked that sn(an−1an) belongs to Span(Λn−1Λn). If 
an−1 = sn−1 · · · si for 2 ≤ i ≤ n − 1, we distinguish 3 different cases for an that belongs to Λn. This is done 
in Lemmas 5.8, 5.9 and 5.10 below. If an−1 = sn−1 · · · s3tk for 0 ≤ k ≤ e − 1, we also distinguish 3 different 
cases for an ∈ Λn. This is done in Lemmas 5.11, 5.12 and 5.13. Finally, if an−1 = sn−1 · · · s3tks2 · · · si for 
1 ≤ k ≤ e − 1 and 2 ≤ i ≤ n − 1, we also have 3 different cases for an ∈ Λn (see Lemmas 5.14, 5.15 and 5.16
below).

Let us start by establishing the following two preliminary lemmas.
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Lemma 5.2. For i, j ∈ Z/eZ, we have tjti ∈ Span(Λ2).

Proof. If i = j, then we have t2i = ati+1 ∈ Span(Λ2). Suppose i �= j. We have titi−1 = tjtj−1. If we multiply 
by tj on the left and by ti−1 on the right, we get tjtit2i−1 = t2j tj−1ti−1. Using the quadratic relations, we 
have tjti(ati−1 + 1) = (atj + 1)tj−1ti−1, that is atjtiti−1 + tjti = atjtj−1ti−1 + tj−1ti−1. Replacing titi−1
by tjtj−1 and tjtj−1 by titi−1, we get at2j tj−1 + tjti = atit

2
i−1 + tj−1ti−1. Using the quadratic relations, we 

have a(atj + 1)tj−1 + tjti = ati(ati−1 + 1) + tj−1ti−1, that is a2t1t0 + atj−1 + tjti = a2t1t0 + ati + tj−1ti−1. 
Simplifying this relation, we get

tjti = tj−1ti−1 + a(ti − tj−1).

Now, we apply the same operations to compute tj−1ti−1 and so on until we arrive to a term of the form 
tkt0 for some k ∈ Z/eZ. Thus, if i �= j, then tjti belongs to Span(Λ2 \ {1}). �
Lemma 5.3. For 1 ≤ k ≤ e −1, we have tkt0 ∈ R0(t1t0) +R0(t1t0)2+· · ·+R0(t1t0)k+R0t1+R0t2+· · ·+R0tk−1.

Proof. We prove the property by induction on k. The property is clearly satisfied for k = 1. Let k ≥ 2. 
Suppose tk−1t0 ∈ R0(t1t0) + R0(t1t0)2 + · · · + R0(t1t0)k−1 + R0t1 + R0t2 + · · · + R0tk−2. We have that 
tk+1tk = tktk−1. Multiplying by tk+1 on the left and by t0 on the right, we get t2k+1tkt0 = tk+1tktk−1t0. Using 
the quadratic relations and replacing tk+1tk with t1t0, we get (atk+1 +1)tkt0 = t1t0tk−1t0. After simplifying 
this relation, we have tkt0 = t1t0(tk−1t0) −a(t1t0)t0. Using the induction hypothesis, we replace tk−1t0 by its 
value and we get tkt0 ∈ t1t0(R0(t1t0) +R0(t1t0)2+· · ·+R0(t1t0)k−1+R0t1+R0t2+· · ·+R0tk−2) +R0(t1t0)t0. 
This is equal to R0(t1t0)2+R0(t1t0)3+· · ·+R0(t1t0)k+R0(t1t0)t1+R0(t1t0)t2+· · ·+R0(t1t0)tk−2+R0(t1t0)t0. 
Now (t1t0)tm is equal to tm+1tmtm ∈ R0t1t0 + R0tm+1 for 1 ≤ m ≤ k − 2 and (t1t0)t0 ∈ R0(t1t0) + R0t1. 
It follows that tkt0 ∈ R0(t1t0) + R0(t1t0)2 + · · · + R0(t1t0)k + R0t1 + R0t2 + · · · + R0tk−1. �

As a direct consequence of Lemma 5.2, we have the following.

Proposition 5.4. Let x = tl with l ∈ Z/eZ. For all a2 ∈ Λ2, we have xa2 belongs to Span(Λ2).

Remark 5.5. Recall that we excluded the case (n = 2, e even) in Definition 4.2 (see Remark 4.3). Consider 
the Hecke algebra H(e, e, 2) with e even. Similarly to Proposition 5.4, one shows that Λ2 is stable under left 
multiplication by all the ti’s for i ∈ Z/eZ. Then, applying Proposition (2.3) (i) of [14], we also get that Λ2
is an R0-basis of H(e, e, 2) for the case e even.

Proposition 5.6. For all a2 ∈ Λ2 and a3 ∈ Λ3, the element s3(a2a3) belongs to Span(Λ2Λ3).

Proof. The case where a1 ∈ Λ1 and a2 = 1 is obvious. The case where a1 = 1 and a2 ∈ Λ2 is also obvious.
Case 1. Suppose a2 = tk for 0 ≤ k ≤ e − 1 and a3 = s3.

We have s3tks3 = tks3tk ∈ Span(Λ2Λ3).
Case 2. Suppose a2 = tk for 0 ≤ k ≤ e − 1 and a3 = s3tl for 0 ≤ l ≤ e − 1. We have s3tks3tl = tks3tktl. 

After replacing tktl by its decomposition over Λ2 (see Lemma 5.2), we directly have s3tks3tl ∈ Span(Λ2Λ3).
Case 3. Suppose a2 = tk for 0 ≤ k ≤ e − 1 and a3 = s3tlt0 or a3 = s3tlt0s3 for 1 ≤ l ≤ e − 1. We have 

s3tks3tlt0s3 = tks3tktlt0s3. By replacing tktl by its value (see Lemma 5.2), we obviously have s3tks3tlt0 and 
s3tks3tlt0s3 belong to Span(Λ2Λ3).

Case 4. Suppose a2 = tkt0 for 1 ≤ k ≤ e − 1 and a3 = s3. We have s3(a2a3) = s3tkt0s3 ∈ Span(Λ2Λ3).
Case 5. Suppose a2 = tkt0 with 1 ≤ k ≤ e − 1 and a3 = s3tl with 0 ≤ l ≤ e − 1. We have 

s3(a2a3) = s3tkt0s3tl. Recall that by Lemma 5.3, we have tkt0 ∈ R0(t1t0) + R0(t1t0)2 + · · · + R0(t1t0)k +
R0t1 + R0t2 + · · · + R0tk−1. Replacing tkt0 by its value, we have to deal with the following two terms: 
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s3txs3tl with 1 ≤ x ≤ k − 1 and s3(t1t0)xs3tl with 1 ≤ x ≤ k. The first term is done in Case 2. For 
the second term, we decrease the power of (t1t0) and use t1t0 = tl+1tl to get s3(t1t0)x−1tl+1tls3tl. We 
apply a braid relation and then get s3(t1t0)x−1tl+1s3tls3. Again, we decrease the power of (t1t0) and use 
t1t0 = tl+2tl+1. We get s3(t1t0)x−2tl+2t

2
l+1s3tls3 ∈ R0s3(t1t0)x−2tl+2tl+1s3tls3 + R0s3(t1t0)x−2tl+2s3tls3. 

We continue by decreasing the power of (t1t0) and we get in the next step that s3(a2a3) belongs to 
R0s3(t1t0)x−3tl+1s3tls

3
3 + R0s3(t1t0)x−3tl+2s3tls

2
3 + R0s3(t1t0)x−3tl+1s3tls

2
3 + R0s3(t1t0)x−3tl+3s3tls3. In-

ductively, we arrive to terms of the form s3t1t0tx′s3tl(s3)x
′′ (0 ≤ x′ ≤ e − 1 and x′′ ∈ N). Replace t1t0

by tx′+1tx′ , we get s3tx′+1(tx′)2s3tl(s3)x
′′ which belongs to R0s3tx′+1tx′s3tl(s3)x

′′ +R0s3tx′+1s3tl(s3)x
′′ . 

Replacing tx′+1tx′ by tl+1tl and applying a braid relation in the first term, we get R0s3tl+1s3tl(s3)x
′′+1

+R0s3tx′+1s3tl(s3)x
′′ . Since s2

3 = as3 + 1, it remains to deal with these 2 terms:

s3txs3tl and s3txs3tls3, for some 0 ≤ x ≤ e− 1.

It is readily checked that these terms belong to Span(Λ2Λ3).
Case 6. Suppose a2 = tkt0 and a3 = s3tlt0 or a3 = s3tlt0s3 (1 ≤ k, l ≤ e − 1).

By Case 5, we get two terms of the form s3txs3tl and s3txs3tls3. Multiplying them on the right by t0 then 
by s3, we get that s3(a2a3) obviously belongs to Span(Λ2Λ3). �

In the sequel, we will indicate by (1) the operation that shifts the underlined letters to the left, by (2) 
the operation that applies braid relations, and by (3) the one that applies quadratic relations. The following 
lemma is useful in the proofs of Lemmas 5.13, 5.15 and 5.16 below. Denote by S∗

n−1 the set of the words 
over {t0, · · · , te−1, s3, · · · , sn−1}.

Lemma 5.7. Let 3 ≤ i ≤ n. We have sn · · · s4s
2
3s4 · · · si belongs to Span(S∗

n−1Λn).

Proof. If i = 3, we have sn · · · s4s
2
3 ∈ R0sn · · · s4s3 + R0sn · · · s4 (the last term is equal to 1 if 

n = 3). If i = 4, we have sn · · · s4s
2
3s4 ∈ R0sn · · · s4s3s4 + R0sn · · · s2

4 ∈ R0s3sn · · · s3 + R0sn · · · s4 +
R0sn · · · s5. The last term is equal to 1 if n = 4. Let i ≥ 5. We have sn · · · s4s

2
3s4 · · · si belongs to 

R0sn · · · s4s3s4 · · · si + R0sn · · · s5s
2
4s5 · · · si. We apply the quadratic relation s2

4 = as4 + 1 to the second 
term and get R0sn · · · s5s4s5 · · · si + R0sn · · · s6s

2
5s6 · · · si. And so on, we apply quadratic relations. We get 

terms of the form sn · · · sk+1sksk+1 · · · si with k+ 1 ≤ i and a term of the form sn · · · si+1sis
2
i−1si. We have 

sn · · · si+1sis
2
i−1si belongs to R0sn · · · si+1sisi−1si + R0sn · · · si+1si + R0sn · · · si+1 ⊆ R0si−1sn · · · si−1 +

R0sn · · · si+1si + R0sn · · · si+1 (the last term is equal to 1 if i = n). Hence it belongs to Span(S∗
n−1Λn).

The other terms are of the form sn · · · sk+1sksk+1 · · · si (k + 1 ≤ i). We have
sn · · · sk+1sksk+1 · · · si

(2)=

sn · · · sk+2sksk+1sksk+2 · · · si
(1)=

sksn · · · sk+2sk+1sk+2sksk+3 · · · si
(2)=

sksn · · · sk+1sk+2sk+1sksk+3 · · · si
(1)=

sksk+1sn · · · sk+2sk+1sksk+3 · · · si−1si.

We apply the same operations to sk+3, · · · , si−1 and get

sksk+1 · · · si−2sn · · · sksi
(1)=

sksk+1 · · · si−2sn · · · sisi−1sisi−2 · · · sk
(2)=

sksk+1 · · · si−2sn · · · si+1si−1sisi−1si−2 · · · sk
(1)=

sksk+1 · · · si−1snsn−1 · · · sk,
which belongs to Span(S∗

n−1Λn). �
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Lemma 5.8. If an−1 = sn−1sn−2 · · · si with 3 ≤ i ≤ n − 1 and an = snsn−1 · · · si′ with 3 ≤ i′ ≤ n, then 
sn(an−1an) belongs to Span(Λn−1Λn).

Proof. Case 1. Suppose i < i′. We have sn(an−1an) is equal to
snsn−1sn−2 · · · sisnsn−1 · · · si′

(1)=
snsn−1snsn−2 · · · sisn−1 · · · si′

(2)=

sn−1snsn−1sn−2 · · · sisn−1 · · · si′
(1)=

sn−1snsn−1sn−2sn−1 · · · sisn−2 · · · si′
(2)=

sn−1snsn−2sn−1sn−2 · · · sisn−2 · · · si′
(1)=

sn−1sn−2snsn−1sn−2 · · · sisn−2 · · · si′ .
We apply the same operations to the underlined letters sn−2 · · · si′ in order to get sn−1sn−2 · · · si′−1snsn−1

· · · si which belongs to Span(Λn−1Λn).
Case 2. Suppose i ≥ i′. We have sn(an−1an) is equal to snsn−1 · · · sisnsn−1 · · · si′ . We apply the 

operations (1) and (2) and get sn−1snsn−1 · · · sisn−1 · · · si′ . Then we apply the same operations to 
sn−1 and get sn−1sn−2snsn−1 · · · sisn−2 · · · si′ . Since i ≥ i′, we write si+2si+1si in sn−2 · · · si′ and get 
sn−1sn−2snsn−1 · · · sisn−2 · · · si+2si+1si · · · si′ . Similarly, we apply the same operations to sn−2, · · · , si+2

and get
sn−1 · · · si+1sn · · · si+1sisi+1si · · · si′

(2)=

sn−1 · · · si+1sn · · · si+2sisi+1s
2
i si−1 · · · si′

(1)=
sn−1 · · · sisn · · · si+2si+1s

2
i si−1 · · · si′

(3)=
asn−1 · · · sisn · · · si+1sisi−1 · · · si′ + sn−1 · · · sisn · · · si+2si+1si−1 · · · si′ .
The first term belongs to Span(Λn−1Λn). For the second term, the underlined letters commute with 
sn · · · si+2si+1 hence they are shifted to the left. We thus get sn(an−1an) is equal to asn−1 · · · sisn · · · si′ +
sn−1 · · · si′sn · · · si+1 which belongs to Span(Λn−1Λn). �

Lemma 5.9. If an−1 = sn−1 · · · si with 3 ≤ i ≤ n −1 and an = sn · · · s3tk with 0 ≤ k ≤ e −1, then sn(an−1an)
belongs to Span(Λn−1Λn).

Proof. This corresponds to the case i′ = 3 in the proof of Lemma 5.8 with a right multiplication by tk for 
0 ≤ k ≤ e − 1. Since i ≥ 3, by the case i ≥ i′ of Lemma 5.8, we have sn(an−1an) = asn−1 · · · sisn · · · s3tk +
sn−1 · · · s3sn · · · si+1tk. In the second term, tk commutes with sn · · · si+1 hence it is shifted to the left. We 
get sn(an−1an) = asn−1 · · · sisn · · · s3tk + sn−1 · · · s3tksn · · · si+1 which belongs to Span(Λn−1Λn). �

Lemma 5.10. If an−1 = sn−1 · · · si with 3 ≤ i ≤ n − 1 and an = sn · · · s3tks2s3 · · · si′ with 1 ≤ k ≤ e − 1 and 
2 ≤ i′ ≤ n, then sn(an−1an) belongs to Span(Λn−1Λn).

Proof. According to Lemma 5.9, we have sn(an−1an) = asn−1 · · · sisn · · · s3tks2 · · · si′ + sn−1 · · · s3tksn
· · · si+1s2 · · · si′ . The first term is an element of Span(Λn−1Λn). We check that the second term also belongs 
to Span(Λn−1Λn). Actually,

Case 1. Suppose i′ < i. The second term is equal to sn−1 · · · s3tksn · · · si+1s2 · · · si′ . The underlined letters 
commute with sn · · · si+1 and are shifted to the left. We get sn−1 · · · s3tks2 · · · si′sn · · · si+1 ∈ Span(Λn−1Λn).

Case 2. Suppose i′ ≥ i. We write si−1sisi+1 in s2 · · · si′ and get
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sn−1 · · · s3tksn · · · si+1(s2 · · · si′) =
sn−1 · · · s3tksn · · · si+1(s2 · · · si−1sisi+1 · · · si′)

(1)=

sn−1 · · · s3tks2 · · · si−1sn · · · si+1(sisi+1 · · · si′)
(2)=

sn−1 · · · s3tks2 · · · si−1sn · · · sisi+1si(si+2 · · · si′)
(1)=

sn−1 · · · s3tks2 · · · si−1sisn · · · si+1si(si+2 · · · si′)
(1)=

sn−1 · · · s3tks2 · · · si−1sisn · · · si+2si+1si+2si(si+3 · · · si′)
(2)=

sn−1 · · · s3tks2 · · · si−1sisn · · · si+1si+2si+1si(si+3 · · · si′)
(1)=

sn−1 · · · s3tks2 · · · sisi+1sn · · · si+2si+1si(si+3 · · · si′).
We apply the same operations to the underlined letters si+3, · · · , si′ . We finally get sn−1 · · · s3tks2 · · · si′−1sn

· · · si ∈ Span(Λn−1Λn). �

Lemma 5.11. If an−1 = sn−1 · · · s3tk with 0 ≤ k ≤ e − 1 and an = sn · · · si with 3 ≤ i ≤ n, then sn(an−1an)
belongs to Span(Λn−1Λn).

Proof. We have sn(an−1an) is equal to
snsn−1 · · · s3tksn · · · si

(1)=
snsn−1sn · · · s3tksn−1 · · · si

(2)=

sn−1snsn−1 · · · s3tksn−1 · · · si
(1)=

sn−1snsn−1sn−2sn−1 · · · s3tksn−2 · · · si
(2)=

sn−1snsn−2sn−1sn−2 · · · s3tksn−2 · · · si
(1)=

sn−1sn−2snsn−1 · · · s3tksn−2 · · · si.
Now we apply the same operations for sn−2, · · · , si.

Case 1. Suppose i = 3. We get sn−1 · · · s3snsn−1 · · · s3tks3. Next, we apply a braid relation to get 
sn−1 · · · s3snsn−1 · · · tks3tk, then we shift tk to the left and we finally get sn−1 · · · s3tksnsn−1 · · · s3tk which 
belongs to Span(Λn−1Λn).

Case 2. Suppose i > 3. We directly get sn−1 · · · sisi−1sn · · · s3tk that also belongs to Span(Λn−1Λn). �

Lemma 5.12. If an−1 = sn−1 · · · s3tk with 0 ≤ k ≤ e − 1 and an = sn · · · s3tl with 0 ≤ l ≤ e − 1, then 
sn(an−1an) belongs to Span(Λn−1Λn).

Proof. By Lemma 5.11, one can write sn(an−1an) = sn−1 · · · s3tksnsn−1 · · · s3tktl. By Lemma 5.2 where we 
compute tktl, we directly deduce that sn(an−1an) belongs to Span(Λn−1Λn). �

Lemma 5.13. If an−1 = sn−1 · · · s3tk with 0 ≤ k ≤ e − 1 and an = sn · · · s3tls2 · · · si with 2 ≤ i ≤ n and 
1 ≤ l ≤ e − 1, then sn(an−1an) belongs to Span(S∗

n−1Λn).

Proof. By the previous lemma, we have sn(an−1an) = sn−1 · · · s3tksn · · · s3tktl(s2 · · · si). By Lemma 5.2, 
the case i = 2 is obvious. Suppose i ≥ 3. After replacing tktl by its value given in Lemma 5.2, we have two 
different terms in sn(an−1an) of the form sn−1 · · · s3tksn · · · s3tx(s2 · · · si) with 0 ≤ x ≤ e − 1 and of the 
form sn−1 · · · s3tksn · · · s3tx(s3 · · · si) with 0 ≤ x ≤ e − 1.
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For terms of the form sn−1 · · · s3tksn · · · s3tx(s3 · · · si) with 0 ≤ x ≤ e − 1, we have
sn−1 · · · s3tksn · · · s3tx(s3 · · · si)

(2)=

sn−1 · · · s3tksn · · · txs3tx(s4 · · · si)
(1)=

sn−1 · · · s3tktxsn · · · s3tx(s4 · · · si)
(1)=

sn−1 · · · s3tktxsn · · · s4s3s4tx(s5 · · · si)
(2)=

sn−1 · · · s3tktxsn · · · s3s4s3tx(s5 · · · si)
(1)=

sn−1 · · · s3tktxs3sn · · · s3tx(s5 · · · si).
We apply the same operations for the underlined letters to get sn−1 · · · s3tktxs3 · · · si−1sn · · · s3tx which 
belongs to Span(S∗

n−1Λn).
Consider the terms of the form sn−1 · · · s3tksn · · · s3tx(s2 · · · si) with 0 ≤ x ≤ e − 1.

If x �= 0, they belong to Span(Λn−1Λn).
If x = 0, we have sn−1 · · · s3tksn · · · s3t0(s2s3 · · · si) ∈ R0sn−1 · · · s3tksn · · · s3t0s3 · · · si + R0sn−1 · · · s3tksn

· · · s4s
2
3s4 · · · si. The first term corresponds to the previous case (with x = 0) and then belongs to 

Span(S∗
n−1Λn). By Lemma 5.7, the second term also belongs to Span(S∗

n−1Λn). �

Lemma 5.14. If an−1 = sn−1 · · · s3tks2 · · · si with 2 ≤ i ≤ n − 1, 1 ≤ k ≤ e − 1 and an = sn · · · si′ with 
3 ≤ i′ ≤ n, then sn(an−1an) belongs to Span(Λn−1Λn).

Proof. Case 1. Suppose i < i′. We have sn(an−1an) is equal to
sn · · · s3tks2 · · · sisn · · · si′

(1)=
snsn−1sn · · · s3tks2 · · · sisn−1 · · · si′

(2)=

sn−1snsn−1 · · · s3tks2 · · · sisn−1 · · · si′
(1)=

sn−1snsn−1sn−2sn−1 · · · s3tks2 · · · sisn−2 · · · si′
(2)=

sn−1snsn−2sn−1sn−2 · · · s3tks2 · · · sisn−2 · · · si′
(1)=

sn−1sn−2snsn−1sn−2 · · · s3tks2 · · · sisn−2 · · · si′+1si′ .

We apply the same operations to the underlined letters and we get sn−1 · · · si′sn · · · s3tks2 · · · sisi′ .
Subcase 1.1. Suppose i′ = i + 1. We directly have sn(an−1an) ∈ Span(Λn−1Λn).
Subcase 1.2. Suppose i′ > i +1. Then we write si′+1si′si′−1 in the underlined word of sn−1 · · · si′sn · · · s3tks2

· · · sisi′ and get
sn−1 · · · si′sn · · · si′+1si′si′−1 · · · s3tks2 · · · sisi′

(1)=
sn−1 · · · si′sn · · · si′+1si′si′−1si′ · · · s3tks2 · · · si

(2)=

sn−1 · · · si′sn · · · si′+1si′−1si′si′−1 · · · s3tks2 · · · si
(1)=

sn−1 · · · si′−1sn · · · s3tks2 · · · si which belongs to Span(Λn−1Λn).
Case 2. Suppose i ≥ i′. We have sn(an−1an) is equal to sn · · · s3tks2 · · · sisn · · · si′ . We shift sn to the left 

and apply a braid relation to get sn−1snsn−1 · · · s3tks2 · · · sisn−1 · · · si′ . Write si+2si+1 in the underlined 
word to get sn−1snsn−1 · · · s3tks2 · · · sisn−1 · · · si+2si+1 · · · si′ . We apply the same operations to the under-
lined letters to get
sn−1 · · · si+1sn · · · s3tks2 · · · sisi+1sisi−1 · · · si′

(2)=

sn−1 · · · si+1sn · · · s3tks2 · · · si+1sisi+1si−1 · · · si′
(1)=

sn−1 · · · sisn · · · s3tks2 · · · si−1sisi+1si−1 · · · si′ (The details of the computation are left to the reader). Then 
we have
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sn−1 · · · sisn · · · s3tks2 · · · si−1sisi+1si−1 · · · si′
(1)=

sn−1 · · · sisn · · · s3tks2 · · · si−1sisi−1si+1si−2 · · · si′
(2)=

sn−1 · · · sisn · · · s3tks2 · · · sisi−1sisi+1si−2 · · · si′
(1)=

sn−1 · · · si−1sn · · · s3tks2 · · · si−2si−1sisi+1si−2 · · · si′+1si′ . We apply the same operations to the underlined 
letters and we finally get
sn−1 · · · si′+1sn · · · s3tks2s3 · · · sisi+1si′ . We write si′−1si′si′+1 in the underlined word and get sn−1 · · ·
si′+1sn · · · s3tks2s3 · · · si′−1si′si′+1 · · · sisi+1si′ . We shift si′ to the left. We get sn−1 · · · si′+1sn · · · s3tks2s3 · · ·
si′−1si′si′+1si′ · · · sisi+1. We apply a braid relation and get sn−1 · · · si′+1sn · · · s3tks2s3 · · · si′−1si′+1si′si′+1

· · · sisi+1. Now we shift si′+1 to the left and get

sn−1 · · · si′+1sn · · · si′+1si′si′+1si′−1 · · · s3tks2 · · · si+1
(2)=

sn−1 · · · si′+1sn · · · si′si′+1si′si′−1 · · · s3tks2 · · · si+1
(1)=

sn−1 · · · si′+1si′sn · · · si′+1si′si′−1 · · · s3tks2 · · · si+1 =
sn−1 · · · si′sn · · · s3tks2 · · · si+1, which belongs to Span(Λn−1Λn). �

Lemma 5.15. If an−1 = sn−1 · · · s3tks2 · · · si with 2 ≤ i ≤ n − 1, 1 ≤ k ≤ e− 1 and an = snsn−1 · · · s3tl with 
0 ≤ l ≤ e − 1, then sn(an−1an) belongs to Span(S∗

n−1Λn).

Proof. By the final result of the computations in Lemma 5.14, we have sn(an−1an) is equal to 
sn−1 · · · s3sn · · · s3tks2s3 · · · si+1tl. We shift tl to the left and get sn−1 · · · s3sn · · · s3tks2s3tl · · · si+1. By 
Case 5 of Proposition 5.6, we have to deal with the following two terms:

• sn−1 · · · s3sn · · · s3txs3tls4 · · · si+1 and
• sn−1 · · · s3sn · · · s3txs3tls3s4 · · · si+1 with 1 ≤ x, l ≤ e − 1.

The first term is of the form
sn−1 · · · s3sn · · · s3txs3tls4 · · · si+1

(2)=
sn−1 · · · s3sn · · · s4txs3txtls4 · · · si+1

(1)=
sn−1 · · · s3txsn · · · s3txtls4 · · · si+1

(1)=
sn−1 · · · s3txsn · · · s4s3s4txtls5 · · · si+1

(2)=
sn−1 · · · s3txsn · · · s3s4s3txtls5 · · · si+1

(1)=
sn−1 · · · s3txs3sn · · · s4s3txtls5 · · · si+2si+1. We apply the same operations to the underlined letters, we get 
sn−1 · · · s3txs3 · · · si−1sn · · · s4s3txtlsi+1. Finally, we shift si+1 to the left and get sn−1 · · · s3txs3 · · · sisn · · ·
s4s3txtl. Since 2 ≤ i ≤ n − 1 and by the computation of txtl in Lemma 5.2, the lemma is satisfied for this 
case.
The second term is equal to
sn−1 · · · s3sn · · · s3txs3tls3s4 · · · si+1

(2)=
sn−1 · · · s3sn · · · txs3txtls3s4 · · · si+1

(1)=
sn−1 · · · s3txsn · · · s3txtls3s4 · · · si+1. We replace txtl by its value given in Lemma 5.2, we get terms of the 
three following forms:

• sn−1 · · · s3txsn · · · s3tmt0s3s4 · · · si+1 with 1 ≤ m ≤ e − 1,
• sn−1 · · · s3txsn · · · s3tms3s4 · · · si+1 with 0 ≤ m ≤ e − 1,
• sn−1 · · · s3txsn · · · s4s

2
3s4 · · · si+1.
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The first term belongs to Span(S∗
n−1Λn). The third term also belongs to Span(S∗

n−1Λn). This is done by 
using the computation in the proof of Lemma 5.7. For the second term, we have
sn−1 · · · s3txsn · · · s4s3tms3s4 · · · si+1

(2)=
sn−1 · · · s3txsn · · · s4tms3tms4 · · · si+1

(1)=
sn−1 · · · s3txtmsn · · · s4s3s4tms5 · · · si+1

(2)=
sn−1 · · · s3txtmsn · · · s3s4s3tms5 · · · si+1

(1)=
sn−1 · · · s3txtms3sn · · · s4s3tms5 · · · si+2si+1. We apply the same operations to the underlined letters and get 
sn−1 · · · s3txtms3 · · · si−1sn · · · s3tmsi+1. Now we shift si+1 to the left and finally get sn−1 · · · s3txtms3 · · · si
sn · · · s3tm with 2 ≤ i ≤ n − 1 which belongs to Span(S∗

n−1Λn).
Note that for i = 2, we get terms that are equal to the itemized terms (given at the beginning of this proof) 
after replacing s4 · · · si+1 by 1. �
Lemma 5.16. If an−1 = sn−1 · · · s3tks2 · · · si with 2 ≤ i ≤ n − 1, 1 ≤ k ≤ e− 1 and an = sn · · · s3tls2 · · · si′
with 1 ≤ l ≤ e − 1 and 2 ≤ i′ ≤ n, then sn(an−1an) belongs to Span(S∗

n−1Λn).

Proof. According to the computation in the proof of Lemma 5.15, we get the following possible terms. They 
appear in the proof of Lemma 5.15 in the following order.

1. sn · · · s3txtl with 0 ≤ x, l ≤ e − 1,
2. sn · · · s3tmt0s3 · · · si+1 with 1 ≤ m ≤ e − 1,
3. sn · · · s3tm with 0 ≤ m ≤ e − 1,
4. sn · · · s4s

2
3s4 · · · si+1

We show that the product on the right by s2 · · · si′ of each of the previous terms belongs to Span(S∗
n−1Λn).

Case 1. Consider the first term sn · · · s3txtl(s2 · · · si′) with 0 ≤ x, l ≤ e − 1. We replace txtl by its 
decomposition given in Lemma 5.2, we get these terms

• sn · · · s3tmt0s3 · · · si′ with 1 ≤ m ≤ e − 1,
• sn · · · s3tms3 · · · si′ with 0 ≤ m ≤ e − 1,
• sn · · · s4s

2
3s4 · · · si′ .

The first term belongs to Span(S∗
n−1Λn). The third one is done in Lemma 5.7. For the second one, we have

sn · · · s3tms3 · · · si′
(2)=

sn · · · tms3tms4 · · · si′
(1)=

tmsn · · · s4s3s4tms5 · · · si′
(2)=

tmsn · · · s3s4s3tms5 · · · si′
(1)=

tms3sn · · · s4s3tms5 · · · si′−1si′ . We apply the same operations to s5, · · · , si′−1 and get tms3 · · · si′−2sn · · ·
s3tmsi′ . We shift si′ to the left and finally get tms3 · · · si′−1sn · · · s3tm which belongs to Span(S∗

n−1Λn).

We now consider Case 3 because we use the computation we made in Case 1. In this case, the term is of 
the form sn · · · s3tm(s2 · · · si′) with 0 ≤ m ≤ e − 1. If m �= 0, then it belongs to Span(S∗

n−1Λn). If m = 0, we 
get two terms sn · · · s3t0s3 · · · si′ and sn · · · s4s

2
3s4 · · · si′ . The first term is done in Case 1. The second term 

is done in Lemma 5.7.
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Consider Case 4. We replace sn · · · s4s
2
3s4 · · · si+1 by its decomposition given by the computation in the 

proof of Lemma 5.7. We multiply each term of the decomposition by s2 · · · si′ on the right and we prove 
that it belongs to Span(S∗

n−1Λn) in the same way as the proof of Lemma 5.10.

Finally, it remains to show that the term corresponding to Case 2 belongs to Span(S∗
n−1Λn). It is of the 

form

sn · · · s3tmt0s3 · · · si+1(s2 · · · si′) with 1 ≤ m ≤ e− 1.

Suppose i′ ≤ i. We have
sn · · · s3tms2s3 · · · si+1s2 · · · si′

(1)=
sn · · · s3tms2s3s2s4 · · · si+1s3 · · · si′

(2)=
sn · · · s3tms3s2s3s4 · · · si+1s3 · · · si′

(2)=
sn · · · tms3tms2s3s4 · · · si+1s3 · · · si′

(1)=
tmsn · · · s3tms2s3s4 · · · si+1s3 · · · si′

(1)=
tmsn · · · s3tms2s3s4s3s5 · · · si+1s4 · · · si′

(2)=
tmsn · · · s3tms2s4s3s4s5 · · · si+1s4 · · · si′

(1)=
tmsn · · · s4s3s4tms2s3s4s5 · · · si+1s4 · · · si′

(2)=
tmsn · · · s3s4s3tms2s3s4s5 · · · si+1s4 · · · si′

(1)=
tms3sn · · · s4s3tms2s3s4s5 · · · si+1s4 · · · si′−1si′ .
We apply the same operations to s4, · · · , si′−1 to get tms3 · · · si′−1sn · · · s3tms2s3 · · · sisi+1si′ . We shift si′
to the left and finally get tms3 · · · si′sn · · · s3tms2s3 · · · sisi+1. Since i′ ≤ i ≤ n − 1, this term satisfies the 
property of the lemma.

Suppose i′ > i. As previously, we have
sn · · · s3tms2s3 · · · si+1s2 · · · si′

(1)=
tmsn · · · s3tms2s3 · · · si+1s3 · · · si′

(1)=
tms3sn · · · s3tms2s3 · · · si+1s4 · · · si′ .
Now we write sisi+1 in s4 · · · si′ and get tms3sn · · · s3tms2s3 · · · si+1s4 · · · sisi+1 · · · si′ . We apply the same 
operations to s4, · · · , si to get tms3 · · · sisn · · · s3tms2s3 · · · sis2

i+1si+2 · · · si′ . Applying a quadratic relation, 
we finally get atms3 · · · sisn · · · s3tms2s3 · · · si′ + tms3 · · · sisn · · · s3tms2s3 · · · sisi+2 · · · si′ .The first term sat-
isfies the property of the lemma.
For the second term, we write si+2si+1 in sn · · · s3 of tms3 · · · sisn · · · s3tms2s3 · · · sisi+2 · · · si′ and get

tms3 · · · sisn · · · si+2si+1 · · · s3tms2s3 · · · sisi+2 · · · si′
(1)=

tms3 · · · sisn · · · si+2si+1si+2 · · · s3tms2s3 · · · sisi+3 · · · si′
(2)=

tms3 · · · sisn · · · si+1si+2si+1 · · · s3tms2s3 · · · sisi+3 · · · si′
(1)=

tms3 · · · si+1sn · · · s3tms2s3 · · · sisi+3 · · · si′ .
We apply the same operations to si+3, · · · , si′ and finally get tms3 · · · si′−1sn · · · s3tms2s3 · · · si. Since 
i′ − 1 ≤ n − 1, this term belongs to Span(S∗

n−1Λn). �
Remark 5.17. Our basis never coincides with the Ariki basis (see Proposition 1.6 (2) in [1]) for the Hecke 
algebra associated with G(e, e, n). For example, consider the element t1t0.t0 which belongs to Ariki’s basis. 
In our basis, it is equal to the linear combination at1t0 + t1, where t1t0 and t1 are two distinct elements of 
our basis.
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The general hope would be to construct natural bases for H(de, e, n) that can be defined from geodesic 
normal forms in the associated complex reflection groups G(de, e, n), which was established in Theorem 5.1
for the case of H(e, e, n). This arises the question whether the geodesic normal forms established in Section 3
by using the presentation of Corran–Lee–Lee of G(de, e, n) for d > 1 also provide natural bases for the 
corresponding Hecke algebras. Unfortunately, some intricate arguments in our proof for the case of H(e, e, n)
do not work in the general case of H(de, e, n). Actually, on the one hand, the Hecke algebra is defined, in the 
general case, as a quotient of the complex braid group algebra defined by the presentation of Corran–Lee–Lee, 
where the generators ti’s are defined over Z, but on the other hand our geodesic normal forms are attached 
to the presentation of Corran–Lee–Lee of the complex reflection group G(de, e, n), where the generators 
ti’s are defined this time over Z/deZ. This phenomenon does not occur in the case of the presentations 
of Corran–Picantin of G(e, e, n) and B(e, e, n) used to construct a basis for H(e, e, n). Nonetheless, for 
e = 1, the Hecke algebra H(d, 1, n) is defined by using the classical presentation of the complex braid group 
B(d, 1, n). Using the geodesic normal forms constructed in Subsection 3.3, we are also able to provide a 
natural basis for H(d, 1, n). This will be established in the next section.

6. The case of H(d, 1, n)

Let d > 1 and n ≥ 2. Let R0 = Z[a, b1, b2, · · · , bd−1]. Recall that the Hecke algebra H(d, 1, n) is defined 
as the unitary associative R0-algebra generated by the elements z, s2, s3, · · · , sn with the following relations:

1. zs2zs2 = s2zs2z,
2. zsj = sjz for 2 ≤ j ≤ n,
3. sisi+1si = si+1sisi+1 for 2 ≤ i ≤ n − 1,
4. sisj = sjsi for |i − j| > 1,
5. zd − b1z

d−1 − b2z
d−2 − · · · − bd−1z − 1 = 0 and s2

j − asj − 1 = 0 for 2 ≤ j ≤ n.

Using the geodesic normal forms introduced in subsection 3.3 for all the elements of G(d, 1, n), we 
construct a basis for H(d, 1, n) that is different from the one defined by Ariki–Koike in [2].

Let us introduce the following subsets of H(d, 1, n).

Λ1 = {zk for 0 ≤ k ≤ d− 1},

and for 2 ≤ i ≤ n,

Λi = {1,
si · · · si′ for 2 ≤ i′ ≤ i,

si · · · s2z
k for 1 ≤ k ≤ d− 1,

si · · · s2z
ks2 · · · si′ for 1 ≤ k ≤ d− 1 and 2 ≤ i′ ≤ i}.

Define Λ = Λ1Λ2 · · ·Λn to be the set of the products a1a2 · · · an, where a1 ∈ Λ1, · · · , an ∈ Λn. Remark 
that this set corresponds to all the reduced words RE(w) of the form RE1(w)RE2(w)RE3(w) · · ·REn(w)
introduced in subsection 3.3 (see Definition 3.20). In this section, we establish the following theorem.

Theorem 6.1. The set Λ provides an R0-basis of the Hecke algebra H(d, 1, n).

We have |Λ1| = d and |Λi| = id for 2 ≤ i ≤ n. Then |Λ| is equal to dnn! that is the order of G(d, 1, n). 
Hence by Proposition 2.3(i) of [14], it is sufficient to show that Λ is an R0-generating set of H(d, 1, n). This 
is proved by induction on n in much the same way as Theorem 5.1. We provide the following preliminary 
lemmas that are useful in the proof of the theorem.
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Lemma 6.2. For 1 ≤ k ≤ d − 1, the element (s2zs2)k belongs to 
∑

λ1∈Λ1,
λ2∈Λ′

2

R0λ1λ2, where Λ′
2 = {1, s2, s2z, s2z

2,

· · · , s2z
k−1, s2zs2, s2z

2s2, · · · , s2z
ks2}.

Proof. The property is clear for k = 1. Let k = 2. We have (s2zs2)2 = s2zs
2
2zs2. We apply a quadratic 

relation and get as2zs2zs2 +s2z
2s2. Applying a braid relation, one gets azs2zs

2
2 +s2z

2s2. Using a quadratic 
relation, this is equal to a2zs2zs2 + azs2z + s2z

2s2, where each term is of the form λ1λ2 with λ1 ∈ Λ1 and 
λ2 ∈ {1, s2, s2z, s2zs2, s2z

2s2}.
Let k ≥ 3. Suppose the property is satisfied for (s2zs2)3, · · · , and (s2zs2)k−1. We have (s2zs2)k =

(s2zs2)k−1(s2zs2). By the induction hypothesis, the terms that appear in the decomposition of (s2zs2)k−1

are of the following forms.

• zc with 0 ≤ c ≤ d − 1,
• zcs2z

c′ with 0 ≤ c ≤ d − 1 and 0 ≤ c′ ≤ k − 2,
• zcs2z

c′s2 with 0 ≤ c ≤ d − 1 and 1 ≤ c′ ≤ k − 1.

Multiplying these terms by s2zs2 on the right, we get the following 3 cases.
Case 1 : A term of the form zcs2zs2 with 0 ≤ c ≤ d − 1. It is of the form λ1λ2 with λ1 ∈ Λ1 and λ2 ∈ Λ′

2.
Case 2 : A term of the form zcs2z

c′s2zs2 with 0 ≤ c ≤ d − 1 and 0 ≤ c′ ≤ k− 2. We shift zc′ to the right 
by applying braid relations and get zcs2

2zs2z
c′ . Applying a quadratic relation, this is equal to azcs2zs2z

c′ +
zc+1s2z

c′ . Now we shift zc′ to the left by applying braid relations and get azc+c′s2zs2 + zc+1s2z
c′ . Each 

term is of the form λ1λ2 with λ1 ∈ Λ1 and λ2 ∈ Λ′
2.

Case 3 : A term of the form zcs2z
c′s2

2zs2 with 0 ≤ c ≤ d − 1 and 1 ≤ c′ ≤ k− 1. By applying a quadratic 
relation, we have zcs2z

c′s2
2zs2 = azcs2z

c′s2zs2 + zcs2z
c′+1s2. The first term is the same as in the previous 

case. Then both terms are of the form λ1λ2 with λ1 ∈ Λ1 and λ2 ∈ Λ′
2. �

Lemma 6.3. For 1 ≤ k ≤ d − 1, the element (s2zs2)ks2 belongs to R0(s2zs2)k + R0z(s2zs2)k−1 + · · · +
R0z

k−1(s2zs2) + R0s2z
k.

Proof. For k = 1, we have (s2zs2)s2 = s2zs
2
2 = as2zs2+s2z. Then the property is satisfied for k = 1. Let k ≥

2. Suppose that the property is satisfied for (s2zs2)k−1. We have (s2zs2)ks2 = (s2zs2)(s2zs2)k−1s2. By the 
induction hypothesis, it belongs to R0(s2zs2)(s2zs2)k−1+R0(s2zs2)z(s2zs2)k−2+· · ·+R0(s2zs2)zk−2(s2zs2)
+R0(s2zs2)s2z

k−1. Then it belongs to R0(s2zs2)k+R0z(s2zs2)k−1+· · ·+R0z
k−2(s2zs2)2+R0z

k−1(s2zs2) +
R0s2z

k. It follows that for all 1 ≤ k ≤ d −1, the element (s2zs2)ks2 belongs to R0(s2zs2)k+R0z(s2zs2)k−1+
· · · + R0z

k−1(s2zs2) + R0s2z
k. �

Lemma 6.4. For 1 ≤ k ≤ d −1, the element s2z
ks2 belongs to 

∑
λ1∈Λ1,
λ2∈Λ′′

2

R0λ1λ2, where Λ′′
2 = {1, s2, s2z, s2z

2, · · · ,

s2z
k−1, s2zs2, (s2zs2)2, · · · , (s2zs2)k}.

Proof. The lemma is satisfied for k = 1. For k = 2, we have s2z
2s2 = s2zs

−1
2 s2zs2. Using that s−1

2 =
s2 − a, we get s2zs

2
2zs2 − as2zs2zs2. Now we apply a braid relation then a quadratic relation and get 

(s2zs2)2 − azs2zs
2
2 = (s2zs2)2 − a2zs2zs2 − azs2z which satisfies the property we are proving.

Suppose the property is satisfied for s2z
k−1s2. We have s2z

ks2 = s2z
k−1s−1

2 s2zs2 = s2z
k−1s2s2zs2 −

as2z
k−1s2zs2 by replacing s−1

2 by s2 −a. For the second term, we shift zk−1 to the right and get s2
2zs2z

k−1. 
We apply a quadratic relation to get as2zs2z

k−1 + zs2z
k−1 then we shift zk−1 to the left and finally get 

azk−1s2zs2 + zs2z
k−1, where each term is of the form λ1λ2 with λ1 ∈ Λ1 and λ2 ∈ Λ′′

2 .
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For the first term s2z
k−1s2s2zs2, by the induction hypothesis, the terms that appear in the decomposition 

of s2z
k−1s2 are of the following forms.

• zc and zcs2 with 0 ≤ c ≤ d − 1,
• zc(s2zs2)c

′ with 0 ≤ c ≤ d − 1 and 1 ≤ c′ ≤ k − 1,
• zcs2z

c′ with 0 ≤ c ≤ d − 1 and 1 ≤ c′ ≤ k − 2.

Multiplying these terms by s2zs2 on the right, we get the following 3 cases.
Case 1. We have zcs2zs2 and zcs2s2zs2 = azcs2zs2 + zc+1s2, where each term in both expressions is of 

the form λ1λ2 with λ1 ∈ Λ1 and λ2 ∈ Λ′′
2 .

Case 2. The term zc(s2zs2)c
′
s2zs2 = zc(s2zs2)c

′+1 is of the form λ1λ2 with λ1 ∈ Λ1 and λ2 ∈ Λ′′
2 since 

1 ≤ c′ ≤ k − 1.
Case 3. We have zcs2z

c′s2zs2 = zcs2
2zs2z

c′ = azcs2zs2z
c′+zc+1s2z

c′ . The first term is equal to zc+c′s2zs2
and the second term is equal to zc+1s2z

c′ with 1 ≤ c′ ≤ k− 2. Both are of the form λ1λ2 with λ1 ∈ Λ1 and 
λ2 ∈ Λ′′

2 . �
The following proposition ensures that the case n = 2 of Theorem 6.1 works properly.

Proposition 6.5. For all a1 ∈ Λ1 and a2 ∈ Λ2, the elements za1a2 and s2a1a2 belong to Span(Λ1Λ2).

Proof. It is readily checked that za1a2 belongs to Span(Λ1Λ2). Note that when the power of z exceeds d −1, 
we use Relation 1 of Definition 4.5.

It is easily checked that if a1 ∈ Λ1 and a2 = 1, the element s2a1a2 belongs to Span(Λ1Λ2). Also, when 
a1 = 1 and a2 ∈ Λ2, we have that s2a1a2 belongs to Span(Λ1Λ2).

Suppose a1 = zk with 1 ≤ k ≤ d − 1 and a2 = s2. We have s2a1a2 is equal to s2z
ks2. Hence it belongs 

to Span(Λ1Λ2).
Suppose a1 = zk with 1 ≤ k ≤ d −1 and a2 = s2z

k′ with 1 ≤ k′ ≤ d −1. We have s2a1a2 = s2z
ks2z

k′ . We 
replace s2z

ks2 by its decomposition given in Lemma 6.4, then we use the result of Lemma 6.2 to directly 
deduce that s2z

ks2z
k′ belongs to Span(Λ1Λ2).

Finally, suppose a1 = zk with 1 ≤ k ≤ d − 1 and a2 = s2z
k′
s2 with 1 ≤ k′ ≤ d − 1. We have s2a1a2 is 

equal to s2z
ks2z

k′
s2. We replace s2z

ks2 by its decomposition given in Lemma 6.4. Then by the results of 
Lemmas 6.3 and 6.2, we deduce that s2z

ks2z
k′
s2 belongs to Span(Λ1Λ2). �

As in the previous section, in order to prove Theorem 6.1, we have to proceed as in Lemmas 5.7 to 5.16. 
This is established in Lemmas 4.3.6 to 4.3.15 in [17]. Along with Proposition 6.5, this provides an inductive 
proof of Theorem 6.1 that is similar to the proof of Theorem 5.1. We conclude this section by the following 
remark.

Remark 6.6. For every d and n at least equal to 2, our basis never coincides with the Ariki–Koike basis (see 
Theorem 3.10 in [2]) as illustrated by the following example. Consider the element s2zs

2
2 = s2zs2.s2 which 

belongs to the Ariki–Koike basis. In our basis, it is equal to the linear combination as2zs2 + s2z, where 
s2zs2 and s2z are two distinct elements of our basis.
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