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0. Introduction

Let k£ be a global field and fix a separable closure k; of k. In the following all the separable extensions of
k are considered as subfields of k.

Let K; be a finite separable extension of k for i = 0,...,m. Set L = K¢ X ... X Kp,. Let Ty /3, be the torus
defined by the multinorm equation:

Npji(t) = 1. (0.1)

Denote by TL /k the character group of 17, /.
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Let Q. be the set of all places of k. Define

I (k, T i) = ker(H' (k, Ty i) = [ [ H' (kos Toyi)). (0.2)
VEQ

It is well-known that the elements in IIT* (k, T /i) are in one-to-one correspondence with the isomorphism
classes of T7, /,-torsors which have k,-points for all v € Q. To be precise, let X. be the variety defined by

Np(t) =, (0.3)

where ¢ € k*. Suppose that X, has a k,-point for all v € Q. Then X, corresponds to an element [X.] €
II' (k, Ty /x). By Poitou-Tate duality, the class [X.] defines a map H_Iz(k,TL/k) — Q/Z, which is the
Brauer-Manin obstruction to the Hasse principle for the existence of rational points of X.. Hence the group
I_Hz(k:, TL /i) is related to the local-global principle for multinorm equations.

For a Galois module M over k, define

1, (k, M) := {[C] € H'(k, M) such that [C], = 0 for almost all v € Q4.}

It is clear that Hli(k;,TL/k) - H_Ifu(k:,TL/k). The case ¢ = 2 is the most interesting to us. In fact if
2 (k, TL/k) = [I*(k, TL/k), weak approximation holds for 77,/ and hence for those X, with a k-point ([8]
Prop. 8.9 and Thm. 8.12).

The local-global principle and weak approximation for multinorm equations (0.3) have been extensively
studied. One can see [7], [6], [4], [1] and [5] for recent developments on this topic. In this paper, we are
interested in the groups ]_HQ(k;,TL/k) and I_Hi(k,TL/k) (and hence the group Hli(k,TL/k)/lHQ(k,TL/k)).
These groups measure the obstruction to the local-global principle for existence of rational points of X, and
the obstruction to weak approximation.

Under the assumption that L is a product of (not necessarily disjoint) cyclic extensions of prime-power
degrees, we give a formula for H_Ii(k,TL/k) and I_HQ(k,TL/k). Briefly speaking, the group Hli(k:,TL/k) is
determined by the “maximal bicyclic field” M generated by subfields of K; and IT1%(k, 77, /k) is determined
by the “maximal bicyclic and locally cyclic subfield” of M. In combination with [1] Proposition 8.6, one can
calculate the group IIT*(k, s /i) for L a product of cyclic extensions of arbitrary degrees. This generalizes
the result in [1] §8. Furthermore we compute the bigger group IHi(k,TL /i) which is related to weak
approximation. We give several concrete examples in the final section.

The paper is structured as follows. Section 1 introduces the notation. In Section 2 we give a combinatorial
description of IIT%(k, 1y /i) and 2 (k, T /k)- In Section 3, we prove some preliminaries about cyclic exten-
sions, which will be the main tools in the following sections. In Section 4-6, we define the patching degree
and the degree of freedom in order to describe the generators of the group IIT%(k, TL/k) (resp. ITI2 (k, TL/k)).
We give formulas for HIQ(k,TL /i) and HIi(k,TL /k) in Section 7 and provide several examples in the last
section.

Most part of this work is done under the support of Alexander von Humboldt-Stiftung. The author is
grateful to the referee for valuable comments.

1. Notation and definitions

For a k-algebra A and a place v € Q, we denote A ®y k, by A”.

A finite Galois extension F' of k is said to be locally cyclic at v if F ®y k, is a product of cyclic extensions
of k,. F' is said to be locally cyclic if it is locally cyclic at all v € Q.

A bicyclic extension F/k is a Galois extension with Gal(F/k) isomorphic to Z/n1Z x Z/n2Z where nq,
ng > 1 and na|ny.
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. m
Throughout this paper, we assume ﬂoKi = k.
i=

2. Preliminaries on algebraic tori

For a k-torus T', we denote by T its character group as a Gal(ks/k)-module.

Let A be a field and A’ be a finite dimensional A-algebra. For an A’-torus T', we denote by R/, 4(T) its
Weil restriction to A. (For more details on Weil restriction, see [3] A.5.)

Let N4//4 be the norm map and denote by T4,/ 4 the norm one torus RS/)/ A(Gn).

We first prove some general facts about multinorm-one tori defined by finite separable extensions of k.

We recall the following well-known fact ([8] Lemma 1.9).

Lemma 2.1. Let G = Gal(k,/k) and M be a permutation module of G. Then 1112 (k, M) = 0.

Recall some notation defined in [1]. Denote the index set by Z = {1,...,m} and Z' = {0} UZ. In the
following, we always assume that m > 2.

Set

[ ] K/ = HK“
i€

[ L: H Ki,
€T’

o =K, ®;€K,, and
o F, =Ky K;.

The norm maps Ng, /i, : Ko — k and Ny, : K’ — k induce Ng/g/ : E — K’ and Ng)g, : E — K.
Let ¢ : Rp/k(Gm) — Ry k(Gp) be defined by ¢(z) = (Ng/k,(x) ", Ng/k(2)). It is clear that the image

of ¢ is contained in T7,/,. Moreover, ¢ is surjective onto T}, as a map of algebraic groups (easily checked
after base change to the separable closure k; of k).

Consider the torus Sk, k' defined by the exact sequence
1 — Sk, — RE/k(Gm) i> Tpe —1. (2.1)
Note that Sk, k- also fits in the exact sequence

N
1 — Skoxr — 1R, 1(Ti, ) —— Ty —= 1 - (2.2)
el

Proposition 2.2. Let Kq be a cyclic extension of arbitrary degree. Then I_Hi (kJ,TKO/k) =0.
Proof. Let o be a generator of Gal(Ky/k). Consider the exact sequence
1= Gm = Rgo/k(Gm) = Troyie — 1,
where the map from Ry, /5 (Gm) to Tk, /i sends = to z/o(x). Its dual sequence is
1= Ty e = Lo u(Z) = Z — 1.

By Lemma 2.1 we have 1112 (k,Ix, /1(Z)) = 0. As H*(k, Z) = 0, we have I_Hi(k,TKo/k) =0. O
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Lemma 2.3. We have

(1) T (k, Ty i) =~ T (. S, 1c0)-
(2) 2 (k, Ty k) ~ UL (k, Seo i)

Proof. The first statement is [1] Lemma 3.1.
We now prove (2). Consider the dual sequence of (2.1):

PN

0 —= Ty — Ip/u(Z) % Skoxr —= 0. (2.3)

The exact sequence (2.3) gives rise to the following exact sequence:
0— Hl(kngoyK’) i) H2(k7TL/k) — HQ(kle/k(Z)) . (24)

By Lemma 2.1, we have II3(k,1g/(Z)) = 0. Therefore I_Hi(k,TL/k) is in the image of 4. Let [f] be an
element in H'(k, Sk, k) such that (5[ | € LHE,(]{,TL/;C). As H'(ky,1g,(Z)) = 0 for all v € Qy, the element
[0], = 0 if (8]6]), = 0. Hence [6] € LI (k, Sk, x+). The lemma then follows. 0

2.1. Combinatorial description of Tate-Shafarevich groups

From now on we assume that Ky is a cyclic extension of degree p® and we denote by Ky(f) the unique
subfield of K of degree p7.
For all © € Z, we set

e peri = [KO NK;: k], and
® €, =€) — €0,4-

As K| is cyclic, for each i € I, the algebra Ko ® K; is a product of cyclic extensions of degree p® of
K;. Without loss of generality, we assume that e; > e; ;1. Since we assume that Ko N (NK;) = k, we have
€0,1 = 0 and €1 = €. '

We can assume further that for any ¢ # j, K; ¢ K;. To see this, suppose that there are distinct 4, j
such that K; C K;. Set J = {0,1,...,m} \ {i} and set L' = [[ K;. Then Ty, ~ T /i X R, ji(Gm). By

=
Lemma 2.1, 1% (k, Ty 5) ~ T (k, Tp jx) and 102 (k, Ty i) =~ T2 (k, Tpo 1)

Recall some definitions from [1]. Let s and ¢ be positive integers. For s > t, let 7, be the canonical
projection Z/p*Z — Z/p'Z. For x € Z/p°Z and y € Z/p'Z, we say that x dominates y if s > t and
7s¢(x) = y; if this is the case, we write z > y. For € Z/pZ and y € Z/p'Z, let 6(z,y) be the greatest
nonnegative integer d < min{s,t} such that 7 q(x) = m;,4(y). We have 6(z,y) = min{s, ¢} if and only if
Tryory = .

Recall that e; > e;41 for i = 1,...,m — 1. For a = (a1, ...,am) € iéGIZ/peiZ and n € Z/p**Z, let I,,(a) be

the set {i € Z| n = a;} and let I(a) = (Ip(a), ..., Ipe1 —1(a)).

Given a positive integer 0 < d < ¢g and i € Z, let X¢ be the set of all places v € Qj, such that at each
place w of K; above v, the following equivalent conditions hold (see [1] Prop. 5.5 and 5.6):

(1) The algebra Ko ®; K is isomorphic to a product of isomorphic field extensions of degree at most p?
of K’.
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(2) Ko(eg —d) ® K}* is isomorphic to a product of K}*.

Let 3; = X, In other words, ¥; is the set of all places v € Q) where Ky ® K} is isomorphic to a product
of copies of K.

Let a = (a1, ...,am) be an element in @® Z/p*Z and I(a) = (I, ..., Iy —1). For I, G Z, define
i€T

QI,) = Zgr} E?(’ﬂ,ai). (2.5)

For I,, = Z, we set Q(I,,) = Q.

Set

G =G(Ko, K') = {(ay,...,am) € _?IZ/pe"Z| U Q) =},
! neZ/p1Z

and set D to be the diagonal subgroup generated by (1,1, ...,1).
Define II(Ky, K') as G(Ky, K')/D.

Theorem 2.4. ([1] Cor. 5.4) The Tate-Shafarevich group H_IQ(k:,TL/k) is isomorphic to (Ko, K').
Proof. This follows from Lemma 2.3 and [1] Thm. 5.3. O
Next we give a combinatorial description of HIi(k,TL/k.), which is similar to the description of

1% (k, T 1)
For a = (a1, ....,am) € ® Z/p“Z, we define
€T

Sa=2%\ |J QUa(a).

n€Z/p°1Z

Set

G, = Gy(Ko,K') ={(a1,....,am) € EBIZ/peiZ\ S, is a finite set}.
ic

Clearly G C G,,. Define I11,, (Ko, K') as G, (Ko, K')/D, where D is the subgroup generated by the diagonal
element (1,...,1). We prove an analogue of Theorem 2.4.

Theorem 2.5. Keep the notation above. Then 12 (k, TL/k) ~ 1, (Ko, K').

Proof. By Lemma 2.3, it is sufficient to show that III(k, Sk, /) ~ IIL, (Ko, K'). The proof is similar to
the proof of [1] Theorem 5.3. We sketch the proof here. For more details one can refer to [1].
Consider the dual sequence of (2.2),

0 —— TKo/k = IK’/k(TE/K’) 2 Skt —= 0, (2.6)

and the exact sequence induced by (2.6),

o Ll e 1 ~ ~
H(k, Trcy i) = H (kT i (T 1)) 2= H (k, Sieq i) = H2(k, Ty i)- (2.7)
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By [1] Lemma 1.2 and Lemma 1.3, we can identify Hl(k,TKo/k) to Z/p*°Z and Hl(k,IKi/k(TEi/Ki)) to
Z/p“Z for 1 < i < m. Under this identification, we can rewrite the exact sequence (2.7) as follows:

1 A A
ZIpL s @ L/p= T 25 HY(k, S 1) — H2(k, Ticy i), (2.8)
€L

where ! is the natural projection from Z/p®Z to Z/p®Z for each i. Note that the image of /! is the
subgroup D, and we have the exact sequence

1 A A
0— (_@IZ/peiZ)/D Ly HY(k, Sreo. i) — H?(k, Ty 1) (2.9)
1€

By Proposition 2.2 the group III}(k, S'KO’K/) is contained in the image of p'. Let a = (a1,...,am) €
iEBIZ/peiZ and [a] be its image in (igaIZ/peiZ)/D. We claim that p'([a]) is in I} (k, Sk, &) if and only if
a € Gy.

For v € O, we denote by a” the image of a in % H(ky, Ikv/k, (TE;;/K;J)), and by D, the image of D in
this sum. =

By the exact sequence (2.9) over k,, we have p!([a]) € I} (k, Sk, &) if and only if a” € D, for almost
all places v € Q.

Note that a” = (n,...,n)" if and only if v € Q(I,,(a)). Hence a” € D, ifand only ifve | Q.(a)).
n€Z/p1Z
Our claim then follows. O

2.2. Subtori

For 0 < r < ¢y, we set the following:

° UT:{Z€I| 6071‘:7'}.
o Ky, = H K;.
€U,
° LT = K() X KUT~
o By =Koy®, Ky, .

Pick an 7 such that U, is nonempty. We define Sk, 1, as in (2.1) and (2.2). Namely let ¢, :
REUT/k(Gm) — R, /k(Gm) be defined by ¢,(x) = (NEUT/KO(‘CC)_17NEUT/KUT (z)) and define Sk, k,, by
the following exact sequence.

1 — Sko.xu, — Rey k(Gm) 2 Ty m—1. (2.10)

The torus Sk, iy, also fits in the exact sequence:

NEU,./K(J
1 — SKOaKUT —> H RKl/k(TEI/Kl) —_— TKo/k — 1. (211)
€U,

Write R/ /5 (Gm) as [ Rk, /k(Gim) X [] Rk, k(Gm). There is a natural injective group homomor-
icU, iE€T\U,
phism
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ar: [[Re,/n(Gm) = [] Re./n(Gm) x ] Rr.n(G
€U, €Uy 1€I\U,

which sends z to (z,1). Then «, induces an injective homomorphism a g, from Rg, /1(Gm) to Rg/k(Gn),

and an injective homomorphism idg, % o, from Ry, /k(Gm) X ] Rk, /k(Gm) to Ry, /u(Gm) X R /(G-
icU,
It is easy to check the following diagram commutes.

1 — SKO,K’ E— RE/k(Gm) L) TL/k — 1

T auﬁ auﬁ idg XQTT T (2.12)

1 —— SKO,KUT —_— REUT/k(Gm) L) TLr/k — 1

Together with Lemma 2.3, we have

I (k, Sko i) ——— 2 (k, Tr 1)
aul idk, xdrl (2.13)
H-Ii;(kvs’Ko,KUT> —— mi(hTLT/k)'

Note that for ¢ € U,, we have e; = ¢g — r. We define G(Ky, Ky,) and G, (Ko, Ky,) by replacing 7
with U, as in Section 2.1 and 2.2. Namely for a = (a;)icy, € @ Z/p“Z, we define S, to be the set
i€U,

G\ U QIn(a))). Set

ne€Z/po="7Z
G, (Ko, Ku,) = {(ai)icu, € ® Z/p“Z| S, is a finite set},
‘€U,

and set G(Ko, Ky, ) to be the subset of G, (Ko, Ky,.) consisting of all elements a with S, = (). Consider the

natural projection w, : 69 Z/p%Z — @& Z/p“Z. Then the natural projection induces a homomorphism
€U,

G, (Ko, K')/D — Gw(KO,KU,,,)/D7 which we still denote by w,. Note that by Theorem 2.5, we have
isomorphisms HIi(k,TL/k) ~ G, (Ko, K')/D and HIi(k,TLT/k) ~ G, (Ko, Ky,)/D.

Proposition 2.6. The morphism idg, X &, : LUi(k,TL/k) — Hli(k,TLT/k) coincides with w..

Proof. It is enough to show that the map induced by a,, from III}(k, Skoxcr) — LIL (K, S’KO,KUT) is equal
to w,.

The map ag, _gives a map between character groups

Gy, pw(Z) =1g,, /k(Z) ieI@%U Ig, jk(Z) = gy, jk(Z),

which is the natural projection. Hence the map from IK//k(TE/K/) = Ik, /k( Bu, /Ku,) @ IKi/k(TEi/Ki)
" 4eT\U,

to IKUT/k(TEUT/KUT) induced by ag,, (restricted to Ry, /x(TEgy, /Ky, )) is the natural projection.
Therefore the map induced by &g, from Hl(k,IK//k(TE/K,)) ~ & Z/p“Z to H (k,1x, /k(TEU m))
r 'LEI i ks k
~ @ Z/p%Z is the natural projection.
€U,
By exact sequences (2.8) and (2.9), we have g, : I (k, Sky i) — T (K, SKO,KU,,,) isequal tow,. O
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3. Preliminaries on cyclic extensions

From now on we assume that K; are cyclic extensions of k.

Let p be a prime which divides [L : k], and let L(p) be the largest subalgebra of L such that [L(p) : k] is
a power of p. By [1] Proposition 8.6, to compute IIT%(k, TL/k.) it is enough to compute HIQ(k,TL(p)/k) for
each such p. Hence in the following we assume that [L : k] is a power of p unless we state otherwise.

By renaming these cyclic extensions, we always assume that the degree of K is minimal. Let p = [K; : k]
for all i € T’. For a nonnegative integer f < ¢;, we denote by K;(f) the unique subfield of K; of degree p/.

For all i € Z, we set p®7 = [K; N Kj : k]. As we assume that K; ¢ K; for any i, j € 7', e; ; < min{e;, ¢;}
for alli,j € Z'.

Note that for 4,j € T with ¢ < j, we have e;; > eg;. This follows from the assumption in §2.1 that

ep,i < egj-

In the following we prove some general facts about cyclic extensions which will be used later.

Lemma 3.1. Let M/k and N/k be cyclic extensions of p-power degree with [N : k] < [M : k]. Then
Gal(MN/k) =~ Gal(M/k) x Gal(N/N 0 M).

Proof. The nature injection Gal(M N/k) — Gal(M/k) x Gal(N/k) shows that each element of Gal(M N/k)
has order at most [M : k]. Choose an element in Gal(M N/k) which projects a generator of Gal(M/k). Then
it generates a subgroup isomorphic to Gal(M/k). Hence the exact sequence

1 — Gal(MN/M) — Gal(MN/k) — Gal(M/k) — 1

splits. Note that Gal(M N/M) is isomorphic to Gal(N/N N M). Therefore Gal(MN/k) ~ Gal(M/k) x
Gal(N/NNM). O

Lemma 3.2. Let M/k, N/k, and R/k be cyclic extensions of p-power degree and v € Q. Suppose the

following:
(1) RM =NM.
(2) RN C RM.

(3) RN is locally cyclic at v, i.e. RN ® ky is a product of cyclic extensions of k.

Then either R @y, NV is isomorphic to a product of copies of NV or R” @y, M" is isomorphic to a product
of copies of M".

Proof. Let M, N and R be cyclic extensions of k, such that MV ~ [[ M, N’ ~[[ N and R’ ~ [[ R.

Suppose that R @, N” = [[R®, N 2 [[ N*. Then RN N # R. We claim that RN N = N. Suppose
not. Then RN is a bicyclic extension of k, and R Ok, N is a product of bicyclic extensions. As there is a
surjective map from R" ®;, N' to RN ®y k, and by assumption the latter is a product of cyclic extensions,
the algebra R" ®y, N =[] R®y, N is also a product of cyclic extensions, which is a contradiction. Hence
N is a proper subfield of R.

Now consider the fields Fr = M N R and Fyy = MNN. As RM = NM, we have RM = N M. Therefore
[RM:M]:[}?:FLR]:[N:FN]. i )

We claim that N = Fy. Suppose not, i.e. Fy & N. Then we have N ¢ Fg. As they are both subfields of
R, which is cyclic of p-power degree, this implies that Fr C N. Hence Fy = F. As [R : Fr] = []\7 . Fnl,
we have R = N, which is a contradiction. Hence Fiy = N and [R : Fg] = [N : Fx] = 1. Since R = Fp C M,
the algebra R" ®j, M" is isomorphic to a product of copies of M". 0O
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Lemma 3.3. Let i,j € T’ and i # j. Let R be a cyclic extension of k of degree p?. Set F = K; N K; N R
and p" = [F : k]. Suppose that R C K;K; and d < min{e;, e;}. Then d+e;; —h < min{e;,¢;} and
RCK;(d+e;; —h)K;j(d+e;; —h).

Proof. By the definition of h, we have h <e; ;. If h = e; j, then d + e, ; — h < min{e;,¢;} by assumption.
If h < e;;, we claim that RN K; = RN K; = F. To see this, first note that RN K; and K; N K; are both
subfields of the cyclic extension K;. Hence either RNK; C K;NK; or K;NK; & RNK; IfF KGNK; & RNKG,
then F' = K; N K; which contradicts to the assumption h < e; ;. Therefore RN K; C K; N K;. This implies
that RN K; = F. Similarly we have RN K; = F'.

As RK; C K;K;, by comparing the degrees of both sides, we have ¢; +d — h < ¢; + €¢; — e; ; and hence
d+e;; —h <e¢;. One can get d +e; ; — h < ¢; by a similar way.

Next we show the second part of the statement. If h = d, then by definition R = K;(d) = K;(d)
and the lemma is clear. Suppose h < d. We regard R, K; and K; as extensions of F. Let M =
Ki(d+e;; —h)K;(d+ e; j; — h). Without loss of generality, we assume ¢; > ¢;. By Lemma 3.1, the Ga-
lois group Gal(K;K;/F) is isomorphic to Gal(K;/F) x Gal(K;/K; N K;) ~ Z/p“~"Z x Z/p%~¢i. Let
(a,b) € Z/p* "7 x Z/pSi—¢i. If (a,b) fixes M, then a fixes K;(d+e;; —h) and b fixes K;(d +e; j — h).
Hence there are  and y such that a = p@t¢.=2"z and b = p?—"y.

On the other hand R is a cyclic extension of degree p?~" of F, so for every o € Gal(K;K;/F), we have
p?~"o € Gal(K;K;/R). Hence we have Gal(K,;K;/M) C Gal(K;K;/R) and RC M. O

For a nonempty subset C' C Z and an integer d > 0, we define the field M¢(d) to be the composite field
(Ki(d))iec-

Lemma 3.4. Let d be a positive integer and J be a non-empty subset of I'. Suppose that M = M;(d) is
bicyclic. Then M = K;(d)K;(d), for any i,j € J such that the degree of K;(d)K;(d) is mazimal.

Proof. As M is bicyclic, there are at least two elements in J. If |J| = 2, then the claim is trivial.

Suppose that |J| > 2. Pick ¢,j € J such that the degree of K;(d)K;(d) is maximal. If d < e, ;, then
Ki(d)K;(d) = K;(d) which is of degree p?. Since for any s € J the degree of K;(d)K(d) is at least p?, we
have K;(d)K,(d) = K;(d) for all s € J. Hence M = K;(d) which is a cyclic extension. This contradicts our
assumption. Therefore d > e; ;.

We claim that for any s € J, the field K (d) is contained in K;(d)K;(d). As the degree of K;(d)K;(d)
is maximal, the degree of K;(d) N K;(d) is minimal. Since K; is cyclic, this implies that K;(d) N K;(d) C
Ki(d) N K(d). Set N = K;(d)K;(d) N Ks(d). Note that N is a cyclic extension. Let p' be the degree of
[N : k]

We claim that N = K,(d). Suppose that N & K, (d), i.e. | < d. Then K;(d)K,(d) is a bicyclic extension
of K;(1)K;(1). Since K;(d) N K;(d) C K;(d) N Ks(d), we have K;(d) N K;(d) C N. By Lemma 3.3 we have
N C K;(I)K;(1). Therefore K;(d)K;(d)/N is a bicyclic extension of N.

Note that Gal(K;(d)K;(d)Ks(d)/N) ~ Gal(K;(d)K;(d)/N) x Gal(K(d)/N). Since N & K,(d) and
Gal(K;(d)K;(d)/N) is bicyclic, the field K;(d)K;(d)K,(d) is not a bicyclic extension of k, which contradicts
the fact that M is a bicyclic extension. Hence N = K,(d) and K,(d) C K;(d)K;(d). O

Lemma 3.5. Let a = (a1, ..., am) be an element in G, (Ko, K')\ D. Set e —d = min {d(a1,a;)}. Choose

i¢1a1 (a

J ¢ I,,(a) minimal such that g —d = (a1, a;). Set ' = (af,...,al,) € EBIZ/pEiZ as follows:
ic

(3.1)

a; .
! Teye;(a1), otherwise.

, {wej,ei(aj), ifi ¢ I (a) and eo — d = 8(a1, a;);
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Then o' ¢ D and S, C S,

Proof. First note that d > e ; for all i ¢ I,,(a). As j ¢ I,,(a’), we have a’ ¢ D.

The inclusion Sy C S, is equivalent to the inclusion | Q(I,(a)) C U Q(I.(a"), ie. for
n€Z/p1Z ne€Z/p1Z

n € Z/pZ and for v € Q(I,,(a)), there is some n' € Z/p“*Z such that v € Q(I,/(a’)). It is enough to show
that for each n € Z/p“*Z, there is some n' € Z/p**Z such that I,,(a) C I, (a’) and §(n,a;) < é(n’,a}) for
all i ¢ I, (a).
case 1. d(a1,n) > eg — d. We claim that I,,(a) C I, (a’) in this case. For all ¢ € I,(a), we have 6(a1,a;) =
0(a1, e, e;(n)) = min{d (a1, n), e;}. Hence we have either §(a1,a;) = d(a,n) > eg—dori € I,, (a). Therefore
a; = me, e, (a1) and i € I, (a').

By the construction of &, for any i ¢ I,, (a’) we have d(a1, a;) = g —d and §(a}, a}) = §(a1,a;) = g —d.
Since d(ay,n) > €9 — d and d(a1,a;) = €9 — d, we have §(n,a;) = eg — d = 6(al, a}).
case 2. 6(a1,n) = €y — d. Then for all i € I,,(a) \ I4, (a), we have d(a1,a;) = 0(a1,n) = eg —d. If i €
I,(a)N 1,4, (a), then e; < ¢g —d and hence ., ¢, (a1) = 7, ¢, (a;). In both cases, we have a; = 7, ¢, (a;) and
i € In(a’) for any n' € Z/p®Z such that a; = me, ¢, (n).

Let i ¢ I,,(a’). Then we have e; > €g—d and a; = 7., ¢, (a1). This implies §(n’, a}) = d(a;,a1) = eg—d. On

the other hand (a1, a;) > eg—d for any i ¢ I, (a’). Hence §(n, a;) = §(n,a1) = eo—d and 6(n’,al) = 6(n, a;).
case 3. §(a1,n) < eg —d. Since eg —d = §ZIImI(l ){(5( 1,a;)}, we have I,(a) C I, (a) C I, (a'). For i¢ I, (d),
i¢la, (a
we have 0(a1,a;) = €9 — d and hence d(n,a;) = d(n,a1) < g —d = §(a,al).
From the above three cases we conclude that S, CS,. O

We immediately have the following corollary.

Corollary 3.6. Keep notation as above. If a € G(Ko, K)\D (resp. G,(Ko, K')\ D), then o' € G(Ky, K')\D
(resp. Gu(Ko, K')\ D).

Lemma 3.7. Let a = (ay, ...,an) be an element in G, (Ko, K')\ D. Set ¢g — d = gmir(l ){5(al,ai)}. Choose
tElay

s,t € I such that §(a1,as) > €9 — d and §(a1,a:) = €9 — d. Then there is a finite set S C Qy, such that for
allv € Qp\ S either Ko(d) @ KV is a product of copies of K? or Ko(d) ® K} is a product of copies of K} .
Moreover, if a € G(Ky, K')\ D, then we can take S = 0.

Proof. Let o’ be defined as in Lemma 3.5. Then o' € G, (Ko, K') \ D. We claim that for all v € Qi \ Sur
either Ko(d) ® KV is a product of copies of KV or Ko(d) ® K} is a product of copies of K}. Note that if
a € G(Ky,K')\ D, then S,/ = 0.
Let v € Q \ Sar. By the definition of S,/, there is n € Z/p“*Z such that v € Q(I,(a’)). We consider the
following cases.
case 1: §(a1,n) < eg — d. Then s ¢ I,(a’) and 6(as,n) < €y — d. By the definition of Q(I,(a’)), we have
v e X~ Hence Ko(d) ® KV is a product of copies of K.
case 2: §(ay,n) > ey —d. If t € I, (a’), then e; = ¢g — d. Hence Ky(d) ® K} is a product of copies of K}.
Suppose that ¢ ¢ I, (a’). Then t ¢ I,(a’) and 6(as,n) = €9 — d. By the definition of Q(I,,(a’)), we have
ve N~ Hence Ko(d) ® K7 is a product of copies of K. O

Proposition 3.8. Let a = (a1, ..., am) be an element in G, (Ko, K')\ D. Set ¢ —d = min ){6(a1,ai)}. For

i¢la, (a
any s,t € I with 6(a1,as) > €¢g —d and §(a1,a;) = €o — d, we set u = max{s,t}. Let f = min{eq s, €0}
Then we have the following:
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(1) The extension Ko(d) C Fy s := Ks(d+esy — B) K (d+ es. — B). Moreover, if eg,s = €o, then Fg s =
Ko(d)Ks(d+est — B) = Ko(d)Ki(d + est — B).
(2) Suppose further that a € G(Ky, K'). Then the field Ko(d)K,(d + est — ) is locally cyclic

Proof. Let s,t € I as above. By Lemma 3.7, there is a finite set S such that for all v € Q; \ S either
Ko(d)® K? is a product of copies of K¥ or Ky(d)® K} is a product of copies of K}. Hence Ky(d)® (KK})?
is a product of copies of (KK;)" for all v ¢ S.

Since S is a finite set, by Chebotarev’s density theorem Ko(d) C K K. Since ¢ —eg s = €5 > d(ay,as) >
€o — d, we have d > . By Lemma 3.3, we have Ko(d) C Ks(d+est — B)Ki(d+ est — 5).

If eg,s = eo, then 8 = egs = egy. By dimension reasons we have Ko(d)Ks(d+esy — ) = Fast =
Ko(d)Ki(d+ esy — 3). This proves the first statement.

Suppose that a € G(Ko, K'). Since d > 3, the field F, s, is bicyclic, and its Galois group is isomorphic
to Z/pttes+=BZ x 7./p?PZ by Lemma 3.1.

We first assume that eg s < eg . Then 8 = eg s and Fy s = Ko(d)Ks(d + es. — ) by dimension reasons.
Note that the field Ko(d)K;(d + es — ) is contained in Fy ;. By Lemma 3.7, at each place v € Q we
have either Ko(d) ®x K? splits into a product of K? or Ky(d) ®, K} splits into a product of K}. For a
place v € Qy, if Ko(d) ®; K? splits into a product of K, then Fj . is a product of cyclic extensions
of ky. As a subalgebra of Fy _,, the algebra (Ko(d)K¢(d +est — B))” is a product of cyclic extensions. If
Ko(d) @ K} splits into a product of K}, then (Ko(d)K;(d + es; — 8))” is a product of cyclic extensions.
Hence Ko(d)K(d + est — ) is locally cyclic.

For eg s > eg ¢, a similar argument works. O

4. Patchable subgroups

Recall that for each nonempty subset U, we define G, (Ko, Ky,.) and there is a natural projection from
G (Ko, K') to Gy, (Ko, Ki,). (See §2.3 for details.) In view of the combinatorial description of IIT2 (k, TL/k)
(resp. II1%(k, TL/k)), the computation of IIT? (k, TL/k) (resp. 1% (k, TL/k)) will be much simpler if the e;’s are
equal. Hence we will calculate G, (Ko, Ky, ) for each nonempty subset U, and then “patch” them together
to get the group G, (Ko, K').

Suppose that an element = € G, (Ko, Ky, ) can be patched into an element in G, (Ko, K'). Then  must
be in the image of G, (Ko, K') under the projection map w,. (See Section 2.2 for the definition of w,.)

Let G° (Ko, K') (resp. G°(Kp, K')) be the subgroup consisting of elements (a1, ...,a,,) € G, (Ko, K')
(resp. G(Ky, K')) with a; = 0. Then G, (Ko, K') = D ® G% (K, K'). In Section 4.1 we define the patchable
subgroup G(Ko, Ky, ), which is in fact the image of G? (K, K') under the projection map ..

We show that there is a section of w, from G, (Ko, Ky,) to G° (Ko, Ky,) and prove that G, (Ko, K') =
D & &G, (Ko, Ky,.), where r runs over positive integers with U, nonempty. We prove similar results for
G(Ko, K').

Note that if Z = U, for some r, then G, (Ky, K') = G, (Kp, Ky,) and no patching condition is needed.
Hence in the following we fix an integer r such that U, is not empty and U, # Z.

We set Us,, = {i € Z|eg,; > r} and U<, = {i € Z|eg; < r}. Recall that we assume iQI’Ki = k. Hence U
is nonempty.

Recall that for a nonempty subset C C Z and an integer d > 0, M¢(d) is the composite field (K;(d))icc-

4.1. Algebraic patching degrees

Definition 4.1. Define the algebraic patching degree AY of U, to be the maximum nonnegative integer d
satisfying the following:
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(1) If Us, is nonempty, then My_, (d) C N Ko(d)K;(d).

€Uy
(2) If U., is nonempty, then My, (d) C N Ko(d)K;(d).

If U, =Z, then we set A¥ = ¢.

Note that Ko(r) = K;(r) for all i € Us,. Hence by definition we have A¥ > r. By Lemma 3.3 and the
definition of A¥, all nonnegative integers d < A% satisfy the conditions (1) and (2) in the above definition.

Lemma 4.2. Let d < A¥ be a nonnegative integer. If U, is nonempty, then Ko(d)K;(d) C 0 Ko(d)K;(d)
€U«
for all j € U,

Proof. Suppose that U, is nonempty. If d < r, the claim is trivial. Assume d > r. By the definition of

AY the field Ko(AY)My, (A¥) is contained in Ko(A¥)K;(AY) for all i € U.,. By Lemma 3.4 we have

Ko(d)My, (d) = Ko(d)K;(d) for all j € U,. By Lemma 3.3 we have Ko(d)K;(d) C 9 Ko(d)K;(d) for all
€U«

J € Uy. Hence Ky(d)K;(d) C .69 Ko(d)K;(d) forall j e U,. O
K2 <r

Proposition 4.3. Suppose that Us, is nonempty. Let v’ be the smallest positive integer bigger than r such
that U, is nonempty. Then we have the following:

(1) If r =0, then AY = AY,.
(2) A¥ < A%,
(3) AY —r > AY, —1'.

Proof. We first show (2). Note that by our choice of 7/, we have U.,» = U<,, which is nonempty. By the
definition of AY and by Lemma 4.2, we have My , (A¥) C _El’g] Ko(AY)K;(AY) C _69 Ko(AY)K;(A%).
€U, i€U_ .

Suppose that Us, is nonempty. As My_ (A¥) C Ko(A¥)K;(AY) for all i € Uy, by Lemma 3.4 we
have Ko(AY )My, (AY) = Ko(AY)K;(AY) for all j € Uy Hence My_ ,(AY) C 0 Ko(AY)K;(A¥) and
el
ALY, > AY.
Suppose that 7 = 0. Then U, = Up. By the definition of A%, we have My_ ,(A%) C il Ko(AY) x
K3 ’

K;(AY) and Ko(A%)K;(AY) is contained in n Ko(AY)K;(A%) for all j € U,.. Hence M;N,(Af/) -
1€Uo -
_Erl)] Ko(AY)K;(AY). Therefore A% < AF. Combining this with statement (2), we get (1).
1€Uo
Now suppose that r > 0. We claim that A% — " < A¥ —r. By Lemma 4.2, we have Ko(A%)K;(AY) C

) n Ko(A;ﬁ))KJ(A‘;)) for all i € Ur.
JEU

Let F = ie(r]lr/KO(A;",)Ki(Af,). By Lemma 4.2 we have Ko(A%)K;(AY) C F, for all i € U,.

Let i € Uy. As Ko(A%)K;(AY) C F C Ko(AY)K;(A%), there is some AY < v < AY such that
F = Ko(AY)K;(7). As i € Uy, the field F is a cyclic extension of Ky(A%) of degree p?~". By the definition
of A, for all j € U,» we have Ko(A%)K;(A%) C F and Ko(A%)K;(AY) is a cyclic extension of Ky(AY)
of degree A%, —r'. Hence AY, — 1’ <~ —r for dimension reasons.

Suppose that AY, — " > AY —r. Then v —r > A% — ¢ > AY + 1 — r. For dimension reasons
Ko(AY)K;(A¥ +1) C F. Since K;(AY +1) € F C Ko(A%)K;(A%) for all j € Usy, by Lemma 3.3
we have K;(AY +1) C Ko(AY +1)K;(AY +1) for all j € U,. Hence AY + 1 satisfies condition (2) in
Definition 4.1.

By the choice of 7" and the definition of A}, we have U, = Us, and My, ,(AY) C 9 Ko(AY) x

’
r’ .
el

K;(AY) C n Ko(AY)K;(AY). Thus AY satisfies condition (1) in Definition 4.1. By assumption A% >
€Uy,
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AY 4+ 1, so we have AY > AY¥ + 1, which is a contradiction. Therefore AY, — ' < A% — r. This proves
statement (3). O

Definition 4.4. Suppose that U, is nonempty. Let © = (2;)icu, € Gu (Ko, Ky, ). We say that z is algebraically
patchable if §(0,2;) > eg — AY for all ¢ € U,. Here we regard 0 as an element in Z/p®Z. We define
the algebraic patchable subgroup of G, (Ko, Ky,) as follows: If » > 0, it is the subgroup consisting of all
algebraically patchable elements of G, (Ko, Ky, ); if r = 0, it is the subgroup consisting of all algebraically
patchable elements of G, (Ko, Ky,) with 23 = 0.

For z = (x;)icv, € Guw(Ko, Ky,.), define a; = (a1, ...,am) € & Z/p“Z as follows:
€T

0, otherwise.

ai:{xi, ifi1 € U,, (4.1)

In the following we show that z is algebraically patchable if and only if a, is in G (Kq, K').

Proposition 4.5. Let x € G, (Ko, Ky, ) and a, be defined as above. If a, € G° (Ko, K'), then x is algebraically
patchable.

We first prove the following Lemma.

Lemma 4.6. Keep the notation as in Proposition 4 5. Suppose that a; = (a1, ...,am) € Gy, (Ko, K')\ D. Set
€g—d= min {(5(a1,az)} and U = {i € Uyleo —d = d(ar,a;)}. If U, and U, \ U, are both nonempty, then

i€ 1o, az)
Ko(d)K(d) = Ko(d)K(d) for any s € U \U/. and any t € U] In particular Ko(d) My, (d) = Ko(d) My, (d) =
Ko(d)My\v: (d).

Proof. Suppose that U is nonempty and U] & U,. Let t € U] and i € U, \ U,. By Proposition 3.8, we
have Ko(d) C K;(d+ej; —r)Ki(d+e; 4 —r), and Ko(d)K;(d+e;r — 1) = Ko(d)Ki(d+ e;+ — ). Regard
Ko(d)Ki(d+ e; 4 — 1) as a cyclic extension of Ky(d). Then Ko(d)K;(d) and Ko(d)K,(d) are subfields of the
same degree of the cyclic extension Ko(d)K(d+ e;; — ). Hence Ko(d)K;(d) = Ko(d)K,(d) for all t € U]
and all i € U, \ U;. As a consequence Ko(d) My, (d) = Ko(d)My;(d) = Ko(d) My (d). O

Proof of Proposition 4.5. Suppose that a, = (a1,...,am) € GO (Ko, K'). If z = 0, then there is nothing
to prove. Hence in the following we assume x # 0. Note that a; = 0. Set ¢g —d = g}}n{&(o,ai)} and

= {i € Uyleo — d = 6(0,a;)}. '

Since z # 0, we have d > r. It is enough to prove that A¥ > d, i.e. d satisfies conditions (1) and (2) in
Definition 4.1.

Suppose that Uc, is nonempty. For any s € U., and ¢ € U/, we have es; = e . By Proposition 3.8,
we have Ky(d) C K (d)K:(d). For dimension reasons K (d)K;(d) = Ko(d)Ks(d). Hence Ko(d)K:(d) C
Ko(d)Ks(d). As s and t are arbitrary, we have Ko(d)My.(d) C ﬂ KO( VK (d). If U, = UJ, then we are

done. If not, then by Lemma 4.6 we have Ko(d)My,(d) C ﬂ KO( ) s(d).
)-

Now suppose that U, is not empty. For s € Usq4, we have K (d) = Ko(d). Suppose that Us, \ Usq is not
empty. Let s € Us,\Usq and ¢t € U.. Then es; = e+ and by Proposition 3.8, we have Ky(d) C K,(d)K,(d) =
Ko (d)K¢(d). Since s and t are arbitrary, by Lemma 4.6 we have Ky(d)My. . (d) C . r?] Ko(d)K(d). Therefore

o

AY > d and =z is algebraically patchable. 0O

Please cite this article in press as: T.-Y. Lee, The Tate-Shafarevich groups of multinorm-one tori, J. Pure Appl. Algebra (2022),
https://doi.org/10.1016/j.jpaa.2021.106906




JPAA:106906

14 T.-Y. Lee / Journal of Pure and Applied Algebra ses (ssse) ssesee

Let z € G, (Ko, Ky, ) and denote by (1o, ...jpeoﬂ-,l) the partition of U, defined by z. Recall that S, is

the finite subset of Q) such that U Qn) = Q% \ Sy (See §2.)
n€Z/po0-"Z

Definition 4.7. Suppose that U, is nonempty. For a nonnegative integer d < A% we define S,.(d) and Ss.,.(d)
as follows.

(1) Suppose that Us, is nonempty. Define S-,-(d) to be the set of places such that (Ko(d)My., (d))? is not
locally cyclic. If Us,,. is empty, then set Ss,.(d) = 0.
(2) Define S,(d) to be the set of places such that (Ko(d)My, (d))? is not locally cyclic.

Clearly S~ (d) and S, are finite sets.

Proposition 4.8. Let © € G (Ko, Ky,) and a, be defined as in equation (/.1). Denote by I(ay) =
(Io, ..., Ipco—1) the partition of T defined by a,. Let d < AY¥ be a nonnegative integer such that x; = 0

(mod p©=?) for alli € U,. Let S = S, US,(d) US=,(d). Then |J QI,) 2 U \'S. As a consequence
n€ZL/pOoZ

a; € Gg(K(),K/)

Proof. If d = r, then clearly a, = 0 € G° (Ky, K’). Hence we assume d > 7.

We claim that | Q(In) 2 Q\S. Set Qg = Qi \ S. If Qg C Q(p), then our claim is clear. Suppose
neEZ/pOZL
not. Let v € Qg \ Q(Ip). Our aim is to find n # 0 such that v € Q(I,,). Since v ¢ Q(Iy), there is t € U, \ Iy

such that v ¢ Zf(o’xt). As 2y = 0 (mod p®~9), we have 6(0,7;) > €9 — d. Then Ko(d)” ®4, Ki(d) is not a
product of copies of K;(d)".
Suppose that Us, is nonempty. By the choice of d and S, we have My_, (d) C _Q] Ky(d)K;(d) and

(Ko(d)My.,.(d))” is a product of cyclic extensions of k,. Hence for s € Us, we have e;; = eg; and
Ko(d)Ks(d) € Ko(d)Ki(d) = Ks(d)K(d). As (Ko(d)Ks(d))? is a product of cyclic extensions of k,, by
Lemma 3.2 Ko(d)" ®, Ks(d)¥ is a product of copies of K(d)".

Suppose that U, is not empty. Let s € Uc,.. As Ko(d)K(d) C Ko(d)Ks(d) = Ks(d)K(d) for all s € U.,,
by Lemma 3.2 Ko(d)" ®p, Ks(d)? is a product of copies of K,(d)". Hence v € SQU Reo—d,

r

Denote by (Io,...,Ipc-r_1) the partition of U, defined by z. By the definition of S,, we have
U QIn) = O \ S, Hence there is m # 0 such that v € Q(I). Let n € Z/p®Z such that

nEZ/p0-"Z
FEO)E/:,T(H) =n. Then §(n,z;) = 6(7,x;) for all i € U,.. We claim that v € Q(I,,).

First note that 6(n, z;) > eg — d. To see this, we first suppose that ¢ € I,,. Then é(n,z:) = eg—r > €9 —d
by the assumption of d. Suppose that t ¢ I,,. As v ¢ X% and v € Q(Ty), we have §(n, z;) > € — d.

As d(n,x¢) > €9 — d and 6(0,2¢) > €9 — d, we have §(n,0) > ¢y — d. Let i ¢ U, U I,. Then a; = 0 and
e; > €9 — d. Therefore §(n,a;) = 6(n, e, ¢,(0)) > €9 — d for all i ¢ U, U I,. 5

Since v € ﬂU »~9 and 6(n,a;) > e —d for all i ¢ U, U I,, we have v € gUﬂ , ni(asn) Combining
s¢U, s¢UrUly

this with the fact that v € Q(I5), we have v € Q(I,,).
As 2 € G, (Ko, Ky, ), the set S is finite. Hence a, € G%(Ky, K'). The proposition then follows. O
4.2. Patching degrees

Definition 4.9. Define the patching degree A, of U, to be the maximum nonnegative integer d < A¥
satisfying the following:

(1) If Us, is nonempty, then the field Ko(d)My., (d) is locally cyclic.
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(2) If U, is nonempty, then the field Ky(d)My, (d) is locally cyclic.
If U, =7, then we set A, = ¢g.
Note that Ko(r) = K;(r) for all ¢ € Us,. From the definition of A,, we have AY > A, > r.

Proposition 4.10. Suppose that U, is nonempty. Let v’ be the smallest positive integer bigger than v such
that U, is nonempty. Then we have the following:

(1) If r =0, then A, = A,
(2) A, <A,
(3) Ay —1' <A, —

Proof. We first show that A, < A,.. Note that by our choice of ', we have Uc,» = U<,, which is nonempty.
By Proposition 4.3 (2), we A, < A¥Y < A%,

Suppose that Us,s is nonempty. By the definition of A, the field Ko(A,)My., (A,) is locally cyclic.
Hence Ko(A,)My,, (A,) and Ko(A,)My_ ,(A,) are locally cyclic. Therefore A,» > A,.

If » = 0, then U.,» = Uy. By Proposition 4.3 (1), we have A,» < AY, = A§. Since Ko(A)My_,(Ay) =
Ko(Ar )My, ,(Ar) = Ko(Ar )My, (A,) is locally cyclic, we have A,» < Ag, which proves statement (1).

Now suppose that r > 0. We claim that A, — ' < A, — r. Suppose not. Then A, — 7' > A, +1 — 7.
Combining with Proposition 4.3 (3) we get AY > A, + 1.

Let ¢ € U, and j € U,s. By the definition of A, we have Ko(A,/)K;(A) € Ko(Ap)K;(A,). Regard
Ko(Ap)K;(A,) as a cyclic extension of Ko(A,). Since Ko(A,)K;(A,) and Ko(A,)K; (A, + 1) are both
subfields of Ko(A,)K;(A,), for dimension reasons Ko(A,)K;(A, +1) C Ko(Ap)Kj(A).

Since Ko(A )My, (A,) is locally cyclic, its subfield Ko(A, + 1) My, (A, + 1) is also locally cyclic.

As Ko(Ar )My, (Ap) = Ko(Ap )My, (Ar) and Ko(A, )My, (A,) is locally cyclic, its subfield Ko (A, +
)My, (A,+1) is locally cyclic. Hence A, > A, +1, which is a contradiction. Therefore A, —r' < A, —r. O

Definition 4.11. Suppose that U, is nonempty. Let z € G,, (Ko, Ky, ). We say that x is patchable if z; =0
(mod p©—2r) for all i € U,.. The subgroup consisting of all patchable elements of G, (Ko, Ky, ) is called the

patchable subgroup of G(Ko, Ky.). We denote by G(Ko, Ky.) the patchable subgroup of G(Ky, Ky7,).

Note that if Uy = Z, then by above definition every element of G°(Ky, K') is patchable.

Hence in the rest of this section we fix an r such that U, is nonempty and U, # 7 unless we state
otherwise explicitly.

In the following we show that x is patchable if and only if a, defined in equation (4.1) is in G°(Ko, K').

Proposition 4.12. Let a, be defined as in equation (4.1). If a, € G°(Ko, K'), then x is patchable.

Proof. Suppose that a, = (ai,...,a,) € G°(Ky, K'). If x = 0, then there is nothing to prove. Hence
in the following we assume x # 0. By the definition of a, we have a; = 0 and Z \ U, C Iy(a). Set
€ —d= 2nellijn{é(O,ai)}, and U, ={i € U,|leg —d=0(0,a;)}. As x # 0, we have d > r and a, ¢ D.

By Propogition 4.5, we have that z is algebraically patchable, i.e. A¥ > d. Since A¥ > d, it is enough to
prove that d satisfies condition (1) and (2) in Definition 4.9.

Suppose that Uc, is nonempty. Let s € Uc, and t € U,. Then es; = egs. Since AY > d, the field
Ko(d)My, (d) is contained in Ky(d)K(d). By Lemma 3.4, the field Ko (d) My, (d) is equal to Ko(d)K:(d). By
Proposition 3.8, we have K(d)K(d) is locally cyclic. As K(d)K(d) is locally cyclic, the field Ko(d) My, (d)
is locally cyclic.
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Now suppose that Us, is not empty. For s € Usq, we have K (d) = Ko(d). If Us, # Usq, then
there is s € Us, \ Usq such that Ko(d)My. (d) = Ko(d)K(d). Let t € U/. Then es; = ep;. Again by
Proposition 3.8, we have Ko(d)K,(d) is locally cyclic. Hence Ko(d)My. . (d) is locally cyclic. Therefore
A, > d and z is patchable. O

Now we prove the converse.
Proposition 4.13. Let = € G(Ko, Ky.) and a, be defined as in the equation (4.1). Then a, € GO(Ky, K').

Proof. If A, = r, then clearly a, = 0 € G(Ky, K'). Hence we can assume A, > r.
As z € G(Ko, Ky, ), we have S, = (. Since S,.(A,) and S~,.(A,) are also empty, by Proposition 4.8 we
have a, € G°(Ky, K'). O

Lemma 4.14. Let a = (a1, ...,am) € G2 (Ko, K') be a nonzero element. Let r be the maximum integer with
the following property:

(1) There is some t € U, \ Ip(a) such that §(at,0) = érlli?){é(ai,O)},
K3 ola

Set © = w.(a) € @ Z/p*°"Z. Then = € G,(Ko,Ky,). Moreover if a € G°(Ko,K'), then x €
€Uy

G(Ko, Ky, ).

Proof. Clearly x € G, (Ko, Ky,). By the choice of ¢, we have x # 0. Set €9 —d = §(at,0). Then d > r as
x # 0. To prove that z is algebraically patchable, it is enough to show that d < A¥.

Set U/ = {i € U,| ¢ —d = 6(0,a;)}. By the choice of  we have U # 0.

Suppose that Us, is nonempty. By the choice of U,., for all s € Us, we have either §(0,as) > €y — d
or s € Ip(a). Let s € Us,. Suppose §(0,as) < ¢g —d. Then s € Iy(a) and e s > d. As egs > d, we have
K;(d) = Ko(d) C Ko(d)K;(d) for all i in U,..

Suppose that §(0,as) > €9 — d. By Proposition 3.8, we have Ky(d)K(d) C Ko(d)K;(d) for all i in U].
Hence by Lemma 4.6 we have Ko(d)My., (d) C ZEr?]rl('o(d)Ki(d).

Suppose that U, is nonempty. Let s € Uc,.. Then 6(0,as) > ¢y — d. If §(0,as) > €y — d, then by
Proposition 3.8 we have Ko(d)K;(d) C Ko(d)K;(d) for all ¢ in U;.

If 6(0,as) = €9 — d, then by Proposition 3.8 we have Ko(d)K;(d) C Ko(d)K:1(d). As eg s < 7, we have
[Ko(d)K;(d) : Ko(d)] < [Ko(d)Ks(d) : Ko(d)] for all 4 € U/. Since they are both subfields of the cyclic
extension Ko(d)K1(d) of Ko(d), we have K(d)K;(d) C Ko(d)Ks(d) for all i € U;.

By Lemma 4.6 we have Ko(d) My, (d) = Ko(d)My:(d) C Seg< Ko(d)Ks(d). Therefore d < A¥ and z is
algebraically patchable. '

Now suppose further that a € GY(Ky, K'). Clearly x € G(Ky, Ky, ). Suppose that Us.,. is nonempty. Then
as Ko(d)Mys,(d) is contained in a bicyclic extension, by Lemma 3.4 we have Ko(d) My, (d) = Ko(d)K(d)
for some s € Us,. By the choice of r and by Proposition 3.8 (2), we have either Ko(d) = K;(d) or Ko(d)K,(d)
is locally cyclic.

Suppose that U<, is nonempty. By the same argument we have Ko(d)My,(d) = Ko(d)K;(d) for some
i € U].. As a1 = 0, by Proposition 3.8 (2) we have Ky(d)K;(d) is locally cyclic. Hence d < A,. O

Proposition 4.15. We have

(1) Gu(Ko, K') ~ D ® &G, (Ko, Ky,), where r runs over nonnegative integers such that U, is nonempty.
T
(2) G(Ko,K') ~ D ® ®G(Ko, Ky,.), where r runs over nonnegative integers such that U, is nonempty.
ks
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Proof. To prove (1), it is sufficient to show that G° (Ko, K') ~ @G, (Ko, Ky, ). By Proposition 4.8, we have
G (Ko, K') 2 &G (Ko, K. T

Let a € Gg(}(O,K’) and J(a) = I \ Iy(a). We prove that a € &G, (Ko, Ky,) by induction on |.J(a)|.

If |J(a)| =0, then a =0 € G?C?W(KO,KUT). Suppose that the r:esult holds when |J(a)| < h.

Let |J(a)| = h and let r satisfy the condition (1) in Lemma 4.14. By Lemma 4.14, we have w,(a) €
G.(Ko,Ky,). Set @ = w,(a). Then a, € G°(Ky, K’') by Proposition 4.8. Hence (a})icz = a — a, €
GO (Ko, K') and |J(a')| < h. By induction hypothesis o’ € ®G., (Ko, Ky, ). Hence a € ®G (Ko, Ky,).

Assertion (2) can be proved similarly by using Lemma 4.14 and Proposition 4.13. O
5. The degree of freedom

In this section, we define the algebraic degree of freedom (resp. the degree of freedom) to describe the
generators of the subgroups G, (Ko, Ky, )’s (resp. G(Ko, Ky, )’s).

5.1. l-equivalence relations and levels

Let 7,5 € 7' and [ be a nonnegative integer. We say that i, j are l-equivalent and we write ¢ T jife;; >1
or i = j. As K are cyclic, it is clear that “~” defines an equivalence relation on any nonempty subset of 7.

For a nonempty subset C of 7', denote lloy n;(C) the number of l-equivalence classes of C. In particular
’I’Lo(C) =1.

For each C' C 7’ with cardinality bigger than 1, we define the level of C to be the smallest integer | such
that n;41(C) > 1. For each C' = {i}, we define the level of C' to be ¢;. Denote by L(C) the level of C.

5.2. The degree of freedom of Uy =T

Lemma 5.1. Assume that Uy = Z. Let | = L(Z) and ¢ be an equivalence class of Z/ ot Let 0 < f < d be

integers satisfying the following:

e (1) My,(d) is a subfield of a bicyclic extension.
* (2) Ko(f) € My, (d).

ForieZ, set x = (x1,...,2m) as follows:

D B A AR
J 0, otherwise.

Then x € G, (Ko, K').

Proof. By the definition of I, the field My, (d) is cyclic if and only if d < [. In this case we have f = 0 and
z=0¢€ G,(Ko, K'). Hence we assume My, (d) is bicyclic in the following.

As there are more than one equivalence classes in Z/ it the set Z \ ¢ is non-empty and Ip(z) =7 \ c.
Since L(Z) = I, we have es; > [ for any s, t € Z. Moreover for s € c and t € Z \ ¢ we have e;;, = [. By
Lemma 3.4 we have Mz(d) = K4(d)K;(d) for any s € cand t € 7\ c.

Let s, t be as above. Let v € Q be a place where Mz (d)? is locally cyclic at v. We claim that either
Ko(f) ®r Ks(d)? is a product of copies of K (d)? or Ko(f) @k K¢(d)? is a product of copies of K¢(d)?.
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Let 7 (resp. v;’s) be the integer such that Ko(f)" (resp. K;(d)") is a product of extensions of degree p?¥
(resp. p7i) of k¥. Suppose that Ko(f)” ®k» Ks(d)" is not a product of copies of K¢(d)”. Then since Mz(d)”
is a product of cyclic extensions, we have v > ~5. If v > =, then Mz(d)" = (Ks(d)K;(d))? is a product of
fields of degree less than v, which is a contradiction as Ko(f) C Mz(d). Hence v < vy and Ko(f)? ®pv K (d)?
is a product of copies of K(d)? by the cyclicity of Mz(d)”.

Since Mz(d)? is locally cyclic at almost all v € Qy, we have x € G,(Ky, K'). O

Remark 5.2. If M7(d) in Lemma 5.1 is locally cyclic, then by the above proof we have x € G(Ky, K').

Keep the notation defined as above. The element z has order pf. Suppose that f > 0. Then d > L(Up)
by the above proof. As Ko(f)K;(d) C My,(d), for dimension reasons f < d — L(Up). On the other hand,
by Lemma 3.3 if Ko(f) C My, (d), then Ko(f) C My, (f + L(Up)). Hence we can choose d = f + L(Uy) and
define the algebraic degree of freedom ft; of Uy to be the largest f such that f and d = f + L(Up) satisfy
the conditions in Lemma 5.1. By Proposition 3.8 the algebraic degree of freedom fr; is the maximal possible
order of a class function on Up/ od which lies in G, (Ko, K').

5.8. General cases

Inspired by the definition of ff7 , for U, nonempty we define the algebraic degree of freedom of U, to
describe the generators of G, (Ko, Ky, ). Briefly speaking, the group G (K, Ky,) is generated by class
functions on U,/ ¥ for I > L(U,). The order of such a generator is called the degree of freedom.

Definition 5.3. For a nonempty U,, let I, = L(U,). Let f < A% be a nonnegative integer satisfying the
following:

(1) The field My, (f + [ — r) is a subfield of a bicyclic extension.
(2) Ko(f) € My, (f +1—1).

Then we set fi/ to be the largest f < A} satisfying above conditions. We call f7 the algebraic degree of
freedom of U,..

Remark 5.4. Note that f = r always satisfies the conditions in Definition 5.3. Hence we have Ay > f7 > r.

For h > L(U,) and a class ¢ of U,./ 0y we define by recursion the algebraic degree of freedom of ¢ € co/ ot

as follows.

Definition 5.5. Keep the notation defined as above. Let f < f2 be a nonnegative integer satisfying the
following:

(1) The field M.(f + L(c) — r) is a subfield of a bicyclic extension.
(2) Ko(f) € M(f + L(c) — ).

Then we set f¢’ to be the largest f < fg satisfying above conditions. We call f¢’ the algebraic degree of
freedom of c.

Inspired by Remark 5.2 we define similarly the degree of freedom.

Definition 5.6. For a nonempty U, let h > L(U,) and ¢ € U,./ - We define the degree of freedom f. of ¢ to
be the maximum integer f < f& such that M.(f + L(c) — r) is locally cyclic.
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Remark 5.7. From the above definition, we see that f. = f¥ if M.(f¥ + L(¢) — r) is locally cyclic (e.g.
unramified) over k.

Proposition 5.8. For a nonempty U,., let h > L(U,) and c € U,/ . For all integers r < f < f* and i € ¢,
we have M.(f 4+ L(c) — r) = Ko(f)K;(f + L(c) — r).

Proof. For f = r, it is trivial. Hence we assume f > r in the following. This means that |¢| > 1 and
M.(f + L(c) — r) is not cyclic. By the definition of f¥ and Lemma 3.4, there are i,j € ¢ such that
eij = L(c) and Mc(f¢ + L(c) = r) = Ki(f& + L(¢) =r)K;(f& + L(¢) = 7). As Ko(f) € Mc(f&'+ L(c) =), by
Lemma 3.3 we have Ko(f) C K;(f+L(c)—r)K;(f+L(c)—r). By dimension reasons Ko(f)K;(f+L(c)—r) =
Ki(f + L(c) = r)K;(f + L(c) — ).

Since M.(f + L(c) — r) is contained in K;(f¢ + L(c) — r)K;(f¢ + L(c) — r), by Lemma 3.4 we have
M.(f+L(c)—r) = Ki(f+ L(c) —r)K;(f + L(c) —r). Hence M.(f+ L(c) —r) = Ko(f)K;(f+L(c)—r). DO

In the following we assume that U, is nonempty. We prove a generalization of Lemma 5.1.

Proposition 5.9. Let | > L(U,) and c € U,/ - Let r < f < f¥ be an integer. Set l; = L(c), ¢1 € ¢/ Nodt
1+
and

Se ={v € Q|M.(f + L(c) — r)? is not locally cyclic at v}.

Then U \S. C (N = Hu( n xo )
o k\ _(j601 J ) (jGUT\m J )

Proof. If f = r, then clearly v € E;O_T for all j € U, and all v € Q. Hence in the following we assume that
f > r, which implies that |U,| > 1. Note that for any equivalence class ¢y € U,./ ~ with L(U,) < h <[ and
co 2 ¢, we have f < f¥ gfgj).

We prove the statement by induction on {. Consider the case where | = L(U,.). By definition ¢ = U,.. As
there are more than one equivalence class in U,./ o the set U, \ ¢; is non-empty. By Lemma 3.4 we have

My (f+1—1)= K (f+1—r)Ki(f+1—7r) for any s € ¢; and ¢t € U, \ ¢1. By Proposition 5.8 we have
Ko(f)Ks(f +1— 7’) = MUT(f +1— ’I”) = Ko(f)Kt(f +1— 7’).
By Lemma 3.2 for all v € Q,\Sy,., either Ko(f)® Ks(f+1—r)? is a product of copies of Ks(f+1—7)" or

Ko(f)®k K¢(f+1—7)" is a product of copies of K;(f+1—r)". Hence Qx\Sy, C (eﬂ Z;O‘f)u( lp\ Z;O_f),
Jec jeUr\c1

and the statement is true for | = L(U,).
Suppose that the statement is true for [ = h > L(U,). Let [ = h + 1. If ¢ is also an equivalence class of
U,/ ~ then the statement is true by the induction hypothesis.

Now suppose that ¢ ¢ U,/ - Let v € Q \ S.. It suffices to show that if v ¢ N E;O_f, then v €

JEC

N 2 /. Suppose that v ¢ ( N £ 7). We first prove that v € ( N1 %),
Jj€U\c1 J jecn 7 j€E€c\c1 J

Let s € ¢; such that v ¢ X%~/ By Lemma 3.4 the field M.(f + Iy — ) is equal to K¢ (f +1; —r) x
Kj(f+1 =) for any j € ¢\ cr. Hence Mo(f + b — 1) = Ko(F)K;(f + 1 — 1) = Ko(f)Ka(f + 1 — 7).
Since M.(f +1; — r)? is a product of cyclic extensions of k, and v ¢ Y~/ by Lemma 3.2 we have

Ko(f) ®kx K;(f + 11 —r)? is a product of copies of K;(f 413 — r)?. This implies v € ( N Z;U_f).

jEc\c1
Next we show that v € ( 9\ E;Off). Asc ¢ U,/ e there is some ¢, € U,/ ~ such that ¢ & ¢g. This
jeUr\c
implies that L(co) = h and ¢ € ¢g/ ~ . By induction hypothesis Q; \ Se, € ( N 2 Hu(nne 7).
h+1 jeU\e 7 jec J

As h < l1, by Proposition 5.8 we have M., (f +h—7r) C M.(f +1; —r). Hence Qi \ Sc C Qi \ S,, which
implies that v € Qy \ S¢,-
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Since ¢; € cand v ¢ (N Z;"_f), vé (N E;O_f). Hence v € N E;O_f by induction hypothesis.

JjECI jEC Jj€U\c
Combining this with the fact that v e ( N L), wehaveve ( N 2°77). g
jEc\c1 J Jj€U\c1 J

Corollary 5.10. Let! > L(U,) and c € U,/ v Setly = L(c), c1 € ¢/ T and x¥ = (2i)icv, € © Z/p° "L
1

iU,
as follows:
po=IE forall j € ¢,
- 5.2
i { 0, otherwise. (52)
Then x¢, € G, (Ko, Ky,).
Proof. It is a direct consequence of Proposition 5.9. 0O
Corollary 5.11. Keep the notation as in Corollary 5.10. Set x., = (z;)icv, € © Z/p®~"Z as follows:
iU,
po~te forallj € ¢y,
= 5.3
i { 0, otherwise. (53)

Then x., € G(Ko, Ky,).
Proof. It is a direct consequence of Proposition 5.9. 0O
6. The computation of H_Ii(k:, TL/k) and III% (k, TL/k)

In this section we use the (algebraic) patching degrees and the (algebraic) degrees of freedom to describe
the groups I_HZ(k,TL/k) and ]_Hi(ki,TL/k).

6.1. Generators of algebraic patchable subgroups and patchable subgroups
For U, nonempty, set
2, = (p° "% )icu, € Gu(Ko, Ku,);
and
zy, = (p°"*)icu, € G(Ko, Ku,).

In the following we show that the elements xz,’s (resp. 2% ) defined in Corollary 5.11 (resp. Corollary 5.10)
are generators of G(Ko, Ky.) (vesp. G, (Ko, Kyr.)).

Proposition 6.1. For a nonempty U,., we have the following:

(1) The algebraic patchable subgroup G, (Ko, Ky, ) is generated by z¥ for all 1 > L(U,) and ¢ € U,/ v
(2) The patchable subgroup G(Ko, Ky,) is generated by x.. for alll > L(U,) and ¢ € U,/ v

Proof. Let © = (z;)icy, € Gu(Ko,Ku,) € @ (Z/p®© "Z). Let t be the smallest index in U,. After
€Uy

modifying « by a multiple of zy;,, we can assume z; = 0.
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Let I(x) = (Io(%), ..., [yeo-»_1(x)) be the partition of U, associated to x. Set J = U, \ Io(z). We prove
the proposition by induction on |J|. If |J]| = 0, then it is clear that x = 0 € (z¥). Let h be a positive integer,
and suppose that the statement is true for all |J| < h.

For |[J| = h, let ¢ — d = Iggl{é(O,xi)}. As z is patchable, we have d < A¥. Let J' = {i € J| §(0,2;) =
€p — d}. Let [ be the smallest integer such that there is ¢ € U,/ ~ contained in J'. Pick i € ¢. We claim
that for all » <y < ! and ¢y € U,/ > containing ¢, the field M., (d 4+ L(co) — r) is a subfield of a bicyclic

extension.
By the choice of Iy, we have ¢y € J'. Set Jo = J' N¢y. Pick j € Jy and i € ¢o \ Jp such that

ei,; = max{es | s € Jo,t € o\ Jo}.

By Lemma 3.8 we have Fy; ; = Ko(d)K;(d+e;; —r) = Ko(d)K;(d+ €; ; —r). Again by Lemma 3.8 for
any s € ¢g \ Jo, we have Fy s ; = Ko(d)K;(d+es; —r) C Fy; ;. Similarly Fy,; ; C Fy, ; for all s € Jy.

Note that by definition L(cp) = min{es | t,t' € co}. Since L(co) < es; < €5 we have
Ko (d+ L(co) = r)K;(d+ L(cg) —r) C Fy s, for all s € ¢o \ Jo.

By a similar argument, we have K(d + L(co) — r)K;(d + L(co) — r) C Fy; s for all s € Jo. Hence M., (d+
L(Co) — 7") Q Fd,i,j-

Next we show that d < f&. As M, (d + L(co) — r) is a subfield of a bicyclic extension, by Lemma 3.4
there are s and t such that M., (d + L(co) — 1) = Ks(d + L(co) — 7)K¢(d + L(co) — ). Moreover we can
choose s, t € ¢y such that s ¢ Jy and t € Jy.

To see this, first suppose that Jy is contained in some ¢ € ¢q/ o ) . Then we can pick s € ¢g \ ¢ and
co
pick t € Jy.
Suppose that Jy € ¢ for any ¢’ € ¢/ ( . Then pick s € ¢y \ Jo. Let ¢ be the class of ¢p/ ( )
Co L(co)+1

containing s. Since .Jy is not contained in ¢, Jo \ ¢’ is nonempty. Pick ¢t € Jy \ ¢/. Then es; = L(co). By
Lemma 3.4, we have M., (d + L(cp) —r) = F,Ls’t.
By Lemma 3.8 Ko(d) € Mc,(d+ L(co) — ), so we have d < f&. In particular for ¢ € U,./ ) containing

¢, we have d < f. By Corollary 5.10, there is an integer n such that the i-th coordinate of nz¢ is z;.
Since ¢ C J’, the number of non-zero coordinates of  — nxz¥ decreases by at least one. By the induction
hypothesis, the element x — nz¥ is generated by patchable diagonal elements and z% for I’ > L(U,) and
del,/ ot Statement (1) then follows.

Suppose further that = € G(Ky, Ky, ). Then by Lemma 3.8 M, (d + L(cg) — ) = Fy+ is locally cyclic.
Hence d < f.,. By similar argument we get statement (2). O

Theorem 6.2. Suppose that U, is nonempty. Then

(1) Gu(Ko,Ku,) ~Z/p>"Z& © @& (Z/ple—rz)mn@-t,
IZL(U) c€U,/~

(2) G(KO7KU,,.) ~ Z/pAT—TZ D D D (Z/pfc—TZ)TLLJA(C)—l.
I>L(U,) c€U, [~

Proof. By Proposition 6.1, the group G, (Ko, Ky, ) is generated by the z¢ for I > L(U,) and ¢ € U,/ e

It is clear that the cyclic group (z¢, ) ~ Z/p”*~"Z. For | > L(U,), ¢ € U, / ~, and ¢ € c/ & , the
T c +1
w

group (z¥ ) is isomorphic to Z /p/c " Z.

For U, we have

§ w _ AV W
I, =p fUT‘TUT

€U,/ ~
c€ 7/L<ur>+1
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Let ¢g € U,/ ~ and ¢ € ¢p/ o ~ o Set I = L(cp) + 1. If nj1(c) > 1, then we have the relation
0

co)+

w o fe—f¢ w
E xy =pleo e a?.

0160/1:1

We choose n;41(c)-1 distinct classes in ¢/ it Let ¢; for 1 <@ < ny41(c) be these classes. Then % ’s generate
h i
a group isomorphic to (Z/p’ ¢ _’”Z)’”“(C)_1 and this group is disjoint from the group generated by z% for
LU,)<h<land d €U,/ ~ and by 2% for ¢/ € U,/ o for ¢ ¢ c.
+

Hence G(Ko, Ky ) ~ Z/pA" "2 & & (z/pfrz)mr-1,
I>L(U,) c€U, /~

One can prove (2) by a similar argument. O
For Uy = Z, we get the group structure of I_Hl(k:, T /1) immediately from the above theorem.
Corollary 6.3. Suppose that Uy =Z. Then
1) W2k, Trpp)~ & @ (Z/pfz)ym+(O7L
I2L(T) c€Z/r
(@) WPk Top) > ® & (Z/pfezym(t.

I2L(T) c€T/~

Proof. The arguments for (1) and (2) are similar. We show (2) here.

As Uy = Z, we have Ag = €9 and G(Ky, K') = G(Ky, Ky,). By Theorem 6.2 the group G(Ky, K') ~

Z/p™°7 & © (Z)plZ)m+1(©)=1  As the diagonal group D is isomorphic to Z/pZ, we have
1>L(Z) c€Z/~

HIQ(kafL/k) ~ D <) (Z/prZ)nl+1(C)71' O
IZL(Z) c€T/

6.2. The Tate-Shafarevich groups

For ¢ € U, and | > L(U,), set a¥ = (a;)jez to be the embedding of z¥ = (z;),cvu, in Gu (Ko, K') as
follows:

0 = {xj, for all j € U,., (6.1)

0, otherwise.
We define a. = (a;)jez to be the embedding of z. = () cv, in G(Ko, K') in the same way.
Proposition 6.4. We have the following:

(1) The group G, (Ko, K') is generated by the diagonal group D and the a¥’s defined as above.
(2) The group G(Ky, K') is generated by the diagonal group D and the a.’s defined as above.

Proof. Let a = (a;)icr € G, (Ko, K'). After modifying by a diagonal element, we can assume that a; = 0.
By Proposition 4.15 we have a € @éw(Ko, Ky, ). Then a is generated by D and z%’s by Proposition 6.1.

A similar argument proves (2). O
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Theorem 6.5. Keep the notations as above. Then we have

Gu(Ko, K'Y ~Z/p°Z @ Z/p> 7L & & & (Z/pfrz)ms 7Y
reR\{0} r€RI=L(U,) c€Uy /[~

and

G(Ko, K ~Z/p“Z © Z/p™>"Z & @® @ (Z/pfrz)mnO-L
reR\{0} r€R I>L(U,) cEU,,~/7

As a consequence, we have

U2 (kTy)~ & ZpP5TZ @ o o (Z/pf )l
reR\{0} r€R I>L(U,) CEUT./flv

and

W'k Tyx) > @ Z/p™ 72 @ @© @ (Zfprrzymelot,
reR\{0} rE€RIZL(Uy) c€U,/r

Proof. By Proposition 6.4, the group G, (Ko, K') is generated by the diagonal group D and the group
@ Gy (Ko, Ky,). It Uy = Z, then it is Theorem 6.2.
reER

Suppose that Uy # Z. Set az = (1, ...,1), which is a generator of D. Then we have the relation

w_ AW AW
> 7 Riag = pAag.
reR

Note that by Proposition 4.3 (1) and (2), we have A% > 0 and A¥ — A¥ > 0. Hence p®® =26 az and agy, are

nonzero. It is clear that the element p© =% a7 generates the intersection DN & G, (Ko, Ky, ). Hence
reR

Go(Ko, K'Y~D @ ® (z/pf< )@t g G (Ko, Ky).
1>L(Uo) cer/T reR\{0}

Applying Proposition 4.10 (1) and (2) instead of Proposition 4.3, one proves in a similar way the statement
of G(Ko, K'). O

Remark 6.6. Let K be a minimal Galois extension of k which splits T}/, and denote its Galois group by
G. An alternative way to calculate H_Ii (g, " /k) is to express the degree of freedom and patching degree in
terms of the group structure of G. Then one can use the method in [2] to get 1112 (G, T}, /5) from III%(1, M)
for some finite extension ! and some Gal(k,/k)-module M.

7. Examples

In this section, we give some examples where more explicit descriptions of the groups le(k, TL /i) and
112 (k, Ty, /i) are obtained. We first note the following case.

Proposition 7.1. If ) KoK; = Ko, then T2 (k, T, )1,) = W2 (k, Ty i) = 0.
T 0

Proof. It is enough to show that HIi(k,TL/k) =0. Let I = L(Uo). If ff5, # 0, then Ko(fy, )My, (fi5, +1) is

bicyclic and by Proposition 5.8 it is contained in f?] KoK, which is a contradiction. Therefore fz; = 0. If
1€Uo

Up = Z, then 1112 (k, T7 /1) = 0 by Corollary 6.3.
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Suppose that Uy # Z. Choose r > 0 such that U, is nonempty. Since (?] KoK; = Ky, we have AY = r.
1€Up
Hence f¢ =r for all c € U,./ e By Theorem 6.5 Hli(k,TL/k) =0. O

Example 7.2. Let £ = Q and (,, be a primitive n-th root of unity. Let pq, ..., pm be distinct odd primes and n;
be positive integers. Set K; = Q((p,»:) for 0 <i < m. Then K; are cyclic extensions. Since _ﬂIKoKi = K,
1€

by Proposition 7.1 the group H_Ii(k,TL/k) =0.

Proposition 7.3. Suppose that K; are linearly disjoint extensions of k for all i € T'. Let f be the maximum
integer such that Mz (f) is a subfield of a bicyclic extension; and f' be the mazimum integer such that
Mz (f") is bicyclic and locally cyclic. Then Hli(k,TL/k) ~ (Z/p' 7)™~ and le(k,TL/k) ~ (Z/pf 7)™ 1.

Proof. Since K; are disjoint extensions for all i € Z', we have Uy = Z, L(Uy) = 0 and ny(Up) = m. Then by
definition we have fi7 = f and fy, = f'. The proposition follows from Corollary 6.3. O

Example 7.4. Let k = Q(i). Let Ko = k(v/17), K; = k(/17 x 13) and Ky = k(v/13). Then Mz/(2) is a
bicyclic extension of k with Galois group Z /47 x 7 /4Z. Hence 1112 (k, TL/k) ~ 7. /4Z.

It is clear that Mz/(2), is a product of cyclic extensions if v is an unramified place. Let P be the prime
ideal associated to v. If M7/ (2) is ramified at v, then PNZ € {(2), (13), (17)}. Since 17 is not a 4-th power
root in Qy3, the field Mz (2)17 is not cyclic.

It is easy to check that Mz (1) is locally cyclic. Hence by Proposition 7.3 we have ITI?(k, TL/k.) ~7/2Z.

Example 7.5. Let k = Q(4). Let Ko = k(V/17), K1 = k(/17 x 409) and Ko = k(v/409). Then Mz (2) is a
bicyclic extension of k with Galois group Z /47 x 7 /AZ. Hence 1112 (k, TL/k) ~ 7. /4Z.

We claim that Mz (2) is locally cyclic. Let v € Q. It is clear that Mz/(2), is a product of cyclic
extensions if v is an unramified place. Let P be the prime ideal associated to v. If Mz/(2) is ramified at v,
then PNZ € {(2), (17), (409)}. However 409 and 17 are quartic residues of each other, and 17 has a 4-th root
in Qq. Therefore Mz/(2) is locally cyclic and fy, = 2. By Proposition 7.3 we have I (k, TL/k) ~ 7 /4Z. In
this case weak approximation holds for T}, /;-torsors with a k-point.

Proposition 7.6. Let F' be a bicyclic extension of k with Galois group Z/p"Z x Z/p"Z. Let K; be distinct
cyclic subfields of F with degree p™. Then

U (kTop)~ @® Z/p"'2Z @& @ @ (Z/pnlz)yme (-1,
reR\{0} r€R 1> L(U,) c€Ur/~

Proof. Regard F' as a cyclic extension of Kj.

For a nonempty U, and all ¢ € U, the field KK, is the unique degree p”~" extension of K, contained
in F. Hence A¥ =n for all r € R.

For | > L(U,), the field M.(n) is contained in F and its Galois group is isomorphic to Z /p"Z x Z /p"~=(¢).
We claim that f¢ = n — L(c¢) + r. Regard F' as a cyclic field extension of K;. As subfields of F, both
Ko(n—L(c)+r)K; and M,(n) are cyclic extensions of K; of degree p»~ (). Hence Ko(n—L(c)+r)K; = M,(n)
and f¥ =n—L(c) +r.

For a class ¢ € U,/ Vo we have n;41(c) > 1 if and only if L(c) = [. The proposition then follows. O

Example 7.7. Let k = Q(i). Let Ko = k(/13), K1 = k(V/17), K2 = k(v/13 x 172). Then 1 € Uy and 2 € Uy.
By Proposition 7.6, we have HIi(k,TL/k) ~ 7 /2Z. As the field KoK> is locally cyclic, we have A; = 2.
Hence ' (k, T, /i) = Z/27. In this case weak approximation holds for 77, /;-torsors with a k-point.
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