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Let k be a global field and L be a product of cyclic extensions of k. Let T be the 
torus defined by the multinorm equation NL/k(x) = 1 and let T̂ be its character 
group. The Tate-Shafarevich group and the algebraic Tate-Shafarevich group of 
T̂ in degree 2 give obstructions to the Hasse principle and weak approximation for 
rational points on principal homogeneous spaces of T . We give concrete descriptions 
of these groups and provide several examples.
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0. Introduction

Let k be a global field and fix a separable closure ks of k. In the following all the separable extensions of 
k are considered as subfields of ks.

Let Ki be a finite separable extension of k for i = 0, ..., m. Set L = K0 × ... ×Km. Let TL/k be the torus 
defined by the multinorm equation:

NL/k(t) = 1. (0.1)

Denote by T̂L/k the character group of TL/k.
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Let Ωk be the set of all places of k. Define

Xi(k, TL/k) := ker(Hi(k, TL/k) →
∏
v∈Ωk

Hi(kv, TL/k)). (0.2)

It is well-known that the elements in X1(k, TL/k) are in one-to-one correspondence with the isomorphism 
classes of TL/k-torsors which have kv-points for all v ∈ Ωk. To be precise, let Xc be the variety defined by

NL/k(t) = c, (0.3)

where c ∈ k×. Suppose that Xc has a kv-point for all v ∈ Ωk. Then Xc corresponds to an element [Xc] ∈
X1(k, TL/k). By Poitou-Tate duality, the class [Xc] defines a map X2(k, T̂L/k) → Q/Z, which is the 
Brauer-Manin obstruction to the Hasse principle for the existence of rational points of Xc. Hence the group 
X2(k, T̂L/k) is related to the local-global principle for multinorm equations.

For a Galois module M over k, define

Xi
ω(k,M) := {[C] ∈ Hi(k,M) such that [C]v = 0 for almost all v ∈ Ωk.}

It is clear that Xi(k, T̂L/k) ⊆ Xi
ω(k, T̂L/k). The case i = 2 is the most interesting to us. In fact if 

X2
ω(k, T̂L/k) = X2(k, T̂L/k), weak approximation holds for TL/k and hence for those Xc with a k-point ([8]

Prop. 8.9 and Thm. 8.12).
The local-global principle and weak approximation for multinorm equations (0.3) have been extensively 

studied. One can see [7], [6], [4], [1] and [5] for recent developments on this topic. In this paper, we are 
interested in the groups X2(k, T̂L/k) and X2

ω(k, T̂L/k) (and hence the group X2
ω(k, T̂L/k)/X2(k, T̂L/k)). 

These groups measure the obstruction to the local-global principle for existence of rational points of Xc and 
the obstruction to weak approximation.

Under the assumption that L is a product of (not necessarily disjoint) cyclic extensions of prime-power 
degrees, we give a formula for X2

ω(k, T̂L/k) and X2(k, T̂L/k). Briefly speaking, the group X2
ω(k, T̂L/k) is 

determined by the “maximal bicyclic field” M generated by subfields of Ki and X2(k, T̂L/k) is determined 
by the “maximal bicyclic and locally cyclic subfield” of M . In combination with [1] Proposition 8.6, one can 
calculate the group X2(k, T̂L/k) for L a product of cyclic extensions of arbitrary degrees. This generalizes 
the result in [1] §8. Furthermore we compute the bigger group X2

ω(k, T̂L/k) which is related to weak 
approximation. We give several concrete examples in the final section.

The paper is structured as follows. Section 1 introduces the notation. In Section 2 we give a combinatorial 
description of X2(k, T̂L/k) and X2

ω(k, T̂L/k). In Section 3, we prove some preliminaries about cyclic exten-
sions, which will be the main tools in the following sections. In Section 4-6, we define the patching degree
and the degree of freedom in order to describe the generators of the group X2(k, T̂L/k) (resp. X2

ω(k, T̂L/k)). 
We give formulas for X2(k, T̂L/k) and X2

ω(k, T̂L/k) in Section 7 and provide several examples in the last 
section.

Most part of this work is done under the support of Alexander von Humboldt-Stiftung. The author is 
grateful to the referee for valuable comments.

1. Notation and definitions

For a k-algebra A and a place v ∈ Ωk, we denote A ⊗k kv by Av.
A finite Galois extension F of k is said to be locally cyclic at v if F ⊗k kv is a product of cyclic extensions 

of kv. F is said to be locally cyclic if it is locally cyclic at all v ∈ Ωk.
A bicyclic extension F/k is a Galois extension with Gal(F/k) isomorphic to Z/n1Z × Z/n2Z where n1, 

n2 > 1 and n2|n1.
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Throughout this paper, we assume 
m
∩
i=0

Ki = k.

2. Preliminaries on algebraic tori

For a k-torus T , we denote by T̂ its character group as a Gal(ks/k)-module.
Let A be a field and A′ be a finite dimensional A-algebra. For an A′-torus T , we denote by RA′/A(T ) its 

Weil restriction to A. (For more details on Weil restriction, see [3] A.5.)
Let NA′/A be the norm map and denote by TA′/A the norm one torus R(1)

A′/A(Gm).
We first prove some general facts about multinorm-one tori defined by finite separable extensions of k.
We recall the following well-known fact ([8] Lemma 1.9).

Lemma 2.1. Let G = Gal(ks/k) and M be a permutation module of G. Then X2
ω(k, M) = 0.

Recall some notation defined in [1]. Denote the index set by I = {1, ..., m} and I ′ = {0} ∪ I. In the 
following, we always assume that m ≥ 2.

Set

• K ′ =
∏
i∈I

Ki,

• L =
∏
i∈I′

Ki,

• E = K0 ⊗k K ′, and
• Ei = K0 ⊗k Ki.

The norm maps NK0/k : K0 → k and NK′/k : K ′ → k induce NE/K′ : E → K ′ and NE/K0 : E → K0. 
Let φ : RE/k(Gm) → RL/k(Gm) be defined by φ(x) = (NE/K0(x)−1, NE/K′(x)). It is clear that the image 
of φ is contained in TL/k. Moreover, φ is surjective onto TL/k as a map of algebraic groups (easily checked 
after base change to the separable closure ks of k).

Consider the torus SK0,K′ defined by the exact sequence

1 SK0,K′ RE/k(Gm) φ−→ TL/k 1 . (2.1)

Note that SK0,K′ also fits in the exact sequence

1 SK0,K′
∏
i∈I

RKi/k(TEi/Ki
)

NE/K0−−−−→ TK0/k 1 . (2.2)

Proposition 2.2. Let K0 be a cyclic extension of arbitrary degree. Then X2
ω(k, T̂K0/k) = 0.

Proof. Let σ be a generator of Gal(K0/k). Consider the exact sequence

1 → Gm → RK0/k(Gm) → TK0/k → 1,

where the map from RK0/k(Gm) to TK0/k sends x to x/σ(x). Its dual sequence is

1 → T̂K0/K → IK0/k(Z) → Z → 1.

By Lemma 2.1 we have X2
ω(k, IK0/k(Z)) = 0. As H1(k, Z) = 0, we have X2

ω(k, T̂K0/k) = 0. �
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Lemma 2.3. We have

(1) X2(k, T̂L/k) 	 X1(k, ŜK0,K′).
(2) X2

ω(k, T̂L/k) 	 X1
ω(k, ŜK0,K′).

Proof. The first statement is [1] Lemma 3.1.
We now prove (2). Consider the dual sequence of (2.1):

0 T̂L/k IE/k(Z) φ−→ ŜK0,K′ 0 . (2.3)

The exact sequence (2.3) gives rise to the following exact sequence:

0 H1(k, ŜK0,K′) δ−→ H2(k, T̂L/k) −→ H2(k, IE/k(Z)) . (2.4)

By Lemma 2.1, we have X2
ω(k, IE/k(Z)) = 0. Therefore X2

ω(k, T̂L/k) is in the image of δ. Let [θ] be an 
element in H1(k, ŜK0,K′) such that δ[θ] ∈ X2

ω(k, T̂L/k). As H1(kv, IE/k(Z)) = 0 for all v ∈ Ωk, the element 
[θ]v = 0 if (δ[θ])v = 0. Hence [θ] ∈ X1

ω(k, ŜK0,K′). The lemma then follows. �
2.1. Combinatorial description of Tate-Shafarevich groups

From now on we assume that K0 is a cyclic extension of degree pε0 and we denote by K0(f) the unique 
subfield of K0 of degree pf .

For all i ∈ I, we set

• pe0,i = [K0 ∩Ki : k], and
• ei = ε0 − e0,i.

As K0 is cyclic, for each i ∈ I, the algebra K0 ⊗k Ki is a product of cyclic extensions of degree pei of 
Ki. Without loss of generality, we assume that ei ≥ ei+1. Since we assume that K0 ∩ (∩

i
Ki) = k, we have 

e0,1 = 0 and e1 = ε0.
We can assume further that for any i 
= j, Kj � Ki. To see this, suppose that there are distinct i, j

such that Kj ⊆ Ki. Set J = {0, 1, ..., m} \ {i} and set L′ =
∏
i∈J

Ki. Then TL/k 	 TL′/k × RKi/k(Gm). By 

Lemma 2.1, X2(k, T̂L/k) 	 X2(k, T̂L′/k) and X2
ω(k, T̂L/k) 	 X2

ω(k, T̂L′/k).
Recall some definitions from [1]. Let s and t be positive integers. For s ≥ t, let πs,t be the canonical 

projection Z/psZ → Z/ptZ. For x ∈ Z/psZ and y ∈ Z/ptZ, we say that x dominates y if s ≥ t and 
πs,t(x) = y; if this is the case, we write x � y. For x ∈ Z/psZ and y ∈ Z/ptZ, let δ(x, y) be the greatest 
nonnegative integer d ≤ min{s, t} such that πs,d(x) = πt,d(y). We have δ(x, y) = min{s, t} if and only if 
x � y or y � x.

Recall that ei ≥ ei+1 for i = 1, ..., m − 1. For a = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ and n ∈ Z/pe1Z, let In(a) be 

the set {i ∈ I| n � ai} and let I(a) = (I0(a), ..., Ipe1−1(a)).

Given a positive integer 0 ≤ d ≤ ε0 and i ∈ I, let Σd
i be the set of all places v ∈ Ωk such that at each 

place w of Ki above v, the following equivalent conditions hold (see [1] Prop. 5.5 and 5.6):

(1) The algebra K0 ⊗k Kw
i is isomorphic to a product of isomorphic field extensions of degree at most pd

of Kw
i .
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(2) K0(ε0 − d) ⊗k Kw
i is isomorphic to a product of Kw

i .

Let Σi = Σ0
i . In other words, Σi is the set of all places v ∈ Ωk where K0 ⊗Kv

i is isomorphic to a product 
of copies of Kv

i .

Let a = (a1, ..., am) be an element in ⊕
i∈I

Z/peiZ and I(a) = (I0, ..., Ipe1−1). For In � I, define

Ω(In) = ∩
i/∈In

Σδ(n,ai)
i . (2.5)

For In = I, we set Ω(In) = Ωk.

Set

G = G(K0,K
′) = {(a1, ..., am) ∈ ⊕

i∈I
Z/peiZ|

⋃
n∈Z/pe1Z

Ω(In(a)) = Ωk},

and set D to be the diagonal subgroup generated by (1, 1, ..., 1).
Define X(K0, K ′) as G(K0, K ′)/D.

Theorem 2.4. ([1] Cor. 5.4) The Tate-Shafarevich group X2(k, T̂L/k) is isomorphic to X(K0, K ′).

Proof. This follows from Lemma 2.3 and [1] Thm. 5.3. �
Next we give a combinatorial description of X2

ω(k, T̂L/k), which is similar to the description of 
X2(k, T̂L/k).

For a = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ, we define

Sa = Ωk\(
⋃

n∈Z/pe1Z

Ω(In(a))).

Set

Gω = Gω(K0,K
′) = {(a1, ..., am) ∈ ⊕

i∈I
Z/peiZ| Sa is a finite set}.

Clearly G ⊆ Gω. Define Xω(K0, K ′) as Gω(K0, K ′)/D, where D is the subgroup generated by the diagonal 
element (1, ..., 1). We prove an analogue of Theorem 2.4.

Theorem 2.5. Keep the notation above. Then X2
ω(k, T̂L/k) 	 Xω(K0, K ′).

Proof. By Lemma 2.3, it is sufficient to show that X1
ω(k, ŜK0,K′) 	 Xω(K0, K ′). The proof is similar to 

the proof of [1] Theorem 5.3. We sketch the proof here. For more details one can refer to [1].
Consider the dual sequence of (2.2),

0 T̂K0/k
ι−→ IK′/k(T̂E/K′) ρ−→ ŜK0,K′ 0 , (2.6)

and the exact sequence induced by (2.6),

H1(k, T̂K0/k)
ι1−→ H1(k, IK′/k(T̂E/K′)) ρ1

−→ H1(k, ŜK0,K′) → H2(k, T̂K0/k). (2.7)
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By [1] Lemma 1.2 and Lemma 1.3, we can identify H1(k, T̂K0/k) to Z/pε0Z and H1(k, IKi/k(T̂Ei/Ki
)) to 

Z/peiZ for 1 ≤ i ≤ m. Under this identification, we can rewrite the exact sequence (2.7) as follows:

Z/pε0Z
ι1−→ ⊕

i∈I
Z/peiZ

ρ1

−→ H1(k, ŜK0,K′) → H2(k, T̂K0/k), (2.8)

where ι1 is the natural projection from Z/pε0Z to Z/peiZ for each i. Note that the image of ι1 is the 
subgroup D, and we have the exact sequence

0 → ( ⊕
i∈I

Z/peiZ)/D ρ1

−→ H1(k, ŜK0,K′) → H2(k, T̂K0/k). (2.9)

By Proposition 2.2 the group X1
ω(k, ŜK0,K′) is contained in the image of ρ1. Let a = (a1, ..., am) ∈

⊕
i∈I

Z/peiZ and [a] be its image in ( ⊕
i∈I

Z/peiZ)/D. We claim that ρ1([a]) is in X1
ω(k, ŜK0,K′) if and only if 

a ∈ Gω.
For v ∈ Ωk, we denote by av the image of a in 

m
⊕
i=1

H1(kv, IKv
i /kv

(T̂Ev
i /K

v
i
)), and by Dv the image of D in 

this sum.
By the exact sequence (2.9) over kv, we have ρ1([a]) ∈ X1

ω(k, ŜK0,K′) if and only if av ∈ Dv for almost 
all places v ∈ Ωk.

Note that av = (n, ..., n)v if and only if v ∈ Ω(In(a)). Hence av ∈ Dv if and only if v ∈
⋃

n∈Z/pe1Z
Ω(In(a)).

Our claim then follows. �
2.2. Subtori

For 0 ≤ r ≤ ε0, we set the following:

• Ur = {i ∈ I| e0,i = r}.
• KUr

=
∏

i∈Ur

Ki.

• Lr = K0 ×KUr
.

• EUr
= K0 ⊗k KUr

.

Pick an r such that Ur is nonempty. We define SK0,KUr
as in (2.1) and (2.2). Namely let φr :

REUr/k
(Gm) → RLr/k(Gm) be defined by φr(x) = (NEUr/K0(x)−1, NEUr/KUr

(x)) and define SK0,KUr
by 

the following exact sequence.

1 SK0,KUr
REUr/k

(Gm) φ−→ TLr/k 1 . (2.10)

The torus SK0,KUr
also fits in the exact sequence:

1 SK0,KUr

∏
i∈Ur

RKi/k(TEi/Ki
)

NEUr
/K0−−−−−−→ TK0/k 1 . (2.11)

Write RK′/k(Gm) as 
∏

i∈Ur

RKi/k(Gm) ×
∏

i∈I\Ur

RKi/k(Gm). There is a natural injective group homomor-

phism
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αr :
∏
i∈Ur

RKi/k(Gm) →
∏
i∈Ur

RKi/k(Gm) ×
∏

i∈I\Ur

RKi/k(Gm),

which sends x to (x, 1). Then αr induces an injective homomorphism αEUr
from REUr/k

(Gm) to RE/k(Gm), 
and an injective homomorphism idK0 ×αr from RK0/k(Gm) ×

∏
i∈Ur

RKi/k(Gm) to RK0/k(Gm) ×RK′/k(Gm). 

It is easy to check the following diagram commutes.

1 −−−−→ SK0,K′ −−−−→ RE/k(Gm) φ−−−−→ TL/k −−−−→ 1�⏐⏐ αUr

�⏐⏐ αUr

�⏐⏐ idK0×αr

�⏐⏐ �⏐⏐
1 −−−−→ SK0,KUr

−−−−→ REUr/k
(Gm) φr−−−−→ TLr/k −−−−→ 1

(2.12)

Together with Lemma 2.3, we have

X1
ω(k, ŜK0,K′) ∼−−−−→ X2

ω(k, T̂L/k)

α̂Ur

⏐⏐� idK0×α̂r

⏐⏐�
X1

ω(k, ŜK0,KUr
) ∼−−−−→ X2

ω(k, T̂Lr/k).

(2.13)

Note that for i ∈ Ur, we have ei = ε0 − r. We define G(K0, KUr
) and Gω(K0, KUr

) by replacing I
with Ur as in Section 2.1 and 2.2. Namely for a = (ai)i∈Ur

∈ ⊕
i∈Ur

Z/peiZ, we define Sa to be the set 

Ωk\(
⋃

n∈Z/pε0−rZ

Ω(In(a))). Set

Gω(K0,KUr
) = {(ai)i∈Ur

∈ ⊕
i∈Ur

Z/peiZ| Sa is a finite set},

and set G(K0, KUr
) to be the subset of Gω(K0, KUr

) consisting of all elements a with Sa = ∅. Consider the 
natural projection �r : ⊕

i∈I
Z/peiZ → ⊕

i∈Ur

Z/peiZ. Then the natural projection induces a homomorphism 

Gω(K0, K ′)/D → Gω(K0, KUr
)/D, which we still denote by �r. Note that by Theorem 2.5, we have 

isomorphisms X2
ω(k, T̂L/k) 	 Gω(K0, K ′)/D and X2

ω(k, T̂Lr/k) 	 Gω(K0, KUr
)/D.

Proposition 2.6. The morphism idK0 × α̂r : X2
ω(k, T̂L/k) → X2

ω(k, T̂Lr/k) coincides with �r.

Proof. It is enough to show that the map induced by αEUr
from X1

ω(k, ŜK0,K′) → X1
ω(k, ŜK0,KUr

) is equal 
to �r.

The map αEUr
gives a map between character groups

α̂EUr
: IE/k(Z) = IEUr/k

(Z) ⊕
i∈I\Ur

IEi/k(Z) → IEUr/k
(Z),

which is the natural projection. Hence the map from IK′/k(T̂E/K′) = IKUr/k
(T̂EUr/KUr

) ⊕
i∈I\Ur

IKi/k(T̂Ei/Ki
)

to IKUr/k
(T̂EUr/KUr

) induced by αEUr
(restricted to RKUr/k

(TEUr/KUr
)) is the natural projection.

Therefore the map induced by α̂EUr
from H1(k, IK′/k(T̂E/K′)) 	 ⊕

i∈I
Z/peiZ to H1(k, IKUr/k

(T̂EUr/KUr
))

	 ⊕
i∈Ur

Z/peiZ is the natural projection.

By exact sequences (2.8) and (2.9), we have α̂EU
: X1

ω(k, ŜK0,K′) → X1
ω(k, ŜK0,KU

) is equal to �r. �

r r
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3. Preliminaries on cyclic extensions

From now on we assume that Ki are cyclic extensions of k.
Let p be a prime which divides [L : k], and let L(p) be the largest subalgebra of L such that [L(p) : k] is 

a power of p. By [1] Proposition 8.6, to compute X2(k, T̂L/k) it is enough to compute X2(k, T̂L(p)/k) for 
each such p. Hence in the following we assume that [L : k] is a power of p unless we state otherwise.

By renaming these cyclic extensions, we always assume that the degree of K0 is minimal. Let pεi = [Ki : k]
for all i ∈ I ′. For a nonnegative integer f ≤ εi, we denote by Ki(f) the unique subfield of Ki of degree pf .

For all i ∈ I, we set pei,j = [Ki ∩Kj : k]. As we assume that Kj � Ki for any i, j ∈ I ′, ei,j < min{εi, εj}
for all i, j ∈ I ′.

Note that for i, j ∈ I with i < j, we have ei,j ≥ e0,i. This follows from the assumption in §2.1 that 
e0,i ≤ e0,j .

In the following we prove some general facts about cyclic extensions which will be used later.

Lemma 3.1. Let M/k and N/k be cyclic extensions of p-power degree with [N : k] ≤ [M : k]. Then 
Gal(MN/k) 	 Gal(M/k) × Gal(N/N ∩M).

Proof. The nature injection Gal(MN/k) → Gal(M/k) ×Gal(N/k) shows that each element of Gal(MN/k)
has order at most [M : k]. Choose an element in Gal(MN/k) which projects a generator of Gal(M/k). Then 
it generates a subgroup isomorphic to Gal(M/k). Hence the exact sequence

1 Gal(MN/M) Gal(MN/k) Gal(M/k) 1

splits. Note that Gal(MN/M) is isomorphic to Gal(N/N ∩ M). Therefore Gal(MN/k) 	 Gal(M/k) ×
Gal(N/N ∩M). �
Lemma 3.2. Let M/k, N/k, and R/k be cyclic extensions of p-power degree and v ∈ Ωk. Suppose the 
following:

(1) RM = NM .
(2) RN ⊆ RM .
(3) RN is locally cyclic at v, i.e. RN ⊗k kv is a product of cyclic extensions of kv.

Then either Rv ⊗kv
Nv is isomorphic to a product of copies of Nv or Rv ⊗kv

Mv is isomorphic to a product 
of copies of Mv.

Proof. Let M̃ , Ñ and R̃ be cyclic extensions of kv such that Mv 	
∏

M̃ , Nv 	
∏

Ñ and Rv 	
∏

R̃.
Suppose that Rv ⊗kv

Nv =
∏

R̃⊗kv
Ñ �

∏
Nv. Then R̃ ∩ Ñ 
= R̃. We claim that R̃ ∩ Ñ = Ñ . Suppose 

not. Then R̃Ñ is a bicyclic extension of kv and R̃ ⊗kv Ñ is a product of bicyclic extensions. As there is a 
surjective map from Rv ⊗kv

Nv to RN ⊗k kv and by assumption the latter is a product of cyclic extensions, 
the algebra Rv ⊗kv

Nv =
∏

R̃⊗kv Ñ is also a product of cyclic extensions, which is a contradiction. Hence 
Ñ is a proper subfield of R̃.

Now consider the fields FR = M̃ ∩ R̃ and FN = M̃ ∩ Ñ . As RM = NM , we have R̃M̃ = ÑM̃ . Therefore 
[R̃M̃ : M̃ ] = [R̃ : FR] = [Ñ : FN ].

We claim that Ñ = FN . Suppose not, i.e. FN � Ñ . Then we have Ñ � FR. As they are both subfields of 
R̃, which is cyclic of p-power degree, this implies that FR ⊆ Ñ . Hence FN = FR. As [R̃ : FR] = [Ñ : FN ], 
we have R̃ = Ñ , which is a contradiction. Hence FN = Ñ and [R̃ : FR] = [Ñ : FN ] = 1. Since R̃ = FR ⊆ M̃ , 
the algebra Rv ⊗kv

Mv is isomorphic to a product of copies of Mv. �
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Lemma 3.3. Let i, j ∈ I ′ and i 
= j. Let R be a cyclic extension of k of degree pd. Set F = Ki ∩ Kj ∩ R

and ph = [F : k]. Suppose that R ⊆ KiKj and d ≤ min{εi, εj}. Then d + ei,j − h ≤ min{εi, εj} and 
R ⊆ Ki(d + ei,j − h)Kj(d + ei,j − h).

Proof. By the definition of h, we have h ≤ ei,j . If h = ei,j , then d + ei,j − h ≤ min{εi, εj} by assumption. 
If h < ei,j , we claim that R ∩Ki = R ∩Kj = F . To see this, first note that R ∩Ki and Kj ∩Ki are both 
subfields of the cyclic extension Ki. Hence either R∩Ki ⊆ Kj∩Ki or Kj∩Ki � R∩Ki. If Kj∩Ki � R∩Ki, 
then F = Kj ∩Ki which contradicts to the assumption h < ei,j . Therefore R∩Ki ⊆ Kj ∩Ki. This implies 
that R ∩Ki = F . Similarly we have R ∩Kj = F .

As RKi ⊆ KiKj , by comparing the degrees of both sides, we have εi + d − h ≤ εi + εj − ei,j and hence 
d + ei,j − h ≤ εj . One can get d + ei,j − h ≤ εi by a similar way.

Next we show the second part of the statement. If h = d, then by definition R = Ki(d) = Kj(d)
and the lemma is clear. Suppose h < d. We regard R, Ki and Kj as extensions of F . Let M =
Ki(d + ei,j − h)Kj(d + ei,j − h). Without loss of generality, we assume εi ≥ εj . By Lemma 3.1, the Ga-
lois group Gal(KiKj/F ) is isomorphic to Gal(Ki/F ) × Gal(Kj/Ki ∩ Kj) 	 Z/pεi−hZ × Z/pεj−ei,j . Let 
(a, b) ∈ Z/pεi−hZ × Z/pεj−ei,j . If (a, b) fixes M , then a fixes Ki(d + ei,j − h) and b fixes Kj(d + ei,j − h). 
Hence there are x and y such that a = pd+ei,j−2hx and b = pd−hy.

On the other hand R is a cyclic extension of degree pd−h of F , so for every σ ∈ Gal(KiKj/F ), we have 
pd−hσ ∈ Gal(KiKj/R). Hence we have Gal(KiKj/M) ⊆ Gal(KiKj/R) and R ⊆ M . �

For a nonempty subset C ⊆ I and an integer d ≥ 0, we define the field MC(d) to be the composite field 
〈Ki(d)〉i∈C .

Lemma 3.4. Let d be a positive integer and J be a non-empty subset of I ′. Suppose that M = MJ(d) is 
bicyclic. Then M = Ki(d)Kj(d), for any i, j ∈ J such that the degree of Ki(d)Kj(d) is maximal.

Proof. As M is bicyclic, there are at least two elements in J . If |J | = 2, then the claim is trivial.
Suppose that |J | > 2. Pick i, j ∈ J such that the degree of Ki(d)Kj(d) is maximal. If d ≤ ei,j , then 

Ki(d)Kj(d) = Ki(d) which is of degree pd. Since for any s ∈ J the degree of Ki(d)Ks(d) is at least pd, we 
have Ki(d)Ks(d) = Ki(d) for all s ∈ J . Hence M = Ki(d) which is a cyclic extension. This contradicts our 
assumption. Therefore d > ei,j .

We claim that for any s ∈ J , the field Ks(d) is contained in Ki(d)Kj(d). As the degree of Ki(d)Kj(d)
is maximal, the degree of Ki(d) ∩Kj(d) is minimal. Since Ki is cyclic, this implies that Ki(d) ∩Kj(d) ⊆
Ki(d) ∩ Ks(d). Set N = Ki(d)Kj(d) ∩ Ks(d). Note that N is a cyclic extension. Let pl be the degree of 
[N : k].

We claim that N = Ks(d). Suppose that N � Ks(d), i.e. l < d. Then Ki(d)Kj(d) is a bicyclic extension 
of Ki(l)Kj(l). Since Ki(d) ∩Kj(d) ⊆ Ki(d) ∩Ks(d), we have Ki(d) ∩Kj(d) ⊆ N . By Lemma 3.3 we have 
N ⊆ Ki(l)Kj(l). Therefore Ki(d)Kj(d)/N is a bicyclic extension of N .

Note that Gal(Ki(d)Kj(d)Ks(d)/N) 	 Gal(Ki(d)Kj(d)/N) × Gal(Ks(d)/N). Since N � Ks(d) and 
Gal(Ki(d)Kj(d)/N) is bicyclic, the field Ki(d)Kj(d)Ks(d) is not a bicyclic extension of k, which contradicts 
the fact that M is a bicyclic extension. Hence N = Ks(d) and Ks(d) ⊆ Ki(d)Kj(d). �
Lemma 3.5. Let a = (a1, ..., am) be an element in Gω(K0, K ′) \D. Set ε0 − d = min

i/∈Ia1 (a)
{δ(a1, ai)}. Choose 

j /∈ Ia1(a) minimal such that ε0 − d = δ(a1, aj). Set a′ = (a′1, ..., a′m) ∈ ⊕
i∈I

Z/peiZ as follows:

a′i =
{

πej ,ei(aj), if i /∈ Ia1(a) and ε0 − d = δ(a1, ai);
πe ,e (a1), otherwise.

(3.1)

1 i
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Then a′ /∈ D and Sa′ ⊆ Sa.

Proof. First note that d > e0,i for all i /∈ Ia1(a). As j /∈ Ia1(a′), we have a′ /∈ D.
The inclusion Sa′ ⊆ Sa is equivalent to the inclusion 

⋃
n∈Z/pe1Z

Ω(In(a)) ⊆
⋃

n∈Z/pe1Z
Ω(In(a′)), i.e. for 

n ∈ Z/pe1Z and for v ∈ Ω(In(a)), there is some n′ ∈ Z/pe1Z such that v ∈ Ω(In′(a′)). It is enough to show 
that for each n ∈ Z/pe1Z, there is some n′ ∈ Z/pe1Z such that In(a) ⊆ In′(a′) and δ(n, ai) ≤ δ(n′, a′i) for 
all i /∈ In′(a′).
case 1. δ(a1, n) > ε0 − d. We claim that In(a) ⊆ Ia1(a′) in this case. For all i ∈ In(a), we have δ(a1, ai) =
δ(a1, πe1,ei(n)) = min{δ(a1, n), ei}. Hence we have either δ(a1, ai) = δ(a1, n) > ε0−d or i ∈ Ia1(a). Therefore 
a′i = πe1,ei(a1) and i ∈ Ia1(a′).

By the construction of a′, for any i /∈ Ia1(a′) we have δ(a1, ai) = ε0 − d and δ(a′1, a′i) = δ(a1, aj) = ε0 − d. 
Since δ(a1, n) > ε0 − d and δ(a1, ai) = ε0 − d, we have δ(n, ai) = ε0 − d = δ(a′1, a′i).
case 2. δ(a1, n) = ε0 − d. Then for all i ∈ In(a) \ Ia1(a), we have δ(a1, ai) = δ(a1, n) = ε0 − d. If i ∈
In(a) ∩ Ia1(a), then ei ≤ ε0 − d and hence πe1,ei(a1) = πej ,ei(aj). In both cases, we have a′i = πej ,ei(aj) and 
i ∈ In′(a′) for any n′ ∈ Z/pe1Z such that aj = πe1,ej (n′).

Let i /∈ In′(a′). Then we have ei > ε0−d and a′i = πe1,ei(a1). This implies δ(n′, a′i) = δ(aj , a1) = ε0−d. On 
the other hand δ(a1, ai) > ε0−d for any i /∈ In′(a′). Hence δ(n, ai) = δ(n, a1) = ε0−d and δ(n′, a′i) = δ(n, ai).
case 3. δ(a1, n) < ε0 −d. Since ε0 −d = min

i/∈Ia1 (a)
{δ(a1, ai)}, we have In(a) ⊆ Ia1(a) ⊆ Ia1(a′). For i /∈ Ia1(a′), 

we have δ(a1, ai) = ε0 − d and hence δ(n, ai) = δ(n, a1) < ε0 − d = δ(a1, a′i).
From the above three cases we conclude that Sa′ ⊆ Sa. �
We immediately have the following corollary.

Corollary 3.6. Keep notation as above. If a ∈ G(K0, K)\D (resp. Gω(K0, K ′) \D), then a′ ∈ G(K0, K ′)\D
(resp. Gω(K0, K ′) \D).

Lemma 3.7. Let a = (a1, ..., am) be an element in Gω(K0, K ′) \D. Set ε0 − d = min
i/∈Ia1 (a)

{δ(a1, ai)}. Choose 

s, t ∈ I such that δ(a1, as) > ε0 − d and δ(a1, at) = ε0 − d. Then there is a finite set S ⊆ Ωk such that for 
all v ∈ Ωk \ S either K0(d) ⊗Kv

s is a product of copies of Kv
s or K0(d) ⊗Kv

t is a product of copies of Kv
t . 

Moreover, if a ∈ G(K0, K ′) \D, then we can take S = ∅.

Proof. Let a′ be defined as in Lemma 3.5. Then a′ ∈ Gω(K0, K ′) \ D. We claim that for all v ∈ Ωk \ Sa′

either K0(d) ⊗Kv
s is a product of copies of Kv

s or K0(d) ⊗Kv
t is a product of copies of Kv

t . Note that if 
a ∈ G(K0, K ′) \D, then Sa′ = ∅.

Let v ∈ Ωk \ Sa′ . By the definition of Sa′ , there is n ∈ Z/pe1Z such that v ∈ Ω(In(a′)). We consider the 
following cases.
case 1: δ(a1, n) ≤ ε0 − d. Then s /∈ In(a′) and δ(as, n) ≤ ε0 − d. By the definition of Ω(In(a′)), we have 
v ∈ Σε0−d

s . Hence K0(d) ⊗Kv
s is a product of copies of Kv

s .
case 2: δ(a1, n) > ε0 − d. If t ∈ Ia1(a′), then et = ε0 − d. Hence K0(d) ⊗Kv

t is a product of copies of Kv
t .

Suppose that t /∈ Ia1(a′). Then t /∈ In(a′) and δ(at, n) = ε0 − d. By the definition of Ω(In(a′)), we have 
v ∈ Σε0−d

t . Hence K0(d) ⊗Kv
t is a product of copies of Kv

t . �
Proposition 3.8. Let a = (a1, ..., am) be an element in Gω(K0, K ′) \D. Set ε0 − d = min

i/∈Ia1 (a)
{δ(a1, ai)}. For 

any s, t ∈ I with δ(a1, as) > ε0 − d and δ(a1, at) = ε0 − d, we set u = max{s, t}. Let β = min{e0,s, e0,t}. 
Then we have the following:
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(1) The extension K0(d) ⊆ Fd,s,t := Ks(d + es,t − β)Kt(d + es,t − β). Moreover, if e0,s = e0,t, then Fd,s,t =
K0(d)Ks(d + es,t − β) = K0(d)Kt(d + es,t − β).

(2) Suppose further that a ∈ G(K0, K ′). Then the field K0(d)Ku(d + es,t − β) is locally cyclic

Proof. Let s, t ∈ I as above. By Lemma 3.7, there is a finite set S such that for all v ∈ Ωk \ S either 
K0(d) ⊗Kv

s is a product of copies of Kv
s or K0(d) ⊗Kv

t is a product of copies of Kv
t . Hence K0(d) ⊗ (KsKt)v

is a product of copies of (KsKt)v for all v /∈ S.
Since S is a finite set, by Chebotarev’s density theorem K0(d) ⊆ KsKt. Since ε0−e0,s = es ≥ δ(a1, as) >

ε0 − d, we have d > β. By Lemma 3.3, we have K0(d) ⊆ Ks(d + es,t − β)Kt(d + es,t − β).
If e0,s = e0,t, then β = e0,s = e0,t. By dimension reasons we have K0(d)Ks(d + es,t − β) = Fd,s,t =

K0(d)Kt(d + es,t − β). This proves the first statement.
Suppose that a ∈ G(K0, K ′). Since d > β, the field Fd,s,t is bicyclic, and its Galois group is isomorphic 

to Z/pd+es,t−βZ × Z/pd−βZ by Lemma 3.1.
We first assume that e0,s ≤ e0,t. Then β = e0,s and Fd,s,t = K0(d)Ks(d + es,t − β) by dimension reasons. 

Note that the field K0(d)Kt(d + es,t − β) is contained in Fd,s,t. By Lemma 3.7, at each place v ∈ Ωk we 
have either K0(d) ⊗k Kv

s splits into a product of Kv
s or K0(d) ⊗k Kv

t splits into a product of Kv
t . For a 

place v ∈ Ωk, if K0(d) ⊗k Kv
s splits into a product of Kv

s , then F v
d,s,t is a product of cyclic extensions 

of kv. As a subalgebra of F v
d,s,t, the algebra (K0(d)Kt(d + es,t − β))v is a product of cyclic extensions. If 

K0(d) ⊗k Kv
t splits into a product of Kv

t , then (K0(d)Kt(d + es,t − β))v is a product of cyclic extensions. 
Hence K0(d)Kt(d + es,t − β) is locally cyclic.

For e0,s ≥ e0,t, a similar argument works. �
4. Patchable subgroups

Recall that for each nonempty subset Ur we define Gω(K0, KUr
) and there is a natural projection from 

Gω(K0, K ′) to Gω(K0, KUr
). (See §2.3 for details.) In view of the combinatorial description of X2

ω(k, T̂L/k)
(resp. X2(k, T̂L/k)), the computation of X2

ω(k, T̂L/k) (resp. X2(k, T̂L/k)) will be much simpler if the ei’s are 
equal. Hence we will calculate Gω(K0, KUr

) for each nonempty subset Ur and then “patch” them together 
to get the group Gω(K0, K ′).

Suppose that an element x ∈ Gω(K0, KUr
) can be patched into an element in Gω(K0, K ′). Then x must 

be in the image of Gω(K0, K ′) under the projection map �r. (See Section 2.2 for the definition of �r.)
Let G0

ω(K0, K ′) (resp. G0(K0, K ′)) be the subgroup consisting of elements (a1, ..., am) ∈ Gω(K0, K ′)
(resp. G(K0, K ′)) with a1 = 0. Then Gω(K0, K ′) = D⊕G0

ω(K0, K ′). In Section 4.1 we define the patchable 
subgroup G̃(K0, KUr

), which is in fact the image of G0
ω(K0, K ′) under the projection map �r.

We show that there is a section of �r from G̃ω(K0, KUr
) to G0

ω(K0, KUr
) and prove that Gω(K0, K ′) =

D ⊕ ⊕
r
G̃ω(K0, KUr

), where r runs over positive integers with Ur nonempty. We prove similar results for 
G(K0, K ′).

Note that if I = Ur for some r, then Gω(K0, K ′) = Gω(K0, KUr
) and no patching condition is needed. 

Hence in the following we fix an integer r such that Ur is not empty and Ur 
= I.
We set U>r = {i ∈ I|e0,i > r} and U<r = {i ∈ I|e0,i < r}. Recall that we assume ∩

i∈I′
Ki = k. Hence U0

is nonempty.
Recall that for a nonempty subset C ⊆ I and an integer d ≥ 0, MC(d) is the composite field 〈Ki(d)〉i∈C .

4.1. Algebraic patching degrees

Definition 4.1. Define the algebraic patching degree Δω
r of Ur to be the maximum nonnegative integer d

satisfying the following:
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(1) If U>r is nonempty, then MU>r
(d) ⊆ ∩

i∈Ur

K0(d)Ki(d).
(2) If U<r is nonempty, then MUr

(d) ⊆ ∩
i∈U<r

K0(d)Ki(d).

If Ur = I, then we set Δω
r = ε0.

Note that K0(r) = Ki(r) for all i ∈ U≥r. Hence by definition we have Δω
r ≥ r. By Lemma 3.3 and the 

definition of Δω
r , all nonnegative integers d ≤ Δω

r satisfy the conditions (1) and (2) in the above definition.

Lemma 4.2. Let d ≤ Δω
r be a nonnegative integer. If U<r is nonempty, then K0(d)Kj(d) ⊆ ∩

i∈U≤r

K0(d)Ki(d)

for all j ∈ Ur

Proof. Suppose that U<r is nonempty. If d ≤ r, the claim is trivial. Assume d > r. By the definition of 
Δω

r the field K0(Δω
r )MUr

(Δω
r ) is contained in K0(Δω

r )Ki(Δω
r ) for all i ∈ U<r. By Lemma 3.4 we have 

K0(d)MUr
(d) = K0(d)Kj(d) for all j ∈ Ur. By Lemma 3.3 we have K0(d)Kj(d) ⊆ ∩

i∈U<r

K0(d)Ki(d) for all 

j ∈ Ur. Hence K0(d)Kj(d) ⊆ ∩
i∈U≤r

K0(d)Ki(d) for all j ∈ Ur. �
Proposition 4.3. Suppose that U>r is nonempty. Let r′ be the smallest positive integer bigger than r such 
that Ur′ is nonempty. Then we have the following:

(1) If r = 0, then Δω
r = Δω

r′ .
(2) Δω

r ≤ Δω
r′ .

(3) Δω
r − r ≥ Δω

r′ − r′.

Proof. We first show (2). Note that by our choice of r′, we have U<r′ = U≤r, which is nonempty. By the 
definition of Δω

r and by Lemma 4.2, we have MUr′ (Δ
ω
r ) ⊆ ∩

i∈Ur

K0(Δω
r )Ki(Δω

r ) ⊆ ∩
i∈U<r′

K0(Δω
r )Ki(Δω

r ).

Suppose that U>r′ is nonempty. As MU>r
(Δω

r ) ⊆ K0(Δω
r )Ki(Δω

r ) for all i ∈ Ur, by Lemma 3.4 we 
have K0(Δω

r )MU>r
(Δω

r ) = K0(Δω
r )Kj(Δω

r ) for all j ∈ Ur′ . Hence MU>r′ (Δ
ω
r ) ⊆ ∩

i∈Ur′
K0(Δω

r )Ki(Δω
r ) and 

Δω
r′ ≥ Δω

r .
Suppose that r = 0. Then U<r′ = U0. By the definition of Δω

r′ , we have MU>r′ (Δ
ω
r′) ⊆ ∩

i∈Ur′
K0(Δω

r′)×
Ki(Δω

r′) and K0(Δω
r′)Kj(Δω

r′) is contained in ∩
i∈U0

K0(Δω
r′)Ki(Δω

r′) for all j ∈ Ur′ . Hence MU≥r′ (Δ
ω
r′) ⊆

∩
i∈U0

K0(Δω
r′)Ki(Δω

r′). Therefore Δω
r′ ≤ Δω

0 . Combining this with statement (2), we get (1).
Now suppose that r > 0. We claim that Δω

r′ − r′ ≤ Δω
r − r. By Lemma 4.2, we have K0(Δω

r )Ki(Δω
r ) ⊆

∩
j∈U<r′

K0(Δω
r )Kj(Δω

r ) for all i ∈ Ur.

Let F = ∩
i∈U<r′

K0(Δω
r′)Ki(Δω

r′). By Lemma 4.2 we have K0(Δω
r′)Ki(Δω

r ) ⊆ F , for all i ∈ Ur.

Let i ∈ Ur. As K0(Δω
r′)Ki(Δω

r ) ⊆ F ⊆ K0(Δω
r′)Ki(Δω

r′), there is some Δω
r ≤ γ ≤ Δω

r′ such that 
F = K0(Δω

r′)Ki(γ). As i ∈ Ur, the field F is a cyclic extension of K0(Δω
r′) of degree pγ−r. By the definition 

of Δω
r′ , for all j ∈ Ur′ we have K0(Δω

r′)Kj(Δω
r′) ⊆ F and K0(Δω

r′)Kj(Δω
r′) is a cyclic extension of K0(Δω

r′)
of degree Δω

r′ − r′. Hence Δω
r′ − r′ ≤ γ − r for dimension reasons.

Suppose that Δω
r′ − r′ > Δω

r − r. Then γ − r ≥ Δω
r′ − r′ ≥ Δω

r + 1 − r. For dimension reasons 
K0(Δω

r′)Ki(Δω
r + 1) ⊆ F . Since Ki(Δω

r + 1) ⊆ F ⊆ K0(Δω
r′)Kj(Δω

r′) for all j ∈ U<r′ , by Lemma 3.3
we have Ki(Δω

r + 1) ⊆ K0(Δω
r + 1)Kj(Δω

r + 1) for all j ∈ U<r. Hence Δω
r + 1 satisfies condition (2) in 

Definition 4.1.
By the choice of r′ and the definition of Δω

r′ , we have U>r = U≥r′ and MU≥r′ (Δ
ω
r′) ⊆ ∩

i∈U<r′
K0(Δω

r′)×

Ki(Δω
r′) ⊆ ∩ K0(Δω

r′)Ki(Δω
r′). Thus Δω

r′ satisfies condition (1) in Definition 4.1. By assumption Δω
r′ >
i∈Ur
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Δω
r + 1, so we have Δω

r ≥ Δω
r + 1, which is a contradiction. Therefore Δω

r′ − r′ ≤ Δω
r − r. This proves 

statement (3). �
Definition 4.4. Suppose that Ur is nonempty. Let x = (xi)i∈Ur

∈ Gω(K0, KUr
). We say that x is algebraically 

patchable if δ(0, xi) ≥ ε0 − Δω
r for all i ∈ Ur. Here we regard 0 as an element in Z/pε0Z. We define 

the algebraic patchable subgroup of Gω(K0, KUr
) as follows: If r > 0, it is the subgroup consisting of all 

algebraically patchable elements of Gω(K0, KUr
); if r = 0, it is the subgroup consisting of all algebraically 

patchable elements of Gω(K0, KU0) with x1 = 0.

For x = (xi)i∈Ur
∈ Gω(K0, KUr

), define ax = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ as follows:

ai =
{

xi, if i ∈ Ur,
0, otherwise.

(4.1)

In the following we show that x is algebraically patchable if and only if ax is in G0
ω(K0, K ′).

Proposition 4.5. Let x ∈ Gω(K0, KUr
) and ax be defined as above. If ax ∈ G0

ω(K0, K ′), then x is algebraically 
patchable.

We first prove the following Lemma.

Lemma 4.6. Keep the notation as in Proposition 4.5. Suppose that ax = (a1, ..., am) ∈ Gω(K0, K ′) \D. Set 
ε0 −d = min

i/∈Ia1 (ax)
{δ(a1, ai)} and U ′

r = {i ∈ Ur|ε0 −d = δ(a1, ai)}. If U ′
r and Ur \U ′

r are both nonempty, then 

K0(d)Ks(d) = K0(d)Kt(d) for any s ∈ Ur\U ′
r and any t ∈ U ′

r. In particular K0(d)MUr
(d) = K0(d)MU ′

r
(d) =

K0(d)MU\U ′
r
(d).

Proof. Suppose that U ′
r is nonempty and U ′

r � Ur. Let t ∈ U ′
r and i ∈ Ur \ U ′

r. By Proposition 3.8, we 
have K0(d) ⊆ Ki(d + ei,t − r)Kt(d + ei,t − r), and K0(d)Ki(d + ei,t − r) = K0(d)Kt(d + ei,t − r). Regard 
K0(d)Kt(d + ei,t − r) as a cyclic extension of K0(d). Then K0(d)Ki(d) and K0(d)Kt(d) are subfields of the 
same degree of the cyclic extension K0(d)Kt(d + ei,t − r). Hence K0(d)Ki(d) = K0(d)Kt(d) for all t ∈ U ′

r

and all i ∈ Ur \ U ′
r. As a consequence K0(d)MUr

(d) = K0(d)MU ′
r
(d) = K0(d)MU\U ′

r
(d). �

Proof of Proposition 4.5. Suppose that ax = (a1, ..., am) ∈ G0
ω(K0, K ′). If x = 0, then there is nothing 

to prove. Hence in the following we assume x 
= 0. Note that a1 = 0. Set ε0 − d = min
i∈Ur

{δ(0, ai)} and 

U ′
r = {i ∈ Ur|ε0 − d = δ(0, ai)}.
Since x 
= 0, we have d > r. It is enough to prove that Δω

r ≥ d, i.e. d satisfies conditions (1) and (2) in 
Definition 4.1.

Suppose that U<r is nonempty. For any s ∈ U<r and t ∈ U ′
r, we have es,t = e0,s. By Proposition 3.8, 

we have K0(d) ⊆ Ks(d)Kt(d). For dimension reasons Ks(d)Kt(d) = K0(d)Ks(d). Hence K0(d)Kt(d) ⊆
K0(d)Ks(d). As s and t are arbitrary, we have K0(d)MU ′

r
(d) ⊆ ∩

s∈U<r

K0(d)Ks(d). If Ur = U ′
r, then we are 

done. If not, then by Lemma 4.6 we have K0(d)MUr
(d) ⊆ ∩

s∈U<r

K0(d)Ks(d).

Now suppose that U>r is not empty. For s ∈ U≥d, we have Ks(d) = K0(d). Suppose that U>r \U≥d is not 
empty. Let s ∈ U>r\U≥d and t ∈ U ′

r. Then es,t = e0,t and by Proposition 3.8, we have K0(d) ⊆ Ks(d)Kt(d) =
K0(d)Kt(d). Since s and t are arbitrary, by Lemma 4.6 we have K0(d)MU>r

(d) ⊆ ∩
t∈Ur

K0(d)Kt(d). Therefore 

Δω
r ≥ d and x is algebraically patchable. �
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Let x ∈ Gω(K0, KUr
) and denote by (I0, ..., Ipε0−r−1) the partition of Ur defined by x. Recall that Sx is 

the finite subset of Ωk such that 
⋃

n∈Z/pε0−rZ

Ω(In) = Ωk \ Sx. (See §2.)

Definition 4.7. Suppose that Ur is nonempty. For a nonnegative integer d ≤ Δω
r we define Sr(d) and S>r(d)

as follows.

(1) Suppose that U>r is nonempty. Define S>r(d) to be the set of places such that (K0(d)MU>r
(d))v is not 

locally cyclic. If U>r is empty, then set S>r(d) = ∅.
(2) Define Sr(d) to be the set of places such that (K0(d)MUr

(d))v is not locally cyclic.

Clearly S>r(d) and Sr are finite sets.

Proposition 4.8. Let x ∈ G̃ω(K0, KUr
) and ax be defined as in equation (4.1). Denote by I(ax) =

(I0, ..., Ipε0−1) the partition of I defined by ax. Let d ≤ Δω
r be a nonnegative integer such that xi = 0

(mod pε0−d) for all i ∈ Ur. Let S = Sx ∪ Sr(d) ∪ S>r(d). Then 
⋃

n∈Z/pε0Z
Ω(In) ⊇ Ωk \ S. As a consequence 

ax ∈ G0
ω(K0, K ′).

Proof. If d = r, then clearly ax = 0 ∈ G0
ω(K0, K ′). Hence we assume d > r.

We claim that 
⋃

n∈Z/pε0Z
Ω(In) ⊇ Ωk \ S. Set ΩS = Ωk \ S. If ΩS ⊆ Ω(I0), then our claim is clear. Suppose 

not. Let v ∈ ΩS \ Ω(I0). Our aim is to find n 
= 0 such that v ∈ Ω(In). Since v /∈ Ω(I0), there is t ∈ Ur \ I0
such that v /∈ Σδ(0,xt)

t . As xt = 0 (mod pε0−d), we have δ(0, xt) ≥ ε0 − d. Then K0(d)v ⊗kv
Kt(d)v is not a 

product of copies of Kt(d)v.
Suppose that U>r is nonempty. By the choice of d and S, we have MU>r

(d) ⊆ ∩
i∈Ur

K0(d)Ki(d) and 

(K0(d)MU>r
(d))v is a product of cyclic extensions of kv. Hence for s ∈ U>r we have es,t = e0,t and 

K0(d)Ks(d) ⊆ K0(d)Kt(d) = Ks(d)Kt(d). As (K0(d)Ks(d))v is a product of cyclic extensions of kv, by 
Lemma 3.2 K0(d)v ⊗kv

Ks(d)v is a product of copies of Ks(d)v.
Suppose that U<r is not empty. Let s ∈ U<r. As K0(d)Kt(d) ⊆ K0(d)Ks(d) = Ks(d)Kt(d) for all s ∈ U<r, 

by Lemma 3.2 K0(d)v ⊗kv
Ks(d)v is a product of copies of Ks(d)v. Hence v ∈ ∩

s/∈Ur

Σε0−d
s .

Denote by (I0, ..., Ipε0−r−1) the partition of Ur defined by x. By the definition of Sx, we have ⋃
n∈Z/pε0−rZ

Ω(In) = Ωk \ Sx. Hence there is n 
= 0 such that v ∈ Ω(In). Let n ∈ Z/pε0Z such that 

πε0,ε0−r(n) = n. Then δ(n, xi) = δ(n, xi) for all i ∈ Ur. We claim that v ∈ Ω(In).
First note that δ(n, xt) > ε0 − d. To see this, we first suppose that t ∈ In. Then δ(n, xt) = ε0 − r > ε0 − d

by the assumption of d. Suppose that t /∈ In. As v /∈ Σε0−d
t and v ∈ Ω(In), we have δ(n, xt) > ε0 − d.

As δ(n, xt) > ε0 − d and δ(0, xt) ≥ ε0 − d, we have δ(n, 0) ≥ ε0 − d. Let i /∈ Ur ∪ In. Then ai = 0 and 
ei > ε0 − d. Therefore δ(n, ai) = δ(n, πe1,ei(0)) ≥ ε0 − d for all i /∈ Ur ∪ In.

Since v ∈ ∩
s/∈Ur

Σε0−d
s and δ(n, ai) ≥ ε0 − d for all i /∈ Ur ∪ In, we have v ∈ ∩

s/∈Ur∪In
Σδ(as,n)

s . Combining 

this with the fact that v ∈ Ω(In), we have v ∈ Ω(In).
As x ∈ G̃ω(K0, KUr

), the set S is finite. Hence ax ∈ G0
ω(K0, K ′). The proposition then follows. �

4.2. Patching degrees

Definition 4.9. Define the patching degree Δr of Ur to be the maximum nonnegative integer d ≤ Δω
r

satisfying the following:

(1) If U>r is nonempty, then the field K0(d)MU>r
(d) is locally cyclic.
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(2) If U<r is nonempty, then the field K0(d)MUr
(d) is locally cyclic.

If Ur = I, then we set Δr = ε0.

Note that K0(r) = Ki(r) for all i ∈ U≥r. From the definition of Δr, we have Δω
r ≥ Δr ≥ r.

Proposition 4.10. Suppose that U>r is nonempty. Let r′ be the smallest positive integer bigger than r such 
that Ur′ is nonempty. Then we have the following:

(1) If r = 0, then Δr = Δr′ .
(2) Δr ≤ Δr′ .
(3) Δr′ − r′ ≤ Δr − r.

Proof. We first show that Δr ≤ Δr′ . Note that by our choice of r′, we have U<r′ = U≤r, which is nonempty. 
By Proposition 4.3 (2), we Δr ≤ Δω

r ≤ Δω
r′ .

Suppose that U>r′ is nonempty. By the definition of Δr the field K0(Δr)MU>r
(Δr) is locally cyclic. 

Hence K0(Δr)MUr′ (Δr) and K0(Δr)MU>r′ (Δr) are locally cyclic. Therefore Δr′ ≥ Δr.
If r = 0, then U<r′ = U0. By Proposition 4.3 (1), we have Δr′ ≤ Δω

r′ = Δω
0 . Since K0(Δr′)MU>0(Δr′) =

K0(Δr′)MU≥r′ (Δr′) = K0(Δr′)MUr′ (Δr′) is locally cyclic, we have Δr′ ≤ Δ0, which proves statement (1).
Now suppose that r > 0. We claim that Δr′ − r′ ≤ Δr − r. Suppose not. Then Δr′ − r′ ≥ Δr + 1 − r. 

Combining with Proposition 4.3 (3) we get Δω
r ≥ Δr + 1.

Let i ∈ Ur and j ∈ Ur′ . By the definition of Δr′ we have K0(Δr′)Kj(Δr′) ⊆ K0(Δr′)Ki(Δr′). Regard 
K0(Δr′)Ki(Δr′) as a cyclic extension of K0(Δr′). Since K0(Δr′)Kj(Δr′) and K0(Δr′)Ki(Δr + 1) are both 
subfields of K0(Δr′)Ki(Δr′), for dimension reasons K0(Δr′)Ki(Δr + 1) ⊆ K0(Δr′)Kj(Δr′).

Since K0(Δr′)MUr′ (Δr′) is locally cyclic, its subfield K0(Δr + 1)MUr
(Δr + 1) is also locally cyclic.

As K0(Δr′)MU>r
(Δr′) = K0(Δr′)MUr′ (Δr′) and K0(Δr′)MUr′ (Δr′) is locally cyclic, its subfield K0(Δr+

1)MU>r
(Δr+1) is locally cyclic. Hence Δr ≥ Δr+1, which is a contradiction. Therefore Δr′−r′ ≤ Δr−r. �

Definition 4.11. Suppose that Ur is nonempty. Let x ∈ G̃ω(K0, KUr
). We say that x is patchable if xi = 0

(mod pε0−Δr ) for all i ∈ Ur. The subgroup consisting of all patchable elements of G̃ω(K0, KUr
) is called the 

patchable subgroup of G(K0, KUr
). We denote by G̃(K0, KUr

) the patchable subgroup of G(K0, KUr
).

Note that if U0 = I, then by above definition every element of G0(K0, K ′) is patchable.
Hence in the rest of this section we fix an r such that Ur is nonempty and Ur 
= I unless we state 

otherwise explicitly.
In the following we show that x is patchable if and only if ax defined in equation (4.1) is in G0(K0, K ′).

Proposition 4.12. Let ax be defined as in equation (4.1). If ax ∈ G0(K0, K ′), then x is patchable.

Proof. Suppose that ax = (a1, ..., am) ∈ G0(K0, K ′). If x = 0, then there is nothing to prove. Hence 
in the following we assume x 
= 0. By the definition of ax we have a1 = 0 and I \ Ur ⊆ I0(ax). Set 
ε0 − d = min

i∈Ur

{δ(0, ai)}, and U ′
r = {i ∈ Ur|ε0 − d = δ(0, ai)}. As x 
= 0, we have d > r and ax /∈ D.

By Proposition 4.5, we have that x is algebraically patchable, i.e. Δω
r ≥ d. Since Δω

r ≥ d, it is enough to 
prove that d satisfies condition (1) and (2) in Definition 4.9.

Suppose that U<r is nonempty. Let s ∈ U<r and t ∈ U ′
r. Then es,t = e0,s. Since Δω

r ≥ d, the field 
K0(d)MUr

(d) is contained in K0(d)Ks(d). By Lemma 3.4, the field K0(d)MUr
(d) is equal to K0(d)Kt(d). By 

Proposition 3.8, we have K0(d)Kt(d) is locally cyclic. As K0(d)Kt(d) is locally cyclic, the field K0(d)MUr
(d)

is locally cyclic.
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Now suppose that U>r is not empty. For s ∈ U≥d, we have Ks(d) = K0(d). If U>r 
= U≥d, then 
there is s ∈ U>r \ U≥d such that K0(d)MU>r

(d) = K0(d)Ks(d). Let t ∈ U ′
r. Then es,t = e0,t. Again by 

Proposition 3.8, we have K0(d)Ks(d) is locally cyclic. Hence K0(d)MU>r
(d) is locally cyclic. Therefore 

Δr ≥ d and x is patchable. �
Now we prove the converse.

Proposition 4.13. Let x ∈ G̃(K0, KUr
) and ax be defined as in the equation (4.1). Then ax ∈ G0(K0, K ′).

Proof. If Δr = r, then clearly ax = 0 ∈ G(K0, K ′). Hence we can assume Δr > r.
As x ∈ G̃(K0, KUr

), we have Sx = ∅. Since Sr(Δr) and S>r(Δr) are also empty, by Proposition 4.8 we 
have ax ∈ G0(K0, K ′). �
Lemma 4.14. Let a = (a1, ..., am) ∈ G0

ω(K0, K ′) be a nonzero element. Let r be the maximum integer with 
the following property:

(1) There is some t ∈ Ur \ I0(a) such that δ(at, 0) = min
i/∈I0(a)

{δ(ai, 0)}.

Set x = �r(a) ∈ ⊕
i∈Ur

Z/pε0−rZ. Then x ∈ G̃ω(K0, KUr
). Moreover if a ∈ G0(K0, K ′), then x ∈

G̃(K0, KUr
).

Proof. Clearly x ∈ Gω(K0, KUr
). By the choice of t, we have x 
= 0. Set ε0 − d = δ(at, 0). Then d > r as 

x 
= 0. To prove that x is algebraically patchable, it is enough to show that d ≤ Δω
r .

Set U ′
r = {i ∈ Ur| ε0 − d = δ(0, ai)}. By the choice of r we have U ′

r 
= ∅.
Suppose that U>r is nonempty. By the choice of Ur, for all s ∈ U>r we have either δ(0, as) > ε0 − d

or s ∈ I0(a). Let s ∈ U>r. Suppose δ(0, as) ≤ ε0 − d. Then s ∈ I0(a) and e0,s ≥ d. As e0,s ≥ d, we have 
Ks(d) = K0(d) ⊆ K0(d)Ki(d) for all i in Ur.

Suppose that δ(0, as) > ε0 − d. By Proposition 3.8, we have K0(d)Ks(d) ⊆ K0(d)Ki(d) for all i in U ′
r. 

Hence by Lemma 4.6 we have K0(d)MU>r
(d) ⊆ ∩

i∈Ur

K0(d)Ki(d).
Suppose that U<r is nonempty. Let s ∈ U<r. Then δ(0, as) ≥ ε0 − d. If δ(0, as) > ε0 − d, then by 

Proposition 3.8 we have K0(d)Ki(d) ⊆ K0(d)Ks(d) for all i in U ′
r.

If δ(0, as) = ε0 − d, then by Proposition 3.8 we have K0(d)Ks(d) ⊆ K0(d)K1(d). As e0,s < r, we have 
[K0(d)Ki(d) : K0(d)] < [K0(d)Ks(d) : K0(d)] for all i ∈ U ′

r. Since they are both subfields of the cyclic 
extension K0(d)K1(d) of K0(d), we have K0(d)Ki(d) ⊂ K0(d)Ks(d) for all i ∈ U ′

r.
By Lemma 4.6 we have K0(d)MUr

(d) = K0(d)MU ′
r
(d) ⊆ ∩

s∈U<r

K0(d)Ks(d). Therefore d ≤ Δω
r and x is 

algebraically patchable.
Now suppose further that a ∈ G0(K0, K ′). Clearly x ∈ G(K0, KUr

). Suppose that U>r is nonempty. Then 
as K0(d)MU>r(d) is contained in a bicyclic extension, by Lemma 3.4 we have K0(d)MU>r(d) = K0(d)Ks(d)
for some s ∈ U>r. By the choice of r and by Proposition 3.8 (2), we have either K0(d) = Ks(d) or K0(d)Ks(d)
is locally cyclic.

Suppose that U<r is nonempty. By the same argument we have K0(d)MUr
(d) = K0(d)Ki(d) for some 

i ∈ U ′
r. As a1 = 0, by Proposition 3.8 (2) we have K0(d)Ki(d) is locally cyclic. Hence d ≤ Δr. �

Proposition 4.15. We have

(1) Gω(K0, K ′) 	 D ⊕⊕
r
G̃ω(K0, KUr

), where r runs over nonnegative integers such that Ur is nonempty.

(2) G(K0, K ′) 	 D ⊕⊕G̃(K0, KUr
), where r runs over nonnegative integers such that Ur is nonempty.
r
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Proof. To prove (1), it is sufficient to show that G0
ω(K0, K ′) 	 ⊕

r
G̃ω(K0, KUr

). By Proposition 4.8, we have 

G0
ω(K0, K ′) ⊇ ⊕

r
G̃ω(K0, KUr

).

Let a ∈ G0
ω(K0, K ′) and J(a) = I \ I0(a). We prove that a ∈ ⊕

r
G̃ω(K0, KUr

) by induction on |J(a)|.
If |J(a)| = 0, then a = 0 ∈ ⊕

r
G̃ω(K0, KUr

). Suppose that the result holds when |J(a)| < h.
Let |J(a)| = h and let r satisfy the condition (1) in Lemma 4.14. By Lemma 4.14, we have �r(a) ∈

G̃ω(K0, KUr
). Set x = �r(a). Then ax ∈ G0

ω(K0, K ′) by Proposition 4.8. Hence (a′i)i∈I = a − ax ∈
G0

ω(K0, K ′) and |J(a′)| < h. By induction hypothesis a′ ∈ ⊕
r
G̃ω(K0, KUr

). Hence a ∈ ⊕
r
G̃ω(K0, KUr

).
Assertion (2) can be proved similarly by using Lemma 4.14 and Proposition 4.13. �

5. The degree of freedom

In this section, we define the algebraic degree of freedom (resp. the degree of freedom) to describe the 
generators of the subgroups G̃ω(K0, KUr

)’s (resp. G̃(K0, KUr
)’s).

5.1. l-equivalence relations and levels

Let i, j ∈ I ′ and l be a nonnegative integer. We say that i, j are l-equivalent and we write i ∼
l
j if ei,j ≥ l

or i = j. As Ki are cyclic, it is clear that “∼
l
” defines an equivalence relation on any nonempty subset of I ′.

For a nonempty subset C of I ′, denote by nl(C) the number of l-equivalence classes of C. In particular 
n0(C) = 1.

For each C ⊆ I ′ with cardinality bigger than 1, we define the level of C to be the smallest integer l such 
that nl+1(C) > 1. For each C = {i}, we define the level of C to be εi. Denote by L(C) the level of C.

5.2. The degree of freedom of U0 = I

Lemma 5.1. Assume that U0 = I. Let l = L(I) and c be an equivalence class of I/ ∼
l+1

. Let 0 ≤ f ≤ d be 

integers satisfying the following:

• (1) MU0(d) is a subfield of a bicyclic extension.
• (2) K0(f) ⊆ MU0(d).

For i ∈ I, set x = (x1, ..., xm) as follows:

xj =
{

pε0−f , if j ∈ c

0, otherwise.
(5.1)

Then x ∈ Gω(K0, K ′).

Proof. By the definition of l, the field MU0(d) is cyclic if and only if d ≤ l. In this case we have f = 0 and 
x = 0 ∈ Gω(K0, K ′). Hence we assume MU0(d) is bicyclic in the following.

As there are more than one equivalence classes in I/ ∼
l+1

, the set I \ c is non-empty and I0(x) = I \ c. 
Since L(I) = l, we have es,t ≥ l for any s, t ∈ I. Moreover for s ∈ c and t ∈ I \ c we have es,t = l. By 
Lemma 3.4 we have MI(d) = Ks(d)Kt(d) for any s ∈ c and t ∈ I \ c.

Let s, t be as above. Let v ∈ Ω be a place where MI(d)v is locally cyclic at v. We claim that either 
K0(f) ⊗k Ks(d)v is a product of copies of Ks(d)v or K0(f) ⊗k Kt(d)v is a product of copies of Kt(d)v.
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Let γ (resp. γi’s) be the integer such that K0(f)v (resp. Ki(d)v) is a product of extensions of degree pγ

(resp. pγi) of kv. Suppose that K0(f)v ⊗kv Ks(d)v is not a product of copies of Ks(d)v. Then since MI(d)v
is a product of cyclic extensions, we have γ > γs. If γ > γt, then MI(d)v = (Ks(d)Kt(d))v is a product of 
fields of degree less than γ, which is a contradiction as K0(f) ⊆ MI(d). Hence γ < γt and K0(f)v⊗kv Kt(d)v
is a product of copies of Kt(d)v by the cyclicity of MI(d)v.

Since MI(d)v is locally cyclic at almost all v ∈ Ωk, we have x ∈ Gω(K0, K ′). �
Remark 5.2. If MI(d) in Lemma 5.1 is locally cyclic, then by the above proof we have x ∈ G(K0, K ′).

Keep the notation defined as above. The element x has order pf . Suppose that f > 0. Then d > L(U0)
by the above proof. As K0(f)Ki(d) ⊆ MU0(d), for dimension reasons f ≤ d − L(U0). On the other hand, 
by Lemma 3.3 if K0(f) ⊆ MU0(d), then K0(f) ⊆ MU0(f +L(U0)). Hence we can choose d = f +L(U0) and 
define the algebraic degree of freedom fω

U0
of U0 to be the largest f such that f and d = f + L(U0) satisfy 

the conditions in Lemma 5.1. By Proposition 3.8 the algebraic degree of freedom fω
U0

is the maximal possible 
order of a class function on U0/ ∼

l+1
which lies in Gω(K0, K ′).

5.3. General cases

Inspired by the definition of fω
U0

, for Ur nonempty we define the algebraic degree of freedom of Ur to 
describe the generators of G̃ω(K0, KUr

). Briefly speaking, the group G̃ω(K0, KUr
) is generated by class 

functions on Ur/ ∼
l

for l > L(Ur). The order of such a generator is called the degree of freedom.

Definition 5.3. For a nonempty Ur, let lr = L(Ur). Let f ≤ Δω
r be a nonnegative integer satisfying the 

following:

(1) The field MUr
(f + lr − r) is a subfield of a bicyclic extension.

(2) K0(f) ⊆ MUr
(f + lr − r).

Then we set fω
Ur

to be the largest f ≤ Δω
r satisfying above conditions. We call fω

Ur
the algebraic degree of 

freedom of Ur.

Remark 5.4. Note that f = r always satisfies the conditions in Definition 5.3. Hence we have Δω
r ≥ fω

Ur
≥ r.

For h ≥ L(Ur) and a class c0 of Ur/ ∼
h
, we define by recursion the algebraic degree of freedom of c ∈ c0/ ∼

h+1
as follows.

Definition 5.5. Keep the notation defined as above. Let f ≤ fω
c0 be a nonnegative integer satisfying the 

following:

(1) The field Mc(f + L(c) − r) is a subfield of a bicyclic extension.
(2) K0(f) ⊆ Mc(f + L(c) − r).

Then we set fω
c to be the largest f ≤ fω

c0 satisfying above conditions. We call fω
c the algebraic degree of 

freedom of c.

Inspired by Remark 5.2 we define similarly the degree of freedom.

Definition 5.6. For a nonempty Ur, let h ≥ L(Ur) and c ∈ Ur/ ∼
h
. We define the degree of freedom fc of c to 

be the maximum integer f ≤ fω
c such that Mc(f + L(c) − r) is locally cyclic.
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Remark 5.7. From the above definition, we see that fc = fω
c if Mc(fω

c + L(c) − r) is locally cyclic (e.g. 
unramified) over k.

Proposition 5.8. For a nonempty Ur, let h ≥ L(Ur) and c ∈ Ur/ ∼
h
. For all integers r ≤ f ≤ fω

c and i ∈ c, 
we have Mc(f + L(c) − r) = K0(f)Ki(f + L(c) − r).

Proof. For f = r, it is trivial. Hence we assume f > r in the following. This means that |c| > 1 and 
Mc(f + L(c) − r) is not cyclic. By the definition of fω

c and Lemma 3.4, there are i, j ∈ c such that 
ei,j = L(c) and Mc(fω

c +L(c) −r) = Ki(fω
c +L(c) −r)Kj(fω

c +L(c) −r). As K0(f) ⊆ Mc(fω
c +L(c) −r), by 

Lemma 3.3 we have K0(f) ⊆ Ki(f+L(c) −r)Kj(f+L(c) −r). By dimension reasons K0(f)Ki(f+L(c) −r) =
Ki(f + L(c) − r)Kj(f + L(c) − r).

Since Mc(f + L(c) − r) is contained in Ki(fω
c + L(c) − r)Kj(fω

c + L(c) − r), by Lemma 3.4 we have 
Mc(f +L(c) − r) = Ki(f +L(c) − r)Kj(f +L(c) − r). Hence Mc(f +L(c) − r) = K0(f)Ki(f +L(c) − r). �

In the following we assume that Ur is nonempty. We prove a generalization of Lemma 5.1.

Proposition 5.9. Let l ≥ L(Ur) and c ∈ Ur/ ∼
l
. Let r ≤ f ≤ fω

c be an integer. Set l1 = L(c), c1 ∈ c/ ∼
l1+1

, 
and

Sc = {v ∈ Ωk|Mc(f + L(c) − r)v is not locally cyclic at v}.

Then Ωk \ Sc ⊆ ( ∩
j∈c1

Σε0−f
j ) ∪ ( ∩

j∈Ur\c1
Σε0−f

j ).

Proof. If f = r, then clearly v ∈ Σε0−r
j for all j ∈ Ur and all v ∈ Ωk. Hence in the following we assume that 

f > r, which implies that |Ur| > 1. Note that for any equivalence class c0 ∈ Ur/ ∼
h

with L(Ur) ≤ h ≤ l and 

c0 ⊇ c, we have f ≤ fω
c ≤ fω

c0 .
We prove the statement by induction on l. Consider the case where l = L(Ur). By definition c = Ur. As 

there are more than one equivalence class in Ur/ ∼
l+1

, the set Ur \ c1 is non-empty. By Lemma 3.4 we have 

MUr
(f + l − r) = Ks(f + l − r)Kt(f + l − r) for any s ∈ c1 and t ∈ Ur \ c1. By Proposition 5.8 we have 

K0(f)Ks(f + l − r) = MUr
(f + l − r) = K0(f)Kt(f + l − r).

By Lemma 3.2 for all v ∈ Ωk \SUr
, either K0(f) ⊗kKs(f+l−r)v is a product of copies of Ks(f+l−r)v or 

K0(f) ⊗kKt(f+l−r)v is a product of copies of Kt(f+l−r)v. Hence Ωk\SUr
⊆ ( ∩

j∈c1
Σε0−f

j ) ∪( ∩
j∈Ur\c1

Σε0−f
j ), 

and the statement is true for l = L(Ur).
Suppose that the statement is true for l = h > L(Ur). Let l = h + 1. If c is also an equivalence class of 

Ur/ ∼
h
, then the statement is true by the induction hypothesis.

Now suppose that c /∈ Ur/ ∼
h
. Let v ∈ Ωk \ Sc. It suffices to show that if v /∈ ∩

j∈c1
Σε0−f

j , then v ∈

∩
j∈Ur\c1

Σε0−f
j . Suppose that v /∈ ( ∩

j∈c1
Σε0−f

j ). We first prove that v ∈ ( ∩
j∈c\c1

Σε0−f
j ).

Let s ∈ c1 such that v /∈ Σε0−f
s . By Lemma 3.4 the field Mc(f + l1 − r) is equal to Ks(f + l1 − r)×

Kj(f + l1 − r) for any j ∈ c \ c1. Hence Mc(f + l1 − r) = K0(f)Kj(f + l1 − r) = K0(f)Ks(f + l1 − r). 
Since Mc(f + l1 − r)v is a product of cyclic extensions of kv and v /∈ Σε0−f

s , by Lemma 3.2 we have 
K0(f) ⊗k Kj(f + l1 − r)v is a product of copies of Kj(f + l1 − r)v. This implies v ∈ ( ∩

j∈c\c1
Σε0−f

j ).

Next we show that v ∈ ( ∩
j∈Ur\c

Σε0−f
j ). As c /∈ Ur/ ∼

h
, there is some co ∈ Ur/ ∼

h
such that c � c0. This 

implies that L(c0) = h and c ∈ c0/ ∼
h+1

. By induction hypothesis Ωk \ Sc0 ⊆ ( ∩
j∈Ur\c

Σε0−f
j ) ∪ ( ∩

j∈c
Σε0−f

j ).

As h < l1, by Proposition 5.8 we have Mc0(f + h − r) ⊆ Mc(f + l1 − r). Hence Ωk \ Sc ⊆ Ωk \ Sc0 , which 
implies that v ∈ Ωk \ Sc0 .



JID:JPAA AID:106906 /FLA [m3L; v1.308] P.20 (1-25)
20 T.-Y. Lee / Journal of Pure and Applied Algebra ••• (••••) ••••••
Since c1 ⊆ c and v /∈ ( ∩
j∈c1

Σε0−f
j ), v /∈ ( ∩

j∈c
Σε0−f

j ). Hence v ∈ ∩
j∈Ur\c

Σε0−f
j by induction hypothesis. 

Combining this with the fact that v ∈ ( ∩
j∈c\c1

Σε0−f
j ), we have v ∈ ( ∩

j∈Ur\c1
Σε0−f

j ). �
Corollary 5.10. Let l ≥ L(Ur) and c ∈ Ur/ ∼

l
. Set l1 = L(c), c1 ∈ c/ ∼

l1+1
and xω

c1 = (xi)i∈Ur
∈ ⊕

i∈Ur

Z/pε0−rZ

as follows:

xj =
{

pε0−fω
c , for all j ∈ c1,

0, otherwise.
(5.2)

Then xω
c1 ∈ Gω(K0, KUr

).

Proof. It is a direct consequence of Proposition 5.9. �
Corollary 5.11. Keep the notation as in Corollary 5.10. Set xc1 = (xi)i∈Ur

∈ ⊕
i∈Ur

Z/pε0−rZ as follows:

xj =
{

pε0−fc , for all j ∈ c1,
0, otherwise.

(5.3)

Then xc1 ∈ G(K0, KUr
).

Proof. It is a direct consequence of Proposition 5.9. �
6. The computation of X2

ω(k, T̂L/k) and X2(k, T̂L/k)

In this section we use the (algebraic) patching degrees and the (algebraic) degrees of freedom to describe 
the groups X2(k, T̂L/k) and X2

ω(k, T̂L/k).

6.1. Generators of algebraic patchable subgroups and patchable subgroups

For Ur nonempty, set

xω
Ur

= (pε0−Δω
r )i∈Ur

∈ Gω(K0,KUr
);

and

xUr
= (pε0−Δr)i∈Ur

∈ G(K0,KUr
).

In the following we show that the elements xc1’s (resp. xω
c1) defined in Corollary 5.11 (resp. Corollary 5.10) 

are generators of G̃(K0, KUr
) (resp. G̃ω(K0, KUr

)).

Proposition 6.1. For a nonempty Ur, we have the following:

(1) The algebraic patchable subgroup G̃ω(K0, KUr
) is generated by xω

c for all l ≥ L(Ur) and c ∈ Ur/ ∼
l
.

(2) The patchable subgroup G̃(K0, KUr
) is generated by xc for all l ≥ L(Ur) and c ∈ Ur/ ∼

l
.

Proof. Let x = (xi)i∈Ur
∈ G̃ω(K0, KUr

) ⊆ ⊕
i∈Ur

(Z/pε0−rZ). Let t be the smallest index in Ur. After 
modifying x by a multiple of xUr

, we can assume xt = 0.
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Let I(x) = (I0(x), ..., Ipε0−r−1(x)) be the partition of Ur associated to x. Set J = Ur \ I0(x). We prove 
the proposition by induction on |J |. If |J | = 0, then it is clear that x = 0 ∈ 〈xω

c 〉. Let h be a positive integer, 
and suppose that the statement is true for all |J | < h.

For |J | = h, let ε0 − d = min
i∈J

{δ(0, xi)}. As x is patchable, we have d ≤ Δω
r . Let J ′ = {i ∈ J | δ(0, xi) =

ε0 − d}. Let l be the smallest integer such that there is c ∈ Ur/ ∼
l

contained in J ′. Pick i ∈ c. We claim 

that for all r ≤ l0 < l and c0 ∈ Ur/ ∼
l0

containing c, the field Mc0(d + L(c0) − r) is a subfield of a bicyclic 

extension.
By the choice of l0, we have c0 � J ′. Set J0 = J ′ ∩ c0. Pick j ∈ J0 and i ∈ c0 \ J0 such that

ei,j = max{es,t| s ∈ J0, t ∈ c0 \ J0}.

By Lemma 3.8 we have Fd,i,j = K0(d)Ki(d + ei,j − r) = K0(d)Kj(d + ei,j − r). Again by Lemma 3.8 for 
any s ∈ c0 \ J0, we have Fd,s,j = K0(d)Kj(d + es,j − r) ⊆ Fd,i,j . Similarly Fd,i,s ⊆ Fd,i,j for all s ∈ J0.

Note that by definition L(c0) = min{et,t′ | t, t′ ∈ c0}. Since L(c0) ≤ es,j ≤ ei,j , we have 
Ks(d + L(c0) − r)Kj(d + L(c0) − r) ⊆ Fd,s,j for all s ∈ c0 \ J0.

By a similar argument, we have Ks(d + L(c0) − r)Ki(d + L(c0) − r) ⊆ Fd,i,s for all s ∈ J0. Hence Mc0(d +
L(c0) − r) ⊆ Fd,i,j .

Next we show that d ≤ fω
c0 . As Mc0(d + L(c0) − r) is a subfield of a bicyclic extension, by Lemma 3.4

there are s and t such that Mc0(d + L(c0) − r) = Ks(d + L(c0) − r)Kt(d + L(c0) − r). Moreover we can 
choose s, t ∈ c0 such that s /∈ J0 and t ∈ J0.

To see this, first suppose that J0 is contained in some c′ ∈ c0/ ∼
L(c0)+1

. Then we can pick s ∈ c0 \ c′ and 

pick t ∈ J0.
Suppose that J0 � c′ for any c′ ∈ c0/ ∼

L(c0)+1
. Then pick s ∈ c0 \ J0. Let c′ be the class of c0/ ∼

L(c0)+1
containing s. Since J0 is not contained in c′, J0 \ c′ is nonempty. Pick t ∈ J0 \ c′. Then es,t = L(c0). By 
Lemma 3.4, we have Mc0(d + L(c0) − r) = Fd,s,t.

By Lemma 3.8 K0(d) ⊆ Mc0(d +L(c0) − r), so we have d ≤ fω
c0 . In particular for c0 ∈ Ur/ ∼

l−1
containing 

c, we have d ≤ fω
c0 . By Corollary 5.10, there is an integer n such that the i-th coordinate of nxω

c is xi. 
Since c ⊆ J ′, the number of non-zero coordinates of x − nxω

c decreases by at least one. By the induction 
hypothesis, the element x − nxω

c is generated by patchable diagonal elements and xω
c′ for l′ ≥ L(Ur) and 

c′ ∈ Ur/ ∼
l′
. Statement (1) then follows.

Suppose further that x ∈ G̃(K0, KUr
). Then by Lemma 3.8 Mc0(d + L(c0) − r) = Fd,s,t is locally cyclic. 

Hence d ≤ fc0 . By similar argument we get statement (2). �
Theorem 6.2. Suppose that Ur is nonempty. Then

(1) G̃ω(K0, KUr
) 	 Z/pΔω

r −rZ ⊕ ⊕
l≥L(Ur)

⊕
c∈Ur/∼

l

(Z/pfω
c −rZ)nl+1(c)−1.

(2) G̃(K0, KUr
) 	 Z/pΔr−rZ ⊕ ⊕

l≥L(Ur)
⊕

c∈Ur/∼
l

(Z/pfc−rZ)nl+1(c)−1.

Proof. By Proposition 6.1, the group G̃ω(K0, KUr
) is generated by the xω

c for l ≥ L(Ur) and c ∈ Ur/ ∼
l
.

It is clear that the cyclic group 〈xω
Ur
〉 	 Z/pΔω

r −rZ. For l ≥ L(Ur), c ∈ Ur/ ∼
l
, and c1 ∈ c/ ∼

L(c)+1
, the 

group 〈xω
c1〉 is isomorphic to Z/pf

ω
c −rZ.

For Ur we have ∑
c∈Ur/ ∼

xω
c = pΔω

r −fω
Urxω

Ur
.

L(Ur)+1
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Let c0 ∈ Ur/ ∼
l0

and c ∈ c0/ ∼
L(c0)+1

. Set l = L(c0) + 1. If nl+1(c) > 1, then we have the relation

∑
c1∈c/ ∼

l+1

xω
c1 = pf

ω
c0−fω

c xω
c .

We choose nl+1(c)-1 distinct classes in c/ ∼
l+1

. Let ci for 1 ≤ i < nl+1(c) be these classes. Then xω
ci ’s generate 

a group isomorphic to (Z/pfω
c −rZ)nl+1(c)−1 and this group is disjoint from the group generated by xω

c′ for 
L(Ur) ≤ h ≤ l and c′ ∈ Ur/ ∼

h
and by xω

c′ for c′ ∈ Ur/ ∼
l+1

for c′ � c.

Hence G̃(K0, KUr
) 	 Z/pΔω

r −rZ ⊕
l≥L(Ur)

⊕
c∈Ur/∼

l

(Z/pfω
c −rZ)nl+1(c)−1.

One can prove (2) by a similar argument. �
For U0 = I, we get the group structure of X1(k, TL/k) immediately from the above theorem.

Corollary 6.3. Suppose that U0 = I. Then

(1) X2
ω(k, T̂L/k) 	 ⊕

l≥L(I)
⊕

c∈I/∼
l

(Z/pfω
c Z)nl+1(c)−1.

(2) X2(k, T̂L/k) 	 ⊕
l≥L(I)

⊕
c∈I/∼

l

(Z/pfcZ)nl+1(c)−1.

Proof. The arguments for (1) and (2) are similar. We show (2) here.
As U0 = I, we have Δ0 = ε0 and G(K0, K ′) = G̃(K0, KU0). By Theorem 6.2 the group G(K0, K ′) 	

Z/pε0Z ⊕
l≥L(I)

⊕
c∈I/∼

l

(Z/pfcZ)nl+1(c)−1. As the diagonal group D is isomorphic to Z/pε0Z, we have

X2(k, T̂L/k) 	 ⊕
l≥L(I)

⊕
c∈I/∼

l

(Z/pfcZ)nl+1(c)−1. �

6.2. The Tate-Shafarevich groups

For i ∈ Ur and l ≥ L(Ur), set aωc = (aj)j∈I to be the embedding of xω
c = (xj)j∈Ur

in Gω(K0, K ′) as 
follows:

aj =
{

xj , for all j ∈ Ur,
0, otherwise.

(6.1)

We define ac = (aj)j∈I to be the embedding of xc = (xj)j∈Ur
in G(K0, K ′) in the same way.

Proposition 6.4. We have the following:

(1) The group Gω(K0, K ′) is generated by the diagonal group D and the aωc ’s defined as above.
(2) The group G(K0, K ′) is generated by the diagonal group D and the ac’s defined as above.

Proof. Let a = (ai)i∈I ∈ Gω(K0, K ′). After modifying by a diagonal element, we can assume that a1 = 0. 
By Proposition 4.15 we have a ∈ ⊕

r
G̃ω(K0, KUr

). Then a is generated by D and xω
c ’s by Proposition 6.1.

A similar argument proves (2). �
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Theorem 6.5. Keep the notations as above. Then we have

Gω(K0,K
′) 	 Z/pε0Z ⊕

r∈R\{0}
Z/pΔω

r −rZ ⊕
r∈R

⊕
l≥L(Ur)

⊕
c∈Ur/∼

l

(Z/pf
ω
c −rZ)nl+1(c)−1;

and

G(K0,K
′) 	 Z/pε0Z ⊕

r∈R\{0}
Z/pΔr−rZ ⊕

r∈R
⊕

l≥L(Ur)
⊕

c∈Ur/∼
l

(Z/pfc−rZ)nl+1(c)−1.

As a consequence, we have

X2
ω(k, T̂L/K) 	 ⊕

r∈R\{0}
Z/pΔω

r −rZ ⊕
r∈R

⊕
l≥L(Ur)

⊕
c∈Ur/∼

l

(Z/pf
ω
c −rZ)nl+1(c)−1;

and

X1(k, TL/K) 	 ⊕
r∈R\{0}

Z/pΔr−rZ ⊕
r∈R

⊕
l≥L(Ur)

⊕
c∈Ur/∼

l

(Z/pfc−rZ)nl+1(c)−1.

Proof. By Proposition 6.4, the group Gω(K0, K ′) is generated by the diagonal group D and the group 
⊕

r∈R
G̃ω(K0, KUr

). If U0 = I, then it is Theorem 6.2.

Suppose that U0 
= I. Set aI = (1, ..., 1), which is a generator of D. Then we have the relation
∑
r∈R

pΔω
r −Δω

0 aωUr
= pε0−Δω

0 aI .

Note that by Proposition 4.3 (1) and (2), we have Δω
0 > 0 and Δω

r −Δω
0 ≥ 0. Hence pε0−Δω

0 aI and aωU0
are 

nonzero. It is clear that the element pε0−Δω
0 aI generates the intersection D ∩ ⊕

r∈R
G̃ω(K0, KUr

). Hence

Gω(K0,K
′) 	 D ⊕

l≥L(U0)
⊕

c∈U0/∼
l

(Z/pf
ω
c Z)nl+1(c)−1 ⊕

r∈R\{0}
G̃ω(K0,KUr

).

Applying Proposition 4.10 (1) and (2) instead of Proposition 4.3, one proves in a similar way the statement 
of G(K0, K ′). �
Remark 6.6. Let K be a minimal Galois extension of k which splits TL/k and denote its Galois group by 
G. An alternative way to calculate X2

ω(G, T̂L/k) is to express the degree of freedom and patching degree in 
terms of the group structure of G. Then one can use the method in [2] to get X2

ω(G, T̂L/k) from X2(l, M)
for some finite extension l and some Gal(ks/k)-module M .

7. Examples

In this section, we give some examples where more explicit descriptions of the groups X2(k, T̂L/k) and 
X2

ω(k, T̂L/k) are obtained. We first note the following case.

Proposition 7.1. If ∩
i∈U0

K0Ki = K0, then X2(k, T̂L/k) = X2
ω(k, T̂L/k) = 0.

Proof. It is enough to show that X2
ω(k, T̂L/k) = 0. Let l = L(U0). If fω

U0

= 0, then K0(fω

U0
)MU0(fω

U0
+ l) is 

bicyclic and by Proposition 5.8 it is contained in ∩
i∈U0

K0Ki, which is a contradiction. Therefore fω
U0

= 0. If 

U0 = I, then X2
ω(k, T̂L/k) = 0 by Corollary 6.3.
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Suppose that U0 
= I. Choose r > 0 such that Ur is nonempty. Since ∩
i∈U0

K0Ki = K0, we have Δω
r = r. 

Hence fω
c = r for all c ∈ Ur/ ∼

l
. By Theorem 6.5 X2

ω(k, T̂L/k) = 0. �
Example 7.2. Let k = Q and ζn be a primitive n-th root of unity. Let p0, ..., pm be distinct odd primes and ni

be positive integers. Set Ki = Q(ζpi
ni ) for 0 ≤ i ≤ m. Then Ki are cyclic extensions. Since ∩

i∈I
K0Ki = K0, 

by Proposition 7.1 the group X2
ω(k, T̂L/k) = 0.

Proposition 7.3. Suppose that Ki are linearly disjoint extensions of k for all i ∈ I ′. Let f be the maximum 
integer such that MI′(f) is a subfield of a bicyclic extension; and f ′ be the maximum integer such that 
MI′(f ′) is bicyclic and locally cyclic. Then X2

ω(k, T̂L/k) 	 (Z/pfZ)m−1 and X2(k, T̂L/k) 	 (Z/pf ′
Z)m−1.

Proof. Since Ki are disjoint extensions for all i ∈ I ′, we have U0 = I, L(U0) = 0 and n1(U0) = m. Then by 
definition we have fω

U0
= f and fU0 = f ′. The proposition follows from Corollary 6.3. �

Example 7.4. Let k = Q(i). Let K0 = k( 4
√

17), K1 = k( 4
√

17 × 13) and K2 = k( 4
√

13). Then MI′(2) is a 
bicyclic extension of k with Galois group Z/4Z ×Z/4Z. Hence X2

ω(k, T̂L/k) 	 Z/4Z.
It is clear that MI′(2)v is a product of cyclic extensions if v is an unramified place. Let P be the prime 

ideal associated to v. If MI′(2) is ramified at v, then P ∩Z ∈ {(2), (13), (17)}. Since 17 is not a 4-th power 
root in Q13, the field MI′(2)17 is not cyclic.

It is easy to check that MI′(1) is locally cyclic. Hence by Proposition 7.3 we have X2(k, T̂L/k) 	 Z/2Z.

Example 7.5. Let k = Q(i). Let K0 = k( 4
√

17), K1 = k( 4
√

17 × 409) and K2 = k( 4
√

409). Then MI′(2) is a 
bicyclic extension of k with Galois group Z/4Z ×Z/4Z. Hence X2

ω(k, T̂L/k) 	 Z/4Z.
We claim that MI′(2) is locally cyclic. Let v ∈ Ωk. It is clear that MI′(2)v is a product of cyclic 

extensions if v is an unramified place. Let P be the prime ideal associated to v. If MI′(2) is ramified at v, 
then P∩Z ∈ {(2), (17), (409)}. However 409 and 17 are quartic residues of each other, and 17 has a 4-th root 
in Q2. Therefore MI′(2) is locally cyclic and fU0 = 2. By Proposition 7.3 we have X2(k, T̂L/k) 	 Z/4Z. In 
this case weak approximation holds for TL/k-torsors with a k-point.

Proposition 7.6. Let F be a bicyclic extension of k with Galois group Z/pnZ × Z/pnZ. Let Ki be distinct 
cyclic subfields of F with degree pn. Then

X2
ω(k, T̂L/k) 	 ⊕

r∈R\{0}
Z/pn−rZ ⊕

r∈R
⊕

l≥L(Ur)
⊕

c∈Ur/∼
l

(Z/pn−lZ)nl+1(c)−1.

Proof. Regard F as a cyclic extension of K0.
For a nonempty Ur and all i ∈ Ur, the field K0Ki is the unique degree pn−r extension of K0 contained 

in F . Hence Δω
r = n for all r ∈ R.

For l ≥ L(Ur), the field Mc(n) is contained in F and its Galois group is isomorphic to Z/pnZ ×Z/pn−L(c). 
We claim that fω

c = n − L(c) + r. Regard F as a cyclic field extension of Ki. As subfields of F , both 
K0(n −L(c) +r)Ki and Mc(n) are cyclic extensions of Ki of degree pn−L(c). Hence K0(n −L(c) +r)Ki = Mc(n)
and fω

c = n − L(c) + r.
For a class c ∈ Ur/ ∼

l
, we have nl+1(c) > 1 if and only if L(c) = l. The proposition then follows. �

Example 7.7. Let k = Q(i). Let K0 = k( 4
√

13), K1 = k( 4
√

17), K2 = k( 4
√

13 × 172). Then 1 ∈ U0 and 2 ∈ U1. 
By Proposition 7.6, we have X2

ω(k, T̂L/k) 	 Z/2Z. As the field K0K2 is locally cyclic, we have Δ1 = 2. 
Hence X1(k, TL/k) 	 Z/2Z. In this case weak approximation holds for TL/k-torsors with a k-point.
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