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Abstract

The X> model (s"1
2
) on the one-dimensional alternating superlattice (closed chain) is solved exactly by using

a generalized Jordan}Wigner transformation and the Green function method. Closed expressions are obtained for the
excitation spectrum, the internal energy, the speci"c heat, the average magnetization per site, the static susceptibility, szz,
and the two-spin correlation function in the "eld direction at arbitrary temperature. At ¹"0, it is shown that the system
presents multiple second-order phase transitions induced by the transverse "eld, which are associated to the zero energy
mode with wave number equal to 0 or p. It is also shown that the average magnetization as a function of the "eld presents,
alternately, regions of plateaux (disordered phases) and regions of variable magnetization (ordered phases). The static
correlation function presents an oscillating behavior in the ordered phase and its period goes to in"nity at the critical
point. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The experimental development of magnetic su-
perlattices, by using molecular beam epitaxy tech-
nique [1}3], has increased the interest in the study
of these systems. Although they are three-dimen-
sional systems, there is a predominance of the one-
dimensional behavior in their properties, and this is
the main reason for studying one-dimensional su-
perlattices. Therefore, interest has been consider-
ably increased in the study of spin systems on these
lattices.

Among the spin systems the X> model (s"1
2
),

introduced by Lieb et al. [4], occupies a special
place, since it can be solved exactly for the homo-
geneous lattice. Although almost all static and dy-
namical properties are known for the model on the
homogeneous lattice (see Ref. [5] and references
therein), the known results for non-homogeneous
periodic one-dimensional systems are restricted to
the alternating chain [6}8] and to the excitation
spectrum of the general alternating superlattice [9],
and its critical behavior, which has been obtained
by using the position space renormalization group
approach [10].

In this paper we consider the isotropic X>
model in a transverse "eld on the one-dimensional
alternating superlattice (closed chain). We solve the
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Fig. 1. Unit cell of the alternating superlattice.

model by introducing a generalized Jordan}Wigner
transformation [9] and by using the Green func-
tion equation of motion tecnhique.

In Section 2 we determine the relevant Green
functions and present a detailed discussion of the
excitation spectrum. In Section 3 we obtain the
internal energy and the speci"c heat. The induced
magnetization is studied in Section 4, and in Sec-
tion 5 we calculate the two-spin correlation func-
tion. Finally, in Section 6, we summarize the results
and present the main conclusions.

2. The excitation spectrum

The superlattice that we are going to consider
consists of cells composed of two subcells A and
B with n

A
and n

B
sites, respectively. The lth unit cell

is shown in Fig. 1. The distance s between two
consecutive sites is taken as unity.

If we assume periodic boundary conditions for
a chain with N cells, the Hamiltonian of the X>
model [4] can be written in the form
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where l identi"es the cell, SB"Sx$iSy, J is the
exchange parameter between spins at the interfaces,
J
A
(J

B
) the exchange parameter between spins with-

in the subcell A(B), and h
A
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) is the transverse "eld

within the subcell A(B). The spin operators can be
expressed in terms of fermion operators using the

generalized Jordan}Wigner transformation [9]
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and, by introducing this transformation, the Hamil-
tonian can be written in the form
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where a's and b's are fermion operators, and U,
given by
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is a boundary term which will be neglected. As it
has been shown [11], this boundary term, in the
thermodynamic limit, does not a!ect the excitation
spectrum, the static properties of the system nor the
dynamic correlation function in the "eld direction.
Introducing the Fourier transforms [9]
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where k
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Hamiltonian can be written as
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As in the study of the excitation spectrum [9]

we will solve the model by using the Green
function method [12]. Adopting the notation
SSR
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for the retarded anticommutator

function, where R
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and R
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are arbitrary operators,
and introducing the time Fourier transform de"ned
as
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we can write the equation of motion for the Green
function SSa
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TT in the form [12]
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where we have assumed +"1.

Likewise we can write for SSb
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Eqs. (11) and (12) constitute a closed set which can
be easily solved by introducing the operators
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Therefore, by eliminating the function
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From Eq. (15) we can "nd immediately that
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TT is given by
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The details of the calculation can be found in Ref.
[13].

By a similar procedure we can write the set of
equations
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which can be solved by eliminating the function
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and, as we can see, it can be obtained from Eq. (15),
provided we make the substitution APB and
BPA. Therefore SSB
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As mentioned in our previous paper [9], it
should be noted that the values u"EA
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TT, since
in this limit the function is "nite. Therefore, as
expected, the spectrum of each subcell does not
coincide with spectrum of the superlattice, and
contains n
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branches [9].

The general solution of this equation is deter-
mined numerically, although analytical solutions
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Fig. 2. Excitation spectrum of the homogeneous lattice for
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A
"2, n

B
"3, J"J

A
"J

B
"1, and h

A
"h

B
"h"2.

Fig. 3. Excitation spectrum for n
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Fig. 4. Excitation spectrum for n
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can be found for some special cases. For instance
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reproduces the known results

[6,7].
In the homogeneous medium limit, the spectrum

obtained from Eq. (22) presents n
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For zero "eld and n
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odd, there is a zero-

energy mode with wave number di!erent from zero,
as shown in Fig. 3 for n
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As it has already been shown [14], the e!ect of
a homogeneous "eld, h

A
"h

B
"h, is to shift the

zero-"eld spectrum. This can also be shown directly
from Eq. (22) and, consequently, the existence of
a mode of zero energy will depend on the strength
of the "eld.

As we can also see in Fig. 4, the extreme bands of
the spectrum are very narrow, and this is related to
the di!erence between the exchange parameters of
subcells A and B. As the di!erence between the
parameters of the media A and B decreases, the
dispersion increases, and the gaps tend to zero. This
is the expected behavior, since we have a maximum
dispersion in the homogeneous limit, as shown in
Fig. 2. In all cases presented the number of
branches is equal to the number of sites per cell.

Again, we note that the spectrum can also be
calculated exactly by using the position space re-
normalization group approach [10], and approx-
imately by using a transfer matrix method [15].
Although the latter is an approximate method, we
have shown that it reproduces numerically the
exact result [5,8].
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Fig. 5. Internal energy as a function of temperature (¹H,k
B
¹)

for n
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1,1
(x))2

!( fA
1,nA

(u))2] [( f B
1,1

(u))2!( f B
1,nB

(u))2]N

(36)

and G2
Q
(u) can be obtained from G1

Q
(u) by intro-

ducing the transformations k
1
Pk

2
, APB and

BPA. From these results we can show that the
expression for G

Q
(u) has the form

G
Q
(u)"

1

R
Q
(u)

[G(fA
1,1

(u), fA
1,nA

(u), fB
1,1

(u), fB
1,nB

(u))].

(37)

Then, the internal energy, SHT"&
Q
SH

Q
T, can be

obtained from the expression [7]

SHT"
1

p
+
Q
P

=

~=

Im(G
Q
(u))

ebu#1
du, (38)

where, as usual, b"1/k
B
¹.

By using the Dirac identity

1

x!x
0
Gie

,PA
1

x!x
0
BGipd(x!x

0
), (39)

we can show immediately that Im(G
Q
(u)) can be

written in the form

Im(G
Q
(u))"+

r

F
Q,r

d(u!u
Q,r

), (40)

where

F
Q,r

"

R
Q
(u

Q,r
)G

Q
(u

Q,r
)

R@
Q
(u

Q,r
)

, (41)

where r labels the branches of the spectrum and
R@

Q
(u) is equal to dR

Q
(u)/du.

The speci"c heat is obtained from Eq. (38) and
can be written in the form

C"

1

N

dSHT
d¹

"

k
B
b2

Np
+
Q
P

=

~=

uebuIm(G
Q
(u))

(ebu#1)2
du.

(42)

The behavior of the internal energy as a function
of temperature does not present any remarkable
di!erence as we change the superlattice parameters.
A typical result is shown in Fig. 5 where the internal
energy is shown as a function of temperature
¹H(¹H,k

B
¹) for n

A
"n

B
"10, J

A
"2, J

B
"3,

J"1, h
A
"h

B
"1.5.

On the other hand, the behavior of the speci"c
heat as a function of temperature is very susceptible
to these parameters. It can present a single peak or
a double peak, as it can be seen in Figs. 6 and 7.
This important feature, namely, the appearance of
the double peak, is a consequence of the packing of
the branches of the excitation spectrum, which is
strongly dependent on the interaction parameters.
As we increase the "eld, we move the spectrum
downwards and this has the e!ect of suppressing
one peak of the speci"c heat. This is shown in
Fig. 8, where we have used the same lattice para-
meters of Fig. 7, and a larger "eld.
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Fig. 6. Speci"c heat as a function of temperature (¹H,k
B
¹) for

n
A
"n

B
"10, J"1, J

A
"2, J

B
"3, and h

A
"h

B
"1.5.

Fig. 7. Speci"c heat as a function of temperature (¹H,k
B
¹) for

n
A
"n

B
"2, J"1, J

A
"2, J

B
"3, and h

A
"h

B
"1.3.

Fig. 8. Speci"c heat as a function of temperature (¹H,k
B
¹) for

n
A
"n

B
"2, J"1, J

A
"2, J

B
"3, and h

A
"h

B
"1.75.

Fig. 9. low temperature behavior of the speci"c heat shown in
Fig. 7 (¹H,k

B
¹).

In Figs. 9 and 10 we present the low-temperature
behavior of the speci"c heat shown in Figs. 7 and 8,
respectively. For the results shown in Fig. 9, the
excitation spectrum has a zero-energy mode con-
trary to the case shown in Fig. 10, where it is not

present, as can be veri"ed by using the analytical
solution presented in Eq. (23). As expected, the
derivative of the speci"c heat, dC/d¹H, at ¹"0, is
equal to zero only when there is a zero-mode en-
ergy in the spectrum.
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Fig. 10. The low temperature behavior of the speci"c heat
shown in Fig. 8 (¹H,k

B
¹).

4. The induced magnetization and the susceptibility
szz

The local induced magnetization which corre-
sponds to the average value of SAZ

j,m
and SBZ

j,m
, is given

by

SSAZ

j,m
T"Sas

j,m
a
j,m

T!
1

2
and SBZ

j,m
"Sbs

j,m
b
j,m

T!
1

2

(43)

which can be determined from the Green functions
SSa

j,m
; as

j,m
TT and SSb

j,m
; bs

j,m
TT, respectively. In

terms of the operators A
Q,m

and B
Q,m

these func-
tions can be written in the form

SSa
j,m

; as
j,m

TT"
1

N
+
Q,Q{

exp[!i(Q!Q@)d]

]SSA
Q,m

; As
Q{,m

TT (44)

and

SSb
j,m

; bs
j,m

TT"
1

N
+
Q,Q{

exp[!i(Q!Q@)d]

]SSB
Q,m

; Bs
Q{,m

TT. (45)

Then introducing in Eq. (44) the function
SSA

Q,m
; As

Q{,m
TT, which is given in Eq. (18), we can

write SSa
j,m

; as
j,m

TT in the form

SSa
j,m

; as
j,m

TT"
2

NJS
n
B
#1

n
A
#1

+
Q

MfA
m,m

(u)

#

1

R
Q
(u)

[ f A
1,m

(u) f A
m,nA

(u)(2f B
1,nB

(u)

]cos(Qd)#2f A
1,nA

(u)(( f B
1,1

(u))2

!( f B
1,nB

(u))2))#(( f A
1,m

(u))2

!( f A
m,nA

(u))2)( f B
1,1

(u)#f A
1,1

(u))

](( f B
1,1

(u))2!( f B
1,nB

(u))2)]N. (46)

The function SSb
j,m

; bs
j,m

TT is obtained from
SSa

j,m
; as

j,m
TT by introducing the transformations

fAPfB, fBPfA, n
A
Pn

B
and n

B
Pn

A
. From this

result we can write

Sas
j,m

a
j,m

T"
1

pP
=

~=

Im(SSa
j,m

; as
j,m

TT)

ebu#1
du, (47)

which, in the thermodynamic limit, allows us to
obtain SSAz

j,m
T from the equation

SSAz

j,m
T"!

1

2

#

1

2p
+
r
P

2p

0

F(q, u
q,r

, h)

(ebuq,r#1)( dR
Q
(u)/du)Duq,r

dq,

(48)

where

F(q, u
q,r

, h)"
2

JS
n
B
#1

n
A
#1

M fA
1,m

(u) fA
m,nA

(u)[2fB
1,nB

(u)

]cos(q)#2fA
1,nA

(u)((fB
1,1

(u))2

!( fB
1,nB

(u))2)]#((fA
1,m

(u))2

!( fA
m,nA

(u))2) ( fB
1,1

(u)

#fA
1,1

(u))((fB
1,1

(u))2!( fB
1,nB

(u))2)]N,

(49)

and where q,Qd. The local induced magneti-
zation in the subcell B, SSBz

j,m
T, is determined by

following the same procedure and by using the
function SSb

j,m
; bs

j,m
TT.
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Fig. 11. (a) Average magnetization per subcell A and B (dashed
line), and per unit cell (continuous line) as a function of the "eld,
and (b) the susceptibility in the "eld direction also as a function
of the "eld, for n

A
"n

B
"2, J"1, J

A
"2, J

B
"3, and

h
A
"h

B
"h, at ¹"0. The critical "elds are h

1#
+0.691,

h
2#

+1.096, h
3#

+1.5960 and h
4#

+1.809.

Fig. 12. Average magnetization per unit cell as a function of the
"eld, for n

A
"2, n

B
"3, J"1, J

A
"2, J

B
"3, and h

A
"h

B
"h,

at ¹"0.

The average induced magnetization in the cell,
SSz

#%-
T, is de"ned as

SSz
#%-

T"
1

N(n
A
#n

B
)

]C
N
+
l/1
A

nA
+

m/1

SSAz

l,m
T#

nB
+

m/1

SSBz

l,m
TBD (50)

and from this expression, for the case h
A
"h

B
,h,

we obtain susceptibility szz, which is given by

szz"
d

dh
SSz

#%-
T. (51)

Fig. 11 shows the average magnetization in the
cell and the susceptibility as a function of h at
¹"0, for J"1, J

A
"2, J

B
"3, h

A
"h

B
"h and

n
A
"n

B
"2. As can be seen, the magnetization

presents three plateaus which are limited by four
critical "elds, h

#
, which correspond to the singular

points of the susceptibility szz (szzPR when
hPh

#
). These four singularities correspond to the

modes of zero energy with wave number equal to
0 or p, which limit each energy band. For this case,
the critical "elds can be obtained exactly from Eq.
(23) and are given by

h
1#
"

5!J5

4
+0.691,

h
2#
"

J29!1

4
+1.096,

h
3#
"

J29#1

4
+1.596,

h
4#
"

J5#5

4
+1.809. (52)

It should be noted that the plateaus, where the
susceptibility goes to zero, correspond to the gaps
in the spectrum.

Fig. 12 shows the average induced magneti-
zation, at ¹"0, for J"1, J

A
"2, J

B
"3,

h
A
"h

B
"h and n

A
"2, n

B
"3, as a function of h.

In this case, since the number of sites per cell is odd,
there is a zero-energy mode even for h"0, and
consequently there is no zero magnetization
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Fig. 13. Average magnetization per unit cell as a function of the
"eld, for n

A
"n

B
"4, J"1, J

A
"2, J

B
"3, and

h
A
"1.25h

B
"h, at ¹"0.

Fig. 14. Average magnetization per unit cell as a function of the
"eld, for n

A
"n

B
"4, J"1, J

A
"2, J

B
"3, and h

A
"h

B
"h, at

"nite temperature (bJ"50).

plateau as in the case shown in Fig. 11. The critical
behavior is, naturally, also present when we have
an inhomogeneous "eld, h

A
"1.25h

B
"h, and this

is shown in Fig. 13 for a larger unit cell,
n
A
"2, n

B
"3.

In Fig. 14 we present the magnetization for "nite
temperature (bJ"50) for the superlattice con-

sidered in Fig. 13 with h
A
"h

B
"h. Although the

central regions of each plateaux remain, as ex-
pected, the thermal #uctuations suppress the quan-
tum transitions.

5. The two-spin correlation function in the 5eld
direction

For sites in the subcell A, for example, the two-
spin static correlation function in the "eld direction
is de"ned by

SSAz

j,m
SAz

j`r,n
T"Sas

j,m
a
j,n

as
j`r,m

a
j`r,n

T

!1
2
(Sas

j,m
a
j,m

T#Sas
j,n

a
j,n

T)#1
4
.

(53)

The average value Sas
j,m

a
j,n

as
j`r,m

a
j`r,n

T can be ob-
tained from the expression

Sas
j,m

a
j,n

as
j`r,m

a
j`r,n

T

"

1

pP
=

~=

Im(SSa
j`r,n

; as
j,m

a
j,m

as
j`r,n

TT)

ebu#1
du, (54)

where the Fourier transform of the Green function
SSa

j`r,n
; as

j,m
a
j,m

as
j`r,n

TT, by using Wick's theorem,
can be shown to be written in the form

SSa
j`r,n

; as
j,m

a
j,m

as
j`r,n

TT

"d
m,n

d
r,0

SSa
j`r,n

; as
j,m

TT

#Sas
j,m

a
j,m

TSSa
j`r,n

; as
j`r,n

TT

!Sas
j`r,n

a
j,m

TSSa
j`r,n

; as
j,m

TT. (55)

Then, the correlation function SSAz

j,m
SAz

j`r,n
T can be

obtained from the equation

SSAz

j,m
SAz

j`r,n
T

"

d
m,n

d
r,0

p P
=

~=

ImSSa
j`r,n

; as
j,m

TT
ebu#1

du

!

Sas
j`r,n

a
j,m

T
p P

=

~=

ImSSa
j`r,n

; as
j,m

TT
ebu#1

du

#Sas
j,m

a
j,m

TSa
j`r,n

; as
j`r,n

T!1
2
(Sas

j,m
a
j,m

T

#Sas
j,n

a
j,n

T)#1
4
. (56)

The Green function SSa
j`r,n

; as
j,m

TT can be ob-
tained by using Eqs. (6), (13) and (18), and is given
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Fig. 15. The direct static correlation function in the "eld direc-
tion, oAz(r),SSAz

j,2
SAz

j`r,2
T!SSAz

j,2
T2, as a function of the distance

between cells, for n
A
"n

B
"2, J"1, J

A
"2, J

B
"3, and

h
A
"h

B
"h, at ¹"0, for h"0.75 (a) and h"0.693 (b).

Fig. 16. The direct static correlation function in the "eld direc-
tion, oAz(r),SSAz

j,2
SAz

j`r,2
T!SSAz

j,2
T2, as a function of the distance

between cells, for n
A
"n

B
"2, J"1, J

A
"2, J

B
"3, and

h
A
"h

B
"h, at ¹"0, for h"1.1 (a) and h"1.091 (b).

by Ref. [13]

SSa
j`r,n

; as
j,m

TT

"

2

NJS
n
B
#1

n
A
#1

+
Q

exp(!iqr)G fA
m,n

(u)#
1

R
Q
(u)

]M((f B
1,nB

(u))2!(f B
1,1

(u))2)[fA
m,nA

(u)fA
n,nA

(u)fA
1,1

(u)

!fA
m,nA

(u) fA
1,n

(u)fA
1,nA

(u)

#fA
1,m

(u) fA
1,n

(u) fA
1,1

(u)

!fA
1,m

(u) fA
n,nA

(u) fA
1,nA

(u)]

#f B
1,nB

(u)[ fA
1,n

(u) fA
m,nA

(u) exp (iq)

#fA
n,nA

(u) fA
1,m

(u)exp (!iq)]

#f B
1,1

(u) [fA
m,nA

(u) fA
n,nA

(u)#fA
1,m

(u) fA
1,n

(u)]NH.
(57)

Therefore, introducing the previous result in Eq.
(56) and by using Eq. (47) we can obtain numer-
ically the direct static correlation function
SSAz

j,m
SAz

j`r,n
T!SSAz

j,m
TSSAz

j`r,n
T, and the results are

shown in Figs. 15 and 16 .

In Fig. 15 we present the direct static correlation
function as a function of r, at ¹"0, for two values
of the "eld of the transverse "eld, h"0.693 and
h"0.75, and for J"1, J

A
"2, J

B
"3,

h
A
"h

B
"h and n

A
"n

B
"2, which are the same

set of parameters of Fig. 12. The values of the
critical "elds, for this set of parameters, are given in
Eq. (52) and the "rst two values are h

1#
+0.691 and

h
2#

+1.096. As can be veri"ed in Fig. 15, for these
values of the "eld, the correlation function presents
an oscillatory behavior and its period increases
(periodPR) as the "eld aproaches a critical value
(hPh

#
).

A direct static correlation function for the same
set of lattice parameters of Fig. 15, for h"1.091
and 1.1 is also presented in Fig. 16. Although
h"1.091, which lies in the region of increasing
magnetization (see Fig. 11), and is very close to the
critical "eld h

2#
+1.096, the oscillatory behavior is

still present in the correlation function. On the
other hand, when h"1.1, which lies in a plateau of
the magnetization (see also Fig. 11), there is no
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oscillatory behavior. It means that the period of the
oscillation tends to in"nity, and this result is still
valid for any value of the "eld in the plateau. This is
consistent with the scaling form and the analytical
continuation proposed for this correlation function
[15], where the correlation length is associated to
the oscillation period.

Although the direct correlations
SSBz

j,m
SBz

j`r,n
T!SSBz

j,m
TSSBz

j`r,n
T and SSAz

j,m
SBz

j`r,n
T!

SSAz

j,m
TSSBz

j`r,n
T are not presented, they are easily

obtained from the shown results and exhibit quali-
tatively the same behavior as SSAz

j,m
SAz

j`r,n
T!

SSAz

j,m
TSSAz

j`r,n
T. This is a consequence of the fact

that the critical "elds are not dependent on the
subcell.

6. Conclusions

We have considered the X>(s"1
2
) model on the

alternating one-dimensional superlattice (closed
chain), and an exact solution was obtained by using
the Green function method. The excitation spec-
trum was determined, and explicit expressions were
obtained at arbitrary temperature for the internal
energy, the speci"c heat, the magnetization, the
susceptibility, and the two-spin static correlation
function in the "eld direction.

The speci"c heat as a function of temperature,
depending on the superlattice parameters, can pres-
ent a single or a double peak, and we have shown
that, at ¹"0, dC/d¹ is di!erent from zero pro-
vided there is a zero-energy mode on the spectrum.

In the ¹"0 limit, the behavior of the system
was studied as a function of the transverse "eld, and
we have shown that the induced magnetization as
a function of the "eld presents, alternately, regions
of plateaus and of variable magnetization. Also in
this temperature limit, the susceptibility in the "eld
direction, szz, presents singularities which are asso-
ciated to phase transitions of second kind induced
by the "eld. These critical points are consequence of
the presence of zero-energy modes with wave num-
ber 0 or p. In passing, it should be noted that this
critical behavior, as expected, is suppressed at "nite
temperatures.

These transitions have been treated within the
real-space renormalization group approach [16],

and its critical exponents determined. The critical
exponents can also be obtained directly from the
exact expression, as shown in Ref. [13].

The two-spin static correlation function in the
"eld direction, as a function of the separation be-
tween the spins, presents an oscillating behavior in
the regions where the magnetization is not con-
stant, and the period of oscillations increases as the
"eld approaches the critical value, and diverges at
h"h

#
. This behavior con"rms that the static cor-

relation function satis"es the analytical extension
of the scaling form proposed for the homogeneous
case [15].

Finally, we would like to point out that the
magnetization as a function of the "eld has quali-
tatively the same behavior as those experimentally
obtained for the NdCu

2
, in the low-temperature

limit, and these results have been obtained recently
by Ellerby et al. [17] and Loewenhaupt et al. [18].
The agreement is more remarkable in the very
low-temperature limit, since in this limit the struc-
ture is analogous to a superlattice. Although this
material is described by a Heisenberg-type Hamil-
tonian, this result suggests that the lattice structure
is a predominant factor in de"ning the magnetic
properties of the material.
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