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a b s t r a c t

We discuss the role of quantum fluctuations in Heisenberg antiferromagnets on face-centered cubic
lattice with small dipolar interaction in which the next-nearest-neighbor exchange coupling dominates
over the nearest-neighbor one. It is well known that a collinear magnetic structure which contains (111)
ferromagnetic planes arranged antiferromagnetically along one of the space diagonals of the cube is
stabilized in this model via order-by-disorder mechanism. On the mean-field level, the dipolar interac-
tion forces spin to lie within (111) planes. By considering S1/ corrections to the ground state energy, we
demonstrate that quantum fluctuations lead to an anisotropy within (111) planes favoring three
equivalent directions for the staggered magnetization (e.g., [ ]112 , [ ]121 , and [ ]211 directions for (111)
plane). Such in-plane anisotropy was obtained experimentally in related materials MnO, α-MnS, α-MnSe,
EuTe, and EuSe. We find that the order-by-disorder mechanism can contribute significantly to the value
of the in-plane anisotropy in EuTe. Magnon spectrum is also derived in the first order in S1/ .

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Frustrated spin systems have attracted a great deal of interest
in recent years [1]. In many of them, classical ground state has a
degeneracy which can be lifted by quantum or thermal fluctua-
tions who thereby select and stabilize an ordered state. This is the
so-called “order by disorder” phenomenon [2–4]. One of such spin
systems is the Heisenberg antiferromagnet (AF) on face-centered
cubic (fcc) lattice in which the next-nearest-neighbor AF exchange
coupling (i.e., that along the cube edge) dominates over the
nearest-neighbor one [5]. Although this model describes a number
of prototypical AFs (e.g., MnO), some open problems remain in this
field.

AF on fcc lattice can be viewed as four interpenetrating AF
cubic sublattices (see Fig. 1(a)) [5,6]. Any spin from a sublattice
locates at zero molecular field of spins from three other sub-
lattices. As a result, staggered magnetizations of these sublattices
can be oriented arbitrary relative to each other that leads to an
infinite ground state degeneracy. However, quantum fluctuations
make staggered magnetizations of all sublattices parallel to each
other [5]. Besides, among two possible collinear arrangements,
they select that presented in Fig. 1(b) which is referred to in the
ov),
literature as AF structure of the second kind, type A (fluctuations
make unfavorable type B structure) [5,6]. This AF structure con-
tains (111) ferromagnetic (FM) planes arranged anti-
ferromagnetically along one of 〈 〉111 directions. As soon as [ ]111 ,
[¯ ]111 , [ ¯ ]111 , and [ ¯ ]111 directions are equivalent, there are four
equivalent spin arrangements of this type which are described by
vectors of the magnetic structure π π π= ( )k , ,0 , π( ), 0, 0 , π( )0, , 0 ,
and π( )0, 0, (hereafter we set to unity the cube edge length). This
symmetry breaking by fluctuations is naturally accompanied by
appearance of gaps induced by fluctuations in some magnon
branches (not all the magnon branches acquire gaps because the
continuous symmetry remains related to a rotation of all spins by
any angle about any axis) [5]. It can be shown also that the se-
lection of collinear spin structures can be described phenomen-
ologically on the mean-field level by introducing to the Hamilto-
nian a biquadratic interaction between spins from different sub-
lattices having the form − ( )Q S Si j

2, where >Q 0 [5,7].
Unfortunately, it is often difficult to confirm unambiguously the

presence of order-by-disorder effects in real materials because
small anisotropic interactions cannot be generally excluded which
are able to lift the classical ground state degeneracy explicitly (see
also discussion in Ref. [8]). (In particular, one always expects the
biquadratic exchange in real substances bearing in mind that it
arises naturally in the Hubbard model in high orders in t U/ , where
t is the hoping constant and U is the on-site repulsion energy [9]).
However, there are some compounds in which low-symmetry
interactions are ruled out [8] or they are strongly suppressed for
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Fig. 1. (Color online.) (a) Classical AF on fcc lattice at T¼0. Number indicates which of four AF cubic sublattices the given spin belongs to. (b) Magnetic structure of AF on fcc
lattice which is realized in the considered model via order-by-disorder mechanism (which is referred to in the literature as AF structure of the second kind, type A). Spins
belonging to different (111) FM planes (shaded) arranged antiferromagnetically along [ ]111 direction are shown in different colors and are denoted by arrows ↑ and ↓.
Exchange coupling constants ±J1 , J2 and lattice vectors e1,2,3 are also presented.

L.A. Batalov, A.V. Syromyatnikov / Journal of Magnetism and Magnetic Materials 414 (2016) 180–186 181
some reason. Order-by-disorder effects contribute noticeably to
properties of such materials.

One expects this situation in the following AFs on fcc lattice
which show the spin structure presented in Fig. 1(b) at small T:
MnO, [10,11] α-MnS, [12] α-MnSe, [12] EuTe, [13] and EuSe [14,15].
Four types of domains were observed in these materials at small T
in which four equivalent ( )111 planes are FM planes. As soon as
magnetic ions +Mn2 and +Eu2 are in isotropic states characterized
by zero orbital moment in these compounds, the anisotropy arisen
from spin–orbit interaction is expected to be very small. The main
source of anisotropy is the dipolar interaction in these materials. It
was found in Refs. [16–18] that anisotropic corrections to the
classical ground state energy from dipolar interaction make (111)
planes to be easy planes in accordance with experimental results.
Dipolar forces make also more favorable type A AF structure of the
second kind rather than the type B one (see Ref. [18] and refer-
ences therein), as quantum fluctuations do. However, dipolar in-
teraction does not select the collinear spin arrangement which is
observed experimentally. In MnO, the selection of the collinear
magnetic structure was attributed to dipolar anisotropy arisen due
to small lattice rhombohedral distortion [18]. But such lattice
distortions were not observed in other compounds. It should be
noted also that the biquadratic exchange was suggested phe-
nomenologically well before Ref. [5] to explain the temperature
dependence of the order parameter and some other experimental
findings in MnO and EuTe [13,19–21]. Particular estimations using
equations from Ref. [5] give for the value of the effective biqua-
dratic interaction ∼Q 0.1 K and 10�3 K for MnO and EuTe, re-
spectively. These values are of the same order of magnitude as
those proposed in Refs. [13,19–21] for description of experimental
data. Then, the order-by-disorder mechanism has a large impact
on magnetic properties of these materials.

Experimental data show also that there is a small anisotropy
within (111) planes of unknown origin in all materials mentioned
above. In particular, directions [ ]112 , [ ]121 , and [ ]211 are three
equivalent easy axes within (111) plane. It is the aim of the present
paper to demonstrate that the order-by-disorder mechanism
contributes to this anisotropy. For this purpose, we consider the
first S1/ correction to the ground state energy of AF on fcc lattice
with dipolar forces. We find below that due to the dipolar
interaction this correction is anisotropic and it contributes to the
in-plane anisotropy. Actually, we extend the analysis of order-by-
disorder phenomena carried out in Ref. [5] by inclusion of the
small dipolar interaction in the model. The obtained values of the
in-plane anisotropy (and values of the gap in the magnon spec-
trum related to the in-plane anisotropy) are compared with those
measured experimentally in considered substances. We point out
that the order-by-disorder mechanism can contribute noticeably
to the anisotropy in EuTe.

The rest of the present paper is organized as follows. We dis-
cuss the Hamiltonian transformation and technique in Section 2.
The classical magnon spectrum is analyzed in Section 3. The
spectrum renormalization in the model without dipolar forces is
discussed in Section 4. The order-by-disorder effects in the model
with dipolar forces are considered in Section 5, where we derive
an expression for the in-plane anisotropy. Section 6 contains
comparison with available experimental data in MnO, α-MnS, α-
MnSe, and EuTe. A summary and our conclusion can be found in
Section 7.
2. Hamiltonian transformation

We discuss Heisenberg AF on fcc lattice with dipolar interaction
whose Hamiltonian has the form

∑ δ= ( − )
( )

αβ
αβ α β

≠

J Q S S
1
2

,
1l m

lm lm l m

where the summation over repeated Greek letters is implied,

ω
π

δ
=

−
( )

αβ
α β

αβ
Q

R R R

R4
3

,
2lm

lm lm lm

lm

0
2

5

ω π
μ

=
( )

( )
g

v
4 ,

3
B

0

2

0

v0 is the unit cell volume, and non-zero exchange constants are
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where the length of the cube edge is set to be equal to unity,
〈 〉 ↑ ↓ 〈 〉S Sl m and 〈 〉 ↑ ↑ 〈 〉S Sl m denote that average magnetic mo-
ments at sites l and m are antiparallel and parallel to each other,
respectively (see Fig. 1(b)). Two slightly different values of the
nearest-neighbor exchange constants +J1 and −J1 in Eq. (4) arise in
MnO due to lattice rhombohedral distortion [22,23] whereas

= =+ −J J J1 1 1 in α-MnS, α-MnSe, EuTe, and EuSe. The exchange
coupling along cube edges (i.e., between next-nearest-neighbor
spins) is characterized by constant J2.

By taking the Fourier transformation, one has from Eq. (1)

∑ δ= ( − )
( )

αβ
αβ α β

−J Q S S
1
2

,
5k

k k k k

where = ∑ ( )αβ αβQ Q ikRexpl lm lmk and = ∑ ( )J J ikRexpl lm lmk . We
use below the coordinate system with basis vectors

= ( )e 1/2, 1/2, 01 , = ( )e 1/2, 0, 1/22 , and = ( )e 0, 1/2, 1/23 (see Fig. 1
(b)) so that = + +n n nR e e en 1 1 2 2 3 3, where n1,2,3 are integer. The
corresponding basis vectors of the reciprocal lattice are given by

= ( − )b 1, 1, 11 , = ( − )b 1, 1, 12 , and = ( − )b 1, 1, 13 so that the
magnon momentum has the form = + +k k kk b b b1 1 2 2 3 3, where

π π∈ ( − ]k ,1,2,3 . One obtains in this case

= + + ( )+ −J J J J , 6k k k k1 1 2

where

( )

= ( + + )

= ( ( − ) + ( − ) + ( − ))

= ( ( + − ) + ( − + ) + ( − − ))

+ +

− −

7

J J k k k
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J J k k k k k k k k k

2 cos cos cos ,

2 cos cos cos ,

2 cos cos cos .

k

k

k

1 1 1 2 3

1 1 1 2 1 3 2 3

2 2 1 2 3 1 2 3 1 2 3

It is convenient to represent spin components as follows:
= ^ + ( ^ + ^) ( )S x S y S z iS k Rexpl l

x
l
y

l
z

l0 , where x̂ , ŷ, and ẑ are mutually
orthogonal unit vectors which can be directed arbitrarily relative
to cube edges, k0 is a vector describing an AF magnetic structure
like that shown in Fig. 1(b), and ( )ik Rexp l0 is equal to +1 and −1
when 〈 〉Sl is parallel and antiparallel to 〈 〉S0 , correspondingly. The
particular forms of k0 describing four different AF structures with
ferromagnetic (111) planes are π π π( ), , , π( ), 0, 0 , π( )0, , 0 , and

π( )0, 0, . We use below the Holstein-Primakoff spin representation
having the form

≈ + −
+ ( )

≈ − − −
− ( )

= − ( )
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Although it is implied in Eq. (8) that the spin value S is much
greater than unity, it is well known that first S1/ corrections make
major contributions to observable quantities even at ∼S 1 in
nonfrustrated systems far from critical points. That is why we
restrict ourselves below by analysis of only first S1/ corrections.
Besides, the particular compounds we discuss below have quite
large S (5/2 or 7/2).

Taking the Fourier transformation in Eqs. (8) and using the
relation = ^ + ^ + ^

+ +S x S y S zS x y z
k k k k k k0 0

one obtains from Eq. (5) for

the Hamiltonian = + ∑ =Ecl i i1
6 , where

= − ( + − ) − ( )
+ −

N
E S J J J S Q

1
6

1
2 9cl

zz
k

2
2 1 1

2
0

is the classical ground-state energy, N is the number of spins in the
lattice, and i denote terms containing products of i operators †a
and a. In particular, one has

= − ( + ) + ( − )
( )
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N
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Q a a iS
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Q a a
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Notice that the dipolar tensor components in Eqs. (9)–(12) are
calculated in the coordinate system in which z axis is directed
along the staggered magnetization. Then, the ground state energy
depends on the direction of the staggered magnetization relative
to cube edges. To find the direction of the staggered magnetization
which minimizes the free energy, we express dipolar tensor
components αβQ k in Eqs. (9)–(12) as linear combinations of com-

ponents ͠ αβ
Q k calculated in the coordinate system which axes are

parallel to cube edges. Introducing three direction cosines γx, γy,
and γz of the staggered magnetization with respect to cube edges,
one obtains from Eq. (9) for the anisotropic part of the classical
ground state energy

γ γ γ γ γ

γ γ γ γ

= − ( + + +

+ + ) ( )

͠ ͠ ͠ ͠

͠ ͠

E S N Q Q Q Q

Q Q

1
2

2

2 2 . 13

cl
anis xx

x
yy

y
zz

z
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x y

xz
x z
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y z

k k k k

k k

2 2 2 2
0 0 0 0

0 0

Hereafter we assume for definiteness that the AF ordering is
characterized by vector π π π= ( )k , ,0 (it is the magnetic structure
which is presented in Fig. 1(b)). Particular calculations show that

ηω

= = =

= = = − ( )

͠ ͠ ͠

͠ ͠ ͠
Q Q Q

Q Q Q

0,

14

xx yy zz

xy yz xz
k k k

k k k 0

0 0 0

0 0 0

at π π π= ( )k , ,0 and one has from Eq. (13)

γ γ γ γ γ γ= ( + + ) ( )E NK , 15cl
anis

x y x z y z1

η ω= ( )K S , 161
2

0

η ≈ ( )0.288. 17

Taking into account the obvious identity
γ γ γ γ γ γ γ γ γ( + + ) = + ( + + )1 2x y z x y x z y z

2 , we obtain from Eq. (15) that
the following condition should hold to minimize the classical en-
ergy (15):

γ γ γ+ + = ( )0. 18x y z

This condition is fulfilled if the staggered magnetization lies
within (111) plane. This result was found previously theoretically
in the discussed model [16]. Such spin arrangement was observed
also experimentally in all considered materials [10,12,24]. Notice
that 1 given by Eq. (10) vanishes if Eq. (18) holds. As soon as the
rotational invariance is preserved within (111) planes, one expects
at least one gapless branch in the magnon spectrum in the spin-
wave approximation (i.e., in the classical magnon spectrum).
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3. Classical magnon spectrum

Analysis of the bilinear part of the Hamiltonian (11) can be
carried out in a standard way as it is done, e.g., in Ref. [25]. This
analysis shows that dipolar forces split the magnon spectrum into
two branches which energies have the form in the spin waves
approximation

(ϵ ) = (ϵ ) = + ± ( + ) − ( )±
+

±
+ + +A A A A F F , 19k k k k k k k k k k k k

2 2 2
0 0 0 0

where

= ( − + + )( − + )

+ −

= ( − + + )( − + ) +

− ( ) ( )

+

+ +

S
A J J Q Q J J Q

Q Q Q Q

S
F J J Q Q J J Q Q Q

Q

2

,

1

, 20

zz zz zz

xx yy xy xy

zz zz zz xx yy

xy

k k k k k k k k k

k k k k k k

k k k k k k k k k k

k

2

2

2

0 0 0 0 0

0 0

0 0 0 0

ηω=Q zz
k 00

when condition (18) holds, and η is given by Eq. (17). It

is seen from Eqs. (20) that the square root vanishes in Eq. (19) at
ω = 00 and there is only one magnon branch without the dipolar
interaction. As soon as ϵ±

k are invariant under replacement of k by
+k k0, one can consider only the neighborhood of the point =k 0

discussing long-wavelength magnons. It can be shown that =F 0k

at =k k0 if Eq. (18) holds. Then, one concludes from Eq. (19) that
ϵ−

k and ϵ+
k are gapless and gapped branches, respectively, in the

spin-wave approximation. Eq. (19) gives at ⪡k 1 and ω ⪡| |±J J,0 1 2

θ ϕϵ = ( ) ( )− D k, , 21k k k

θ ϕ Δϵ = ( ) + ( )+
+D k, , 22k k k

2 2 2

where

( )
θ ϕ

θ ϕ ϕ θ ϕ

( )

= ( + + )( − − + + + ( ( + ) + )( + + −)) 23
D

S J J J J J J J

k k

k k k k k

, 2

3 2
1 2 4 2 2 1 2 1 sin 2 sin cos sin2 sin 2 1 1 ,

Δ ηω= ( + ) ( )+
+S J J36 , 242 2
1 2 0

θk and ϕk are polar and azimuthal angles of k in the coordinate
system which axes are parallel to cube edges.

It can be shown also that =F 0k at π= ( )k , 0, 0 , π( )0, , 0 , and
π( )0, 0, if Eq. (18) holds and =+ −J J1 1 . Then, ϵ−

k given by Eq. (19)
vanishes at these three points too if =+ −J J1 1 .

Stability of spectra (21) and (22) requires Δ >+ 02 and
θ ϕ( ) >D , 0k k

2 . As it is seen from Eqs. (23) and (24), the former
condition satisfies at

+ > ( )+J J 0 251 2

whereas the later one holds either at + <− +J J 01 1 or at + >− +J J 01 1
and

− + > ( )− +J J J4 3 0. 262 1 1

It is quite natural that the gap (Δþ) in one of the magnon
branches (ϵ )+

k is accompanied by the easy-plane dipolar anisotropy
(15) in the classical ground state energy. The correspondence be-
tween the anisotropy and the gap is even quantitative. Indeed, one
leads to Eq. (24) for the gap in one of the magnon branches con-
sidering the Heisenberg AF on fcc lattice without dipolar forces
and with one-ion anisotropy ηω( ) ∑ ( )∥S3 /2 i i0

2 (which models ani-

sotropy (15)), where ∥Si is the projection of Si on [111] direction.
4. Magnon spectrum renormalization without dipolar forces

It is instructive to consider the first S1/ corrections to the
magnon spectrum in the considered model neglecting the smallest
interaction, i.e., dipolar forces. It is the model which is discussed in
Ref. [5]. However, we do not repeat here calculations of Ref. [5] by
dividing the lattice into four interpenetrating cubic AF sublattices.
We rather use the main result of Ref. [5] that quantum fluctuations
stabilize the collinear sublattices arrangement and calculate the
spectrum in the first order in S1/ in the collinear state. The clas-
sical magnon spectrum obtained from Eq. (19) has the form

ϵ = − ( )E B , 27k k k
2 2

where Ek and Bk are given by Eqs. (12) at ω = 00 . Notice that the
classical spectrum vanishes at =k 0, π π π( ), , , π( ), 0, 0 , π( )0, , 0 , and

π( )0, 0, if =+ −J J1 1 .
Corrections to the spectrum in the first order in S1/ can be

found using the standard Hartree decoupling of the fourth-order
interaction terms in the Hamiltonian which have the form

∑

( )

= ( ( − )

+ ( − − )) +

+ + + =

†
− − − +

† †
− − + + + 28

N
a a a a J J
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1
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2 . .,

k k k k 0
k k k k k k k

k k k k k k k k k k

4

1 2 3 4
1 2 3 4 2 0 2

1 2 3 4 1 3 0 1 0 1

where h c. . denote terms which are Hermitian conjugated to
presented ones (notice that third-order interaction terms 3

vanish at ω = 00 ). As a result of this procedure, one leads to the
following renormalization of Ek and Bk:

δ

δ

= − ( + − ) + + − ( − )

= − ( − ) + + ( )
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1 1 2 2

0 0

0

where ±J k1 and J k2 are given by Eqs. (7), and

∑ ∑
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=
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=
ϵ

=
− ϵ
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q q
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0 q

q q

q

1
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1
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1

1

are dimensionless constants which are normally much smaller
than unity. Then, the spectrum renormalization is small in the
whole Brillouin zone except for some special points. It can be
easily shown using Eqs. (27) and (29) that the renormalized
spectrum vanishes at =k 0 and π π π= ( )k , , and it has the form at

π= ( )k , 0, 0 , π( )0, , 0 , and π( )0, 0,

ϵ = ( + − )( ( − ) + − ) ( )+ − + − + −S J J J S J J J f J g32 3 2 . 31k 2 1 1 1 1 1 1 1

It is seen from Eq. (31) that fluctuations lead to gaps at
π= ( )k , 0, 0 , π( )0, , 0 , and π( )0, 0, at =+ −J J1 1 . These are gaps which

are obtained in Ref. [5] and which are related to the order-by-
disorder effect discussed there (i.e., the collinearity of four AF
sublattices induced by fluctuations).

We demonstrate now that the order-by-disorder mechanism
opens gaps also at =k 0 and π π π= ( )k , , if one takes into account
dipolar forces.
5. Easy-plane and in-plane anisotropies

Let us derive quantum corrections to the ground state energy
which lift the rotational invariance within (111) plane and which
have the form in the first order in S1/
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∑〈 〉 =
ϵ + ϵ −

( )

+ − E2

4
.

32q

q q q
2

Considering ω0 as the smallest parameter in the system, we ex-
pand Eq. (32) up to the third order in ω0. Terms of the first two
orders in ω0 do not depend on γx y z, , if condition (18) is fulfilled.
One obtains after tedious calculations for the anisotropic part of
the third-order term
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where Eq and Bq are given by Eqs. (29) and φ is the angle between
the staggered magnetization and one of the directions within (111)
plane: [ ]112 , [ ]121 , or [ ]211 . Particular numerical calculations show
that the constant C is positive when conditions of the spectrum
stability (25) and (26) hold. Then, the minimum of the anisotropic
correction (33) is achieved when the staggered magnetization is
directed along [ ]112 , [ ]121 , or [ ]211 (easy directions).

Notice that we use Eqs. (29) for Eq and Bq in Eqs. (35) rather
than their bare values (12) at ω = 00 . The reason for that is the
following. Let us consider first the case of ≠+ −J J1 1 and ω ⪡| − |− +J J0 1 1 .
Neglecting quantum renormalization of Eq and Bq, one finds

+ = − =E B J J 0q q q k0
only at =q k0 so that the denominator of the

summand in Eq. (35) is proportional to | − |q k0
5 at ∼q k0. Taking

into account Eqs. (14), one expects that numerator of the sum-
mand in Eq. (35) is proportional to at least | − |q k0

3 at ∼q k0. Then,
the singularity of the summand at =q k0 is summable and it is not
required to take into account the small renormalization of Eq and
Bq if ≠+ −J J1 1 and ω ⪡| − |− +J J0 1 1 . However, the situation changes at

= =+ −J J J1 1 1 because three extra points arise at which − =J J 0q k0
:

π= ( )q , 0, 0 , π( )0, , 0 , and π( )0, 0, ( − = ( − )+ −J J J J8q k 1 10
at such q).

It can be shown that + =͠ ααQ 0q at these points so that the last two
terms in the brackets in Eq. (35) are negligible in comparison with
the first one that is equal to η ω64 3

0
3 at such q, where η is given by

Eq. (17). As a result, singularities of the summand in Eq. (35) are
not summable at π= ( )q , 0, 0 , π( )0, , 0 , and π( )0, 0, when =+ −J J1 1 .
Then, we have to carry out calculations self-consistently by taking
into account the renormalization of Eq and Bq that leads to gaps in
the considered momenta screening the singularities in Eq. (35).
Then, the range of validity of the expansion in powers of ω0 reads
at ω | − |− +J J0 1 1 as ω ⪡| |±S J J,0 1 2.

As soon as the rotational invariance is lifted in (111) planes by
quantum fluctuations, one can naturally expect that quantum
corrections of the first order in S1/ lead also to the gap in the
gapless branch of the magnon spectrum. This expectation is rea-
lized in other Heisenberg magnets with dipolar forces [25–28].
These previous calculations show that the gap in the magnon
spectrum (but not the magnon damping) can be found in the spin-
wave approximation by taking into account the anisotropy phe-
nomenologically, i.e., by adding to the Hamiltonian a one-ion an-
isotropy modeling that of the fluctuation origin. In the present
case, this effective anisotropy is obtained from Eq. (33) by ex-
panding φcos 32 and replacing φcos and φsin by Si

z and Si
y (or

Si
x), respectively. As a result one has for the effective anisotropy
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This term leads to the following renormalization of coefficients Ek

and Bk in the bilinear part of the Hamiltonian (11):
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As a result of this renormalization, one obtains for the gap square
in the branch ϵ−
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It is important also to take into account quantum correction to
the value K1 of the easy-plane dipolar anisotropy (16) which ac-
quires the form in the first order in S1/ and in the leading order in
ω0
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The gap Δþ given by Eq. (24) is renormalized accordingly (see
discussion at the end of Section 3):

Δ = ( + ) ( )+
+J J K36 , 402
1 2 1

where K1 is given by Eq. (39). Quantum fluctuations reduce K1 and
Δþ and give noticeable corrections to these quantities which are
important for description of experimental results (see below).
While classical expressions (16) and (24) for K1 and Δþ are well
known, we are not aware of a discussion of their quantum re-
normalization. Then, Eqs. (39) and (40) are an extension of the
previous analysis.
6. Comparison with experiment

Values of gaps Δþ and Δ� obtained theoretically using
Eqs. (38) and (40) and measured experimentally are summarized
in the Table 1. It is seen from the Table 1 that in accordance with
previous results Δþ is determined by the easy-plane anisotropy of
the dipolar origin. One can see also that quantum corrections to
the easy-plane anisotropy and to Δþ given by Eqs. (39) and (40)
move theoretical results closer to experimental ones (except for α-
MnSe)).

We have calculated Δ� using Eq. (38) with constants C ob-
tained in two ways (the last two columns in the Table 1): by ex-
panding Eq. (32) to the third order in ω0 (i.e., using Eq. (35)) and
from the analysis of Eq. (32) not using the ω0-expansion. It is seen
from the Table 1 that the ω0-expansion does not work in EuTe and
EuSe because exchange constants are comparable with ω0 in these
substances.

Unfortunately, in contrast to Δþ , values of Δ� obtained using
different experimental data deviate significantly from each other.
Ranges are presented in the Table 1 within which all values of Δ�
lie. Calculations of Δ� using Eqs. (35) and (38) demonstrate that
the dipolar contribution to Δ� is much smaller than values ob-
tained experimentally in MnO, α-MnS, and α-MnSe. Seemingly,
another mechanism is mainly responsible for the anisotropy in
(111) planes in these materials.

The situation is different in EuTe ( =S 7/2, = = −+ −J J 0.384 K1 1 ,
J2¼0.626 K, ω = 0.44 K0 , TN¼9.6 K) [15,29–31]. The phenomen-
ological expression for the gap in lower magnon branch which was
used in previous studies has the form Δ =− H H2 a E , where

= ( + )+H S J J6E 1 2 is the exchange field which was found to be



Table 1
Values of gaps Δþ and Δ� (in Kelvins) in two magnon branches of some relevant compounds. In the last two columns, values of Δ� are presented which are calculated using
Eq. (38) with constants C obtained by expansion of Eq. (32) to the third order in ω0 (Eq. (35)) and from the analysis of Eq. (32) without the ω0-expansion. The following
parameters are used in calculations: =S 5/2, =+J 10 K1 , =−J 8 K1 , =J 10 K2 , and ω = 1.44 K0 for MnO; [22,33] =S 5/2, = =+ −J J 7 K1 1 , =J 12 K2 , and ω = 0.89 K0 for α-MnS;

[34] =S 5/2, = =+ −J J 4.9 K1 1 , J2¼8.1 K, and ω = 0.77 K0 for α-MnSe; [35] =S 7/2, = = −+ −J J 0.384 K1 1 , J2¼0.626 K, and ω = 0.44 K0 for EuTe; [15] =S 7/2,

= = −+ −J J 0.446 K1 1 , J2¼0.456 K, and ω = 0.53 K0 for EuSe [15].

Δþ , experiment Δþ , theory with quantum
corrections (Eqs. (39) and
(40))

Δþ , theory without quan-
tum corrections (Eq. (24))

Δ� , experiment Δ� , theory (Eqs.
(32) and (38))

Δ� , theory, ω0-expansion (Eqs. (35)
and (38))

MnO 39.9 [36–38] 43.1 44.2 ÷0.6 1.5
[36,37,39]

0.09 0.11

α-MnS 28.6 [36] 31.5 33.1 4.7 [36] 0.07 0.06
α-MnSe 25.9 [35] 24.0 25.5 <8 [35] 0.07 0.05
EuTe 3.3 [29,30,40] 3.6 3.7 ÷0.06 0.17

[29,30,32]
0.03 0.07

EuSe – 0.75 0.82 – 0.008 0.015
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approximately 37 kOe (see Refs. [29–31] and references therein)
and Ha is the effective field of the in-plane anisotropy. The fol-
lowing values were obtained experimentally for Ha: 874 Oe (Ref.
[30]), ±12.4 1.4 Oe (Ref. [29]), ±15 1 Oe (Ref. [32]), and

±19.2 3 Oe (Ref. [29]) at T¼1.17 K, 1.8 K, 2 K, and 4.2 K, respec-
tively. These data indicate that Δ� lies in the range

− −0.06 0.17 K. Our calculations based on the analysis of Eq. (32)
and on Eq. (38) lead to Δ ≈− 0.03 K. Then, one can expect that the
order-by-disorder mechanism contributes noticeably to the in-
plane anisotropy in EuTe. However, further experimental activity is
needed to find a more precise value of K2 in this compound. It
would be interesting also to compare our results with experi-
mental ones in another relevant material containing Eu, EuSe, but
we are not aware of corresponding experiments.
7. Summary and conclusion

In summary, we discuss Heisenberg antiferromagnet (1) on
face-centered cubic lattice with small dipolar interaction in which
the next-nearest-neighbor exchange coupling dominates over the
nearest-neighbor one.

In the limit of zero dipolar interaction, it is well known that a
collinear magnetic structure is stabilized via order-by-disorder
mechanism containing (111) ferromagnetic planes arranged anti-
ferromagnetically along one of the space diagonals of the cube:
quantum fluctuations stabilize the collinear arrangement of four
interpenetrating AF sublattices in which the fcc lattice can be di-
vided. Four possible (equivalent) magnetic structures of this type
are described by vectors π π π= ( )k , ,0 , π( ), 0, 0 , π( )0, , 0 , and

π( )0, 0, . For definiteness, we consider the magnetic structure de-
scribed by vector π π π= ( )k , ,0 . On the mean-field level, the
magnon spectrum is gapless at =k 0, π π π( ), , , π( ), 0, 0 , π( )0, , 0 ,
and π( )0, 0, (see Eqs. (27) and (12) at ω = 00 ). However quantum
fluctuations lead to gap (31) at the last three points that is related
to the stabilization by quantum fluctuations of the collinear ar-
rangement of four AF sublattices.

On the mean-field level, we find in accordance with previous
results that the dipolar interaction forces spins to lie within (111)
plane. We show that the dipolar interaction splits the magnon
spectrum into two branches, ϵ+

k and ϵ−
k (see Eqs. (19) and (20)).

Branch ϵ+
k has gap Δþ that is related to the easy-plane anisotropy

(see Eqs. (22)–(24)). Another branch is gapless in the spin-wave
approximation: ϵ =− 0k at =k 0 and k0 (see Eqs. (21) and (23)). We
show that the order-by-disorder mechanism leads also to the an-
isotropy in the easy plane (33) which was observed experimen-
tally in relevant compounds MnO, α-MnS, α-MnSe, EuTe, and
EuSe. The branch ϵ−

k acquires gap Δ� (38) in the first order in S1/
that is related with the in-plane anisotropy. Eqs. (34) and (35) give
analytical expressions for the value of the in-plane anisotropy ei-
ther at ω ⪡| − |− +J J0 1 1 or at ω ⪡| |±S J J,0 1 2 if ω | − |− +J J0 1 1 .

We compare in the Table 1 values for gaps Δ± found using
expressions derived above with those obtained experimentally in
MnO, α-MnS, α-MnSe, and EuTe. The wide scatter of values of Δ�
derived using different experimental data prevents from making
definite conclusion about the origin of the in-plane anisotropy.
Then, further experimental activity is needed to find more precise
values of K2 in these materials. Apparently, the order-by-disorder
mechanism gives negligible contribution to the in-plane aniso-
tropy in compounds containing Mn whereas it can give noticeable
contribution in EuTe.

We calculate also the first S1/ correction to the value of the easy
plane anisotropy and to Δþ that improves agreement between
experimental data and the theory in all materials except for α-
MnSe (see Eqs. (30) and (40) and the Table 1).
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