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Abstract

Quantum phase transitions have been the subject of intense investigations in the last two decades. Among other problems, these phase

transitions are relevant in the study of heavy fermion systems, high-temperature superconductors and Bose–Einstein condensates. More

recently there is increasing evidence that in many systems which are close to a quantum critical point (QCP) different phases are in

competition. In this paper we show that the main effect of this competition is to give rise to inhomogeneous behavior associated with

quantum first-order transitions. These effects are described theoretically using an action that takes into account the competition between

different order parameters. The method of the effective potential is used to calculate the quantum corrections to the classical functional.

These corrections generally change the nature of the QCP and give rise to interesting effects even in the presence of non-critical

fluctuations. An unexpected result is the appearance of an inhomogeneous phase with two values of the order parameter separated by a

first-order transition. Finally, we discuss the universal behavior of systems with a weak first-order zero temperature transition in

particular as the transition point is approached from finite temperatures. The thermodynamic behavior along this line is obtained and

shown to present universal features.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum phase transitions have been intensively studied
in the last two decades [1]. From a purely theoretical
curiosity it became a field of intense experimental activity
in different areas of condensed matter physics. The basic
concept in this field is that of a quantum critical point
(QCP). This is an unstable fixed point which separates a
phase with long range order from a disordered phase at
zero temperature [2,3]. A fundamental distinction between
this type of critical point and that associated with thermal
phase transitions is the special role that time plays as an
additional dimension. This is explicitly manifested in the
quantum hyperscaling law, 2� a ¼ nðd þ zÞ which relates
- see front matter r 2006 Elsevier B.V. All rights reserved.
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the dimension of the system d to the usual exponents a of
the singular part of the free energy density and n the
correlation length exponent [3,4]. The new feature here is
the appearance of the dynamic exponent z that arises from
the time directions. This appears in the suggestive form of
an effective dimension deff ¼ d þ z which in fact controls
the character of the quantum fluctuations and has most
important consequences. For many problems of interest in
the laboratory deff turns out to be larger or equal to the
upper critical dimension dc of the problem and conse-
quently all critical exponents are well known. In this case,
knowledge of the dynamic exponent is sufficient to
characterize the universality class of the quantum phase
transition.
The scaling form of the free energy density close to a

QCP is given by [3]

f / jgj2�aF
T

jgjnz ;
h

jgjbþg

� �
, (1)

www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2006.10.765
mailto:mucio@if.uff.br
http://www.if.uff.br/&sim;mucio/
http://www.if.uff.br/&sim;mucio/


ARTICLE IN PRESS
M.A. Continentino, A.S. Ferreira / Journal of Magnetism and Magnetic Materials 310 (2007) 828–834 829
where g measures the distance to the QCP ðg ¼ 0Þ. This
expression allows to obtain the dominant thermodynamic
behavior of the system in the vicinity of the QCP. The field
h is that conjugated to the order parameter and the
exponents a;b; g; n are the usual critical exponents related
by standard scaling laws [3]. Only the hyperscaling relation
is modified as discussed above. For deff4dc there may be
dangerously irrelevant interactions which influence the
critical behavior [5], in particular, along the quantum
critical trajectory g ¼ 0; T ! 0 and determine the critical
line of finite temperature phase transitions [5].

However, recent works [6] are showing that, this is not
all there is about quantum phase transitions with
deffXd þ z. The region close to a QCP seems to be a
turbulent zone where many phases compete. The intensity
of magnetic fluctuations near a magnetic QCP provides an
additional mechanism for pair formation that favors the
appearance of superconductivity [7]. In Kondo lattices
local Kondo fluctuations may interfere with the long-range
magnetic correlations close to the magnetic QCP [8]. In
field-induced Bose–Einstein transitions in magnetic sys-
tems, soft elastic modes can couple to the spin-wave
excitations with effects on the critical behavior [9]. Soft
modes due to generic scaling invariance may also change
the critical behavior [10] and gauge fluctuations can affect
charged systems in the vicinity of their quantum phase
transitions [11]. Common to all these cases is that in the
region of the phase diagram close to a QCP there is a
competition of different types of fluctuations. Our aim here
is to study the effects of this competition. In condensed
matter physics, the most well–known example of fluctua-
tions of another field interfering with a phase transition is
that of the electromagnetic field on the thermal super-
conducting transition [11]. The quantum equivalent of this
effect is known in quantum field theory as the Coleman–
Weinberg mechanism [12].
2. Coleman–Weinberg mechanism in condensed matter

In the solid-state version of the Coleman–Weinberg
mechanism [12], we consider a superconductor at T ¼ 0
represented by a complex field ðj1;j2Þ coupled to the
electromagnetic field [3,13]. The Lagrangian density of the
model is given by

L ¼ � 1
4
ðFmnÞ

2
þ 1

2
ðqmj1 þ qAmj2Þ

2
þ 1

2
ðqmj2 � qAmj1Þ

2

� 1
2
m2ðj2

1 þ j2
2Þ �

l
4!
ðj2

1 þ j2
2Þ

2. ð2Þ

We are using _ ¼ c ¼ 1 units and the indices m; n run from 0
to d ¼ 3. In Eq. (2) space and time are isotropic and
consequently the dynamic critical exponent z ¼ 1. For a
neutral superfluid ðq ¼ 0Þ the system decouples from the
electromagnetic field and has a continuous, zero tempera-
ture superfluid–insulator transition at m2 ¼ 0 (see Fig. 5).

The method of the effective potential [3] yields the
quantum corrections to the action given by the Lagrangian
density of Eq. (2). At T ¼ 0 in the one loop approximation,
the effective potential close to the transition ðm � 0Þ is
given by [3]

V eff ¼
1

2
m2j2 �

m2

4hji2
j4 þ

3q4

64p2
j4 ln

j2

hji2

� �
�

1

2

� �
, (3)

where hji is the minimum of the effective potential. We can
show [14,15] that the condition for such a minimum to exist
is lL5x, where x is the coherence length and lL the
London penetration depth as usually defined for Ginzbur-
g–Landau models. In this case we find [14] that at a critical
value of the mass, given by

m2
c ¼

3q4

32p2
hji2 (4)

there is a first-order transition to a superconducting state.
Notice that the transition in the neutral superfluid ðq ¼ 0Þ
is continuous rather than first-order and takes place at
m2 ¼ 0. Therefore, the coupling to the electromagnetic field
in the charged superfluid lead to symmetry breaking,
shifting the transition of the neutral superfluid (see Fig. 5)
and changing its nature from continuous to first-order. The
shift of the transition Eq. (4) depends on the coupling of
the order parameter to the soft modes, in the present case,
the charge q of the Cooper pairs.
Finally, we point out that the coupling l has disappeared

from Eq. (3) for the effective potential due to dimensional

transmutation [12].
3. Competition between superconductivity and

antiferromagnetism

In this section we show that weak first-order quantum
phase transitions (WFOQPT) and spontaneous symmetry
breaking can also occur due to the competition between
different types of instabilities in the same region of the
phase diagram.
We consider a Ginzburg–Landau model which is

appropriate to describe the competition between super-
conductivity (SC) and antiferromagnetism in a heavy
fermion metal. The model contains three real fields. Two
fields, f1 and f2, correspond to the two components of the
superconductor order parameter. The other field f3, for
simplicity represents a one component antiferromagnetic
(AF) order parameter. The free functional of the magnetic
part [16] takes into account the dissipative nature of the
paramagnons near the magnetic phase transition in the
metal [2] and is associated with the propagator,

D0ðo; qÞ ¼
i

ijojt� q2 �m2
p

, (5)

where t is a characteristic relaxation time and m2
p gives the

distance to the magnetic transition. The quadratic form of
the superconductor, the same used in the previous section,
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is given by

G0ðkÞ ¼ G0ðo; qÞ ¼
i

k2
�m2

. (6)

The part of the action associated with the classical
potential is

V clðf1;f2;f3Þ ¼
1
2
m2ðf2

1 þ f2
2Þ þ

1
2
m2

pf
2
3

þ V sðf1;f2Þ þ Vpðf3Þ þ Viðf1;f2;f3Þ,

ð7Þ

where the self-interaction of the superconductor field is

V sðf1;f2Þ ¼
l
4!
ðf2

1 þ f2
2Þ

2 (8)

and that of the antiferromagnet,

Vpðf3Þ ¼
g

4!
f4
3. (9)

Finally, the last term is the (minimum) interaction between
the relevant fields,

Viðf1;f2;f3Þ ¼ uðf2
1 þ f2

2Þf
2
3. (10)

This term is the first allowed by symmetry on a series
expansion of the interaction. Notice that for u40, which is
the case here, superconductivity and antiferromagnetism
are in competition and this term does not break any
symmetry of the original model. However, including
quantum fluctuations we show that spontaneous symmetry
breaking can occur in the normal phase separating the SC
and AF phases.

The first quantum correction to the potential can be
obtained by the summation of all one loop diagrams
(Fig. 1).

We apply the general method proposed by Coleman and
Weinberg [12] with minimum modifications to account for
the different nature of the propagators in our problem. The
sum over the field indices can be easily done if we define a
vertex matrix M, given by

½M�lm ¼ �iK
l
0

q2V cl

qflqfm

����
ffg¼ffcg

(11)

and then take the trace. In Eq. (11) the propagators
(Kl

0 ¼ G0 or D0) are incorporated in the definition of the
matrix. We draw the loops with arrows and choose the
outgoing propagator of each vertex to be included in the
associated element. The matrix M is then obtained deriving
the classical potential with respect to the fields ffg and
taking the values of these derivatives at the classical values
of the fields, fficg. The sum of diagrams with the correct
Wick factors is formally done in momentum space and
+ + +

α
α

αβ

3
+

3

+

α

3

Fig. 1. One loop diagrams contributing to the effective potential.
using the property of the trace

Tr½lnð1�MÞ� ¼ ln det½ð1�MÞ�, (12)

we get

V ð1Þ½fc� ¼
i

2
_

Z
d4k ln det½1�MðkÞ�. (13)

The 3� 3 matrix M can be simplified if we choose the
classical minimum of the superconductor fields imposing
f2c ¼ 0 (this can be done because the minimum depends
only on the modulus f2

1c þ f2
2c). Hence, rotating to

Euclidean space, so that, k2
¼ o2 þ q2 and using _ ¼ 1

unit the first quantum correction can be written as

V ð1Þðf1c;f3cÞ ¼
1

2

Z
d4k

ð2pÞ4
ln 1þ

Aðf1c;f3cÞ

k2
þm2

� ��

þ ln 1þ
Bðf1c;f3cÞ

k2
þm2

� �
1þ

Cðf1c;f3cÞ

jojtþ q2 þm2
p

 !"

�
D2ðf1c;f3cÞ

ðk2
þm2Þðjojtþ q2 þm2

pÞ

 !#)
, ð14Þ

where

Aðf1c;f3cÞ ¼ ðl=6Þf
2
1c þ 2uf2

3c, ð15Þ

Bðf1c;f3cÞ ¼ ðl=2Þf
2
1c þ 2uf2

3c, ð16Þ

Cðf1c;f3cÞ ¼ 2uf2
1c þ ðg=2Þf

2
3c, ð17Þ

Dðf1c;f3cÞ ¼ 4uf1cf3c. ð18Þ

The total effective potential with first-order quantum
corrections is then given by

V eff ðf1c;f3cÞ ¼ V clðf1c;f3cÞ þ V ð1Þðf1c;f3cÞ, (19)

where V cl is the classical potential of Eq. (7) and V ð1Þ is the
first quantum correction of order _ of Eq. (14).

3.1. Superconducting transition

We first consider the effect on the superconductor
transition in HF in the presence of antiferromagnetic
paramagnons ðf1ca0;f3c ¼ 0Þ. Detailed calculation of the
effective potential have already been presented [16]. The
general result is given by

V eff ðfcÞ �
1

2
M2f2

1c þ am2
pf

2
1cjf1cj þ

~l
4!
f4
1c þ Oðf5

Þ. (20)

In Eq. (20), M is a renormalized superconducting mass and
~l a renormalized coupling, of the same order of the bare
coupling l. The new coupling a introduced by fluctuations
can produce a symmetry breaking in the normal state
extending the SC region in the phase diagram at T ¼ 0.
The same mechanism turns the superconducting transition,
which was continuous before coupling to the paramag-
nons, to weak first order with a small latent heat [15].
Introducing again the coherence length x and the London
penetration depth lL we can show that the condition for
the existence of minima away from the origin is equivalent
to lL5x as in the previous case [16]. It is also interesting to
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Fig. 2. New minima appear in the potential for um2a0. The effective

potential is shown here for two situations: for M2
p ¼Mc2

p , where the first-

order transition from LMAF to SMAF occurs and these two states

become degenerate and for the spinodal point at which the LMAF

becomes unstable inside the SMAF phase.
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notice that the first-order transition is produced by the
cubic term in Eq. (20) and this term is proportional to the
magnetic mass mp. If magnetic fluctuations were critical,
i.e., mp ¼ 0, the only effect of the coupling would appear as
a term proportional to f5. This term is usually neglected
since its power is higher than those initially considered in
the classical potential and usually insufficient to create new
minima around the origin. Therefore, if AF fluctuations
were critical the effects of the quantum corrections in the
transition could be neglected.

3.2. Antiferromagnetic transition

We now study the effect of SC fluctuations in the
magnetic transition ðf1c ¼ 0;f3ca0Þ. We consider two
kinds of quadratic forms associated with the free super-
conducting fields. The first is the usual Lorentz invariant-
free action used before. Next, we work with another free
action which takes into account dissipation and is
associated with a z ¼ 2 dynamics [17–19].

Let us first study the case of the Lorentz invariant
propagator. Close to the AF transition we have [16]

V eff ðf3cÞ �
1

2
M2

pf
2
3c þ

~g

4!
f4
3c þ ~u2f4

3c ln
f2
3c

hf3i
2

� �

þ ~um2f2
3c ln

f2
3c

hf3i
2

� �
. ð21Þ

Notice from Eq. (21) that if the SC fluctuations were
critical, i.e., m2 ¼ 0, we would obtain the same result of Eq.
(3), i.e., a fluctuation induced quantum first-order transi-
tion. However, if the SC fluctuations are not critical but
close to criticality the last term of Eq. (21) may become
important. Of course, its relevance depends on the strength
of the renormalized coupling ~u and the results considering
this term lead to new and interesting changes in the ground
state. We obtain, besides the two finite minima of the
Coleman–Weinberg potential of Eq. (3), two extra minima
very close to the origin [16]. The states associated with
these minima have a small value of the order parameter,
the sub-lattice magnetization. An additional first-order
transition occurs when the other two minima away from
the origin become the stable ones as the system moves away
from the superconductor instability (Fig. 2). This transition
is from a small moment AF (SMAF) to a large moment AF
(LMAF) and occurs even before the continuous mean field
transition. When we move away from the magnetic
transition, i.e., towards the superconducting instability,
the strength of this new term decreases with the value of m2

and the two new minima move to the origin producing a
normal state with vanishing sub-lattice magnetization
again. Notice that the SMAF phase is obtained because
the magnetic order parameter couples to superconducting
fluctuations which are non-critical. Critical fluctuations
yield the same results of Section 2.

Now, for many cases of interest, SC fluctuations are
better described by a dissipative propagator associated
with a z ¼ 2 dynamics [17,18] similar to Eq. (5). This is
useful to account for pair breaking interactions, as
magnetic impurities that can destroy superconductivity
[19]. It is given by

G0ðo; qÞ ¼
i

ijojt0 � q2 �m2
. (22)

The parameter m2 is still related to the distance from the
SC phase transition and we have a relaxation time t0.
Calculation of the effective potential is very similar to the
previous cases and the result has the form

V eff ¼
1

2
M2

pf
2
3 þ

1

4!
~gf4

3 þ
1

15p2
ð2uf2

3 þm2Þ
5=2 (23)

with a renormalized magnetic mass Mp and coupling ~g.
Quantum corrections can once again produce a weak first-
order transition. An analysis of the extrema of the effective
potential Eq. (23) shows that the transition can be first
order depending on the coupling values. The appearance of
SMAF phases is not possible in this case.

4. Coupling to local modes

We now study the coupling of AF fluctuations to local
modes in a three-dimensional system. This model is useful
to describe the QCP of heavy fermions where local modes
can coexist with antiferromagnetic fluctuations. The local
modes can be either Kondo [8] or valence fluctuations [20].
The local propagator in Euclidean space is written as

GLðoÞ ¼
1

m2
L þ joj=t

, (24)

where m2
L gives the distance to the QCP and t is associated

with the lifetime of the excitations. For the AF para-
magnons, we have

Gpðo; qÞ ¼ GpðkÞ ¼
1

m2
p þ q2 þ joj

. (25)
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Fig. 3. For m2
L ¼ 0 there is a first order transition to the antiferromagnetic

phase [21].
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Fig. 4. For m2
La0 new minima appear close to the origin [21].
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The action is

S ¼

Z
d4k G�1p ðkÞjcj

2 þ
g

12
jcj4 þ G�1L ðoÞjfj

2

�

þ
l
12
jfj4 þ

u

2
jfj2jcj2

�
. ð26Þ

Let us consider one component fields, the classical
potential (not including the mass terms) is given by

V clðf;cÞ ¼
g

12
c4
þ

l
12

f4
þ

u

2
f2c2 (27)

and the effective potential by

V ð1ÞðccÞ ¼
1

2

Z
d4k

ð2pÞ4
ln 1þ

uc2
c

m2
L þ joj=t

� �

þ
1

2

Z
d4k

ð2pÞ4
1þ

gc2
c

m2
p þ q2 þ joj

 !
þ � � � , ð28Þ

where the dots represent counter-terms [21]. The integra-
tion in o in the first integral can be performed using a cut-
off, Lz �m2

Lt ðz ¼ 2Þ. However, the integral over dq
diverges when L!1 and this term is non-renormalizable
unless we introduce a cut-off qc and for later purposes
~t ¼ ð4q3

cÞ=ð3pÞ.

4.1. Case m2
L � ~tu2

In this case the analysis of the renormalized effective
potential shows that, as for the classical potential, there is a
second-order phase transition at m2

p ¼ 0 and the coupling
to the local modes has no significant effects.

4.2. Case m2
L5~tu2

This is the most interesting case. The renormalized
effective potential after dimensional transmutation is
given by

V eff ðcÞ ¼ ~M
2

pc
2
þ ~Gc4

þ
p2

ð2pÞ4
� ~tuc2 ln

c2

hci2

� �2
4

þ
8

15
�
6m2

pp
2 þ ~tu

hci2p2
c2
þm2

p

 !5=2

� ~tm2
L lnðuc

2
Þ

3
5,
ð29Þ

where the renormalized quantities ~M
2

p and ~G are indepen-
dent of g [21]. In this case we find there is no transition for
m2

pX0, such that, there is no dynamic symmetry breaking.
A first-order transition occurs for negative values of m2

p, at
a critical value mc

p
2 which has to be obtained numerically.

The limit of stability of the minima of the effective
potential (spinodal) is given by, m2

p;sp ¼ �ð~tuÞ=ð4p2Þ, with
m2

p;sp4mc
p
2. For the particular case m2

L ¼ 0 there is a first-
order transition between the paramagnetic and antiferro-
magnetic phases, as shown in Fig. 3. Then, even in 3d,
when the transitions coincide the magnetic transition
becomes first order due to the effect of the critical local
fluctuations. Now, for m2

L small but a0, the phase diagram
changes drastically since new minima appear in the
potential close to the origin. These minima which
correspond to small values of the order parameter (SMAF)
can coexist with those associated with the large values of
this parameter (LMAF). As m2

p further decreases there is a
first-order transition between the SMAF and LMAF
phases (see Fig. 4).

5. Scaling at a weak first-order quantum transition

At a first-order transition there is no true critical
behavior since the correlation length does not diverge.
However it turned out to be useful in developing a scaling
approach for these transitions in the classical case [22]. As
we show below the same is true for first-order quantum
phase transitions. This is particularly useful for WFOQPT
where we expect the correlation length and characteristic
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time to become very large. The best way to introduce these
ideas is to consider a specific case, for example, the
Coleman–Weinberg transition of Section 2.

Introducing a parameter g ¼ m2 �m2
c which measures

the distance to the first order transition at mc, we can write
Eq. (3) for the effective potential at T ¼ 0 and for g small
as

V eff ¼
1
4hji

2jm2 �m2
c j / jgj

2�a (30)

with the exponent a ¼ 1 reflecting the fact the transition is
first order [13]. The associated latent heat is Lh ¼

1
4m

2
chji

2.
Spinodal points at T ¼ 0 can also be calculated [13].

The finite temperature case can be studied replacing the
frequency integrations in the calculation of the effective
potential by sums over Matsubara frequencies [3]. The
effective potential at finite temperatures close to the
transition can be written as [13]

V eff ðTÞ ¼
1

4
m2hji2jgj 1þ

2

p2m2hji2
Tdþ1

jgj
Id

MðjÞ
T

� �� �
,

where the integral I is given by

IdðyÞ ¼

Z 1
0

dx xd�1 ln 1� e�
ffiffiffiffiffiffiffiffiffiffi
x2þy2
ph i

(31)

and MðjÞ ¼ m2 þ q2j2. The function I3ðyÞ ¼ IðyÞ can be
obtained numerically integrating Eq. (31).

The finite temperature phase diagram is shown in Fig. 5.
For completeness we show the critical line of the neutral
superfluid, TSF / jm

2jc, which is governed by the shift
exponent c�1 ¼ z=ðd þ z� 2Þ ¼ 1

2
in d ¼ 3 (see Ref. [3]).

The new line of first-order transitions is given by
T c /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c � jm
2j

p
.

We will now consider the system sitting at the new
quantum phase transition point, i.e., at m2 ¼ m2

c and
decrease the temperature. For high temperatures, T � mc,
T

Superfluid

q=0

Critical Line

Neutral Superfluid

Line of First Order

Transitions TX

I
Scaling Regime

II

III

q ≠ 0

m2m2
c0

Fig. 5. Phase diagram of a charged superfluid coupled to photons. For

completeness we also show the critical line of the neutral superfluid. Along

the trajectory m2 ¼ m2
c one can distinguish different regimes as explained

in the text.
which corresponds to the regime I of Fig. 5, the function
I3ðyÞ saturates, I3ðyo0:12Þ � �2:16. In this case the
effective potential

V eff ðTÞ �
1

4
m2hji2jgj 1�

4:32

p2m2hji2
Tdþ1

jgj

� 	

and can be cast in the scaling form,

V eff ðTÞ / jgj
2�aF

T

T�

� �

with F ð0Þ ¼ constant. This scaling form is reminiscent of
that for the free energy close to a QCP. In the present case
of a discontinuous zero temperature transition, the critical
exponent [13] a ¼ 1 and the characteristic temperature is

T� / jgj
nz / jgjz=ðdþzÞ ¼ jgj1=ðdþ1Þ ¼ jgj1=4

with n ¼ 1=ðd þ zÞ [13]. In this regime I or scaling regime,
along the line m2 ¼ m2

c shown in Fig. 5, the free energy
density has therefore the scaling form f ðm ¼ mc;TÞ /
T ðdþzÞ=z and the specific heat is given by

C=T jðm¼mc;TÞ / T ðd�zÞ=z. (32)

Then the thermodynamic behavior along the line m2 ¼ m2
c

in regime I ðT � mcÞ is the same as when approaching the
QCP of the neutral superfluid, along the critical trajectory
m2 ¼ 0. The system is unaware of the change in the nature
of the zero temperature transition and at such high
temperatures charge is irrelevant.
When further decreasing temperature along the line

m2 ¼ m2
c there is an intermediate, non-universal regime

(regime II in Fig. 5). In the present case for T�mc the
specific heat C=Td=z / ln T [13].
Finally, at very low temperatures, for T 	 mc and

m2 ¼ m2
c , i.e., in regime III of Fig. 5, the specific heat

vanishes exponentially with temperature, C=Td=z

/ expð�mc=TÞ. The gap for thermal excitations is given
by the shift mc of the quantum phase transition. The
correlation length which grows along the line m2 ¼ m2

c with
decreasing temperature reaches saturation in regime III at
a value xS which is function of the inverse of the gap. The
exponential dependence of the specific heat is due to
gapped excitations inside superconducting bubbles of finite
size xS / m

�1=z
c .

Although the results above have been obtained for the
model of Section 2, the behavior in the scaling regime I and
III should be universal and characteristic of any weak first-
order quantum transition. Notice that the relevant critical
exponents which determine the scaling behavior in
particular in regime I are those associated with the QCP
of the uncoupled system which in the present case is the
neutral superfluid.
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