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The formation of the localized magnetic moments is studied due to the presence of two-impurities in the
two sublattices of a single-layer graphene sheet. The interaction between two similar magnetic impuri-
ties and also the hybridizations are decisive in determining the boundary between the magnetic and the
non-magnetic states. A strong chemical potential dependence of the above phase boundary is evident. An
anomalous scaling of the boundary separating the above regions is more pronounced in the two-impurity
case when compared to that of the single impurity.
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1. Introduction

The pioneering work of Andre Geim and Kostya Novoselov [1]
has triggered a huge interest in the scientific community to study
graphene, mainly motivated by their unusual electronic properties,
such as the behavior of non-massive chiral Dirac fermion at low
excitation energies. The high-electron mobility in graphene and
its planar structure make it suitable for applications in nanoscience
and nanotechnology leading to a new era of carbon-based
electronics.

Graphene, a two-dimensional allotrope of carbon with the sp2

hybridization state is distributed in a hexagonal lattice formed by
two interpenetrating triangular sublattices, A and B. In the lattice
plane, the s and p orbitals of the carbon atom form covalent bonds
and thus provide a high mechanical strength to graphene. The
remaining p orbitals of the carbon atoms in each sublattice, in
the direction perpendicular to the plane of the lattice, hybridize,
forming a conduction and a valence energy bands, known as p�

and p bands, respectively. The hexagonal distribution results in
two bands that touch each other at two high-symmetry points in
the Brillouin zone, K and K 0, known as Dirac points, thereby leading
to a zero gap semiconductor. Around these points the dispersion

relation is given by E ¼ ��hvF j~k j, with the energy E varying lin-

early as a function of the moment~k, where �h is the reduced Planck
constant and vF is the Fermi velocity. Hence, it is similar to the
dispersion relation of the photon, with the speed of light c playing
the role of the velocity of the electrons in the Fermi level of gra-
phene. As a two-dimensional Dirac fermion system, graphene pre-
sents unconventional and interesting electronic behavior. For
instance, graphene shows a minimum conductivity of about e2=h,
an anomalous quantum Hall effect and a nonzero cyclotron mass
mc described by E ¼ mcv2

F , although from the linear spectrum of
fermion in graphene it would be zero. This similarity with Dirac
fermions enables the prediction of the properties of the charge car-
riers in graphene from the relativistic Dirac equation, such as tun-
neling through a potential barrier without any reflection, which is
known as Klein’s paradox.

Impurity states are regarded as important contributors to the
unusual and singular properties of graphene [2,3]. In the last few
years there has been an increased attention to study the effect of
magnetic adatom in a pristine graphene due to its potential use
in spintronics. Doping with magnetic impurities could envisage
the creation of local spins in graphene including the possibility of
opening a gap. Recent progress in scanning tunneling microscopy
made it possible to position adatoms in graphene and image the
impurity states with high spatial resolution [4]. Various studies
have been performed to characterize the necessary conditions
under which the transition metal adatom on graphene can form
localized magnetic moment. A systematic first-principles study of
transition metals from Sc to Zn, including nonmagnetic adatoms
Cu and Au, embedded in graphene has also been performed [5].
Isolated hydrogen atoms absorbed on graphene are predicted to
induce magnetic moments [6]. Recently, two identical impurities
on a zigzag nanoribbon has been studied to demonstrate that the
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chemical potential and the spin-orbit coupling could drive the
transition of the local-spin exchange from ferromagnetism to anti-
ferromagnetism [7]. The impurity interaction control via the
adjustment of the chemical potential has also been considered to
observe that a weak repulsion is observed when the two atoms
reside on the same sublattice and a stronger attraction when they
are on different sublattices [8]. Double impurities have also been
considered for local density of states calculations [9].

The presence of a magnetic adatom in a metal has been suc-
cessfully studied using the Anderson model [10,11], which
recently has been applied also to study magnetic moment for-
mation in graphene [7,12,13]. Depending on the relation
between the constitutive parameters of this model, the adatom
orbital can be empty, single or doubly occupied. In particular,
for temperatures higher than the Kondo temperature [14], there
is a formation of local magnetic moment when the adatom and
the conduction electrons are weakly hybridized and the Cou-
lomb interaction between the electrons in the adatom orbital
is greater than their binding energy. Moreover, for hybridiza-
tion energy higher than the electron binding energy the orbital
presents the valence fluctuation regime [14]. It has been
observed that the coupling of a adatom to a graphene sublat-
tice results in a much easier formation of magnetic moment
due to the anomalous broadening of the electronic levels of
the adatom [14]. In the present work we study the formation
of the local magnetic moments due to the presence of two sim-
ilar magnetic impurities in pristine graphene. The formation of
the magnetic states in the single-layer graphene can be seen to
depend on the interaction between the two impurities as
observed in metals [11]. Moreover, the anomalous scaling of
the magnetic boundary separating the magnetic and non-
magnetic states alike the single-impurity in graphene continues
to exist. The chemical-potential driven phase transition is also
considered.

2. The model

The model Hamiltonian of graphene with two impurities hybri-
dized with two sublattices of a single-layer graphene as shown in
Fig. 1 is written as

H ¼ HTB þ Hf þ HV ð1Þ
where HTB is the tight binding Hamiltonian of the graphene, Hf is
the impurity Hamiltonian, HV is the hybridization of the adatom
localized states with the graphene conduction electrons.

The tight binding Hamiltonian is given by

HTB ¼ �t
X
hi;jir;l

ayrðRiÞbrðRjÞ þ H:c:
� � ð2Þ
Fig. 1. Schematic diagram of the lattice structure of single layer graphene with two
impurity atoms, each one coupled to the lattices A and B, respectively, and to each
other.
where the operator arðRiÞ (brðRjÞ) annihilates a state with spin r at
the position RiðRjÞ on the sublattice A(B), hi; ji stands for summation
over the nearest neighbors and the parameter t is the nearest neigh-
bor hopping energy. In momentum space, we have

HTB ¼ �t
X
k;r

/ðkÞayk;rbk;r þ /ðkÞby
k;rak;r

h i
ð3Þ

where /ðkÞ ¼Pde
ik: �di with �d1 ¼ aðx̂=2þ

ffiffiffi
3

p
=2ŷÞ, �d2 ¼ aðx̂=2�

ffiffiffi
3

p
=2ŷÞ

and �d3 ¼ �ax̂ as the nearest neighbor vectors. a is the lattice
parameter. Diagonalizing the Hamiltonian (3) one generates
two bands ��ðkÞ ¼ �tj/ðkÞj, which can be linearized around
the Dirac points K at the corners of the Brillouin zone:
��ðKþ qÞ � �vF jqj, where vF ¼ 3ta=2 is the Fermi velocity of the
Dirac electrons.

The impurity Hamiltonian is described by

Hf ¼
X
r
�f ðf yarf ar þ f ybrf brÞ þ Uðna"na# þ nb"nb#Þ

þ Vabðf yarf br þ f ybrf arÞ; ð4Þ

where f yar (f ybr) is the creation operator of a state with a spin r ¼"; #
at the impurity of the sublattice A(B), nar ¼ f yarf ar and nbr ¼ f ybrf br
are the occupation number operators for the impurities in the sub-
lattices A and B respectively. �f is the energy of the adatom electron,
and U is the Coulomb interaction due to the double occupancy of an
energy level in the adatom. The impurities interact with each other
via the potential Vab. For simplicity we adopt a mean-field approx-
imation to the electronic correlations of the impurities,

Una"na# ¼ U
P

rhna�rif yarf ar � Uhna"ihna#i, where a ¼ a; b. Hence,
the impurity Hamiltonian can be rewritten as

Hf ¼
X
r
ð�arf yarf ar þ �brf

y
brf brÞ þ Vabf

y
arf br þ V y

abf
y
brf ar

where �ar ¼ �f þ Uhna�ri and �br ¼ �f þ Uhnb�ri. The impurity orbi-
tal of the sublattice B is sited at the origin of the sublattice B and
that of the sublattice A is at ra ¼ ar̂.

The hybridization of the impurity orbitals is given by

HV ¼ Vaffiffiffiffiffiffi
Na

p
X
k

eikxaaykrf ar þ Vbffiffiffiffiffiffi
Nb

p
X
k

by
krf br þ H:c; ð5Þ

where Na (Nb) denotes the number of atoms in the sublattice a (b),
Va and the Vb are the hybridization interactions of the impurities in
the sublattices A and B respectively.

3. The formalism

The formation of a magnetic moment depends on the occupa-
tion of the two spin states of the impurities. The localized
moment is formed when na" – na#. The interaction between the
impurities Vab is important to understand the relation between
the localized states of the single-layer graphene. The self-
consistent calculations of the density of states in the presence
of the hybridization and Vab is performed for the determination
of the occupation of the impurities. The occupation of the impu-
rity level can be determined by

nar ¼ 1
2p

Z l

�1
dxAafrðxÞ ð6Þ

where the spectral function is given by

AafrðxÞ ¼ �2IGR
afrðxÞ: ð7Þ

The single particle retarded Green’s function [15–18] of the f

electrons is GR
afrðtÞ ¼ �ihðtÞ f arðtÞ; f arðtÞ½ � and the Fourier transform

of that of the sublattice b can be written as



Fig. 2. Boundary between magnetic and non-magnetic phase in the variables
x ¼ DbD=U and y ¼ ðl� �f Þ=U for Va=D ¼ 0, Vb=D ¼ 0:14, Vab=D ¼ 0:0 and
l=D ¼ 0:015 (solid line), 0.028 (dashed line), 0.073 (dotted line), 0.1 (dashed-
dotted line) and 0.14 (dashed-double-dotted line).
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GR
bfrðxÞ ¼ x� �br � RbbðxÞ � ðkab þ VabÞðkba þ VbaÞ

x� �ar � RaaðxÞ þ iOþ
� ��1

ð8Þ
where

kab ¼
X
k

VaVb

2
ffiffiffiffiffiffiffiffiffiffiffi
NaNb

p
ffiffiffiffiffiffiffiffiffiffiffiffi
/ðkÞ
/�ðkÞ

s
e�ikxa 1

x��þðkÞþ i0þ �
1

x���ðkÞþ i0þ

� �

and

kba ¼
X
k

VaVb

2
ffiffiffiffiffiffiffiffiffiffiffi
NaNb

p
ffiffiffiffiffiffiffiffiffiffiffiffi
/�ðkÞ
/ðkÞ

s
eikxa

1
x��þðkÞþ i0þ �

1
x���ðkÞþ i0þ

� �

Upon linearization we observe that kab ¼ kba ¼ 0 [19] and
thereby Eq. (8) can be written as

GR
bfrðxÞ ¼ x� �br � RbbðxÞ � VabVba

x� �ar � RaaðxÞ þ iOþ
� ��1

ð9Þ

where

RbbðxÞ ¼ �V2
b

D2 x ln
jx2 � D2j

x2

 !
þ ipjxjhðD� jxjÞ

( )

and

RaaðxÞ ¼ �V2
a

D2 x ln
jx2 � D2j

x2

 !
þ ipjxjhðD� jxjÞ

( )
:

D is a high-energy cutoff of the order of the graphene band-
width chosen according to the Debye prescription [12]. We assume
also that l� D where the band effects does not depend on the
above cut-off. In the similar fashion we can also write down
GR

afrðxÞ and calculate the occupation of the spin dependent states
of the impurity interacting with the A sublattice. Thereby, we
can study the phase transition related to the magnetic moment for-
mations and also the individual occupation dependence on Vab and
also on the relative values of Va and Vb. As in [7], we observe a
chemical potential dependence of the magnetic regions and
occupation.

4. Results and discussion

In this section we present the phase diagram of the impurity
coupled to the B sublattice as a function of the parameters
x ¼ DbD=U and y ¼ ðl� �f Þ=U utilizing Eq. (9). A analogous phase
diagram of the impurity coupled to the A sublattice can be
obtained due to the similar nature of the impurities. The dimen-
sionless hybridizations for the two impurities are given by
Da ¼ pV2

a=D
2. For the sake of numerical calculation graphene is

represented by a bandwidth D ¼ 7:0 eV [12] and the lattice spacing
a ¼ 0:14 nm [20]. The dependence of the phase diagram on the
chemical potential and also Va;Vb and Vab are shown.

In Fig. 2. we exhibit the phase diagram for Va=D ¼ 0,
Vb=D ¼ 0:14, Vab=D ¼ 0:0. As Vab ¼ 0:0 simplifies Eq. (9), we
observe that the occupation does not depend on �ar. Hence, it
demonstrates the single-impurity case in single-layer graphene.
Similar situation should also be observed for the impurity coupled
to A. The chemical potential dependence of the boundary can be
observed as l=D varies as following: 0.015 (solid line), 0.028
(dashed line), 0.073 (dotted line), 0.1 (dashed-dotted line) and
0.14 (dashed-double-dotted line). We observe that unlike the
metallic case, the boundary is asymmetric around y = 0.5 and the
magnetic region decreases with the increase in l. This reveals
the particle-hole symmetry breaking due to the presence of the
localized state and also that the level magnetizes even when the
impurity is above the Fermi level.

In the presence of the hybridization interaction between the
adatom and the graphene A sublattice Va and the interaction
between the two impurities Vab the boundary between the mag-
netic and non-magnetic states of the B sub-lattice are studied in
Figs. 3–5 for two sets of the above interactions: (i) Va=D ¼ 0:14,
Vb=D ¼ 0:14 and (ii) Va=D ¼ 0:14, Vb=D ¼ 0:17.

In Fig. 3, the phase diagram as a function of x and y is studied for
l=D ¼ 0:015. The boundary for set (i) with Vab=D ¼ 0:014 (black
solid-line), Vab=D ¼ 0:029 (black dashed-line) and Vab=D ¼ 0:043
(black dotted-line) and that for set (ii) for Vab=D ¼ 0:014 (red
solid-line), Vab=D ¼ 0:029 (red dashed-line) and Vab=D ¼ 0:043
(red dotted-line) are demonstrated in (a) �ar=D ¼ 0:0, (b)
�ar=D ¼ 0:014, (c) �ar=D ¼ 0:029, (d) �ar=D ¼ 0:071, (e)
�ar=D ¼ 0:11 and (f) �ar=D ¼ 0:14.

In Fig. 3(a) for l > �ar we observe the symmetry to be differ-
ent as compared to that in Fig. 2. The y-values attains values
more than unity. The presence of the localized level occurs when
the impurity level of the B sublattice is below the Fermi level. In
Fig. 3(b), l � �ar, the boundary is symmetric around y ¼ 0:5
when compared to the other cases and is very similar to the case
of the metals. the x-values over which the localized moment
exists is the least among all the cases considered. However, as
l < �ar in (c)–(f) the symmetry of the boundary changes and
we observe negative values of y. Moreover, the x values gradu-
ally increases as we increase �ar. With the change is Vab the
magnetic phase decreases in all the cases. For, l� �ar in (d)–
(f) the nature of the boundaries are similar to each other and
the local moment formation takes place for impurity levels much
above the Fermi level. But the y values become more negative
with the increase in Vab. The effects of the impurity of the sub-
lattice A, the interaction Vab and the chemical potential on the
impurity of the sublattice B are demonstrated.

In Fig. 4 the phase diagram of the sets (i) and (ii) are plotted for
l=D ¼ 0:073 for the same values of Vab of Fig. 3 in (a) �ar=D ¼ 0:0,
(b) �ar=D ¼ 0:029, (c) �ar=D ¼ 0:057, (d) �ar=D ¼ 0:071, (e)
�ar=D ¼ 0:086 and (f) �ar=D ¼ 0:14. The distinction between the
l < �ar and l > �ar symmetry and the symmetric nature for
l � �ar is preserved. Moreover it is can be noted that in Fig. 4(a)



Fig. 3. Boundary between magnetic and non-magnetic phase in the variables x ¼ DbD=U and y ¼ ðl� �f Þ=U for l=D ¼ 0:015 and for Va=D ¼ 0:14, Vb=D ¼ 0:14, Vab=D ¼ 0:014
(black solid-line), Vab=D ¼ 0:029 (black dashed-line) and Vab=D ¼ 0:043 (black dotted-line) and Va=D ¼ 0:14, Vb=D ¼ 0:17, Vab=D ¼ 0:014 (grey solid-line), Vab=D ¼ 0:029
(grey dashed-line) and Vab=D ¼ 0:043 (grey dotted-line) in (a) �ar ¼ 0:0, (b) �ar=D ¼ 0:014, (c) �ar ¼ 0:029, (d) �ar ¼ 0:071, (e) �ar ¼ 0:11 and (f) �ar ¼ 0:14.

Fig. 4. Boundary between magnetic and non-magnetic phase in the variables x ¼ DbD=U and y ¼ ðl� �f Þ=U for l=D ¼ 0:073 and for Va=D ¼ 0:14, Vb=D ¼ 0:14, Vab=D ¼ 0:014
(black solid-line), Vab=D ¼ 0:029 (black dashed-line) and Vab=D ¼ 0:043 (black dotted-line) and Va=D ¼ 0:14, Vb=D ¼ 0:17, Vab=D ¼ 0:014 (grey solid-line), Vab=D ¼ 0:029
(grey dashed-line) and Vab=D ¼ 0:043 (grey dotted-line) in (a) �ar=D ¼ 0:0, (b) �ar=D ¼ 0:029, (c) �ar=D ¼ 0:057, (d) �ar=D ¼ 0:071, (e) �ar=D ¼ 0:086 and (f) �ar=D ¼ 0:14.

240 A. Ghosh, H.O. Frota / Journal of Magnetism and Magnetic Materials 454 (2018) 237–242



Fig. 5. Boundary between magnetic and non-magnetic phase in the variables x ¼ DD=U and y ¼ ðl� �f Þ=U for l=D ¼ 0:14 and for Va=D ¼ 0:14, Vb=D ¼ 0:14, Vab=D ¼ 0:014
(black solid-line), Vab=D ¼ 0:029 (black dashed-line) and Vab=D ¼ 0:043 (black dotted-line) and Va=D ¼ 0:14, Vb=D ¼ 0:17, Vab=D ¼ 0:014 (grey solid-line), Vab=D ¼ 0:029
(grey dashed-line) and Vab=D ¼ 0:043 (grey dotted-line) in (a) �ar ¼ 0:0, (b) �ar=D ¼ 0:029, (c) �ar ¼ 0:071, and (d) �ar ¼ 0:14.
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the boundary is symmetric for Vab ¼ 0:029 for both the sets of
hybridization values. Hence, apart from the chemical potential val-
ues, the interaction between the impurities in the two sublattices
also modifies the symmetry of the boundary. Moreover, for
l > �ar we observe that Vab tends to change the symmetry of the
boundary line of the two phases. Hence, for these cases we will
always have a value of Vab which gives the symmetric phase, for
e.g in (b) and (c) the values are 0:014 < Vab < 0:029. The magnetic
phase decreases with an increase of Vab in all the cases.

The division of the two phases for l ¼ 0:14 is plotted as a func-
tion of the x and y in Fig. 5 for set (i) for the same values of Vab of
Fig. 3 in (a) �ar ¼ 0:0, (b) �ar=D ¼ 0:029, (c) �ar ¼ 0:071 and (d)
�ar ¼ 0:14. Just like in Fig. 4, in this case also we observe the sym-
metric nature for Vab ¼ 0:2 for both the sets of hybridization values
and for l � �ar. With the increase of lwe observe that the value of
Vab which gives the symmetric phase, for e.g in (b) and (c) the val-
ues are 0:029 < Vab < 0:043. As in this case, l > �ar in (a)–(c) we
have the same symmetry preserved for all of them where y values
are less than unity and also that the level magnetizes even when
the impurity is above the Fermi level.

In Fig. 6, the dependence of the occupation numbers na" and
na# of the impurity of the sublattice A and nb" and nb# of the
impurity of the sublattice B on the chemical potential l are plot-
ted for (a) �f =D ¼ 0:029, Ua=D ¼ Ub=D ¼ 0:043,
Va=D ¼ Vb=D ¼ 0:14, Vab=D ¼ 0:0 (solid line), 0.014 (dashed line),
0.029 (dotted line) and 0.043 (dashed-dotted line) (b)
�f =D ¼ 0:029, Ua=D ¼ 0:043, Ub=D ¼ 0:071, Va=D ¼ Vb=D ¼ 0:14,
Vab=D ¼ 0:0 (solid line), 0.029 (dashed line) and 0.043 (dotted
line) and (c) �f =D ¼ 0:029, Ua=D ¼ 0:043 Ub=D ¼ 0:071,
Va=D ¼ 0:14, Vb=D ¼ 0:17, Vab ¼ 0:0 (solid line), 0.029 (dashed
line) and 0.043 (dotted line). In Fig. 6(a) we observe the occupa-
tions of two similar impurities in the two sublattices of the single
layer graphene when Ua and the hybridization Va are same we
observe the occupations of nar to be the same. Hence both are
represented in black. The Vab ¼ 0 case (two independent similar
impurities) is in agreement with our earlier study [13]. With
finite values of the interaction between the impurities we
observe a change in behavior where nar is below 0.5 for chemical
potential less than the impurity level energy and it has values
above 0.5 when l > �f . The region of local moment formation
moves away from the non-interacting case as we increase Vab.
The nar values and also the magnetization values decreases as
we increase the interaction Vab. In the case for Ua – Ub the differ-
ence arises in the magnetization values and also in the chemical
potential values over which we observe the local moment forma-
tion. For Vab ¼ 0 we observe that the region over which the local
moments exists for impurity of the B sublattice is nearly double
that of A as Ub > Ua. With finite values of Vab the above difference
nearly goes to zero but unlike the previous case the magnetiza-
tion values vary, magnetization of the A sublattice is less than
that of the B sublattice. In (c) we observe as Va – Vb the loops
that represent the local magnetic moments of the A and B impu-
rities tend to move away from each other and is formed for
higher values of l when compared to that (a) and (b).



Fig. 6. nar (grey line) and nbr (black line) vs l for (a) �f =D ¼ 0:029,
Ua=D ¼ Ub=D ¼ 0:043, Va=D ¼ Vb=D ¼ 0:14, Vab=D ¼ 0:0 (solid line), 0.014 (dashed
line), 0.029 (dotted line) and 0.043 (dashed-double-dotted line) (b) �f ¼ 0:029,
Ua=D ¼ 0:043, Ub=D ¼ 0:071, Va=D ¼ Vb=D ¼ 0:14, Vab=D ¼ 0:0 (solid line), 0.029
(dashed line) and 0.043 (dotted line) and (c) �f =D ¼ 0:029, Ua=D ¼ 0:043
Ub=D ¼ 0:071, Va=D ¼ 0:14, Vb=D ¼ 0:17, Vab ¼ 0:0 (solid line), 0.029 (dashed line)
and 0.043 (dotted line). In (a) nar ¼ nbr and they are represented in black.
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5. Conclusion

In summary, we study the effect of the interaction between the
pair of neighboring magnetic atoms in the different sublattices of a
single-layer graphene sheet. The local moment formation depends
highly on the chemical potential. The asymmetric nature of the
phase diagram is very prominent. However, the boundary between
the magnetic and the non-magnetic phases gets modified with
hybridization parameter and also the interaction between the
impurities. Unlike the single-impurity case, we observe the sym-
metric nature of the boundary for certain values of the chemical
potential and Vab as observed in metals. the magnetization values
and the region over which the local moment formation takes place
decreases with Vab. We also observe that local moment formation
occurs even when the impurity is above the Fermi level. The occu-
pation numbers are also sensitive to Vab and changes appreciably
with it. The effect of the Coulomb interaction and also the
hybridization parameter are also exhibited.
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