Journal of Magnetism and Magnetic Materials 323 (2011) 39-50

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Contents lists available at ScienceDirect apetin

Quantum phase transitions of the extended isotropic XY model with

long-range interactions

F.G. Ribeiro?, J.P. de Lima?, L.L. Goncalves >*

2 Departamento de Fisica, Universidade Federal do Piaui, Campus Ministro Petrénio Portela, 64049-550 Teresina, Piaui, Brazil
b Departamento de Engenharia Metaliirgica e de Materiais, Universidade Federal do Ceard, Campus do Pici, Bloco 714, 60455-760 Fortaleza, Ceard, Brazil

ARTICLE INFO

ABSTRACT

Article history:

Received 21 June 2010

Received in revised form

4 August 2010

Available online 26 August 2010

Keywords:

One-dimensional extended XY model
Long-range interaction

Quantum phase transition

Static property

Quantum spin liquid

The one-dimensional extended isotropic XY model (s=1/2) in a transverse field with uniform long-
range interactions among the z components of the spin is considered. The model is exactly solved by
introducing the Gaussian and Jordan-Wigner transformations, which map it in a non-interacting
fermion system. The partition function can be determined in closed form at arbitrary temperature and
for arbitrary multiplicity of the multiple spin interaction. From this result, all relevant thermodynamic
functions are obtained and, due to the long-range interactions, the model can present classical and
quantum transitions of first and second orders. The study of its critical behavior is restricted to the
quantum transitions, which are induced by the transverse field at T=0. The phase diagram is explicitly
obtained for multiplicities p=2,3,4 and oo, as a function of the interaction parameters, and, in these
cases, the critical behavior of the model is studied in detail. Explicit results are also presented for the
induced magnetization and isothermal susceptibility y%, and a detailed analysis is also carried out for
the static longitudinal <SJ?S,Z > and transversal <SJ*S;‘ » correlation functions. The different phases
presented by the model can be characterized by the spatial decay of these correlations, and from these
results some of these can be classified as quantum spin liquid phases. The static critical exponents and
the dynamic one, z, have also been determined, and it is shown that, besides inducing first order phase

transition, the long-range interaction also changes the universality class of the model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study of the quantum phase transitions (QPT) has been the
object of many theoretical and experimental investigations [1],
since they play an essential role in understanding the low
temperature properties of the materials [2]. In particular, for
low dimension magnetic materials, the study of quantum spin
chains has provided much insight in this direction [3]. Motivated
by this, in the last years, others tools have been used to
investigate QPT in spin chains, such as, quantum discord [4],
geometric phases [5,6] and quantum fidelity [7], where the last
two concepts were unified in the approach of the geometric
tensors [8]. All these tools have only one purpose, that is, to point
out the existence of the quantum critical behavior. On the other
hand, the QPT are also directly related to quantum entanglement,
which has been the object of study in quantum computation [9].
Therefore, the study of spin systems is of great importance for
understanding the behavior of the materials in low temperature
regime.
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Among the quantum spin models, the one-dimensional XY
model introduced by Lieb et al. [10], with its generalized classes,
has attracted much interest in the last decades. In particular, the
models with multiple spin (see Refs. [11-13], and references
therein) and long-range interactions (see Refs. [14-17], and
references therein) have been the object of intensive investiga-
tions. As pointed out by Derzhko et al. [18] and in the references
therein, quantum spin systems with multiple spin interactions
work as effective spin models for the standard Hubbard model
under certain conditions. On the other hand, models with long-
range interactions are important to understand the process of
quantum information in spin chains, as well as for the study of the
classical and/or quantum crossover, as it was explained by de
Lima and Gongalves [19]. Another importance of the long-range
interaction is that it can induce first order QPT, which play an
important role in the quantum critical behavior [20].

Therefore, in this paper, we will study the effect of the long-
range interaction on the quantum critical behavior of the
extended one-dimensional XY model with multiple spin interac-
tions [21,22]. The solution of the model can be obtained exactly,
at arbitrary temperatures, and the main purpose of the paper is to
study the quantum critical behavior of the model with arbitrary
multiple spin interactions and uniform long-range interactions,
which corresponds to an extension of the work by Lou [15].
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We analyze these two kinds of interactions, where we will
show the role of each one, that is, we will show that the long-
range interactions induce first and second order QTP, and that
their presence change the universality class of the model. We will
also verify the scaling relations proposed by Continentino and
Ferreira [23] for first order QTP. Concerning the multiple
interaction among spins, we will show the presence of many
different kinds of quantum spin liquid phases, which after some
time came to be again considered a relevant topic in the present
research [24].

Although no physical realization exists for the model, the main
motivation for its study comes from the fact that the exact
knowledge of its critical behavior can shed some light on the
understanding of the critical classical and quantum behaviors of
real systems, bearing in mind that it can be solved exactly.

In Section 2 we introduce the model and obtain its exact
solution by means of Jordan-Wigner fermionization and the
integral Gaussian transformation, and present its basic results,
such as the spectrum of the energy and the magnetization at
arbitrary temperatures. The quantum phase diagrams, as function
of the interaction parameters, are presented and discussed in
Section 3, and in Section 4 we study the scaling behavior of the
longitudinal and transversal correlation functions on the different
phases presented by the model. In Section 5 we evaluate the
critical exponents, and discuss the change in the universality class
due to the presence of the long-range interactions. Finally, in
Section 6 we summarize the main results.

2. The model and basic results

We consider the one-dimensional isotropic extended XY model
(s=1/2) with uniform long-range interactions among the z
components of the spins, whose Hamiltonian is explicitly given by

N N N
H=-] Z(SX Sia+SS - Z > SSi-h>_s
j:ll:l j=1

j=1

N P
-2 Z Z(stjx+z< SySJy+K) 15712 S M
j=1xk=2

where the parameters J;, Jo are the exchange coupling between
nearest neighbors, I is the uniform long-range interaction among the
z components, p is the multiplicity of the multiple spin interaction,
and N is the number of sites of the lattice.

Introducing the Jordan-Wigner transformation

j-1 j=1
S = [exp <i7r > C;C1>:| CJT; S =¢ [exp (—irc > c?c,)} , )

=1 =1
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where ¢; and c]T are fermion operators, the Hamiltonian can be
written in the well-known decomposed form ([25] also references
therein)

H=H*Pt+H P, )
where
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where 7 is the identity operator, and P given by

N
P =exp <i7t > cfc,) . 7

=1

As it is also well known, the Hamiltonian ®* can be
diagonalized by imposing antiperiodic (for #*) and periodic
(for H~) boundary conditions, and, in the thermodynamic limit,
the static properties can be described by H~ [25-27]. Therefore,
since we are interested in the determination of the static
properties, we will identify the Hamiltonian of the system with
‘H~. By taking into account that the long-range interaction term
commutes with the Hamiltonian, the partition can be written in
the form

N/ ] S
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where f=1/ksT and T is the temperature. Introducing the
Gaussian transformation [28]

0o 2
exp(a®) = \/%/7 exp <—Xj +ﬁax> dx, Q)

the partition function can be written in the integral representa-
tion as

e e o)

= N
Tr{exp[%Z(cTcﬁH— J+1CJ)+(h I+\/7X)ZCC]
j=1
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N p -1 k-1
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where X=x/vN,J; =fJ1,], =), h=ph and T = I
Introducing the canonical transformation

N
G= fZexp(uq>cq and ¢ 7; exp(—ijq)c;, an

qg=1
with ¢=2nn/N, n=1,2,...,N, Eq. (10) can be written in the form

oS »2
2v=Cp) [ exp (—N %) (. (12)
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where
= \/;ﬁ;exp [—g (h— %ﬂ L ®)= Tr{exp {qu(m‘iffq} }
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In the thermodynamic limit, N— oo, we use Laplace’s method
[29] to evaluate the partition function, and Z,, can be written in
the form

exp [f% (E,%) + Ng(Yo)]

Zy = — s (15)
ol 18" (%o)|'/2
where
X X 1 In[1 5% 16
gXo)=— + N; n[1+exp(zq(%o))] (16)
with g(Xp) satisfying the conditions
gxo)=0 and g"(xp)<0, a7)
and X, explicitly given by
_ V2 1
Xo=-"—) = (18)
N = 1+exp(—£4(Xo))

Therefore, from Eq. (15) we can write the Helmholtz free energy as

Fy= g <h—%> —NkgTg(Xo)+ k%Tlmg”()_co)L (19)

Taking into account that the magnetization per site M can be
written in the form

1 1 1 1 1 1
M = Sy =~ egd—5=5> o,
sz:< j 2 qu:< >3 qu:1+exp[—sq(x)] 2

by using Eq. (18), we can express Xg in terms of M? in the form

Xo =21 <M2+1>, (20)

2

and from this result it follows that the functional of the Helmholtz
free energy per site is given by

f= g +IM*(1+ M)+ k%T/ In(1+exp[eq(M?)]dq, 21
0
with
_ _ P 1 k-1 o
Eg(M?) = —J cos(@)—, > (— §> cos(kq)—h—2IM~. (22)
K=2

From Eq. (21), we can determine the equation of state
imposing the stability conditions

of

e =0 23)
2

a?\/ljz; >0, 24)

which leads to the result

s 1 T gq(M?)
M? = E/o tanh H} dq. (25)

3. Quantum critical behavior

In the limit T— 0, the functional of the Helmholtz free energy
per site (Eq. (21)) is given by

F=l a1 / e(M)dq, (26)
2 T Jeq(M2) <0
where
p 1 K—1
&q(M?) =]J1cos(q)+ ]2 Z (— 5) cos(rcq)+h+2IM?, 27)
K=2

and the equation of state, given by Eq. (25), can be written in the
form

1 [ .
M? = E/o sign[eq(M?)]dq. (28)

The quantum phase diagram of the model, for second order
phase transitions and arbitrary p, can be obtained from the
previous expression by imposing the divergence of the isothermal
susceptibility, y¥ = dM?/oh— oo; and, for first order phase transi-
tions, by using the equation of state, Eq. (25), and by imposing the
condition

fME) =f(M3), (29)

where Mf and M, are the values of the induced magnetization at
the transition.

Following Titvinidze and Japaridze [11], by introducing the
unitary transformation

Sf > (=11t sj¥_>(71)is¥; Sf=-5, (30)

we can show that the Hamiltonian is invariant under the
transformation J; - —J; and J, »—J,. This means that only the
signs of I and J are relevant in determining the critical behavior of
the system, and the appearance of multiple phases is the result of
the competition between these interactions which induce
frustration in the system. In particular, they can induce the so-
called quantum spin liquid phases [24], as in the case of the model
without long-range interaction [11]. Therefore, without loss of
generality, we will consider in all results presented J; > 0 only.

From Eqgs. (26)-(28), we can show that, for arbitrary p, the
system presents second order quantum transitions for I <0, and
first order quantum transitions for >0, as in the previously
studied XY models with similar long-range interactions [14].

Although Egs. (26)-(28) allow us to obtain the phase diagrams
for arbitrary p, we will only consider the cases p=2,3,4 and oo,
since they present the main features and, in these cases, analytical
expressions can be obtained for the critical surfaces and critical
lines associated with the second order quantum transitions.

For the case p=2, which has also been studied by Titvinidze
and Japaridze [11] and Krokhmalskii et al. [13] for the model
without long-range interactions, we show in Figs. 1 and 2 the
critical field h{J; as a function of I[J; in the regions J,/J; >0 and
J2/J1 <0, respectively, for different values J,, which are projections
of the global phase diagram. It is worth mentioning that in
this case the results for J,/J; <0 can be obtained from the results
for J5/J; =0 by introducing the transformations h/J; »—h/J;
and J,/J1 > —J>2/J1, as can be verified in the results shown in
Figs. 1 and 2.

In Figs. 3 and 4 we present the magnetization and the
isothermal susceptibility, respectively, and from their behavior
we can conclude that for I//; <0 the system undergoes second
order transitions, and first order transitions for I/J; > 0.

As it can be seen in Figs. 1 and 2, the number of transitions of first
and second order depends on J,, and it can also be shown that these
transitions correspond to three phases for 0 <J,/J; <1/2, and to
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Fig. 1. Phase diagram for the quantum transitions as a function of the long-range
interaction I/J; for p=2 and J,/J;=0.2, 2.0. For J»/J; =0.2 there are three phases, one
spin liquid phase (QSL-I) and two saturated ferromagnetic phases (SF), and for
J2/J1=2.0, there are four phases, two spin liquid phases (QSL-I, QSL-II) and two
saturated ferromagnetic phases (SF). The critical lines correspond to first order
phase transitions for I//; > 0 and to second order phase transitions for I/J; <0.
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Fig. 2. Phase diagram for the quantum transitions as a function of the long-range
interaction I/, for p=2 and J,//;=—-0.2,—2.0. For J»/J;=—0.2 there are three
phases, one spin liquid phase (QSL-I) and two saturated ferromagnetic phases (SF),
and for J,/J; = —2.0, there are four phases, two spin liquid phases (QSL-I, QSL-II)
and two saturated ferromagnetic phases (SF). The critical lines correspond to first
order phase transitions for I/J; >0 and to second order phase transitions for
I/ <0.

four phases for J,/J; > 1/2. Following Titvinidze and Japararidze
[11], we can classify the intermediate phases, which are limited by
the two saturate ferromagnetic phases, as quantum spin liquid
phases [24]. As will be shown later, these spin liquid phases will be
characterized by the spatial decay of the transversal static correla-
tion function (S!Sf> and by the modification of the oscillatory
modulation of longitudinal static correlation function (SESPD.

The global phase diagram for p=2 is shown in Figs. 5 and 6, for
J2/J1 =0 and J,/J; <0, respectively. For I <0, the critical surfaces
can be obtained explicitly and, for J,/J; > 0, where there are four
critical surfaces, they are given by the following equations:

L 1 R i 9 for 22 > 0, (31)
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Fig. 3. Magnetization M* as a function of h/J;, for p=2, J>/J;=2.0 and different
values I/J;.
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Fig. 4. Isothermal susceptibility % as a function of h/J;, for p=2, J>//;=2.0 and
different values I/J,.

Fig. 5. Global phase diagram for p=2 and J,/J; > 0, as a function of h//; and I/J;.
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Fig. 6. Global phase diagram for p=2 and J,/J; <0, as a function of h/J; and I/J;.
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For J,/J1 <0 there are also four critical surfaces given by
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z_ N2
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The critical lines, shown in Figs. 1 and 2, can be obtained from
Egs. (31)-(35) for J»/J1=0.2 and J»/J; =2.0, and from Egs. (36)-(40)
fOl‘Jz/_h =-0.2 and Jz/_h =-2.0.

It should be noted that for J5/J;
at a bicritical line [14] given by

h_ 31
L 4

=1/2 the critical surfaces meet

(41)

For I>0, where the phase transitions are of first order,
critical surfaces are obtained numerically from the solution of

the system
Mz (pZt (Plt +1 0
T 27
Ph=@l 1 42)
Mz, an I +2 0,
SMD—f(M},)
where ¢}, and ¢}, are given by
i i+ /B3 + 203 +4Ja e+ 2IM3)
¢}, = arccos 7 , (43)
i hi= R+ 23+ 4]a(he+2IM;,
@), = arccos 7, , (44)

where M7, M7 are the values of the magnetization at the
transition, with i, j=1, 2, 3,4 for 0<J,/J; <1/2, and with i, j=1,
2,3,4,5,6 for J,/J; = 1/2, and fiM%,) is given by Eq. (26). As in the
case of second order transitions, the critical lines shown in Fig. 1
are determined from the previous systems by considering
J2[J1=0.2 and >/}, =

For J,/J1 >1/2, there are four critical surfaces and three of
them, for J,/J; =1/2, meet at a critical line, which is determined by
the following system of equations:

ME,— (Pzz Pl + =0,
Fi

ME,— wztn@1r+ =0,

(45)

3t P
f(M%[)ff(Mét) -

where f(M7) is obtained from Eq. (26), and with i=1, 2, 3 and
%¢=—1/2. This is a triple line which meets the bicritical line
at [=0.
A second triple line can be determined by imposing M5,= —1/2
and M5,=1/2 in the system

2

1

2
M? (p2t q)]t +; 0'

0

z_& 2
M; +2_0

f(MZ[) f(M§f) - v (46)
fM5)—f(M5,) =0,

where f{M5,), and ¢3, are given by Eqgs. (26) and (44), which
begins at the point J»/J1=0, h/J;=0 and I/J; = 4/r, which has been
obtained by Gongalves et al. [14].

For the special case p— oo, we can find the critical surfaces by
using the same procedure used in the case p=2. In this case, due
to many intersections of the critical surfaces, the global phase
diagram becomes too complicated, as we will show below.
Therefore, we will present some projections of the global diagram
which contain the main characteristics of this diagram and are
shown in Figs. 7-10.

In this case, the fermion excitation spectrum is also obtained
from Eq. (27). The result can be expressed in closed form, since
the summation in Eq. (27) can be easily expressed as a sum of two
infinite geometric progressions, and is given by

2cos(2q)+cos(q)

Z
5+ 40050) +h+2IM. (47)

&q(M?) = J1cos(q)—J2

From this result we can determine the equations of the critical
surfaces for I/J; <0 and J,/J; > 0, which are

fffff +1=0 for=2>0, (48)
1
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Fig. 7. Phase diagram for the quantum transitions as a function of the long-range
interaction I/J; for p—oo and J»/J;=27/23, 2.0. For J»/J1=27/23 there are three
phases, one spin liquid phase (QSL-I) and two saturated ferromagnetic phases (SF),
and for J»/J;=2.0, there are four phases, two spin liquid phases (QSL-I, QSL-II) and
two saturated ferromagnetic phases (SF). The critical lines correspond to first order
phase transitions for I//; >0 and to second order phase transitions for I/J; <0.
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Fig. 8. Phase diagram for the quantum transitions as a function of the long-range
interaction I/J; for p—oo and J»/J;=—0.2,—1/11. For J»/J;=—0.2 there are four
phases, two spin liquid phases (QSL-I, QSL-II) and two saturated ferromagnetic
phases (SF), and for J»/J;=—1/11, there are three phases, one spin liquid phase
(QSL-I) and two saturated ferromagnetic phases (SF). The critical lines correspond
to first order phase transitions for I/J; >0 and to second order phase transitions
for I/]; <0.
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Fig. 9. Phase diagram for the quantum transitions as a function of the long-range
interaction I/J; for p—oo and J,/J;= —2.5,—1.7370...For J5/J; = — 2.5 there are four
phases, two spin liquid phases (QSL-I, QSL-II) and two saturated ferromagnetic
phases (SF), and for J»/J; = —1.7370.., there are four phases, two spin liquid phases
(QSL-L,QSL-II) and two saturated ferromagnetic phases (SF), which coexist in the
quadruple point localized at hJ;=0, I[/;=1.7798...The functional of the free
energy for this case is shown in Fig. 11. The critical lines correspond to first order
phase transitions for I/J/; > 0 and to second order phase transitions for I/J; <0.

Wy,

Fig. 10. Phase diagram for the quantum transitions as a function of the long-range
interaction IfJ; for p—oo and J»/J;=—3.5,—3.0. For J5/J;=—3.5 there are four
phases, two spin liquid phases (QSL-I, QSL-II) and two saturated ferromagnetic
phases (SF), and for J»/J;=—3.0, there are three phases, one spin liquid phase
(QSL-I) and two saturated ferromagnetic phases (SF).The critical lines correspond
to first order phase transitions for I/J; >0 and to second order phase transitions
for I/J; <0.

Identically, we can show that for I/J; <0 and J,//; <0, the
critical surfaces are

L I h . 1k
T ]1+1_0 for 7 < 1 <0, (53)
]2 h ]2
371+f17]—171_0 for — <7 <0, (54)
5h=9%_ 3 (lk_,\_1_h_ L__1

7, 7 (I 1) T =0 for T <-37 (55)
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ﬁfoﬁJA:O for73§]—]§fﬁ, (56)
%+Jil—]ﬁl+1:0 for%s—_’), (57
3%_2’]71’”?_]&]_120 for 2 < -3, (58)
where

M5=M*%' (59)

11,415
arccos (ﬁ) 1

z __ _
M = L > (60)

In this case there are three bicritical lines which are given by

h 14 1
L=t at J,/J1 =27/23, (61)
h 10 I
TR at o /J; = -1/11, (62)
h I
]—1:—2+j—1 atjz/_h:—B. (63)

For I/]; > 0, as for the case p=2, the first order transition surfaces
can be determined numerically and the triple lines are deter-
mined by following the same procedure adopted for p=2.

In Fig. 7 the phase diagram is shown for the positive region
J2/J1 =0, where there are four critical surfaces which are given by
Eqs. (48)-(52). These critical surfaces meet at a bicritical line,
which is given by Eq. (61).

The phase diagrams for the negative region J,/J; <0 and for
different values of J,/J; are shown in Figs. 8-10. In this case there
are six critical surfaces, given by Egs. (53)-(58), which meet at
bicritical lines given by Eqs. (62) and (63). As we can see in
Figs. 8-10, the system presents in this case identical critical
behavior to the one obtained for the case p=2, as far as the critical
behavior is concerned. However, it is worth mentioning the
appearance of a quadruple point at h/J; =0, J/J;=—1.7370..., and
1/];=1.7798..., which is shown in Fig. 9 and is not present in the
case p=2. The behavior of the functional of the Helmholtz free
energy at this point is presented in Fig. 11.

]
WI=0
041 111,=1.7795...
| 11, =17370... |
p—>
-0.42 —
- L
043 L -
-044 - -
-0.45 L | L | L | L 1 i | L
0.5 0.25 0 0.25 0.5
MZ

Fig. 11. Functional of the free energy f as a function of the magnetization M* for
p— oo, h{J1=0, 1[J;=1.7798...and J,[/;=—1.7370...at the quadruple point.

We have also analyzed the cases p=3 and 4, for =0, where the
model presents new quantum spin liquid phases. Although in
these cases there are no first order transitions, we have restricted
these analyses to the model without the long-range interaction,
since the main purpose was to study the appearance of new
quantum spin liquid phases, which is mainly controlled by the
multiple short-range interaction.

In Fig. 12 we show the phase diagram for the case p=3, where
the critical lines are given by

h b

= (64)

h 3]

Loanth ©

h b (13L-12)1\** 195436 L 12 |

17‘10811< T ) ~—iog, TR i3t
(66)

h b (13L-12)1\*? 195 +36); L_12 |

j_]__108]1< T ) — 108), for]—lzﬁorj—]<0.
(67)

As it can be seen, there are six quantum spin liquid phases which,
as we will show later, can be classified in three different classes as
far as the critical behavior is concerned.

The phase diagram for p=4 is shown in Fig. 13, where the
critical lines are given by

h 3

r=g b (68)
h _ 7
F=g th (69)
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Fig. 12. Phase diagram for the quantum transitions as a function of J,/J; for p=3 and
I/J;=0. All the transitions are of second order and there are five phases, three spin
liquid phase (QSL-I, QSL-II, QSL-III) and two saturated ferromagnetic phases (SF).
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Fig. 13. Phase diagram for the quantum transitions as a function of J,/J; for p=4 and
I/J;=0. All the transitions are of second order and there are five phases, three spin
liquid phase (QSL-I, QSL-II, QSL-IV) and two saturated ferromagnetic phases (SF).

4 2
where

Ry =K'34K1/3, (73)
with

K=(81-3]2)/2+ \/(64Jf—8011]2 +2443)/13,

J=16b/(b*+10b+1) and b=[(3+~5)/2] for]J <],/ <4/3,

(74)
Ry =S"3457153, (75)
with
S=(5,—81)/J2+1/24B—80)uJ,+642)/3 for Ja/J; <0 or J2/J; =2,
(76)
and
R3; = cos(0+¢;)/2, (77)
with
0 = arccos[(8]1—5)2)/]21/3 and ¢;=2n(i-1)/3, i=1,2,3
for 4/3 <J,/J1 <2. (78)

In this case, as for p=3, the system presents six quantum spin
liquid phases which can also be classified in three classes as far as
the critical behavior is concerned, and there exist only second
order phase transitions.

The number of phases depends on p, as shown above, and
increases with the increase of p. However, there is a maximum
number of phases since for p=2 and p— oo the system presents
equal number of phases, in these cases equal to 4. We have
verified this result and have shown that the maximum number of
phases is equal to 5, and that this happens for p equal to 5 and 7.

It should also be noted that, in all cases presented, there is the
appearance of two additional points in the Fermi structure for
each new second order phase transition induced by the field for
any fixed I <0. This behavior, for I#0, is identical to the one
obtained by Titvinidze and Japaridze [11] for p=2 and I=0, and it
is a consequence of the azimuthal symmetry of the model.

We would also like to point out that the appearance of these
additional points in the Fermi level, which reflect the ground-
state structure and are responsible for the appearance of multiple
quantum transitions, can only occur when J, # 0 independently of
the values of I and J;. This means that, even in the limit I=0 and
J1=0, the new Fermi level structure is present, provided J, # 0,
which confirms that the multiple spin interaction is the driving
mechanism for the multicritical behavior presented by the model.

4. Static spin correlations

The static correlation function (SESE 0 in the thermody-
namic limit, can be given by [25-27],

Triexp(—fH S, ]

]7]+T
Trlexp(=fH7)]
where 7~ is the Hamiltonian given in Eq. (4).
After the introduction of the Fourier transform (Eq. (11)), H~
can be written in the form

_ Nh
H = ;sq(MZ)C;Cq—I— 5 (80)

where g4(M?) is given by Eq. (22).
By introducing the fermion operators, we can write

1 . . 1
§f = § 2_expli@—a)lcgea— . 81)
aq
and from Eq. (81), by using Wick’s theorem [30], the static
correlation can be written as
2

1 1 1 . ,
(SiS> = Nqu<nq>—§ + 7z 2_eXPliq—q)ri1—<ng »),
aq
(82)
with
1
{ng> = T exple, (VD)) (83)

From Eq. (82), we can obtain the static correlation function
which, after some straightforward calculations, can be written as

1 2\ 2 [1 AN
N > “tanh <7>] -IN > “cos(gr)tanh (7> +50 %,
q q

1
S8 = z{

(84)
and, in the thermodynamic limit, in the form
5. 5= [ L [ tanh (%) dq|
<jj+r>—%0 an 5 q
1 [ 2 2 50
—[ﬂ/o cos(qr)tanh<7)dq} +T' (85)

As it is well known [31], at T=0, the direct longitudinal
correlation function of the short-range XY model behaves
asymptotically as p#(r)= <SJ?S]? +r>—(MZ)2 ~f(rr=2, where f(r) is
an oscillatory function. A similar behavior can be found for the
above expression (Eq. (85)) for the so-called quantum spin liquid
phases, where the oscillatory factor f{r) undergoes changes for
different phases, as shown by Titvinidze and Japaridze [11], for
the case p=2, without long-range interaction.

In the presence of the long-range interaction, for p=2 and
I/]J; <0, we have at most two multiple quantum spin liquid
phases in the limit T — 0. For the first quantum spin liquid phase,
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the parameters satisfy the conditions

b
L <
_]1 - 2
J2 L1
145+ — —<1 =, 36
AR 9
or
L 1
=2
1P ZIMZ I I
—14+=— <1 —, 87
"o 11 T2 @7
where Mj is given by Eq. (35), and from Eq. (85) we obtain
.2
sin“[qqr]
PN =35 (88)
where
1 —y(MZ)}
= nor o, 89
q1 arccos[ 25 (89)
with
VM) = /2 + 213 + 45 (h+2IMP). (90)

For the second quantum spin liquid phase, the parameters
satisfy the conditions

I
L= 3
2 1 _h J 2IMj
— it << —14+22— , 91
2 4L LS 2 I e
and, in this case, the direct correlation p#(r) is given by
. . 2
sin[qqr]—sin[g,r
pZZ(r): _{ [Q1 7]-[2r2 [qZ ]} , (92)
which can be recast in the form
4sm —q2)/2)r]cos? +q2)/2)r
PE(r) = [((91-G2)/ 3[2]r2 [((q1 +92)/2)r] ©93)
where q; is given by Eq. (89) and g, by
Z
- = arccos [Jl +yM )} (94)
2/

Therefore, p%(r) shows a similar behavior to the case where
the model does not contain long-range interaction [11].

The correlation length which diverges at the critical point [32],
when we have a single phase, is associated with the period of the
oscillation of p#(r), and is defined by an analytical extension of its
scaling form given by [33]

Fir/d)
[

pHEr) ~ 95)

When the system presents two phases between the saturated
ferromagnetic phases, in view of the new behavior of the directed
correlation in this region, in order to define the correlation length
associated with the adjacent transitions we introduce a further
extension of the scaling form as

G(r)F(ir/ c)
1P

pEI) ~ (96)

where G(r) is rapidly oscillating. Therefore, in this case the
correlation length is associated with the period of the envelope
function of the correlation which diverges at the critical point.

Therefore, for the case where we have a single phase, by using
Eq. (95), we can find from Eq. (88)

1 1—y(M?) }

— = 2arccos | [——||, 97
z H’ 21, ©7
which diverges at the critical points given by h/J;=1+]>/2J; —1[];
and hfJi=—1+J2[2]1+1[].

For the case where we have two phases between the saturated
ferromagnetic phases, at the upper critical line g; —»0 and g is
finite, at the intermediate critical one q; is finite and g, — 0, and at
the lower critical one q;—q, — 0. Therefore, by using Eq. (96) and
by considering the asymptotic behavior of Eqgs. (88) and (92),
respectively, we can write explicitly the correlation length
associated with each transition in the form

1 . J1—y(M?)

7= 2q; = arccos [ A ] (98)
| 1 +y(V?)

7= 24, = arccos { 3, } , 99)
and

% =2(q2—q1)=2 {arccos H’]Ey% } —arccos H’]_g]# H ,

(100)

which, as expected, diverges at the critical points h/J;=1+],/
2)i 11, hlJi=1+)>/2J;=2IMi[ly and h[}s=—]2/2]:—]1/42+1[]x,
where M is the magnetization at intermediate transition.

Although the results presented are for p=2, it can be shown
that the correlation length always diverges at all second order
critical points irrespective of the value of p, and for multiple
transitions an additional correlation length has to be introduced
for each new phase presented by the system between the
saturated ferromagnetic phases. Consequently, the scaling rela-
tion, given in Eq. (96), and the correlation length of the system
have to be redefined accordingly.

The transversal correlation function (SISY

¥, >, given by the
Toeplitz determinant [10]

{A1By) (AiB3)  (AiBs> {A1Bjiri1>
; {ABy» {A3B3)  (AxBg) {A2Bjiri1)
(SESE, > = 1 {As3By» {(A3B3)  <(As3Bs) {(AsBjiri1)

<Aij+r+1 >
(101)

CABjyri2)> <(ABiysy <AiBiiay

where

B> = [ costag-Dieanh (5 ) g
0

(102)

can be evaluated numerically. This correlation, for the usual
short-range XY model and at T=0, behaves asymptotically as
<Sj"S]"Jr > ~1~1/2 [31]. As in the case of the longitudinal correla-
tion, the asymptotic behavior of the transversal correlation
function (SESF > also presents changes in its power law decay
due to the presence of the multiple spin interaction. This result
has been shown by Titvinidze and Japaridze [11], in the case p=2
without long-range interaction, which classified these phases as
spin liquid phases.

For the model with long-range interaction, the transversal
static correlation, at T=0, was evaluated numerically from
Eq. (101) by considering the maximum value of r equal to 250,
and the power decay determined by considering the scaling
form SIS ~f(@)rP. The results for p=2 are presented in
Figs. 14 and 15, where the scaling forms are shown in the insets.
The scaling behavior of the transversal correlation function for the
quantum spin liquid I phase, presented in Fig. 14, is given by
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(SiSf >~ r~1/2, while for the quantum spin liquid II phase,
presented in Fig. 15, it is given by (S¥S¥, > ~ f(r)r~1, where f(r) is

J17]+r
an oscillatory factor. These behaviors are identical to the ones

obtained for the model without long-range interaction [11].

We would also like to point out that identical results are
obtained for the case p — co. This general result, which depends on
the number of phases only, gives support to the classification of
the intermediate phases as spin liquid phases.

The transversal static correlation was also calculated for p=3,
where there is a new quantum spin liquid phase, which can be
identified in the phase diagram shown in Fig. 12. In this new
phase, denominated quantum spin liquid IIl phase, its scaling
behavior is given by (S¥S¥ > ~f(r)r—/%, where the oscillatory
behavior f{(r) is shown in Fig. 16. Finally, for p=4, in the new phase
denominated quantum spin liquid IV phase and shown in
the phase diagram presented in Fig. 13, the scaling behavior of
the transversal correlation function is given by <Sj‘Sj‘ o ~f nr2,
which is presented in Fig. 17.
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Fig. 14. Static correlation function <S]’-‘S}’-‘+,> as a function of r, for p=2, h/J;=2.0,
J2/J1=2.0 and I[J;= —1.0. The inset shows the power law decay of the correlation
characteristic of the QSL-I phase.
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Fig. 15. Static correlation function (SfS5, > asa function of r, for p=2, h/J;=—-1.0,
J2[J1=2.0 and I[J;=—1.0. The inset shows the power law decay of the correlation

characteristic of QSL-II phase with the oscillatory modulation f(r).
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Fig. 16. Static correlation function <SJ’.(S}‘ > as afunction of r, for p=3, h/[;=—0.15,
J2/Ji=3.0 and IfJ;=0. The inset shows the power law decay of the correlation

characteristic of QSL-III phase with the oscillatory modulation f{r).
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Fig. 17. Static correlation function <Sj’.‘5’.‘ > asa function of r, for p=4, h/J;=-0.6,
J2[Ji=1.6 and I[J;=0. The inset shows the power law decay of the correlation
characteristic of QSL-IV phase with the oscillatory modulation f{r).

We would also like to point out that the numerical calculations
of the determinants have been done by using two different
Fortran subroutines which have led to the same result. Moreover,
we have verified the convergence of the numerical result for
n > 100 by comparing the power spectrum of the Fourier trans-
form of the results obtained for n > 100 with the obtained for
n < 100, which have turned out to be identical.

Finally, it should be noted that, differently from the transversal
correlation function, the spatial decay of the longitudinal correla-
tion function does not depend on p.

5. Critical exponents

The critical exponents, at T=0, associated with the magnetiza-
tion, isothermal susceptibility, correlation length and the dynamic
critical exponent z, for p=2, can be evaluated analytically since
the quantities of interest are known in closed form. Since these
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exponents are associated with second order transitions, our
analysis will be initially restricted to I <O0.

Therefore, following [33], we define the order parameter given by
M? = M?—MF?, (103)
where M. is the magnetization at the transition. This order
parameter goes to zero at the second order transitions, and it is
different from the one proposed by Titvinidze and Japaridze [11].
Then, from Egs. (28), (89) and (90), we get

. 1 Ji—yMH] 1
M? = _arccos = T 3 (104)
and by expanding Eq. (104) up to second order in M?, we obtain
n Jithe—h) I
=M= for — =0, 105
2 M J1+2) h (195)
and

b Ji(he—=h) I

Z ~ __ —_
M? ~ 20 for I <0. (106)

From Egs. (105) and (106), and the scaling form M? ~ |h.—h|#,
we can conclude that the critical exponent f is given by = 1, for
[[Ji=0 and B=1 for I/]J; <0, respectively, showing that the
universality class has changed with the presence of the long-
range interaction.

The isothermal susceptibility can be obtained from Eq. (104),
and is given by

Ji .
n\/ [y(M2)]? {1 — (hgpe) 2} —21

In the critical region, we have y# ~|h.—h|~", and from the
previous expression we find that the critical exponent 7 is equal
to 1/2, for Ifj;=0, and it is zero for I/J; <O0. Since at T=0, y is
identical to «, we can show that in both cases, namely, with or
without long-range interaction, the exponents f,a and y satisfy
the Rushbrook scaling relation [32].

The critical exponent v, associated with the correlation length
&~ |hc—h|™", can be obtained from Egs. (97) and (99). From these
expressions we can immediately show that v is equal to 1/2,
when I/J;=0 and it is 1 for I/]; <0.

From the above results, by assuming the quantum hyperscal-
ing relation [34]

1T = (107)

2—a=v(d+2), (108)

where d is the dimension of the system and z the dynamic critical
exponent, we find z=1 for I <0, and z=2 for I=0. Therefore, we
can conclude that the system also presents a non-universal
critical dynamical behavior.

For I>0, following Continentino and Ferreira [23], we
introduce a critical exponent associated with the free energy for
the quantum first order phase transition. Assuming the scaling
form f(h*)=f(hy) + E* |h;—h)*>~* close to the field of transition h,
since the free energy given in Eq. (26) can be written as

1(50) 2 ) oo
1(50) 2 G)-2 5

we obtain o' =1, which gives support to Continentino and
Ferreira’s conjecture [23].

for h < hy, (109)

for h > he, (110)

6. Conclusions

In this work we have considered the one-dimensional isotropic
XY model with multiple spin interactions and uniform long-range
interactions among the z components of the spin, in a transverse
magnetic field. The solution of the model was obtained exactly for
arbitrary p, which characterizes the range of multiple spin
interaction, at arbitrary temperature. Explicit equations have
been obtained for the functional of the Helmholtz free energy
from which the equation of state can be determined numerically.
The quantum critical behavior was studied in detail for p=2,3,4
and oo, and the multiple phases presented by the model have
been characterized by the asymptotic behavior of the static
correlation functions (S7S7 > and <S}‘S§‘>. Irrespective of the value
of p, the model presents first order quantum transitions, when the
long-range interaction is ferromagnetic, and second order ones,
when the long-range interaction is antiferromagnetic. Following
Titvinidze and Japaridze [11], we have classified the intermediate
phases, situated between saturated ferromagnetic phases, as the
so-called quantum spin liquid phases, which are induced by the
extended interaction. For p=2, the global phase diagram has been
obtained as a function of the interaction parameters and the
critical surfaces, and multicritical lines determined exactly. The
critical exponents have been obtained and it has been verified
that they satisfy the Rushbrook relation a+2+7 =2 (see, e.g.
Ref. [32]) and the quantum hyperscaling relation [34] 2—a =
v(d+2z), and that the system presents a non-universal static and
dynamic critical behavior. We have also shown that the free
energy, close to first order transitions, satisfy the scaling form
proposed by Continentino and Ferreira [23].

Finally, we would like to point out that it is of great importance
the existence of multiple first order quantum transitions and
multicritical lines (triple and quadruple lines), which we have
shown exactly to exist in the model, since we believe that they are
related to the different mechanisms from which the first order
phase transitions are driven, as discussed by Pfleiderer [20].
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