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The one-dimensional extended isotropic XY model (s¼1/2) in a transverse field with uniform long-

range interactions among the z components of the spin is considered. The model is exactly solved by

introducing the Gaussian and Jordan–Wigner transformations, which map it in a non-interacting

fermion system. The partition function can be determined in closed form at arbitrary temperature and

for arbitrary multiplicity of the multiple spin interaction. From this result, all relevant thermodynamic

functions are obtained and, due to the long-range interactions, the model can present classical and

quantum transitions of first and second orders. The study of its critical behavior is restricted to the

quantum transitions, which are induced by the transverse field at T¼0. The phase diagram is explicitly

obtained for multiplicities p¼2,3,4 and 1, as a function of the interaction parameters, and, in these

cases, the critical behavior of the model is studied in detail. Explicit results are also presented for the

induced magnetization and isothermal susceptibility wzz
T , and a detailed analysis is also carried out for

the static longitudinal /Sz
j Sz

l S and transversal /Sx
j Sx

l S correlation functions. The different phases

presented by the model can be characterized by the spatial decay of these correlations, and from these

results some of these can be classified as quantum spin liquid phases. The static critical exponents and

the dynamic one, z, have also been determined, and it is shown that, besides inducing first order phase

transition, the long-range interaction also changes the universality class of the model.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The study of the quantum phase transitions (QPT) has been the
object of many theoretical and experimental investigations [1],
since they play an essential role in understanding the low
temperature properties of the materials [2]. In particular, for
low dimension magnetic materials, the study of quantum spin
chains has provided much insight in this direction [3]. Motivated
by this, in the last years, others tools have been used to
investigate QPT in spin chains, such as, quantum discord [4],
geometric phases [5,6] and quantum fidelity [7], where the last
two concepts were unified in the approach of the geometric
tensors [8]. All these tools have only one purpose, that is, to point
out the existence of the quantum critical behavior. On the other
hand, the QPT are also directly related to quantum entanglement,
which has been the object of study in quantum computation [9].
Therefore, the study of spin systems is of great importance for
understanding the behavior of the materials in low temperature
regime.
ll rights reserved.

lves).
Among the quantum spin models, the one-dimensional XY
model introduced by Lieb et al. [10], with its generalized classes,
has attracted much interest in the last decades. In particular, the
models with multiple spin (see Refs. [11–13], and references
therein) and long-range interactions (see Refs. [14–17], and
references therein) have been the object of intensive investiga-
tions. As pointed out by Derzhko et al. [18] and in the references
therein, quantum spin systems with multiple spin interactions
work as effective spin models for the standard Hubbard model
under certain conditions. On the other hand, models with long-
range interactions are important to understand the process of
quantum information in spin chains, as well as for the study of the
classical and/or quantum crossover, as it was explained by de
Lima and Gonc-alves [19]. Another importance of the long-range
interaction is that it can induce first order QPT, which play an
important role in the quantum critical behavior [20].

Therefore, in this paper, we will study the effect of the long-
range interaction on the quantum critical behavior of the
extended one-dimensional XY model with multiple spin interac-
tions [21,22]. The solution of the model can be obtained exactly,
at arbitrary temperatures, and the main purpose of the paper is to
study the quantum critical behavior of the model with arbitrary
multiple spin interactions and uniform long-range interactions,
which corresponds to an extension of the work by Lou [15].

www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2010.08.027
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We analyze these two kinds of interactions, where we will
show the role of each one, that is, we will show that the long-
range interactions induce first and second order QTP, and that
their presence change the universality class of the model. We will
also verify the scaling relations proposed by Continentino and
Ferreira [23] for first order QTP. Concerning the multiple
interaction among spins, we will show the presence of many
different kinds of quantum spin liquid phases, which after some
time came to be again considered a relevant topic in the present
research [24].

Although no physical realization exists for the model, the main
motivation for its study comes from the fact that the exact
knowledge of its critical behavior can shed some light on the
understanding of the critical classical and quantum behaviors of
real systems, bearing in mind that it can be solved exactly.

In Section 2 we introduce the model and obtain its exact
solution by means of Jordan–Wigner fermionization and the
integral Gaussian transformation, and present its basic results,
such as the spectrum of the energy and the magnetization at
arbitrary temperatures. The quantum phase diagrams, as function
of the interaction parameters, are presented and discussed in
Section 3, and in Section 4 we study the scaling behavior of the
longitudinal and transversal correlation functions on the different
phases presented by the model. In Section 5 we evaluate the
critical exponents, and discuss the change in the universality class
due to the presence of the long-range interactions. Finally, in
Section 6 we summarize the main results.
2. The model and basic results

We consider the one-dimensional isotropic extended XY model
(s¼1/2) with uniform long-range interactions among the z

components of the spins, whose Hamiltonian is explicitly given by

H¼�J1

XN

j ¼ 1

ðSx
j Sx

jþ1þSy
j Sy

jþ1Þ�
I

N

XN

j ¼ 1

XN

l ¼ 1

Sz
j Sz

l�h
XN

j ¼ 1

Sz
j

�J2

XN

j ¼ 1

Xp

k ¼ 2

ðSx
j Sx

jþkþSy
j Sy

jþkÞS
z
jþ1Sz

jþ2 . . . S
z
jþk�1, ð1Þ

where the parameters J1, J2 are the exchange coupling between
nearest neighbors, I is the uniform long-range interaction among the
z components, p is the multiplicity of the multiple spin interaction,
and N is the number of sites of the lattice.

Introducing the Jordan–Wigner transformation

Sþj ¼ exp ip
Xj�1

l ¼ 1

cyl cl

 !" #
cyj ; S�j ¼ cj exp �ip

Xj�1

l ¼ 1

cyl cl

 !" #
, ð2Þ

Sz
j ¼ cyj cj�
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2
, ð3Þ

where cj and cyj are fermion operators, the Hamiltonian can be
written in the well-known decomposed form ([25] also references
therein)

H¼HþPþ þH�P�, ð4Þ

where
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and

P7 ¼
I7P

2
, ð6Þ

where I is the identity operator, and P given by

P ¼ exp ip
XN

l ¼ 1

cyl cl

 !
: ð7Þ

As it is also well known, the Hamiltonian H7 can be
diagonalized by imposing antiperiodic (for Hþ ) and periodic
(for H�) boundary conditions, and, in the thermodynamic limit,
the static properties can be described by H� [25–27]. Therefore,
since we are interested in the determination of the static
properties, we will identify the Hamiltonian of the system with
H�. By taking into account that the long-range interaction term
commutes with the Hamiltonian, the partition can be written in
the form
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where b¼ 1=kBT and T is the temperature. Introducing the
Gaussian transformation [28]
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the partition function can be written in the integral representa-
tion as
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where x � x=
ffiffiffiffi
N
p

, J1 � bJ1, J2 � bJ2, h � bh and I ¼ bI.
Introducing the canonical transformation

cj ¼
1ffiffiffiffi
N
p
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q ¼ 1

expðijqÞcq and cyj ¼
1ffiffiffiffi
N
p

XN

q ¼ 1
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with q¼ 2pn=N, n¼1,2,y,N, Eq. (10) can be written in the form

ZN ¼ CðbÞ
Z 1
�1

exp �N
x2

2

 !
zðxÞdx, ð12Þ
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where
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In the thermodynamic limit, N-1, we use Laplace’s method
[29] to evaluate the partition function, and ZN can be written in
the form
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with gðx0Þ satisfying the conditions
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Therefore, from Eq. (15) we can write the Helmholtz free energy as
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Taking into account that the magnetization per site Mz can be
written in the form
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by using Eq. (18), we can express x0 in terms of Mz in the form
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and from this result it follows that the functional of the Helmholtz
free energy per site is given by
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From Eq. (21), we can determine the equation of state
imposing the stability conditions
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@2f

@Mz2
40, ð24Þ

which leads to the result
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3. Quantum critical behavior

In the limit T-0, the functional of the Helmholtz free energy
per site (Eq. (21)) is given by

f ¼
h

2
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and the equation of state, given by Eq. (25), can be written in the
form

Mz ¼
1

2p

Z p

0
sign½eqðM

zÞ�dq: ð28Þ

The quantum phase diagram of the model, for second order
phase transitions and arbitrary p, can be obtained from the
previous expression by imposing the divergence of the isothermal
susceptibility, wzz

T � @Mz=@h-1; and, for first order phase transi-
tions, by using the equation of state, Eq. (25), and by imposing the
condition

f ðMz
itÞ ¼ f ðMz

jtÞ, ð29Þ

where Mit
z and Mjt

z are the values of the induced magnetization at
the transition.

Following Titvinidze and Japaridze [11], by introducing the
unitary transformation

Sx
j -ð�1Þjþ1Sx

j t; Sy
j -ð�1ÞjSy

j ; Sz
j ¼�Sz

j , ð30Þ

we can show that the Hamiltonian is invariant under the
transformation J1-�J1 and J2-�J2. This means that only the
signs of I and J2 are relevant in determining the critical behavior of
the system, and the appearance of multiple phases is the result of
the competition between these interactions which induce
frustration in the system. In particular, they can induce the so-
called quantum spin liquid phases [24], as in the case of the model
without long-range interaction [11]. Therefore, without loss of
generality, we will consider in all results presented J140 only.

From Eqs. (26)–(28), we can show that, for arbitrary p, the
system presents second order quantum transitions for Ir0, and
first order quantum transitions for I40, as in the previously
studied XY models with similar long-range interactions [14].

Although Eqs. (26)–(28) allow us to obtain the phase diagrams
for arbitrary p, we will only consider the cases p¼2,3,4 and 1,
since they present the main features and, in these cases, analytical
expressions can be obtained for the critical surfaces and critical
lines associated with the second order quantum transitions.

For the case p¼2, which has also been studied by Titvinidze
and Japaridze [11] and Krokhmalskii et al. [13] for the model
without long-range interactions, we show in Figs. 1 and 2 the
critical field h/J1 as a function of I/J1 in the regions J2=J1Z0 and
J2=J1r0, respectively, for different values J2, which are projections
of the global phase diagram. It is worth mentioning that in
this case the results for J2=J1r0 can be obtained from the results
for J2=J1Z0 by introducing the transformations h=J1-�h=J1

and J2=J1-�J2=J1, as can be verified in the results shown in
Figs. 1 and 2.

In Figs. 3 and 4 we present the magnetization and the
isothermal susceptibility, respectively, and from their behavior
we can conclude that for I=J1r0 the system undergoes second
order transitions, and first order transitions for I=J140.

As it can be seen in Figs. 1 and 2, the number of transitions of first
and second order depends on J2, and it can also be shown that these
transitions correspond to three phases for 0r J2=J1r1=2, and to



Fig. 1. Phase diagram for the quantum transitions as a function of the long-range

interaction I/J1 for p¼2 and J2/J1¼0.2, 2.0. For J2/J1¼0.2 there are three phases, one

spin liquid phase (QSL-I) and two saturated ferromagnetic phases (SF), and for

J2/J1¼2.0, there are four phases, two spin liquid phases (QSL-I, QSL-II) and two

saturated ferromagnetic phases (SF). The critical lines correspond to first order

phase transitions for I=J1 40 and to second order phase transitions for I=J1 r0.

Fig. 2. Phase diagram for the quantum transitions as a function of the long-range

interaction I/J1 for p¼2 and J2/J1¼�0.2,�2.0. For J2/J1¼�0.2 there are three

phases, one spin liquid phase (QSL-I) and two saturated ferromagnetic phases (SF),

and for J2/J1¼�2.0, there are four phases, two spin liquid phases (QSL-I, QSL-II)

and two saturated ferromagnetic phases (SF). The critical lines correspond to first

order phase transitions for I=J1 40 and to second order phase transitions for

I=J1 r0.

Fig. 3. Magnetization Mz as a function of h/J1, for p¼2, J2/J1¼2.0 and different

values I/J1.

Fig. 4. Isothermal susceptibility wzz
T as a function of h/J1, for p¼2, J2/J1¼2.0 and

different values I/J1.

Fig. 5. Global phase diagram for p¼2 and J2=J1 Z0, as a function of h/J1 and I/J1.
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four phases for J2=J141=2. Following Titvinidze and Japararidze
[11], we can classify the intermediate phases, which are limited by
the two saturate ferromagnetic phases, as quantum spin liquid
phases [24]. As will be shown later, these spin liquid phases will be
characterized by the spatial decay of the transversal static correla-
tion function /Sx

j Sx
l S and by the modification of the oscillatory

modulation of longitudinal static correlation function /Sz
j Sz

l S.
The global phase diagram for p¼2 is shown in Figs. 5 and 6, for

J2=J1Z0 and J2=J1r0, respectively. For Ir0, the critical surfaces
can be obtained explicitly and, for J2=J1Z0, where there are four
critical surfaces, they are given by the following equations:

J2

2J1
�

I

J1
�

h

J1
þ1¼ 0 for

J2

J1
Z0, ð31Þ



Fig. 6. Global phase diagram for p¼2 and J2=J1 r0, as a function of h/J1 and I/J1.
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For J2=J1r0 there are also four critical surfaces given by
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The critical lines, shown in Figs. 1 and 2, can be obtained from
Eqs. (31)–(35) for J2/J1¼0.2 and J2/J1¼2.0, and from Eqs. (36)–(40)
for J2/J1¼�0.2 and J2/J1¼�2.0.

It should be noted that for J2/J1¼1/2 the critical surfaces meet
at a bicritical line [14] given by

h

J1
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3

4
þ

I

J1
: ð41Þ

For I40, where the phase transitions are of first order,
critical surfaces are obtained numerically from the solution of
the system
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>>>>>>:
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where ji
2t and ji

1t are given by
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2J2

2
4
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where Mit
z , Mjt

z are the values of the magnetization at the
transition, with i, j¼1, 2, 3, 4 for 0r J2=J1r1=2, and with i, j¼1,
2, 3, 4, 5, 6 for J2=J1Z1=2, and f(Mit

z ) is given by Eq. (26). As in the
case of second order transitions, the critical lines shown in Fig. 1
are determined from the previous systems by considering
J2/J1¼0.2 and J2/J1¼2.

For J2=J1Z1=2, there are four critical surfaces and three of
them, for J2/J1¼1/2, meet at a critical line, which is determined by
the following system of equations:
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where f(Mit
z ) is obtained from Eq. (26), and with i¼1, 2, 3 and

M3t
z
¼�1/2. This is a triple line which meets the bicritical line

at I¼0.
A second triple line can be determined by imposing M3t

z
¼�1/2

and M4t
z
¼1/2 in the system
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where f(M2t
z ), and j2

2t are given by Eqs. (26) and (44), which
begins at the point J2/J1¼0, h/J1¼0 and I=J1 ¼ 4=p, which has been
obtained by Gonc-alves et al. [14].

For the special case p-1, we can find the critical surfaces by
using the same procedure used in the case p¼2. In this case, due
to many intersections of the critical surfaces, the global phase
diagram becomes too complicated, as we will show below.
Therefore, we will present some projections of the global diagram
which contain the main characteristics of this diagram and are
shown in Figs. 7–10.

In this case, the fermion excitation spectrum is also obtained
from Eq. (27). The result can be expressed in closed form, since
the summation in Eq. (27) can be easily expressed as a sum of two
infinite geometric progressions, and is given by

eqðM
zÞ ¼ J1cosðqÞ�J2

2cosð2qÞþcosðqÞ

5þ4cosðqÞ

� �
þhþ2IMz: ð47Þ

From this result we can determine the equations of the critical
surfaces for I=J1r0 and J2=J1Z0, which are

J2

J1
�

I

J1
�

h

J1
þ1¼ 0 for

J2

J1
Z0, ð48Þ



Fig. 7. Phase diagram for the quantum transitions as a function of the long-range

interaction I/J1 for p-1 and J2/J1¼27/23, 2.0. For J2/J1¼27/23 there are three

phases, one spin liquid phase (QSL-I) and two saturated ferromagnetic phases (SF),

and for J2/J1¼2.0, there are four phases, two spin liquid phases (QSL-I, QSL-II) and

two saturated ferromagnetic phases (SF). The critical lines correspond to first order

phase transitions for I=J1 40 and to second order phase transitions for I=J1 r0.

Fig. 8. Phase diagram for the quantum transitions as a function of the long-range

interaction I/J1 for p-1 and J2/J1¼�0.2,�1/11. For J2/J1¼�0.2 there are four

phases, two spin liquid phases (QSL-I, QSL-II) and two saturated ferromagnetic

phases (SF), and for J2/J1¼�1/11, there are three phases, one spin liquid phase

(QSL-I) and two saturated ferromagnetic phases (SF). The critical lines correspond

to first order phase transitions for I=J1 40 and to second order phase transitions

for I=J1 r0.

Fig. 9. Phase diagram for the quantum transitions as a function of the long-range

interaction I/J1 for p-1 and J2/J1¼ �2.5,�1.7370yFor J2/J1¼�2.5 there are four

phases, two spin liquid phases (QSL-I, QSL-II) and two saturated ferromagnetic

phases (SF), and for J2/J1¼�1.7370.., there are four phases, two spin liquid phases

(QSL-I,QSL-II) and two saturated ferromagnetic phases (SF), which coexist in the

quadruple point localized at h/J1¼0, I/J1¼1.7798yThe functional of the free

energy for this case is shown in Fig. 11. The critical lines correspond to first order

phase transitions for I=J1 40 and to second order phase transitions for I=J1 r0.

Fig. 10. Phase diagram for the quantum transitions as a function of the long-range

interaction I/J1 for p-1 and J2/J1¼�3.5,�3.0. For J2/J1¼�3.5 there are four

phases, two spin liquid phases (QSL-I, QSL-II) and two saturated ferromagnetic

phases (SF), and for J2/J1¼�3.0, there are three phases, one spin liquid phase

(QSL-I) and two saturated ferromagnetic phases (SF).The critical lines correspond

to first order phase transitions for I=J1 40 and to second order phase transitions

for I=J1 r0.
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þ
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, ð51Þ

where

Mz
1 ¼

arccos 11J2�15J1

12J1�12J2

� �
p �

1

2
: ð52Þ
Identically, we can show that for I=J1r0 and J2=J1r0, the
critical surfaces are

J2
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�

I

J1
�

h
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1

11
r
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J2

J1
�

2IMz
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J1
�

h

J1
þ1¼ 0 for �3r

J2

J1
r�

1

11
, ð56Þ

J2

J1
þ

I

J1
�

h

J1
þ1¼ 0 for

J2

J1
r�3, ð57Þ

J2

3J1
�

2IMz
3

J1
�

h

J1
�1¼ 0 for

J2

J1
r�3, ð58Þ

where

Mz
2 ¼

arccos �7J2þ5J1

4J1�4J2

� �
p �

1

2
, ð59Þ

Mz
3 ¼

arccos �11J2þ15J1

12J1�12J2

� �
p

�
1

2
: ð60Þ

In this case there are three bicritical lines which are given by

h

J1
¼�

14

23
þ

I

J1
at J2=J1 ¼ 27=23, ð61Þ

h

J1
¼

10

11
�

I

J1
at J2=J1 ¼�1=11, ð62Þ

h

J1
¼�2þ

I

J1
at J2=J1 ¼�3: ð63Þ

For I=J140, as for the case p¼2, the first order transition surfaces
can be determined numerically and the triple lines are deter-
mined by following the same procedure adopted for p¼2.

In Fig. 7 the phase diagram is shown for the positive region
J2=J1Z0, where there are four critical surfaces which are given by
Eqs. (48)–(52). These critical surfaces meet at a bicritical line,
which is given by Eq. (61).

The phase diagrams for the negative region J2=J1r0 and for
different values of J2/J1 are shown in Figs. 8–10. In this case there
are six critical surfaces, given by Eqs. (53)–(58), which meet at
bicritical lines given by Eqs. (62) and (63). As we can see in
Figs. 8–10, the system presents in this case identical critical
behavior to the one obtained for the case p¼2, as far as the critical
behavior is concerned. However, it is worth mentioning the
appearance of a quadruple point at h/J1¼0, J2/J1¼�1.7370y, and
I/J1¼1.7798y, which is shown in Fig. 9 and is not present in the
case p¼2. The behavior of the functional of the Helmholtz free
energy at this point is presented in Fig. 11.
Fig. 11. Functional of the free energy f as a function of the magnetization Mz for

p-1, h/J1¼0, I/J1¼1.7798yand J2/J1¼�1.7370yat the quadruple point.
We have also analyzed the cases p¼3 and 4, for I¼0, where the
model presents new quantum spin liquid phases. Although in
these cases there are no first order transitions, we have restricted
these analyses to the model without the long-range interaction,
since the main purpose was to study the appearance of new
quantum spin liquid phases, which is mainly controlled by the
multiple short-range interaction.

In Fig. 12 we show the phase diagram for the case p¼3, where
the critical lines are given by

h

J1
¼

J2

4J1
�1, ð64Þ

h

J1
¼

3J2

4J1
þ1, ð65Þ

h
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108J1
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13
or

J2

J1
r�4,

ð66Þ

h
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� �3=2

�
19J2þ36J1

108J1
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J2

J1
Z

12

13
or

J2

J1
o0:

ð67Þ

As it can be seen, there are six quantum spin liquid phases which,
as we will show later, can be classified in three different classes as
far as the critical behavior is concerned.

The phase diagram for p¼4 is shown in Fig. 13, where the
critical lines are given by

h
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�1, ð68Þ

h
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þ1, ð69Þ
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1
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Fig. 12. Phase diagram for the quantum transitions as a function of J2/J1 for p¼3 and

I/J1¼0. All the transitions are of second order and there are five phases, three spin

liquid phase (QSL-I, QSL-II, QSL-III) and two saturated ferromagnetic phases (SF).



Fig. 13. Phase diagram for the quantum transitions as a function of J2/J1 for p¼4 and

I/J1¼0. All the transitions are of second order and there are five phases, three spin

liquid phase (QSL-I, QSL-II, QSL-IV) and two saturated ferromagnetic phases (SF).
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where

R1 ¼ K1=3þK�1=3, ð73Þ

with

K ¼ ð8J1�5J2Þ=J2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð64J2

1�80J1J2þ24J2
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q
,

Ju¼ 16b=ðb2þ10bþ1Þ and b¼ ½ð3þ
ffiffiffi
5
p
Þ=2�3 for Jur J2=J1r4=3,

ð74Þ

R2 � S1=3þS�1=3, ð75Þ

with

S¼ ð5J2�8J1Þ=J2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð24J2

2�80J1J2þ64J2
1Þ=J2
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for J2=J1o0 or J2=J1Z2,

ð76Þ

and

R3i � cosðyþfiÞ=2, ð77Þ

with

y¼ arccos½ð8J1�5J2Þ=J2�=3 and fi ¼ 2pði�1Þ=3, i¼ 1,2,3

for 4=3r J2=J1r2: ð78Þ

In this case, as for p¼3, the system presents six quantum spin
liquid phases which can also be classified in three classes as far as
the critical behavior is concerned, and there exist only second
order phase transitions.

The number of phases depends on p, as shown above, and
increases with the increase of p. However, there is a maximum
number of phases since for p¼2 and p-1 the system presents
equal number of phases, in these cases equal to 4. We have
verified this result and have shown that the maximum number of
phases is equal to 5, and that this happens for p equal to 5 and 7.

It should also be noted that, in all cases presented, there is the
appearance of two additional points in the Fermi structure for
each new second order phase transition induced by the field for
any fixed Ir0. This behavior, for Ia0, is identical to the one
obtained by Titvinidze and Japaridze [11] for p¼2 and I¼0, and it
is a consequence of the azimuthal symmetry of the model.
We would also like to point out that the appearance of these
additional points in the Fermi level, which reflect the ground-
state structure and are responsible for the appearance of multiple
quantum transitions, can only occur when J2a0 independently of
the values of I and J1. This means that, even in the limit I¼0 and
J1¼0, the new Fermi level structure is present, provided J2a0,
which confirms that the multiple spin interaction is the driving
mechanism for the multicritical behavior presented by the model.
4. Static spin correlations

The static correlation function /Sz
j Sz

jþ rS, in the thermody-
namic limit, can be given by [25–27],

/Sz
j Sz

jþ rS¼
Tr½expð�bH�ÞSz

j Sz
jþ r �

Tr½expð�bH�Þ� , ð79Þ

where H� is the Hamiltonian given in Eq. (4).
After the introduction of the Fourier transform (Eq. (11)), H�

can be written in the form

H� ¼
X

q

eqðM
zÞcyqcqþ

Nh

2
, ð80Þ

where eqðMzÞ is given by Eq. (22).
By introducing the fermion operators, we can write

Sz
j ¼

1

N

X
qqu

exp½ijðq�quÞ�cyqcq�
1

2
, ð81Þ

and from Eq. (81), by using Wick’s theorem [30], the static
correlation can be written as

/Sz
j Sz

jþ rS¼
1

N

X
q

/nqS�
1

2

" #2

þ
1

N2

X
qqu

exp½iðq�quÞr�ð1�/nquSÞ,

ð82Þ

with

/nqS¼
1

1þexp½eqðMzÞ�
: ð83Þ

From Eq. (82), we can obtain the static correlation function
which, after some straightforward calculations, can be written as

/Sz
j Sz

jþ rS¼
1

4

1

N

X
q

tanh
eq

2
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�

2

�
1

N

X
q
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2

� �" #2
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2
4

9=
;,

8<
:

ð84Þ

and, in the thermodynamic limit, in the form

/Sz
j Sz

jþ rS¼
1

2p

Z p

0
tanh

eq

2

� �
dq

� �2

�
1

2p

Z p

0
cosðqrÞtanh

eq

2

� �
dq

� �2

þ
dr0

4
: ð85Þ

As it is well known [31], at T¼0, the direct longitudinal
correlation function of the short-range XY model behaves
asymptotically as rzzðrÞ �/Sz

j Sz
jþ rS�ðM

zÞ
2
� f ðrÞr�2, where f(r) is

an oscillatory function. A similar behavior can be found for the
above expression (Eq. (85)) for the so-called quantum spin liquid
phases, where the oscillatory factor f(r) undergoes changes for
different phases, as shown by Titvinidze and Japaridze [11], for
the case p¼2, without long-range interaction.

In the presence of the long-range interaction, for p¼2 and
I=J1r0, we have at most two multiple quantum spin liquid
phases in the limit T-0. For the first quantum spin liquid phase,



F.G. Ribeiro et al. / Journal of Magnetism and Magnetic Materials 323 (2011) 39–50 47
the parameters satisfy the conditions

0r
J2

J1
r

1

2
,

�1þ
J2

2J1
þ

I

J1
r

h

J1
r1þ

J2

2J1
�

I

J1
, ð86Þ
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I
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where M1
z is given by Eq. (35), and from Eq. (85) we obtain

rzzðrÞ ¼ �
sin2
½q1r�

p2r2
, ð88Þ

where

q1 ¼ arccos
J1�yðMzÞ

2J2

� �
, ð89Þ

with
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1þ2J2

2þ4J2ðhþ2IMz
Þ

q
: ð90Þ

For the second quantum spin liquid phase, the parameters
satisfy the conditions

J2

J1
Z

1

2
,

�
J2

2J1
�

J1

4J2
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I

J1
r

h

J1
r�1þ

J2

2J1
�

2IMz
1

J1
, ð91Þ

and, in this case, the direct correlation rzzðrÞ is given by

rzzðrÞ ¼ �
fsin½q1r��sin½q2r�g2

p2r2
, ð92Þ

which can be recast in the form

rzzðrÞ ¼ �
4sin2

½ððq1�q2Þ=2Þr�cos2½ððq1þq2Þ=2Þr�

p2r2
, ð93Þ

where q1 is given by Eq. (89) and q2 by

q2 ¼ arccos
J1þyðMzÞ

2J2

� �
: ð94Þ

Therefore, rzzðrÞ shows a similar behavior to the case where
the model does not contain long-range interaction [11].

The correlation length which diverges at the critical point [32],
when we have a single phase, is associated with the period of the
oscillation of rzzðrÞ, and is defined by an analytical extension of its
scaling form given by [33]

rzzðrÞ �
F ðir=xÞ

rp
: ð95Þ

When the system presents two phases between the saturated
ferromagnetic phases, in view of the new behavior of the directed
correlation in this region, in order to define the correlation length
associated with the adjacent transitions we introduce a further
extension of the scaling form as

rzzðrÞ �
GðrÞF ðir=xÞ

rp
, ð96Þ

where GðrÞ is rapidly oscillating. Therefore, in this case the
correlation length is associated with the period of the envelope
function of the correlation which diverges at the critical point.
Therefore, for the case where we have a single phase, by using
Eq. (95), we can find from Eq. (88)

1

x
¼ 2arccos

J1�yðMzÞ

2J2

				
				

� �
, ð97Þ

which diverges at the critical points given by h/J1¼1+ J2/2J1� I/J1

and h/J1¼�1+ J2/2J1+ I/J1.
For the case where we have two phases between the saturated

ferromagnetic phases, at the upper critical line q1-0 and q2 is
finite, at the intermediate critical one q1 is finite and q2-0, and at
the lower critical one q1�q2-0. Therefore, by using Eq. (96) and
by considering the asymptotic behavior of Eqs. (88) and (92),
respectively, we can write explicitly the correlation length
associated with each transition in the form

1

x
¼ 2q1 ¼ arccos

J1�yðMzÞ

2J2

				
				

� �
, ð98Þ

1

x
¼ 2q2 ¼ arccos

J1þyðMzÞ

2J2

				
				

� �
, ð99Þ

and

1

x
¼ 2ðq2�q1Þ ¼ 2 arccos

J1þyðMzÞ

2J2

				
				

� �
�arccos

J1�yðMzÞ

2J2

				
				

� �� �
,

ð100Þ

which, as expected, diverges at the critical points h/J1¼1+ J2/
2J1� I/J1, h/J1¼1+ J2/2J1�2IM1

z/J1 and h/J1¼� J2/2J1� J1/4J2+ I/J1,
where Mz is the magnetization at intermediate transition.

Although the results presented are for p¼2, it can be shown
that the correlation length always diverges at all second order
critical points irrespective of the value of p, and for multiple
transitions an additional correlation length has to be introduced
for each new phase presented by the system between the
saturated ferromagnetic phases. Consequently, the scaling rela-
tion, given in Eq. (96), and the correlation length of the system
have to be redefined accordingly.

The transversal correlation function /Sx
j Sx

jþ rS, given by the
Toeplitz determinant [10]

/Sx
j Sx

jþ rS¼
1

4

/A1B2S /A1B3S /A1B4S . . . /A1Bjþ rþ1S
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/A3B2S /A3B3S /A3B4S . . . /A3Bjþ rþ1S

^ ^ ^ & ^

/AjBjþ rþ2S /AjBlþ3S /AjBlþ4S . . . /AjBjþ rþ1S

0
BBBBBB@

1
CCCCCCA

,
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where

/AjBlS¼�
1

p

Z p

0
cos½qðj�lÞ�tanh

eqðMzÞ

2

� �
dq, ð102Þ

can be evaluated numerically. This correlation, for the usual
short-range XY model and at T¼0, behaves asymptotically as
/Sx

j Sx
jþ rS� r�1=2 [31]. As in the case of the longitudinal correla-

tion, the asymptotic behavior of the transversal correlation
function /Sx

j Sx
jþ rS also presents changes in its power law decay

due to the presence of the multiple spin interaction. This result
has been shown by Titvinidze and Japaridze [11], in the case p¼2
without long-range interaction, which classified these phases as
spin liquid phases.

For the model with long-range interaction, the transversal
static correlation, at T¼0, was evaluated numerically from
Eq. (101) by considering the maximum value of r equal to 250,
and the power decay determined by considering the scaling
form /Sx

j Sx
l S� f ðrÞr�p . The results for p¼2 are presented in

Figs. 14 and 15, where the scaling forms are shown in the insets.
The scaling behavior of the transversal correlation function for the
quantum spin liquid I phase, presented in Fig. 14, is given by
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/Sx
j Sx

jþ rS� r�1=2, while for the quantum spin liquid II phase,
presented in Fig. 15, it is given by /Sx

j Sx
jþ rS� f ðrÞr�1, where f(r) is

an oscillatory factor. These behaviors are identical to the ones
obtained for the model without long-range interaction [11].

We would also like to point out that identical results are
obtained for the case p-1. This general result, which depends on
the number of phases only, gives support to the classification of
the intermediate phases as spin liquid phases.

The transversal static correlation was also calculated for p¼3,
where there is a new quantum spin liquid phase, which can be
identified in the phase diagram shown in Fig. 12. In this new
phase, denominated quantum spin liquid III phase, its scaling
behavior is given by /Sx

j Sx
jþ rS� f ðrÞr�3=2, where the oscillatory

behavior f(r) is shown in Fig. 16. Finally, for p¼4, in the new phase
denominated quantum spin liquid IV phase and shown in
the phase diagram presented in Fig. 13, the scaling behavior of
the transversal correlation function is given by /Sx

j Sx
jþ rS� f ðrÞr�2,

which is presented in Fig. 17.
Fig. 14. Static correlation function /Sx
j Sx

jþ rS as a function of r, for p¼2, h/J1¼2.0,

J2/J1¼2.0 and I/J1¼�1.0. The inset shows the power law decay of the correlation

characteristic of the QSL-I phase.

Fig. 15. Static correlation function /Sx
j Sx

jþ rS as a function of r, for p¼2, h/J1¼�1.0,

J2/J1¼2.0 and I/J1¼�1.0. The inset shows the power law decay of the correlation

characteristic of QSL-II phase with the oscillatory modulation f(r).

Fig. 16. Static correlation function /Sx
j Sx

jþ rS as a function of r, for p¼3, h/J1¼�0.15,

J2/J1¼3.0 and I/J1¼0. The inset shows the power law decay of the correlation

characteristic of QSL-III phase with the oscillatory modulation f(r).

Fig. 17. Static correlation function /Sx
j Sx

jþ rS as a function of r, for p¼4, h/J1¼�0.6,

J2/J1¼1.6 and I/J1¼0. The inset shows the power law decay of the correlation

characteristic of QSL-IV phase with the oscillatory modulation f(r).
We would also like to point out that the numerical calculations
of the determinants have been done by using two different
Fortran subroutines which have led to the same result. Moreover,
we have verified the convergence of the numerical result for
n4100 by comparing the power spectrum of the Fourier trans-
form of the results obtained for n4100 with the obtained for
no100, which have turned out to be identical.

Finally, it should be noted that, differently from the transversal
correlation function, the spatial decay of the longitudinal correla-
tion function does not depend on p.
5. Critical exponents

The critical exponents, at T¼0, associated with the magnetiza-
tion, isothermal susceptibility, correlation length and the dynamic
critical exponent z, for p¼2, can be evaluated analytically since
the quantities of interest are known in closed form. Since these
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exponents are associated with second order transitions, our
analysis will be initially restricted to Ir0.

Therefore, following [33], we define the order parameter given by

~Mz �Mz
t�Mz, ð103Þ

where Mt
z is the magnetization at the transition. This order

parameter goes to zero at the second order transitions, and it is
different from the one proposed by Titvinidze and Japaridze [11].
Then, from Eqs. (28), (89) and (90), we get

Mz ¼
1

p arccos
J1�yðMzÞ

2J2

� �
�

1

2
, ð104Þ

and by expanding Eq. (104) up to second order in ~Mz , we obtain

p2

2
ð ~Mz Þ

2
ffi

J1ðhc�hÞ

J1þ2J2
for

I

J1
¼ 0, ð105Þ

and

~Mzffi�
J1ðhc�hÞ

2I
for

I

J1
o0: ð106Þ

From Eqs. (105) and (106), and the scaling form ~Mz � jhc�hjb,
we can conclude that the critical exponent b is given by b¼ 1

2, for
I/J1¼0 and b¼ 1 for I=J1o0, respectively, showing that the
universality class has changed with the presence of the long-
range interaction.

The isothermal susceptibility can be obtained from Eq. (104),
and is given by

wzz
T ¼

J1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½yðMzÞ�2 1� J1�yðMzÞ

2J2

� �2
� �s

�2I

: ð107Þ

In the critical region, we have wzz
T � jhc�hj�g, and from the

previous expression we find that the critical exponent g is equal
to 1=2, for I/J1¼0, and it is zero for I=J1o0. Since at T¼0, g is
identical to a, we can show that in both cases, namely, with or
without long-range interaction, the exponents b,a and g satisfy
the Rushbrook scaling relation [32].

The critical exponent n, associated with the correlation length
x� jhc�hj�n, can be obtained from Eqs. (97) and (99). From these
expressions we can immediately show that n is equal to 1=2,
when I/J1¼0 and it is 1 for I=J1o0.

From the above results, by assuming the quantum hyperscal-
ing relation [34]

2�a¼ nðdþzÞ, ð108Þ

where d is the dimension of the system and z the dynamic critical
exponent, we find z¼1 for Io0, and z¼2 for I¼0. Therefore, we
can conclude that the system also presents a non-universal
critical dynamical behavior.

For I40, following Continentino and Ferreira [23], we
introduce a critical exponent associated with the free energy for
the quantum first order phase transition. Assuming the scaling
form f ðh7 Þ ¼ f ðhtÞ7E7 jht�hj2�au close to the field of transition ht,
since the free energy given in Eq. (26) can be written as

f
h�

J1

� �
ffi f

ht

J1

� �
þMt

h�ht

J1

				
				 for hoht , ð109Þ

f
hþ

J1

� �
ffi f

ht

J1

� �
�

1

2

h�ht

J1

				
				 for h4ht , ð110Þ

we obtain au¼ 1, which gives support to Continentino and
Ferreira’s conjecture [23].
6. Conclusions

In this work we have considered the one-dimensional isotropic
XY model with multiple spin interactions and uniform long-range
interactions among the z components of the spin, in a transverse
magnetic field. The solution of the model was obtained exactly for
arbitrary p, which characterizes the range of multiple spin
interaction, at arbitrary temperature. Explicit equations have
been obtained for the functional of the Helmholtz free energy
from which the equation of state can be determined numerically.
The quantum critical behavior was studied in detail for p¼2,3,4
and 1, and the multiple phases presented by the model have
been characterized by the asymptotic behavior of the static
correlation functions /Sz

j Sz
l S and /Sx

j Sx
l S. Irrespective of the value

of p, the model presents first order quantum transitions, when the
long-range interaction is ferromagnetic, and second order ones,
when the long-range interaction is antiferromagnetic. Following
Titvinidze and Japaridze [11], we have classified the intermediate
phases, situated between saturated ferromagnetic phases, as the
so-called quantum spin liquid phases, which are induced by the
extended interaction. For p¼2, the global phase diagram has been
obtained as a function of the interaction parameters and the
critical surfaces, and multicritical lines determined exactly. The
critical exponents have been obtained and it has been verified
that they satisfy the Rushbrook relation aþ2bþg¼ 2 (see, e.g.
Ref. [32]) and the quantum hyperscaling relation [34] 2�a¼
nðdþzÞ, and that the system presents a non-universal static and
dynamic critical behavior. We have also shown that the free
energy, close to first order transitions, satisfy the scaling form
proposed by Continentino and Ferreira [23].

Finally, we would like to point out that it is of great importance
the existence of multiple first order quantum transitions and
multicritical lines (triple and quadruple lines), which we have
shown exactly to exist in the model, since we believe that they are
related to the different mechanisms from which the first order
phase transitions are driven, as discussed by Pfleiderer [20].
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