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bNúcleo de Fı́sica, Instituto Federal de Minas Gerais - Campus Bambuı́, 38900-000, Bambuı́, Minas Gerais, Brazil

Abstract

In this paper we seek for detectable modifications in system properties induced by the Coulombian interactions between magnetic
monopoles in an artificial spin ice system as an attempt to provide theoretical support to experiments devoted to measure the
magnetic charge of monopole excitations. To this end an emergent vertex model was developed, validated and afterwards used to
explore Coulombian interaction modifications on the distribution of monopole-like excitations in a magnetization reversal process.
Our results show that the analysis of the skewness and kurtosis of the distribution of monopoles can be used to identify the presence
of Coulombian interactions. These results are shown to be robust against the presence of disorder and temperature fluctuations.
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1. Introduction

Spin ice [1, 2] is a class of frustrated magnetic materials
which exhibit disorder in the configuration of magnetic mo-
ments similar to that found in the water ice. Its crystalline struc-
ture is such that magnetic moments are placed at the corners
of a lattice of corner sharing tetrahedra, the pyrochlore lattice,
being dysprosium titanate (Dy2Ti2O7) and holmium titanate
(Ho2Ti2O7) its main examples. In these compounds, a strong
single ion anisotropy enforce magnetic moments to point along
the direction that connects the center of adjacent tetrahedra, in
such a way that due to the frustrated magnetic and exchange
couplings configurations where two spins point inward and two
outward at each vertex are favored. Then, the system’s ground
state is degenerated and follows the “two-in”, “two-out” ice rule
in each vertex. In 2008, Castelnovo et al [3] realized that ex-
citations above the degenerated ground state, generated by the
ice rule violation, could be interpreted as emergent quasiparti-
cles that behave like magnetic monopoles, being the first ex-
ample of fractionalization in a three dimensional system. How-
ever, proper sampling of individual magnetic moments in a spin
ice crystal is not possible with current experimental techniques.
As a way to circumvent this difficulty, allowing more detailed
analysis of frustration effects, Wang et al [4, 5] proposed that a
lattice of elongated magnetic nanoislands that mimics some of
the basic ingredients of spin ice compounds, the artificial spin
ice (ASI), could be used to study frustration effects in magnetic
systems.
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Besides the possibility of sampling individual magnetic mo-
ments in a lattice of interacting magnets by techniques such
as Magnetic Force Microscopy (MFM) and X-Ray Magnetic
Circular Dichroism (XMCD), the kind of system proposed in
Wang’s seminal work also allow the study of any kind of ar-
rangement of magnetic dipoles in two dimensions [5]. Indeed,
their proposal is based on a lattice of lithographically built
elongated nanoislands, each one approximately described as an
Ising-like dipole, in such a way that any two dimensional ar-
rangement of these building blocks can be built. Because of
that, each geometry of artificial spin ice is unique and each of
them have different physical properties. For example, among
many different realizations to date, the square lattice [4] is the
one that most resembles the crystalline spin ice since each ver-
tex has four dipoles that may point inward or outward and
ice rule satisfying configurations are favored; the honeycomb
(kagome) lattice [6, 7] is related to a planar mapping of the py-
rochlore lattice and have only three spins at each vertex; the
triangular lattice is the one that has a simple way to achieve the
ground state through a uni-directional magnetic field [8, 9]; just
to name a few. In addition, most of these systems also have as
low energy excitations quasi-particles that behave as magnetic
monopoles [8, 10, 11, 12, 13].

Concerning monopole-like excitations in these systems,
some aspects should be remarked. In the crystalline spin ice
(CSI) Castelnovo et al [3] showed that magnetic monopoles
emerge as elementary excitations by using a dumbbell model,
where each dipole (spin) is replaced by a dumbbell of magnetic
charges separated by the diamond lattice spacing. Then, config-
urations violating the ice-rule generate vertices with a net mag-
netic charge that interacts via Coulombian interactions. Since
the dumbbell model reproduces system’s energy up to terms
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proportional to 1/r5 proper description of system’s properties
is obtained by this simplified model. However, the same is not
so simple for the ASI systems [14]. Indeed, a simple resummed
dumbbell model is not capable of reproduce the system’s en-
ergy, in such a way that the monopoles concept cannot be read-
ily translated to this system. The main difference is that while
in the pyrochlore lattice all vertices satisfying the ice rule have
the same intrinsic dipole moment, in the artificial spin ice in a
square lattice, vertices on topology T1 (see figure 1) have a null
dipole moment and vertices in topology T2 have a finite dipole
moment. Moreover, in the pyrochlore lattice a crystallization
of vertice’s dipole moments occurs only for very low tempera-
tures, below the spin ice regime [15], in such a way that in the
ice regime their interaction is negligible, ensuring ground state
degeneracy and residual entropy. In the artificial spin ice in a
square lattice on the other hand, there is a significant interaction
between vertice’s dipole moments, in such a way that system’s
energetics is dominated by such interactions and ground state
degeneracy is removed. As a consequence, monopoles in ar-
tificial spin ice interact by a Coulombian interaction added to
a linear string potential [10], related to an observable string of
dipoles pointing from one monopole to the other whose tension
depends on system’s geometry [8, 11, 12, 13]. Such a string is
also present in the CSI [3] but it is non energetic.

From the fundamental point of view, one important ques-
tion that can be posed is how the Coulombian interactions
among monopole excitations modify system’s properties. In
ASI, string tension is dominant once the excitation energy de-
pends linearly on the string length [10]. However, Coulombian
interactions among monopoles is still present and may mod-
ify system’s properties in a detectable way [16, 17]. Indeed,
the monopole interpretation of excitations in ASI (including
the Coulombian interaction between excitations) is a very well
based theoretical assumption, but to our knowledge the is still
no experimental measurement capable of confirm that in a real
ASI system at a given temperature the interaction between ex-
citations is the expected one. Then, proper measurement of the
interaction between excitations is a crucial step towards the de-
velopment new devices based on ASI. In addition, a deeper un-
derstanding of how modifications in monopoles charge or string
tension modify system properties may contribute even further
to unleash ASI full possibilities. Moreover, it may give more
detailed clues on how modifications in geometry or other sys-
tem properties reflect on modifications of the string tension and
monopoles charge. As a way to look for such kind of modifica-
tion a model to describe artificial spin ice where string tension
and monopole charge can be continuously varied is in order.

In this paper we show that a dumbbell model can be trans-
formed into an emergent model of vertex excitations which is
suitable for artificial spin ice systems. This model incorporates
vertices dipole moment and as a consequence it reproduces cor-
rectly systems excitations and main properties. In addition, it
allows one to analyze separately the contributions of each kind
of excitation or even to vary the monopoles charge keeping the
string tension constant, making it possible to identify charac-
teristics in systems properties that are due to the interaction be-
tween monopoles alone. By considering a simple magnetiza-

tion reversal process for different artificial spin ice realizations,
i.e, different magnitudes for the Coulombian interaction for a
given string tension, we found that Coulombian interactions
add asymmetries in monopoles population distribution in such
a way that its presence can be inferred. This observation may
be used to develop methods to experimentally measure interac-
tions between monopole excitations. The paper is organized as
follows. In section II we present the emergent vertex model,
section III contains our results for the effects of Coulombian in-
teractions on system’s properties and section IV is devoted to
final considerations and conclusions.

2. The emergent vertex model

As mentioned in the introduction, the main difference be-
tween the description of CSI and ASI systems by means of a
resummed dumbbell model is related to the vertice’s net dipole
moment. While in the CSI all vertices satisfying the two-in
two-out ice rule have the same dipole moment in magnitude,
in the ASI one of the two possible kind of vertices that sat-
isfy the ice rule (topology T1 in figure 1) has null dipole mo-
ment while the other (topology T2 in figure 1) has a non-zero
dipole moment. This difference introduces substantial modifi-
cations in the system behavior. In the ice regime of CSI the
net charge of a tetrahedra (vertices) is the only relevant degree
of freedom [3]. This means that the interaction between ver-
tices’ dipole moments are negligible and must not be consid-
ered. Then, using dumbbells, performing a resummation at ver-
tices and properly setting creation energies for monopoles, an
accurate description of systems’ properties is obtained. In the
ASI, the vertices’ dipole moment cannot be neglected in order
to obtain the ground state and low energy excitations. Indeed,
since a creation energy can be attributed to the dipole moment
of a vertex, one should expect that the ground state is the one
with null net charge and null net dipole moment at each vertex,
i.e., only vertices on topology T1 composes the ground state
as indeed is the case. As a consequence, excitations above the
ordered ground state in ASI are described by the Coulombian
interaction among monopoles (vertices that violate the ice rule,
pertaining to topology T3) added to a linear string potential re-
lated to the creation of vertices on topology T2 that connect the
monopoles as they are separated [10]. Following this reasoning,
a dumbbell model suitable for ASI should incorporate vertices’
dipole moment as well as its monopole moment.

In the conventional dumbbell picture used by Castelnovo et
al [3], point charges of magnitude q separated by the lattice
spacing, a, are used to replace point dipoles located in the mid-
point along the line that connects the center of adjacent vertices.
In addition, q is set such that qa = µ, where µ is the dipole mo-
ment of the spins in the original point dipole model. Then, at
each vertex, only a net monopole moment survives when all
point dipoles are replaced by physical dipoles and a resumma-
tion is performed. In other approach [14, 18], the distance be-
tween monopoles in the dumbbell is set to the island length,
which is smaller than the lattice spacing. Here, the distance be-
tween the dumbbell charges (d), or the monopole (Q) and dipole
moments (p) of emergent vertices, will be fitted to provide the
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Figure 1: Topologies of the artificial square spin ice ordered according to increasing energy from left to right. Small boxes shows on the top the point dipoles
(arrows) and dumbbell charges (circles) inside a square representing the vertex. The vertex side length is l = a− d, where a is the lattice spacing and d the dumbbell
length. Gray circles represent positive (north) charges while white circles stand for negative (south) charges. The resulting charge and dipole moment of the vertex
in the emergent model are shown on the small bottom boxes. T1 vertices have null charge and dipole moment, T2 vertices have null charge and a net dipole moment
P2 =

√
2ql, T3 vertices have total charge Q3 = ±2q and dipole moment P3 = 1ql and T4 vertices have total charge Q4 = ±4q and null dipole moment. Big boxes

shows streamlines representing the magnetic field of the point dipoles. By looking to the corners the dipole moment direction can be inferred.

same energy difference between configurations of a point dipole
model. In this picture, the monopole and the dipole moments
are given, respectively, by

∑4
k=1 qk and

∑4
k=1 qk · ~rk, where qk

is the charge from spin k and ~rk is its position measured from
the vertex center. The key point is that by proper choice of
these values, different realizations of ASI can be recovered. For
example, the differences between two ASI realizations using is-
lands with different widths, where one should expect to observe
different dipole moments and monopole charges for excitations,
can, in principle, be recovered while in other approaches (e.g.
Refs.[14, 18]) this is not possible.

In figure 1 we show the vertex topologies and the correspond-
ing dumbbell charges of a vertex (small boxes on the top), emer-
gent vertices (small boxes on the bottom) and field streamlines
(on the right) for an artificial square spin ice (ASSI). It seems
at first sight, i.e., by looking only to the original and emergent
vertices (top and bottom boxes in figure 1), that the dipole mo-
ments of the emergent vertices are pointing in the wrong direc-
tion. However, a closer inspection of the direction of the mag-
netic field produced by the point dipoles on the edges of the
vertex, more specifically at the corners, shows that they should
point as show on the middle panel of figure 1. Moreover, agree-
ment between energies of the emergent and point dipoles mod-
els can only be obtained by considering them in this way. Other
relevant point we can notice is that related to T3 vertices there
is a composite excitation that has charge and dipole moment.
To our knowledge the dipole moment of this excitation was ne-
glected in emergent models so far. This may be related to the
fact that since the dipole moment, p, is small, the dipole field
is much smaller than the monopole field, hiding its dipole char-
acter. Moreover, the main effect of such dipole moment would
be to introduce anisotropies in the interactions that are likely to
be hidden by the discrete symmetry of the square lattice where
they live in.

Now that we have defined the excitations of the emergent
model we can proceed to determine creation energies related to
each vertex type and their monopole and dipole moments mag-
nitude. At this point we must emphasize that different values
for these constants leads to systems with very different physi-
cal properties. Indeed, for some values it may have absolutely
no resemblance to an ASI. Is the proper choice of these val-

ues that guarantee that we are dealing with the desired sys-
tem. Then, in order to obtain values that are suitable for an
artificial square spin ice, we have used 106 configurations ob-
tained from a Monte Carlo simulation of the ASSI using point
dipoles as a benchmark. We used the conventional Metropolis
algorithm[19] in a 34×34 lattice with open boundary conditions
and dipolar interactions,

Hpd = D
∑
i< j

~si · ~s j − 3(~si · r̂i j) · (~s j · r̂i j)

r3
i j

 ,
where D =

µ0µ
2

4πa3 is the dipolar constant, µ is the island’s dipole
moment, a the lattice spacing and ~si and ~ri j are the dimension-
less dipole moment of site i and distance between sites i and
j, respectively. The considered 106 configurations were ob-
tained after thermalization for temperatures between 4 and 20
D/kB. The ASSI has a phase transition at T ≈ 7D/kB [20]
and T = 4D/kB is a temperature low enough to allow proper
sampling of the low temperature behavior of the system, in-
cluding its ground-state. The energies obtained by using the
point dipole model were renormalized to get null energy for
the ground state, allowing better comparison to the emergent
model. For each of these configurations the corresponding
emergent vertices were obtained, allowing the computation of
its energy as described by the following hamiltonian:

Hv =
µ0q2

4πa

∑
i< j

QiQ j

ri j
−
µ0q2l
4πa2

∑
i< j

~pi · r̂i j

r2
i j

+
µ0q2l2

4πa3

∑
i< j

 ~pi · ~p j − 3(~pi · r̂i j) · (~p j · r̂i j)

r3
i j


+ ET2

c

∑
i

δi,T2 + ET3
c

∑
i

δi,T3

+ ET4
c

∑
i

δi,T4 . (1)

In this expression, we introduced a dimensionless charge for
vertex i, Qi = 0 if vertex i is on topology T1 or T2, Qi = ±2 if
it is on topology T3 and Qi = ±4 if it is on topology T4. The
dimensionless dipole moment of vertex i is |~pi| = 0 if it is on
topology T1 or T4, |~pi| = 1 if it is on topology T3 and |~pi| =

√
2

if it is on topology T2. ET j
c is the creation energy of a vertex
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Figure 2: Initial configuration of the artificial square spin ice (ASSI) used
in our simulations. By applying a magnetic field in the x direction only spins
represented by open arrows flip. At each vertex the corresponding excitation of
the emergent vertex model is obtained and used to calculate the magnetic field.

on topology T j (measured in units of D) and δi,T j = 1 if vertex
i is on topology T j and 0 otherwise. q is the magnitude of the
dumbbell charge (measured in units of µ/a) and m = ql gives
the magnitude of the dipole moment of a vertex (see figure 1 for
more details). The first term represents the interactions among
monopoles, the second the interactions among monopoles and
dipoles, the third interactions among dipoles and the last three
terms represent the creation energy of each kind of vertex. As
can be seen, the creation energy of a vertex on topology T1 was
set to zero, in such a way that for the ground-state, i.e., a state
composed only by T1 vertices the energy is zero.

The constants in the expression above (Eq. 1) has to be ad-
justed to give reasonable values for the energy. Indeed, without
the values of the constants, q, l (measured in units of a) and ET j

c ,
this expression is meaningless since only the remaining parts of
the expression can be obtained from the system configuration.
In order to obtain the values of these constants we performed a
least squares fit using the energy obtained from the point dipole
model as dependent variable and equation 1 to predict its value
by adjusting q, l and ET j

c . The assumption is that both models
give the same energies for the same configurations or, at least,
the energy difference between two configurations is the same
for both models (point dipoles and emergent vertex model).

Before proceeding to the estimation of the emergent vertex
model constants we have to deal with the border vertices. Ver-
tices located at the system’s boundary have less spins than the
others, in such a way that the excitations related to them are
different from the ones we are more interested in obtain. Then,
we can take into account their excitations following the same
procedure described for the remaining vertices or neglect their
contribution. In order to simplify the possible border excita-
tions, the ASSI lattice was build as shown in 2, in such a way
that all border vertices have the same kind of excitation. An-
other point that have to be considered is if q and l = a − d
will be constrained to the island’s dipole moment µ by doing
µ = qd = q(a− l) or not. In table 1 we show results for the con-
stants for all these possibilities. As can be seen by the analysis

Table 1: Results of the least squares fit of the energies obtained from the point
dipole model to equation 1. The last two lines show the R2 and the standard
deviation of the residuals, σE .

Border excitation
Neglected Considered

ql constrained to µ ql constrained to µ
Quantity No Yes No Yes

q 1.1451(4) 1.2169(4) 1.5199(1) 1.4855(1)
l 0.2579(3) 0.1781(3) 0.31592(5) 0.3268(5)

ql 0.2953(3) 0.2167(4) 0.48017(6) 0.4855(1)
ET2

c 10.392(1) 10.2066(9) 10.6642(3) 10.7061(3)
ET3

c 17.752(2) 17.893(3) 20.698(1) 20.486(1)
ET4

c 49.96(1) 50.60(1) 61.509(5) 60.605(4)
R2 0.999977 0.999974 0.999998 0.999998
σE 18.19033 19.27400 4.891123 5.215461

of the R2 and standard deviation of residuals (σE), better results
were obtained when the excitations at the borders were con-
sidered and q and l where not constrained to give the island’s
magnetic moment. However the obtained value, qd ≈ 1.04µ, is
very close to the expected value qd = µ.

To show further evidences of the equivalence between these
two models we run Monte Carlo simulations of the emergent
vertex model using the values contained in the third and fifth
columns of table 1. A comparison between the energy, specific
heat and magnetization of the pure dipole model and that of the
emergent vertex model taking into account or not border exci-
tations are shown in figure 3. As can be seen, there is complete
agreement between these two models in the entire temperature
range. The main differences between these two scenarios arise
when we consider the population of each vertex type, shown in
figure 4. Here we can see that by neglecting border excitations
the populations are not well described. In summary, our best re-
sults indicates that border configurations should be considered
while the differences introduced by constraining ql to µ may in-
troduce only small modifications, expected to be irrelevant in
comparison to thermal energy or imperfections present in real
systems.

3. Analysis of vertex population in the magnetization rever-
sal of ASSI

Signatures of the Coulombian interactions among monopoles
in measurable quantities were investigated by using the emer-
gent vertex model described in the last section in a magnetiza-
tion reversal of the artificial square spin ice for different mag-
nitudes of the monopole moment of the vertices. Note that this
is equivalent to consider different ASSI realizations where the
sole difference is the monopoles charge. Then, we placed spins,
~S i, on the sites of a square lattice of size L = 64 oriented along
the x and y directions as in the ASSI, see figure 2. Each of these
spins have an intrinsic barrier to flip, i.e., only when the compo-
nent of total magnetic field on a spin that points in the opposite
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Figure 3: Comparison between Monte Carlo simulations of the point dipole
model (full symbols) and the emergent vertex model (open symbols). On the
left we used results from the third column of table 1 and on the right from
the fifth column. From top to bottom we show the energy, specific heat and
magnetization as a function of the temperature.

Figure 4: Comparison between Monte Carlo simulations of the point dipole
model (full symbols) and the emergent vertex model (open symbols). On the
left we used results from the third column of table 1 and on the right from the
fifth column. From top to bottom we show the population of vertices T1, T2, T3
and T4 as a function of the temperature.

direction, −~BTot
i ·

~S i, exceeds a determined threshold, bi, the spin
flips [9, 21, 22]. In our procedure all spins are initially aligned
in the negative x and y directions and an external uniform mag-
netic field, ~Bext, aligned in the positive x direction, is gradually
applied, inducing the reversal of all horizontal spins. In addi-
tion to the external field we considered the field produced by
the excitations that exist in each vertex as a consequence of
the corresponding emergent vertex model, ~Bvert

i , in the position
of the spin i. Note that ~Bvert

i includes the contributions of all
monopoles and dipoles of the emergent vertex model. So, the
monopole and dipole moments of each excitation contribute to
the flipping of a given spin, affecting the system behavior. Then,
by varying the monopole moment magnitude keeping the dipole
moment of each excitation fixed we can look for modifications
in system properties produced by the Coulombian interaction
alone. We have then fixed the magnitude of the dipole moment
as m = 0.5, in accordance with the value shown in table 1 and
varied the monopole charge q, between 0 and 10.

For a perfect system, in the sense that the reversal field for
all spins is the same, all spins flip for the same value of the
external field in a large enough system. But in real systems
inhomogeneities in the nanoislands induces small variations in
the reversal field [23, 24], introducing a quenched disorder in
the system. This is incorporated in our model by considering
that the reversal field, bi follows a Normal distribution of stan-
dard deviation ∆b centered at bm [9, 22]. For simplicity we
have set bm = 100 and ∆b = 2.5, 5, 10 and 15 in dimensionless
units. For the simulation the external magnetic field, |~Bext |, is
slowly increased from 0 in steps of size 0.1. After each field
step spins are randomly chosen and flipped if −~BTot

i · ~S i ≤ bi.
After 5 × N random choices, where N is the number of spins in
the system, all spins of the system are tested according to the
preceding equation and flipped if it is satisfied. After each spin
flip the external field changes and the process is restarted.

In figure 5 we show results for the population of vertices
in topologies T2 and T3 as a function of the external field for
q = 1.5 and ∆b = 10. The T2 vertices were divided into two
classes depending on the direction of its dipole moment. At the
beginning, i.e., for the initial configuration, all dipoles point in
the positive x direction, T +

2 . As the field increases spins are
flipped and they change its dipole direction, starting to point in
the negative x direction, T−2 . This process is mediated by the
creation and propagation of T3 vertices (monopoles). These are
the only types of vertices present in this simulation. Similar
curves are obtained for all q values. However, one can notice
small asymmetries in the distribution of monopoles as well as
modifications in the position of the maxima and its height. In
figure 6 we show in a) representative curves for the population
of monopoles as a function of the external field, the maximum
population of T3 vertices (Pmax) as a function of the monopole
charge is shown in b), the distribution mode (X0) in c) and the
standard deviation (σ) in d). The open symbols were obtained
considering all lattice sizes while full symbols were obtained by
considering only the central portion of the system (L/2 × L/2)
in a attempt to minimize border effects. As can be seen, these
quantities diminishes for increasing monopole charge, being
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  Figure 5: Vertex population as a function of the external field for q = 1.5.

Figure 6: a) Monopole population as a function of the external field for q = 0,
1.5 and 3. b) Maximum population of monopoles as a function of the monopole
charge, q. c) Monopole distribution mode, X0 as a function of q. d) Standard
deviation of the monopole distribution, σ, as a function of the monopole charge.
Full symbols were obtained considering only the central part of the lattice while
open symbols were obtained for all lattice sizes.

thus our first measurable evidence of the Coulombian interac-
tion between monopoles. As can be seen, the field range were
the transition occurs is approximately σ in such a way that for
high enough q it occurs in a single field step. Thus, quantities
of interest were obtained only when Pmax > 0.05, ensuring a
minimum population to obtain them.

Further evidences of Coulombian interactions can be ob-
tained by analyzing the skewness and kurtosis [25, 26] of the
monopoles distribution. In figure 7 we show the skewness co-
efficient,

Ks =
m3

σ3 ,

where m3 is the third moment of the distribution and σ its stan-
dard deviation, and the excess kurtosis coefficient,

Kc =
m4

σ4 − 3,

were m4 is the fourth moment of the distribution. Negative val-
ues of Ks indicate that the distribution is skewed left while pos-
itive values are related to a skewed right distribution. Using
the above definition, Kc = 0 for the normal distribution. So,
positive values of Kc indicate a platykurtic distribution while a

Figure 7: Skewness (a) and kurtosis (b) coefficients of the monopoles distri-
bution as a function of the monopole charge. For large values of the monopole
its distribution starts to be skewed left and leptokurtic. Full symbols were ob-
tained considering only the central part of the lattice while open symbols were
obtained for all lattice sizes.

negative value of Kc is related to a leptokurtic distribution. As
can be seen (figure 7), the monopoles distribution tends to be
skewed left and platykurtic for high values of q. In our previ-
ous analysis (see table 1) we found q ≈ 1.5 for the point dipole
model, approximately the value above which the distribution
starts to have modified skewness and kurtosis coefficients. We
believe that proper design of the nanoislands can be used to
achieve monopole charges on the emergent vertex model above
this value for which case the distribution curves will deviate
from a normal distribution providing an indirect measurement
of monopole charge.

The effect of different strengths of the disorder in the system
is shown in figure 8 and 9. They indicate that even for relatively
high degrees of disorder, as 15%, the analysis of skewness and
kurtosis for the central portion of the system is capable to detect
the Coulombian interactions among monopole excitations. As
shown, the main effect is that appreciable deviations from the
normal distribution appears for larger values of the monopole
charge and mainly for the central portion of the system. In ad-
dition, an interesting feature is observed in the maximum pop-
ulation. As can be seen in figure 8 b), there is a crossing point
of the curves, indicating that the population increases with de-
creasing disorder for q smaller than 1.5 and that decreases for
decreasing disorder for q greater than 1.5. The same crossing
point is found in the kurtosis coefficient curves in figure 9, in
which for q smaller than 1.5 leptokurtic curves are obtained.
We still do not have any reasonable explanation for this behav-
ior and believe it deserves further investigations, however, this
is out of the scope of this work.

Recent realizations of artificial spin ice systems [27, 28, 29,
30, 31] shows that proper engineering of nanoislands can be
used to obtain thermal fluctuations at room temperature. This
introduces fluctuations that were not considered in the above
calculations. In order to introduce temperature effects in our
simulations allowing the extension of our conclusions to ther-
mal systems, we introduced a fluctuating magnetic field, ~Bt

i
given by a normal distribution centered at zero and with stan-
dard deviation ∆Bt, in a way similar to what was done by Mar-
tinez et al [32]. Then, at each field step a new distribution of
the thermal magnetic field is chosen. This is expected to cover
situations were the external magnetic field changes in a time
scale comparable to the time scale of relevant modifications in
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Figure 8: a) Monopole population as a function of the external field for differ-
ent strengths of disorder as indicated in the legend. b) Maximum population of
monopoles as a function of the monopole charge, q. c) Monopole distribution
mode, X0 as a function of q. d) Standard deviation of the monopole distribution,
σ, as a function of the monopole charge.

Figure 9: Skewness (a-b) and kurtosis (c-d) coefficients of the monopoles
distribution as a function of the monopole charge for different disorders as in-
dicated in the legend. On the left we show the results considering only the
central portion of the system while on the right the results considering all sites
is shown.

Figure 10: a) Monopole population as a function of the external field for differ-
ent thermal field strengths as indicated in the legend. b) Maximum population
of monopoles as a function of the monopole charge, q. c) Monopole distribution
mode, X0 as a function of q. d) Standard deviation of the monopole distribution,
σ, as a function of the monopole charge.

Figure 11: Skewness (a-b) and kurtosis (c-d) coefficients of the monopoles
distribution as a function of the monopole charge for different strengths of the
thermal field as indicated in the legend. On the left we show the results con-
sidering only the central portion of the system while on the right the results
considering all sites is shown.

the reversal field of the islands due to thermal effects. Note
that this is equivalent to consider random fluctuations on the
reversal field of spins and on magnetic moments of emergent
vertices. Of course, ∆Bt will be proportional to the system tem-
perature. In figures 10 and 11 we show results for ∆Bt = 0, 5,
10 and 15 and for ∆b = 10. As can be seen, only small quan-
titative differences are observed for the population, maximum
population, mode and standard deviation of the distribution of
monopoles (figure 10) as compared to the curves for different
disorder strengths shown in figure 8. A qualitative difference is
only observed for the skewness of monopoles distribution for
the entire lattice that starts to be skewed left, while for increas-
ing quench disorder it tends to be skewed right, making them
easier to detect in experimental measurements, even for those
with smaller magnitudes.
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4. Conclusions

In this paper we have shown that an efficient emergent vertex
model for artificial spin ice systems can be build by properly
considering the dipole moments of vertex excitations. As we
have shown, creation energies, monopoles charges and dipole
moments can be properly fitted to a given ASI realization, yield-
ing very satisfactory results as evidenced by the comparison
between the Monte Carlo simulations of the point dipole and
emergent models. It is worth recall that without proper consid-
eration of vertices’ dipole moments the description of system
energetic fails and the use of emergent vertex models for ASI
is limited.

The emergent vertex model we built allowed us to consider
the signatures of Coulombian interactions among monopoles in
the artificial square spin ice. We have shown that the skewness
and kurtosis of monopoles distribution in a magnetization rever-
sal process increases for increasing monopole charge. This con-
stitute a direct measurable quantity easily accessible with mod-
ern experimental techniques, specially XMCD measurements.
We expect that different ASSI realizations would result in dif-
ferent monopoles charges and thus different levels of skewness
and kurtosis in monopoles distribution, evidencing the Coulom-
bian character of monopoles interactions. We have also shown
that this behavior is robust against the presence of disorder and
thermal fluctuations, making it feasible for real experiments.

Regarding the emergent vertex model we would like to stress
that one can use energies from a micromagnetic simulation,
for example, instead of energies from the point dipole model
to obtain creation energies and monopole and dipole moments
that incorporates details about islands geometry and composi-
tion. Thus, we believe that this emergent model may constitute
a very useful framework to study ASI systems in any geome-
try, allowing better comparison with experimental results with
a much smaller computational effort. As shown, both, system
dynamics and thermodynamics can be studied using it.
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