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Spin coherence on the ferromagnetic spherical surface 
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A B S T R A C T   

Spintronics on flat surfaces has been studied over the years, and the scenario is relatively well-known; however, 
there is a lack of information when we consider non-flat surfaces. In this paper, we are concerned about the spin 
dynamics of the ferromagnetic model on the spherical surface. We use the Schwinger bosonic formalism for 
describing the thermodynamics of spin operators in terms of spinon operators. Opposite to the flat two- 
dimensional model, which is disordered at finite temperature, the curvature of the spherical surface provides 
non-zero critical temperature for Schwinger boson condensation, which characterizes order at finite temperature 
even in the absence of external magnetic fields. The thermodynamics is then analyzed in the low-temperature 
regime. In addition, we consider the presence of both static and oscillating magnetic fields, the necessary con
dition for inducing the ferromagnetic resonance, and we show systematically that the studied model is well- 
described by SU(2) coherent states, which provides the correct dynamics of the magnetization. The archived 
results can be applied for describing a diversity of experiments such as spin superfluidity, angular momentum 
injection by spin pumping and spin-transfer torque in non-conventional junctions, magnon dissipation, and 
magnetoelectronics on the spherical surface.   

1. Introduction and motivation 

The continuous progress in spintronics has been motivated and 
supported by the potential realization of technologies based on spin 
degrees of freedom in favor of the electrical ones. Through a simple 
point-of-view, one of the principal purposes of spintronics is designing 
devices that work using spin currents as a substitute for the (electrical) 
charge currents (for an extensive review of spintronics, see Ref. [1,2]). 
Since spin currents occur in both normal metal and insulators, the 
applicability of spintronic devices is naturally higher than that one 
based on pure electronic transport. Spin currents can arise due to the 
Spin Hall Effect (SHE) [3,4], the Spin Seebeck Effect (SSE) [5–7], or 
through Spin Pumping (SP) from ferromagnetic resonance (FMR) 
[8–12]. On the other hand, the detection of spin current is obtained by 
converting it into a charge current through the Inverse Spin Hall Effect 
(ISHE) [13–15] or the Inverse Rashba-Edelstein Effect (IRRE) [16]. One 
can use the Spin-Transfer Torque (STT) experiment for verifying spin 
current transport [17] as well. 

In general, spintronic experiments involve flat surfaces and, there
fore, there are no curvature effects in the thermodynamics of spin 
transport. However, the role of non-flat surfaces should be interesting 
for non-conventional geometric devices. For example, medical re
searches have widely used hollow magnetic nanoparticles as drug 

transporter [18–20]. At the same time, Hsu et al. showed the realization 
of the thin-film transistor on spherical surfaces [21,22]. In last years, 
iron oxide (Fe3O4) nanoparticles have been achieved, for example, by 
laser target evaporation [23], co-precipitation [24], colloidal nano
crystal synthesis [25], and other methods. From the theoretical point-of- 
view, spherical surfaces have been used for studying the role of curved 
two-dimensional space in phase transition such as Berezinskii-Kostertiz- 
Thouless (BKT) transition [26–28] and Bose–Einstein Condensation 
(BEC) [29,30]. For the latter case, many experiments of ultra-cold atoms 
on spherical bubbles have been proposed [31–33]; however, they 
require complex microgravity conditions to avoid the particles fall to the 
bottom of the trap [34–36]. Topological structures on curved manifold 
also were investigated in recent years. Kravchuck et al. studied out-of- 
surface vortices [37] and skyrmions [38] on spherical surfaces; curva
ture effects were shown to be associated with effective magnetic in
teractions that provide the spin field on curved manifolds [39,40]; 
Sloika et al. determined the topological structure of the magnetization 
on spherical shells in terms of geometrical parameters. A review of to
pological spin field excitations on curved spaces can be found in 
Ref. [41]. 

In this article, we use the Schwinger bosonic formalism for investi
gating the magnetization thermodynamics of the ferromagnetic (FM) 
model on the spherical manifold. Despite the two-dimensional surface, 

E-mail address: antoniormoura@ufv.br.  

Contents lists available at ScienceDirect 

Journal of Magnetism and Magnetic Materials 

journal homepage: www.elsevier.com/locate/jmmm 

https://doi.org/10.1016/j.jmmm.2021.167939 
Received 21 December 2020; Received in revised form 8 March 2021; Accepted 13 March 2021   

mailto:antoniormoura@ufv.br
www.sciencedirect.com/science/journal/03048853
https://www.elsevier.com/locate/jmmm
https://doi.org/10.1016/j.jmmm.2021.167939
https://doi.org/10.1016/j.jmmm.2021.167939
https://doi.org/10.1016/j.jmmm.2021.167939
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2021.167939&domain=pdf


Journal of Magnetism and Magnetic Materials 531 (2021) 167939

2

the spherical model presents some three-dimensional characteristics. 
Indeed, opposite to the flat two-dimensional model, we find a finite 
phase transition temperature for all spin values. We choose the 
Schwinger Bosons Mean-Field Theory (SBMFT) because of its versatility 
for describing both ordered and disordered phases; however, in the 
present article, we are mainly interested in the low-temperature regime. 
Although SBMFT can be improved by taking into account Gaussian 
corrections in the mean-field parameters [42], the mean-field fluctua
tions have been mostly applied in frustrated antiferromagnetic (AFM) 
models [43–45], whilst the usual SBMFT seems to describe reasonably 
well the FM model, which is less susceptible to quantum fluctuations. In 
addition, we demonstrate that the Schwinger representation on the 
spherical surface does not present the pathological problem observed in 
flat space [46]. We show that the interaction with the oscillating mag
netic field provides SU(2) coherent states, which present similar points 
when compared with the standard formalism. The magnetization and 
magnetic susceptibility are then determined using the SU(2) coherent 
states of the Schwinger bosons, and the results are in agreement with the 
expected ones. 

2. Model and formalism 

We consider the ferromagnetic insulator described by the Hamilto
nian H(t) = H0 + V(t), where the time-independent part is given by 

H0 = − J
∑

〈ij〉

S→i⋅ S→j − gμBBz
∑

i
Sz

i , (1)  

in which the sum is taken over nearest-neighbor spins on the spherical 
surface, and J > 0 is the exchange coupling. The time-dependent term 
represents the interaction with the oscillating magnetic field, being 
expressed by 

V(t) = − gμBBx(t)
∑

i
Sx

i . (2)  

We are adopting both magnetic fields Bx and Bz as uniform fields based 
on the reduced dimensions of the samples in spintronic experiments. The 
interaction V(t), which is treated according to the interaction picture, 
provides the coherent states necessary for the description of the 
magnetization precession. 

Opposite to the planar square lattice, in which each site always has 
four neighbors, it is impossible to build a regular discrete lattice on a 
spherical surface due to its topology. For a review of the lattice repre
sentations on the sphere, see Ref. [47]. For avoiding the singularities at 
the poles of the geographic coordinates grid, we consider geometric 
tessellations based on the icosahedron [48]. Each side of the 

icosahedron is subdivided in a regular lattice and then, the sites are then 
projected onto the spherical surface. As one can see in Fig. 1, most sites 
have six neighbors, while the vertices sites have five neighbors. The 
exact grid adopted is not so relevant since we use a continuous repre
sentation of the Hamiltonian (3); however, the number of neighbors z 
(coordination number) is important, and we will consider z = 6. Note 
that due to the triangular symmetry of the lattice, the antiferromagnetic 
model on the spherical surface will be frustrated, which requires special 
treatment for decoupling the quartic terms [49]. In addition, frustrated 
models are sensible to quantum fluctuations at low-temperatures and, in 
this case, the SBMFT need to be endowed with Gaussian corrections in 
the mean-field parameters [43–45]. Curiously, the spherical curvature 
implies changes in the winding number of topological solutions. The 
uniform solution, which presents the spin field align to a fixed direction, 
has winding number Q = 1, while Q = 0 for the lowest-energy skyrmion 
solution (Q = 0 and Q ∕= 0 for the ground-state and skyrmion solutions, 
respectively, when we consider the flat two-dimensional space). In 
addition, the correct development of skyrmion-kind excitations requires 
the uniaxial anisotropy ( S→⋅ n→)

2, where n→ is the outward normal vector, 
as pointed by Kravchuk et al. [38]. Here, since we are not interested in 
topological solutions, and due to the magnetic field Bz, which aligns the 
spin field along the z-axis, we do not consider the uniaxial anisotropy. 

At low-temperature, spin operators are usually treated by using the 
Holstein-Primakoff (HP) bosonic representation [50]; however, HP bo
sons are inaccurate for representing disordered magnetic phases. The 
more appropriate representation is obtained through Schwinger bosons, 
which apply to both ordered and disordered phases [51,52]. The spin 
operators are then replaced by two kinds of bosonic operators and 
written as S+

i = a†

i bi, S−
i = b†i ai, and Sz

i = (a†

i ai − b†i bi)/2, where a†

i (b†i ) 
creates a spinon with spin 1/2 (-1/2) in the site i. For ensuring the 
commutation relation [Sa

i , Sb
j ] = iδij∊abcSc

i , it is necessary to fix the 

number of bosons on each site through the local constraint a†

i ai + b†i bi =

2S. Note that the spin operators are invariant under the U(1) gauge 
transformation ai→eiψ ai and bi→eiψ bi, where ψ is a global phase. 
Therefore, the Hamiltonian H0 is written as 

H0 = −
J
2
∑

〈ij〉

(: F
†
ijF ij : − 2S2)+

∑

i
λi(F ii − 2S) −

gμBBz

2
∑

i
(a†

i ai − b†
i bi)

(3)  

in which we defined the bond operator F ij = a†

i aj +b†i bj and :: represents 
the normal ordering operator. The constraint is implemented by a local 
Lagrange multiplier λi, and the quartic order term is decoupled by 
introducing the auxiliary field Fij = 〈F ij〉 through the Hubbard- 
Stratonovich transform F

†

ijF ij→Fij(F
†

ij + F ij) − F2
ij. As usual, we 

adopt the mean-field theory and Fij is replaced by the uniform field F. We 
also approximate the Lagrange multiplier by a uniform parameter λ that 
implies boson conservation only on average. In general, SBMFT is suc
cessful to describe the thermodynamic of magnetic models but is also 
known that SBMFT gives the incorrect local spin–spin correlation due to 
the missing of a multiplicative 2/3 factor [51,53]. The problems with the 
mean-field theory are more evident when quantum fluctuations are 
more relevant, as occurs in frustrated AFM models, for example. To 
correct this inconvenience, Gaussian corrections can be implemented in 
the SBMFT [42]; however, since we are considering the FM model in the 
coherent state, quantum fluctuations have a minor effect (opposite to 
frustrated AFM models) and the mean-field theory is supposed to pro
vide reasonable results. 

The diagonalization of Eq. (3) involves the continuous limit, which 
also provides an easy method for taking into account the curvature ef
fect. Note that including the spherical curvature in the discrete repre
sentation of the Hamiltonian before taking the continuous limit is very 
complicated and we begin with writing the a†

i aj interaction in the long- 
wavelength limit for the flat space. We describe the spin hexagonal Fig. 1. Spherical tessellation of the icosahedron. The vertices of the polyhedron 

provide sites with five neighbors, while the other sites have six ones. 
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lattice, which wraps the spherical surface, by a triangular Bravais lattice 
with neighbor positions given by η→1 = (εcosπ/3, εsinπ/3), η→2 =

(εcosπ/3, − εsinπ/3) and η→3 = ( − ε, 0), where ε is the radius hexagon. 
For the neighbor site in the η→j direction, the second-order expansion of 
aj around ai provides 

aj ≈ ai +( η→j⋅∇
→
)ai +

1
2
( η→j⋅∇

→
)

2ai. (4)  

After summing over η→j, the linear term vanishes and 
∑

j( η→j⋅∇
→
)
2
=

(3/2)∇2. Taking the continuous limit, we obtain 
∑

〈ij〉a
†

i aj = zσ
∫ 2r[a†a +

(ε2/4)a†∇2a]. Finally, for the spherical manifold, we write 

∑

〈ij〉

a†
i aj = zσ

∫

R2Ω
[

a†a +
ε2

4
a†gmn∂m∂na

]

, (5)  

where R2dΩ =
̅̅̅̅̅
|g|

√
d2q = R2sinθdθdφ (0⩽q1 = θ⩽π, 0⩽q2 = φ < 2π), 

while gmn is the metric tensor with elements g11 = R2,g22 = R2sin2θ, and 
g12 = g21 = 0. The Einstein summation convention for repeated indices 
is adopted and, since a is a scalar field, the covariant derivative ∇m =

∂m. The (angular) density of states on the spherical surface is defined as 
σ = N /4π, and we choose ε in order to obtain R2 = σε2, where R is the 
sphere radius. Since the spherical harmonics are eigenfunctions of the 
Laplacian operator, R2∇2Ylm = − l(l + 1)Ylm, we write the continuous 
a(θ,φ) field as the following spherical harmonic expansion 

a(θ,φ) =
1̅
̅̅
σ

√
∑

L
aLYL(θ,φ), (6)  

where L stands for a compact notation of lm, with l integer and m = − l,
− l + 1,…,l − 1,l. The same procedure is applied for the b operator. The σ 
factor is included for ensuring the same number of bosonic modes on 
both bases, i.e. 

∑
ia

†

i ai =
∑

La†
LaL. In addition, we introduce a superior 

limit lmax for the l sum. This restriction is expected since in the contin
uous representation we have considered smooth operators in the 
expansion of aj, and spherical harmonics with fast oscillations (l > lmax) 
have negligible contributions. Therefore, assuming the lattice parameter 
as a space cutoff, and adopting one-to-one correspondence between the 
representations, we obtain N =

∑
i =

∑
L = (lmax + 1)2. Using the 

properties of the spherical harmonics, it is straightforward to obtain 

H0 = E0 +
∑

L

(
∊(a)L a†

LaL + ∊(b)L b†
LbL

)
, (7)  

where E0/N = zJF2/2 − 2S(zJF − μ) is a constant energy, ∊(a)L =

∊L − μ − gμBBz/2, ∊(b)L = ∊L − μ+gμBBz/2, μ = zJF − λ plays the rule of a 
chemical potential (we can also define − μ as the gap energy), and ∊L =

zJFl(l+1)/4σ is the (2l + 1)-fold degenerate energy mode. In Appendix 
(B), we developed the Linear Spin-Wave (LSW) theory using the HP 
bosonic formalism. At very low temperatures, the results obtained from 
both formalism are identical. 

2.1. Generation of the coherent states 

For obtaining the magnetization precession, it is necessary to apply 
an oscillating magnetic field perpendicular to the static field Bz. The 
relation between the coherent states and the oscillating field is deduced 
as follows. Through the spherical Schwinger bosons, we write 

∑
iS

x
i =

(J+ + J− )/2, where we define the many-site operators J+ = Jx +iJy =
∑

La†
LbL (=

∑
ia

†

i bi) and J− = (J+)†, which follow the Lie algebra 

[Ja, Jb] = i∊abcJc, (8)  

in which the structure constants are given by the Levi–Civita symbol 
∊abc. Therefore, the Hamiltonian H is expressed in terms of the 

generators of the group SU(2). We choose a basis in terms of the 
eigenstates of the operator Jz =

∑
L(a

†
LaL − b†LbL)/2, namely |jjz〉, with j 

integer or half-integer and jz = − j, − j + 1, …, j − 1, j. The Casimir 
operator J2 = (Jz)

2
+(J+J− +J− J+)/2 satisfies [Jz, J2] = 0 as well as the 

eigenvalue equation J2|jjz〉 = ℏj(j + 1)|jjz〉, as observed for standard 
angular momentum operators. In our case, J represents the angular 
momentum sum of N sites with spin S on the spherical surface, and the 
Hilbert space is spanned as the direct sum of irreducible representations 
according to j. Since N is odd, the minimum jmin = S is obtained when 
N − 1 sites are paired with opposite spin, and the maximum jmax = N S 
occurs when the N sites are unpaired. Here and henceforth, we will 
consider a fixed j and define the lowest-weight (extremal state) |j − j〉 as 
|Ψ0〉. 

Any element g ∈ SU(2) can be expressed as 

g = D(θ,φ)h, (9)  

where h = exp(iαJz) is an element of the group U(1), with α being a real 
parameter, and D(θ,φ) is the coset representative of SU(2)/U(1), i.e. the 
two-dimensional sphere S2. One can show that D(θ, φ) = exp(iθm→⋅ J→), 
with m→= (sinφ, − cosφ,0) and, therefore, D(θ,φ) provides (expect for a 
multiplicative constant chosen to be unity) the coherent state | n→〉 given 
by [54,55] 

| n→〉 = D(θ,φ)|Ψ0〉. (10)  

Physically, the state | n→〉 represents the classical vector n→ = (sinθcosφ,
sinθsinφ, cosθ), and D(θ,φ) is the so-called generalized displacement 
operator. For our present purpose, it is more convenient to express the 
operator D as 

D(ζ) = eζJ+− ζJ − , (11)  

in which ζ = − (θ/2)exp( − iφ) is a complex parameter. Note that all spins 
are described by the same angles θ and φ, which is characteristic of 
magnetization precession. In addition, the above expression makes clear 
the similarity between D(ζ) and the displacement operator of the 
Glauber-Sudarshan (GS) coherent state theory [56], which justifies the 
chosen name. 

Returning to the Hamiltonian H, we write the time-dependent 
average of an operator A(t) in the Interaction picture 

〈A(t)〉 = 〈Ψ0|U†(t, − ∞)Â(t)U(t, − ∞)|Ψ0〉, (12)  

with the caret denoting time evolution according H0 and 

U(t, − ∞) = Ttexp
(

−
i
ℏ

∫ t

− ∞
V̂ (t′ )dt

′

)

, (13)  

where Tt is the time-ordering operator. Here, we consider an adiabatic 
process from the dim past (t→∞), for which the interaction is off and the 
ground-state is |Ψ0〉, to the present time with full Hamiltonian H(t) =

H0 + V(t). It is a straightforward procedure to show that the argument 
of the exponential of U is given by ζ(t)J+ − ζ(t)J− , where 

ζ(t) =
igμB

2ℏ

∫ t

− ∞
Bx(t′ )exp

[
i
ℏ
(∊(a)0 − ∊(b)0 )t′

]

. (14)  

Despite an irrelevant phase factor, we can show that 

U(t, − ∞)|Ψ0〉 = D(ζ)|Ψ0〉 = |ζ〉, (15)  

and the oscillating magnetic field generates the SU(2) coherent state |ζ〉. 
As usual in experiments, we adopt a monochromatic magnetic field with 
frequency ωrf , for which we obtain 

ζ(t) =
γBx

2(γBz − ωrf − iη)e
i(γBz − ωrf )t, (16) 
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where γ = gμB/ℏ is the gyromagnetic ratio, and the factor η is added for 
ensuring the convergence in the limit t→ − ∞. 

3. Thermodynamics at low-temperature 

Since the Hamiltonian H0 is described by coherent states, we can 
write the partition function as Z0 =

∫
D[a,a]D[b,b]exp[ − S /ℏ], where the 

integration measure over the (discrete) lattice is D [a,a] =
∏

id2ai, with 
d2a = dRe(a)dIm(a) (for more details, see Appendix A). Note that, since 
we have adopted the mean-field replacement for F and λ, the partition 
function does not involve path integration over F and λ. In the spherical 
harmonic space, the action is given by 

S = βℏE0 +
βℏ
2
∑

iωp

∑

L

[
aL(− iℏωp + ∊(a)L )aL + bL(− iℏωp + ∊(b)L )bL + h.c.

]
,

(17)  

with the Matsubara frequencies ωp = 2πp/βℏ, p ∈ Z. Here, for conve
nience, we use the same notation aL and bL for representing the fields 
associated with the correspondent operators aL and bL, respectively. The 
meaning of aL and bL should be clear from the context but, if necessary, a 
comment will be inserted. After integrating out the fields, we obtain the 
mean-field free energy 

FMF = E0 +
1

2β

∑

iωp

∑

L
ln(βM) (18)  

where M = ∊(a)L (I + σz)⊗ I/2 + ∊(b)L (I − σz)⊗ I/2 − iℏωpI⊗ σz. Provided 
that FMF = E0 in the limit T→0, the Matsubara frequency sum results in 

FMF = E0 +
1
β

∑

L
ln
[(

1 − e− β∊(a)L )(1 − e− β∊(b)L )
]
. (19)  

In the presence of the magnetic field Bz, a broken symmetry takes place 
at low-temperatures, as expected. The more interesting case occurs in 
the limit of vanishing magnetic field Bz. For a flat two-dimensional 
model (with only short-range interactions and continuous symmetry) 
free of magnetic fields, there is no ordering at finite temperature; 
however, the situation is different for the spherical manifold. Indeed, the 
impossibility of magnetic ordering at finite temperature comes from the 
Mermin-Wagner theorem, which requires thermodynamic limit for 
yielding low-energy Goldstone modes. Insofar as the spherical surface is 
compact, the Mermin-Wagner theorem is not applicable and would be 
possible to observe spontaneously broken symmetry at finite tempera
tures. 

In the Schwinger bosonic formalism, an ordered state is related to the 
BEC of the spinon modes [52]. Below a critical temperature Tc, the 
chemical potential vanishes, and the bosons condensate in the minimal 
energy state ∊l=0, while for T > Tc, μ < 0. The connection between the 
magnon-picture and the spinon-picture is given as following. The up- 
spin spinon band represents the ordered ground state, while the down- 
spin spinon is associated with the spin excitation. Therefore, a mag
non is described by an up spinon that suffers a transition to a down-spin 
spinon. Note that creation/annihilation spinon processes only happen in 
pairs and free spinons are not observed in FM models. For taking into 
account the BEC, we separate the l = 0 term from the sum, which is 
indicated by a prime, and write the free energy per site as 

FMF

N
= sf MF =

ξ2

2zJ
− 2Sξ[1+(1 − ρ)Δ] + +

2
βN

∑

L

′

ln

⎡

⎢
⎣1 − e

− 1
t

(
l(l+1)

4σ +Δ

) ⎤

⎥
⎦,

(20)  

where ξ = zJF is the energy scale, Δ = − μ/ξ is the dimensionless gap 
energy, t = kBT/ξ is the reduced temperature, and ρ = N 0/N measures 
the condensation level. At low-temperatures, the exponential decreases 

fast enough, and we can evaluate the sum replacing it by an integral. 
Using the Mercator series ln(1 − x) = −

∑∞
k=1xk/k, we obtain 

fMF =
ξ2

2zJ
− 2Sξ[1+(1 − ρ)Δ] −

2ξt2

π Li2(ge− 1/2tσ), (21)  

where Lis is the polylogarithmic function of order s and g = exp( − Δ/t) is 
the fugacity. The parameters ξ and Δ are then determined by the 
extremum conditions ∂fMF/∂Δ = 0 and ∂fMF/∂ξ = 0, which provide 

ρ = 1 −
t

πS
Li1(ge− 1/2tσ), (22)  

and 

ξ
zJ

= 2S −
2t2

π Li2(ge− 1/2tσ) (23)  

respectively. Observe that Δ = 0 and 0 < ρ ≤ 1 below the critical tem
perature, while Δ > 0 and ρ = 0 for T > Tc. The reduced critical tem
perature tc is then obtained making ρ = 0 and Δ = 0 in Eq. (22), which 
results in the self-consistent equation 

tc =
πS

Li1(e− 1/2tcσ)
(24)  

Since both ρ and ξ parameters depend only on the reduced temperature, 
it is easy to solve the equations. One can also obtain the above equations 
without performing the continuum approximation. Fig. 2 shows the 
results for the condensation by using the two approaches, directly from 
the sum and through the polylogarithmic equation. As one can see, both 
curves are close at low-temperatures. For S = 1 and N = 106, we obtain 
tc = 0.25 evaluating the sum over L, and tc = 0.26 when we use Eq. (24). 
The chemical potential is also determined using both methods and the 
results are shown in Fig. 3. Again, the difference between the poly
logarithmic and the result obtained from the sum is small at low- 
temperatures. 

The reduced critical temperature is shown in Fig. 4. The critical 
temperature is a decreasing function of increasing density of states, and 
tc tends to zero in the limit of σ→∞. Indeed, when σ is very large, the 
distance between nearest-neighbors on the surface is small and the 
curvature effect is negligible. Locally, the short-range interaction re
sembles the flat-space interaction, and we recover the flat two- 
dimensional result, for which the critical temperature Tc = 0. A 
similar behavior was observed in the determination of the BEC tem
perature of non-interating Bose gas on the surface of a sphere[30]. In 
addition, there is no critical spin and the transition temperature is finite 
for any spin value, including the classical limit S≫1. Here, for sake of 

Fig. 2. The condensation ρ as a function of the reduced temperature. The re
sults obtained by using the sum on l and m and from the continuum (poly
logarithmic) approximation are close. Here, we consider 
N = 106, S = 1, tc = 0.26 (Polylog result) and tc = 0.25 (Sum result). 
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simplicity, we consider S = 1. 
The polylogarithmic approximation is very reasonable in the ordered 

state; however, when t > tc the approximated equations are not accu
rate, and any result should be determined by using the equations written 
in terms of the sum over L. The problem occurs due to the slow 
decreasing of the exponential in Eq. (20) when kBT > zJF, which pre
cludes the series expansion of the logarithmic function. To verify the 
spurious result of the approximation at high temperature, we analyze 
the relation between the physical and reduced temperature given by T(t)
= tξ(t) and shown in Fig. 5. The function T(t) obtained by the 

approximation shows a maximum at tmax ≈ 3.1tc, and for t > tmax,T de
creases with increasing t, for which we obtain a non-physical result. 
Indeed, because of the decreasing behavior of T(t), F(T) shows an 
increasing function of increasing T, as shown in Fig. 6, where the dotted 
branch represents the spurious result obtained through the approxima
tion for t > tc. The correct behavior, which shows a decreasing F for 
increasing T, is obtained when we use the equations for ξ and ρ written 
using the sum over L. The spurious branch also appears in the three- 
dimensional ferromagnetic model, as pointed in Ref. ([46]) (in this 
case, the Schwinger formalism presents serious problems for describing 
spin models with S≳0.15). Since we are interested in the ordered state 
(t < tc), we keep the polylogarithmic approximation. 

It is important to note that the limit of high temperatures (t≫tc) can 
not be described by the equations developed above. Provided that we 
consider only long-wavelength spin-wave in the continuous description 
of the Hamiltonian, high-energy excitations are not covered by the 
present model. For including the high-energy spectrum, one should 
write 

∑
〈ij〉a

†

i aj =
∑

LγLa†
LaL, where the structure factor is given by 

γL =
∑

ηθ ,ηφ

∫

ΩYL(θ,φ)YL(θ+ ηθ,φ+ ηφ), (25)  

and η(θ,φ) are the angular nearest-neighbor positions. Expanding the 
neighbor sites around (θ,φ), we obtain γL ≈ z − zl(l + 1)/4σ, which re
coveries the Hamiltonian (7). Since we are interested in the low-energy 
limit, it is not necessary consider the full structure factor. 

When the magnetic field Bz is included, the equations are obtained 
following the same steps, and the only difference occurs in the 
condensation. In this case, since the b modes acquired a gap due to the 
Zeeman energy, only the a bosons condensate in the l = 0 state. The 
critical temperature, for example, is then given by 

tc =
2πS

Li1(e− 1/2tcσ) + Li1(e− (1/2σ+ℏγBz)/tc )
, (26)  

which recoveries Eq. (24) when Bz = 0. 

4. Magnetization dynamics 

To determine the dynamics of the spin S→i(t), and so the surface 
magnetization defined by M→ = (γℏ/N ε2)

∑
i〈 S→i〉, let us define the 

coherent state |ζi〉. Using the Baker-Campbell-Hausdorff (BCH) formula, 
the generalized displacement operator for the i site is expressed as 

D(ζi) = eκiJ+i eln(1+|κi |
2)Jz

i e− κiJ−i , (27)  

with J+i = a†

i bi, Jz
i = (a†

i ai − b†i bi)/2, and κi = exp( − iφi)tan(θi/2). When 
applied on the extremum state |ψ0〉, for which Sz|ψ0〉 = − S|ψ0〉, the 

Fig. 3. The chemical potential determined through the polylogarithmic 
approximation and by the sum over L. Here, we adopt N = 106, S = 1 and tc =

0.26. 

Fig. 4. The reduced critical temperature dependence on the density of sites. 
Locally, the limit σ→∞ reflects the flat space, which provides tc→0. 

Fig. 5. The relation between the physical T and the reduced t temperatures. For 
t > tc, the approximated polylogarithmic equations present spurious results. 

Fig. 6. The average ferromagnetic bond F as function of T. For t > tc, we obtain 
the dotted branch, which is non-physical. Here, Tc = tcξ(tc), with tc = 0.26. 
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displacement operator provides 

D(ζi)|ψ0〉 =
1

(1 + |κi|
2
)

SeκiJ+i |ψ0〉. (28)  

Since |ψ0〉 represents the state with na = 0 and nb = 2S, the operator J+i 
can be applied a maximum of 2S times, and the k-th operation results in 
(J+i )

k
|ψo〉 = [(2S)!k!/(2S − k)!]1/2

|na = S, nb = 2S − k〉. Therefore, we 
obtain 

|ζi〉2S = D(ζi)|ψ0〉 =
̅̅̅̅̅̅̅̅̅̅
(2S)!

√ ∑

na ,nb

una
i vnb

i̅̅̅̅̅̅̅̅̅̅̅̅
na!nb!

√ |na, nb〉, (29)  

where the implicit local constraint na +nb = 2S is assumed in the sum, 
which is indicated by the subscript 2S in |ζi〉, and we define the local 
parameters 

ui = cos
(θi

2

)
, (30)  

and 

vi = sin
(θi

2

)
e− iφi . (31)  

Due to the finite sum, the SU(2) coherent states are not eigenstates of the 
annihilation operators, as seen in the U(1) representation; however, a 
straightforward procedure shows that 

ai|ζi〉2S =
̅̅̅̅̅
2S

√
ui|ζi〉2S− 1, (32)  

and 

bi|ζi〉2S =
̅̅̅̅̅
2S

√
vi|ζi〉2S− 1. (33)  

Therefore, |ζi〉 plays a similar rule to that present in the GS coherent state 
formalism and using the above equations, it is easy to show that the 
SU(2) coherent states give the average 〈a†

i ai + b†i bi〉 = 2S. 
Considering |ζ| < π/2, Eq. (16) gives the global angles θ =

γBx/(γBz − ωrf − iη) [for |ζ| > π/2, we define the polar angle by 4θ =

γBx/(γBz − ωrf − iη) mod 2π] and φ = (ωrf − γBz)t. The z-component of 
the magnetization is time-independent and given by Mz = γℏ〈cosθ〉 ≈ γℏ 
for small polar angles, as expected when M→ involves according to pre
cession dynamics. For analyzing the perpendicular magnetization 
component, we define the complex field M⊥ = Mx + iMy =

(γℏ/N )
∑

ia
†

i bi, which yields the uniform magnetization M⊥(t) =

γℏSe− iγBzt〈sinθe− iφ〉, and for small θ, we get 

M⊥(t) =
MsγB⊥(t)

γBz − ωrf − iη, (34)  

where B⊥(t) = μ0[H⊥(t)+M⊥(t)] = Bxe− iωrf t is a monochromatic field, 
and Ms = γℏS/ε2 is the saturation magnetization on the spherical sur
face. In the spherical harmonic-frequency space, the magnetization is 
written as M⊥

L (ω) =
∑

L′ χLL′ (ω)H
⊥
L′ (ω). Note that for uniform mono

chromatic field and magnetization, the only accessible mode of the 
susceptibility is χ00(ωrf). Then, using Eq. (34), we obtain the long- 
wavelength magnetic susceptibility χ00 = χ ′

+ iχ ′ ′, where the uniform 
real and complex parts are given by 

χ ′

=
ωM(ω0 − ωrf)

(ω0 − ωrf)
2
+ η2

(35)  

and 

χ′′ =
ωMη

(ω0 − ωrf)
2
+ η2

, (36)  

respectively. In above equations, ω0 = γμ0Hz is the frequency of the 

lowest-energy magnons, and η is related to the Gilbert damping. As one 
can see, the magnetic response is maximum when magnetic fields satisfy 
γμ0Hz = ωrf , the resonating condition. Typical experiments involve 
resonating frequencies of the order of GHz and Hz of the order of 10− 1 T 
[9,57,12]. Through the definition of M⊥

L and H⊥
L , one can also determine 

the real susceptibilities χxx = χyy = χ′ , and χyx = − χxy = χ ′ ′. Note that 
the magnetization precession presents a response in both field directions 
Hx and Hy. The delay effect is caused by the spin relaxation and, in the 
opposite case, when η = 0, the magnetization instantly responds to the 
field application. Hence, in the driven magnetization precession, the 
magnetic susceptibility on the spherical surface presents the same 
behavior observed in flat models [58]. Indeed, provided that we are 
dealing with uniform fields, it is expected only the q = 0 (for flat ge
ometry) or L = 0 (for spherical geometry) susceptibility term. The uni
form nature is then similar in both spaces. On the other hand, if the 
gradient of the magnetic field is included, the geometry influence is 
evidenced by the non-uniform terms in the expansion of χ. 

5. Summary and conclusions 

In this article, we investigated the thermodynamics of the ferro
magnetic model on the spherical surface. Similar problems involving flat 
surfaces have been studied in recent years; however there is a lack of 
information about spintronics of ferromagnetic models on curved 
spaces, and the present work was developed for clarifying some points of 
the theme. 

The Hamiltonian was described by using the SBMFT, which repre
sents the spin operators in terms of two kinds of bosons, a and b. Pro
vided that we are dealing with the coherent state of an FM model, we 
expected a minor influence of fluctuations in the mean-field parameters, 
and Gaussian corrections were not included in this work. Opposite to the 
flat surfaces, we found a finite critical temperature Tc that separates the 
ordered phase from the disordered one. The critical temperature de
pends on the density of sites σ, and we recovery the result Tc = 0 in the 
limit σ→∞, which is the local representation of the two-dimensional flat 
surface. We showed that, at the low-temperature limit, the developed 
equations give trustworthy results. In addition, we analyzed the 
magnetization dynamics in the presence of two orthogonal magnetic 
fields; the static field Bz that aligns the spin field and the oscillating field 
Bx(t) responsible for the precession motion. We demonstrated system
atically that in the presence of the cited magnetic fields, the model is 
described by SU(2) coherent states, which are suitable for evaluating all 
thermodynamic properties. The magnetization behavior and the mag
netic susceptibility were evaluated through the coherent states, and the 
results are in agreement with the expected ones obtained from the Linear 
Spin-Wave theory developed in Appendix (B). Indeed, we found that the 
more efficient magnetization precession occurs at the resonant condition 
ωrf = gμ0Hz, for instance. 

In summary, we showed that the description of ferromagnetism and 
spintronics on the spherical surface can be developed through the SU(2)
coherent states. Here, we applied the formalism for describing the 
magnetization precession; however, other spin experiments on curved 
space such as spin superfluidity, spin current injection, spin-transfer 
torque, and spin-wave dissipation processes, can also be explained by 
the developed method. In addition, magnetic models on the spherical 
surface could be used for testing general curvature effects in favor of the 
complicated experiments on curved space, like the microgravity exper
iments for verifying BEC on spherical manifold, for example. 
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Appendix A. Path integral for SU(2) coherent states 

We can use the SU(2) coherent states for evaluating the partition function through the path integral formalism. Let us adopt the following 
Hamiltonian 

H0 =
∑

〈ij〉

(∊(a)ij a†
i aj +∊(b)ij b†

i bj), (A.1)  

written in terms of the Schwinger bosons a and b. 
Following the standard path integral procedures, we divide the time interval in N small Δτ steps, with τ0 = 0 and τN = βℏ, which provide the 

partition function 

Z0 =
∑

ζ
〈ζ(τN)|

∏N

p=1
e− Ĥ 0(τp)Δτ|ζ(τ0)〉, (A.2)  

with the periodic condition |ζ(τN)〉 = |ζ(τ0)〉 =
∏

i|ζi〉 (here, the 2S subscript was omitted for simplifying the notation). Inserting the identity I =
∫

ζ|
ζ〉〈ζ| between the intervals, we obtain 

〈ζ(τp)|e− Ĥ Δτ|ζ(τp − Δτ)〉 ≃ 1 − 〈ζ(τp)|ζ̇(τp)〉Δτ − − H0(τp), (A.3)  

where H0(τp) = 〈ζ(τp)|Ĥ0|ζ(τp)〉 is an ordinary real function obtained through the replacement of the operators ai and bi by the respective fields ai =
̅̅̅̅̅̅
2S

√
ui and bi =

̅̅̅̅̅̅
2S

√
vi [see Eq. (32) and (33)]. Note that, although |ζ〉 is not an annihilation eigenstate, as occurs in the GS coherent state, yet is possible 

for evaluating the average 〈exp( − Ĥ0Δτ)〉. The second term in the above equation is the Berry phase ΩB = − iS
∑

i[φ̇i(1 − cosθi)]. It is a straightforward 
evaluation for showing 

∑
i(aiȧi + biḃi) = ΩB. Therefore, the partition function is written as the path integral Z0 =

∫
D[a,a]D[b,b]exp( − S /ℏ), where the 

action is given by 

S =

∫ βℏ

0
τ
[

ℏ
∑

i
(ai∂τai + bi∂τbi) + H0(τ)

]

. (A.4)  

Appendix B. Linear spin-wave approximation 

In order to compare the results of the SU(2) coherent states obtained from the SBMFT, we develop the Linear Spin-Wave theory through the 
Holstein-Primakoff formalism [50]. Applying the gauge fixing condition a = a† in the Schwinger formalism, one can obtain the HP bosonic repre

sentation of the spin operators: S+
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2S − b†i bi

√

bi, S−
i = b†i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2S − b†i bi

√

and Sz
i = S − b†i bi [59]. At low temperatures, the LSW approximation is expected 

to provide reasonable results, and we adopt the approximation S+
i ≈

̅̅̅̅̅̅
2S

√
bi and S−

i ≈
̅̅̅̅̅̅
2S

√
b†i . Therefore, the quadratic Hamiltonian, given by Eq. (1), is 

written as 

H0 = JS
∑

〈ij〉

b†
i (bi − bj) − γℏBz

∑

i
(S − b†

i bi), (B.1)  

where γ = gμB/ℏ is the gyromagnetic ratio. After expanding bj around bi, the continuum limit is taken into account, which provides the Hamiltonian 

H0 =

∫

Ωb†

(

−
zJSR2∇2

4
+ γℏσBz

)

b. (B.2)  

The spherical harmonic expansion 

b(θ,φ) =
1̅
̅̅
σ

√
∑

L
bLYL(θ,φ), (B.3)  

then results in H0 =
∑

L(∊L + γℏBz)b†LbL, where ∊L = zJSl(l+1)/4σ (L is the compact representation of m = − l, − l+1,…, l − 1, l and l = 0,1,2,…). This 
is the same spectrum energy obtained from the Schwinger bosonic formalism, see Eq. (7), in the very low-temperature limit. In this limit, we can 
approximate the mean-field parameter as F ≈ 2S and adopted the chemical potential μ = − γℏBz/2. Therefore, the a-spinons condensate while spin- 
wave excitations are mapped by the b-spinons of the SBMFT. Applying the same procedure in the interaction (2), we get 

V(t) = −

̅̅̅̅̅̅̅̅
2Sσ

√

2
γℏ

∑

L
[Bx

L(t)b
†
L +Bx

L(t)bL], (B.4) 
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where Bx
L(t) are the spherical harmonic components of the oscillating magnetic field. In the interaction picture, the average of the operator A(t) is 

expressed as 〈A(t)〉 = 〈S†(t)Â(t)S(t)〉, where S(t) = Ttexp( − i
∫

V̂(t′ )t′/ℏ), and the caret denotes time evolution according H0. It is a straightforward 
procedure to demonstrate that S(t) = exp[iΦ +

∑
LβL(t)b

†

L − βL(t)bL], where Φ is an irrelevant phase and the coherent eigenvalue, which is defined by 
b|β〉 = β|β〉, is given by 

βL(t) =
̅̅̅̅̅̅̅̅̅̅
2πSσ

√
γBxδL0

ei(γBz − ωrf − iη)t

γBz − ωrf − iη . (B.5)  

Here, we consider a monochromatic uniform magnetic field Bx(t) = Bxe− iωrf t, and η (the damping factor) is included for ensuring the convergence in 
the limit t→ − ∞. The number of particles Ni = |βi|

2 is then 

Ni =
∑

L′ L

βL′ βL

σ YL′ YL =
(γBx)

2S
2[(γBz − ωrf)

2
+ η2]

, (B.6)  

which presents the maximum at the resonating condition γBz = ωrf . Following the same steps of Section (4), we evaluate the magnetization dynamics 
on the spherical surface using the U(1) coherent states of the HP formalism, which yields 

rClM⊥
i (t) =

γℏ
ε2 〈S

+
i (t)〉 =

γℏ
ε2

̅̅̅̅̅
2S
σ

√
∑

L
βL(t)e− iγBztYL =

MsγBx(t)
γBz − ωrf − iη, (B.7)  

which is identical to Eq. (34). The magnetic susceptibility is then determined from the above equation and we reach the same results obtained from the 
SBMFT. 
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