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We derive an analytical solution for the demagnetization tensor of a cylinder of finite size and uniform
magnetization in both Cartesian and cylindrical coordinate systems, by employing a recently developed
Fourier space approach. Simple arguments are given to show that a previously published solution using
this approach is incomplete, and a detailed and comprehensive derivation containing the necessary
corrections is given. The corrected result is shown to be in agreement with older analytical solutions
based on an electrostatic potential approach. We subsequently expand our solution to objects of general
cylindrical symmetry and derive an expression for the demagnetization tensor that involves a single
remaining integral over a finite domain, enabling the use of conventional numerical tools to efficiently
calculate the demagnetization tensor.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Demagnetization effects can be of great importance in mag-
netism both because the demagnetizing field is associated with an
important energy contribution and also because the stray field
from a magnetic material has the potential to affect its sur-
roundings. However, demagnetizing fields inside magnetized ob-
jects are difficult to calculate unless the sample is ellipsoidal in
shape, since only then the demagnetizing field is uniform [1]. This
simple scenario includes the sphere, the flat plate, and the in-
finitely long cylinder as subsets. In other geometries an analytical
solution is not so forthcoming. Though a rather unwieldy method
for analytical solutions was outlined some time ago [2], a recently
developed Fourier space approach [3] has extended the range of
analytically solvable geometries in a much more general and ele-
gant fashion (for examples see [4–9]). This ingenious approach has
been used to calculate the demagnetization tensor of a uniformly
magnetized cylinder [10], but we found the published solution to
contain errors and room for a significant extension. We therefore
present a comprehensive rederivation of the demagnetization
tensor that closely follows the original argument while accounting
for the necessary corrections (these are detailed in Appendix B).
We then compare our new result to published solutions based on
r B.V. This is an open access articl

g).
the electrostatic potential approach [2,11]. Subsequently, we ex-
tend the treatment to uniformly magnetized objects of general
cylindrical symmetry and show that the demagnetization tensor in
this case can be written in terms of a single integral over the
length of the object.
2. Fourier space approach

Assuming a uniform magnetization of an arbitrarily shaped
object, Beleggia and De Graef [3] showed that the position-de-
pendent demagnetization tensor rNij ( ) of the object can be ele-
gantly expressed as an inverse Fourier transform of an expression
involving the Fourier transform of a single function rD ( ) called the
shape function, which encodes the shape of the object, taking the
value 1 if r is inside the object and 0 if r is outside. The de-
magnetization tensor is then given by
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where kD ( ) is the Fourier transform of rD ( ). Note that Eq. (1)
implies that the demagnetization tensor is symmetric ( N Nij ji= ).
Additionally, it can be shown that the trace of the tensor has to
satisfy

r rN DTr , 2ij[ ( )] = ( ) ( )
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which we use in our discussion below to verify the computation of
the demagnetization tensor.

In the following derivation we will closely follow the approach
given in [10] for computing the demagnetization tensor. We will
present a set of integrals and their solutions with comparisons to
known standard integrals whenever necessary, which are re-
produced in Appendix A for completeness.

Furthermore, we employ the following conversion between
Cartesian and cylindrical coordinates for coordinates in real space
(r) and reciprocal space k( ):
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3. Shape amplitude in cylindrical symmetry

An object of general cylindrical symmetry is shown in Fig. 1.
Defining the multidimensional Heaviside Theta function
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the shape amplitude kD ( ) of the object can be evaluated as fol-
lows:
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where f k z r z J r z k,i i i1( ) = ( ) ( ( ) )⊥ ⊥ . The functions Ji are the Bessel
functions of the first kind and we made use of the definition of J0
and Eq. (5.52.1) in [12]. Note that because r 0≥ and k 0≥⊥ we
removed the magnitude signs in the Bessel functions' arguments.
For a finite cylinder we can use r 01 → and r R2 → to arrive at
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in agreement with Eq. (57) in [10]. However, it turns out to be
easier to work with Eq. (7) to compute the inverse Fourier trans-
forms contained in the expression for N rij ( ).

The functional form of Eq. (7) shows that the object of general
cylindrical symmetry can equivalently be described using the
shape functions of two simply connected (no holes) cylindrical
objects. This is depicted in Fig. 1 and represents an example of
decomposing the shape function of an object into a combination of
simpler shape functions and thereby “build” the object of interest.
In this case, the two emerging terms in Eq. (7) are functionally
identical and therefore in the following discussion we need to only
restrict ourselves to one term of this form, where we will denote
the function f k z,i ( )⊥ simply by f k z R z J R z k, 1( ) ≡ ( ) ( ( ) )⊥ ⊥ .
4. Demagnetization tensor

Combining Eqs. (1) and (7) yields
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Inserting the Cartesian components for ki and kj the six unique
Cartesian tensor elements become
in agreement with Eq. (37) in [10]. We will now deal with the
integrals over ϕ and kz in turn.
4.1. Integrals over ϕ

The integrals over ϕ can be solved by employing trigonometric
addition formulae and using the standard integral with equation
number (3.915.2) in [12]. In addition, we utilize the fact that we
are free to choose the limits of the integral range, as long as the
lower and upper integral limits differ by 2π . Without loss of
generality we can thus define the limits to be ψ and 2ψ π+ , where
we choose the constant ψ to have the value ψ θ π= ′ − in order to
symmetrize the limits of the final integrals. Defining the variable
φ ϕ θ= − ′ the integrals can all be solved by the same procedure as
follows:
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This leads to Eq. (10) becoming:
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It should be noted that in all the above formulae we again used
r k r k| ′ | = ′⊥ ⊥ since k 0≥⊥ and r 0′ ≥ .

4.2. Integrals over kz

For the kz integrals the authors of [10] report the use of the
standard integrals (3.723.2), (3.723.3) and (3.738.2) in [12] to ar-
rive at their solution. Unfortunately, the convergence criteria of
these standard integrals, as given in [12], are not always fulfilled in
this problem. It turns out that for the integrals containing 1 and kz
in the numerator it does not make a difference, whereas for the
integral containing kz

2 an extra term appears, i.e. the authors of
[10] used (3.738.2) in the case m n2 1= + (with n¼1, m¼3) which
is outside the domain of applicability of this standard integral. We
will now solve these integrals, while taking particular care with
their convergence.

The first integral with k 10 =⊥ in the numerator can be solved by
Fig. 1. Schematic of a cylindrically symmetric object an
using the standard integral (3.723.2) in [12], in the case that
kRe 0( ) >⊥ and z z 0( ′ − ) ≥ . The latter restriction can be resolved by

writing z z z z z z( ′ − ) = − ( − ′) = − | ′ − | for the case that
z z 0( ′ − ) < . For k 0>⊥ the integral evaluates to
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However, the restriction of k 0>⊥ requires attention now, because
in the limit of k 0→⊥ , which is covered by the range of the integral
over k⊥ as shown in Eq. (17), this result clearly diverges. To resolve
this we have to go back to Eq. (17) and include all the functions
that contain factors of k⊥. We use the expansions of the Bessel
functions for small arguments: J x c xlim ...x 0 ( ) = +ν ν

ν
→ , from Eq.

(9.1.10) in [13], where cν are simple constants. Thus, we can find
the limit for the terms including k⊥
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where cij, dij and C are constants. Therefore, we conclude that in
our case we can safely use the integral (18), as the case of k 0=⊥ is
assured to give no contribution.

The next integral with kz in the numerator can be solved in two
ways. The first, and slightly longer route, is to use the standard
integral in [12] with number (3.723.3) and combine it with standard
integral (3.721.1) for the special case k 0=⊥ . A second approach is to
apply Leibniz's Theorem for the differentiation of an integral,
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from Eq. (3.3.7) in [13], to differentiate the earlier integral (18) with
respect to z z( ′ − ) as follows:
d the decomposition into simpler shape functions.
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Note that the result vanishes for z z 0′ − = , which is easily verified
due to the odd symmetry of the integral in that case. We have also
written the result in terms of Heaviside Theta functions.

The final integral with kz
2 in the numerator can now be solved

by differentiating (20) again:
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In the last step we used H x x xd /d δ( ) = ( )θ , see for example Chap-
ter 5 in [14]. The crucial difference between the results above and
those reported in [10] is the extra delta-function term that appears
in (21), which we show below is essential in satisfying the con-
dition on the trace (Eq. (2)) of the demagnetization tensor. With
these integrals the expression for Nij becomes
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(Note we are not employing the Einstein summation convention
here.) The following symbols have been defined:
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5. Trace condition

Substituting the expression for f k z R z J R z k, 1( ) = ( ) ( ( ) )⊥ ⊥ into Eq.
(23) enables the evaluation of the two remaining integrals over z
and k⊥. However, it is first instructive to show that Eq. (23)
satisfies the trace condition (Eq. (2)). Applying
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The scalar functions g r z,( ′ ′)μ represent the integrals involving the
Sij
¯ term in Eq. (23). The first term of Eq. (26) is trivially zero by the
structure of the matrices defined in Eq. (25), whereas for the
second term the standard integral (6.512.38) from [12] has been
utilized.
6. Finite cylinder case – remaining integrals

The integral over k⊥ in Eq. (23) can be solved in full generality,
as done in Section 8. However, for the case of a finite cylinder, for
which R z R( ) = , it turns out to be easier to first integrate over z.
Substituting f k RJ Rk1( ) = ( )⊥ ⊥ into Eq. (23) and using the result from
combining Eqs. (26) and (27) leads to

r r r

r

N D N

D k z Rk J Rk S k r

e

d d , ,

. 28

ij i j ij

i j
d

d

ij

ij
z z z z k

3 3

3 3
0

1

sgn

∫ ∫
δ δ

δ δ θ

ξ

( ′) = ( ′) + ¯ ( ′)

= ( ′) + ( ) ¯ ( ′ ′)

( )

∞
⊥

−
⊥ ⊥ ⊥

( − ′) −| ′− | ⊥

The remaining z-integral can now be evaluated in the different
regions, as follows:

z d z e e
dk

k
: d 2

sinh
,

29d

d

ij
z z k

ij
z k∫ ξ ξ′ < − = ( )

( )−
+ ( ′− ) + ′ ⊥

⊥
⊥ ⊥

z d z e e
dk

k
: d 2

sinh
,

30d

d

ij
z z k

ij
z k∫ ξ ξ′ > = ( )

( )−

− −( ′− ) − − ′ ⊥

⊥
⊥ ⊥

d z d z e z e

k
e

k
e

: d d

1 1 .
31

d

z

ij
z z k

z

d

ij
z z k

ij d z k ij d z k

∫ ∫ξ ξ

ξ ξ

− < ′ < +

= ( − ) + ( − )
( )

−

′
− −( ′− )

′
+ ( ′− )

−

⊥

−( + ′)
+

⊥

−( − ′)

⊥ ⊥

⊥ ⊥

Therefore, we find that

⎧
⎨
⎪⎪

⎩
⎪⎪

rN K J K J K

e e

e e

e e

d

,

1 1 ,

,

,

32

ij ij

ij
K K

ij
K

ij
K

ij
K K

0

2

0
1∫∑ α θ ρ

ξ ζ τ

ξ ξ ζ τ

ξ ζ τ

¯ ( ′) = ¯ ( ′) ( ) ( )

[ − ] >

( − ) + ( − ) | | <

[ − ] < − ( )

μ

μ
μ

ζ τ ζ τ

τ ζ τ ζ

ζ τ ζ τ

=

∞

− −( − ) −( + )

− −( + ) + −( − )

+ ( + ) ( − )

where we introduced a new set of coordinates scaled by the radius
R of the cylinder:

r
R

z
R

K Rk

K r k
d
R

, , ,

, aspect ratio of cylinder. 33

ρ ζ

ρ τ

≡
′

≡
′

≡

= ′ = = ( )

⊥

⊥

The remaining integrals (which are of Lipschitz–Hankel type) can
be written as
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I K J K J K e, d . 34
K

0
1∫ρ α ρ( ) ≡ ( ) ( ) ( )μ μ

α
∞

−

Defining the quantities α− and α+ by (recall that d R/ 0τ = > )

⎧
⎨⎪
⎩⎪

⎧
⎨⎪
⎩⎪ 35

,
,
,

,
,
,

,
,

( )
α ζ τ

ζ τ ζ τ
τ ζ ζ τ
τ ζ ζ τ

α ζ τ
ζ τ ζ τ
ζ τ ζ τ

ζ τ ζ τ
≡ | − | =

− >
− | | <
− < −

≡ | + | =
+ >
+ | | <

− ( + ) < −
− +

enables us to rewrite the demagnetization tensor in the following
way:
⎧
⎨
⎪⎪

⎩
⎪⎪

N D

I I

I I I I

I I

, , , ,

, , ,

, 0 , , 0 , ,

, , ,

.

36

ij i j ij

ij

ij ij

ij

3 3
0

2

∑ρ θ ζ δ δ ρ θ ζ α θ

ξ ρ α ρ α ζ τ

ξ ρ ρ α ξ ρ ρ α ζ τ

ξ ρ α ρ α ζ τ
( ′ ) = ( ′ ) + ¯ ( ′)

( ( ) − ( )) >

( ( ) − ( )) + ( ( ) − ( )) | | <

( ( ) − ( )) < − ( )
μ

μ

μ μ

μ μ μ μ

μ μ
=

−
− +

−
+

+
−

+
+ −
Note again that we are not employing the Einstein summation
convention here.

6.1. Solutions to Lipschitz–Hankel Integrals Iμ

The integrals in Eq. (34) have known analytical solutions, which
can be either taken from [15] or [16] (see section (2.12.38.1) in
[16]). It should be noted that because we are interested in the case
of 0, 1, 2μ = { }, we are in the regime where the integrals always
converge except at the boundary points where 1ρ = and 0α =±
(see the introduction section in [15]), which correspond to the
rims of the flat cylinder surfaces.

Let us first introduce the notation used in [15] for the integrals
at hand:

I J at J bt e t t, ; d . 37
ct

0
∫μ ν λ( ) = ( ) ( ) ( )μ ν

λ
∞

−

6.2. Integral I0

For this integral we identify a¼1, b ρ= , c α= ± and combine
Eqs. (4.7) and (3.4) in [15] to obtain

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

I I

k
K m

k
K m

k
K m

, 1, 0; 0

2
1
2

, 1, 1

2
1
2

, 1

2
1
2

, , 1

,

38

0

0

0

ρ α

α
π ρ

Λ β κ ρ

α
π ρ

ρ

α
π ρ

Λ β κ ρ

( ) = ( )

=

− ( ) − ( ) + <

− ( ) + =

− ( ) + ( ) >
( )

±

± ±
± ± ±

± ±
±

± ±
± ± ±

where we defined

m k sin
4

1
,

39
2 2

2 2κ ρ
ρ α

= = ( ) =
( + ) + ( )

± ± ±
±

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟sin

1
,

40

1
2 2

β α

ρ α
=

( − ) + ( )
±

− ±

±

K m E K m E m F,
2

, /2 , /2 . 410Λ β κ
π

β π κ β π κ( ) = ( ( ) ( − ) − ( ( ) − ( )) ( − )) ( )

The functions K(m) and E(m) are the complete elliptic integrals of
the first and second kind, respectively. The (incomplete) elliptic
integrals, F ,β γ( ) and E ,β γ( ), of the first and second kind, respec-
tively, are used to define Heuman's Lambda Function ,0Λ β κ( ) (see
Section 17.4.39 in [13]).
6.3. Integral I1

After making the identification a¼1, b ρ= , c α= ± we can
combine Eqs. (4.2) and (3.4) from [15] to arrive at
I I
k

m K m E m, 1, 1; 0
1

2 2 .
42

1 ρ α
π ρ

( ) = ( ) = (( − ) ( ) − ( ))
( )

±
±

± ± ±

6.4. Integral I2

For this integral we need to make use of some of the recurrence
relations reported in [15]. In this case we are interested in the
integral I 2, 1; 0( ) with the identification a ρ= , b¼1, c α= ±. Using
Eqs. (8.1) and (9.5) from [15] we obtain

I
b
a

I
c
a

I2, 1; 0 1, 0; 0 1, 1; 0 43( ) = ( ) − ( ) ( )

Substituting from Eqs. (4.2), (4.7) and (3.4) in [15] and rearranging
yields

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

I

I

k
E m

k
K m

k
E m

k
K m

k
E m

k
K m

,

2, 1; 0

2 2
2

1
2

,
1

,

1

2 2
2

1
2

,

1

2 2
2

1
2

, ,

1

.

44

2

3/2

2 2

5/2

2 0 2

3/2

2 2

5/2

2

3/2

2 2

5/2

2 0

ρ α

α
π ρ

α α ρ
πρ

ρ
Λ β κ

ρ

ρ

α
π ρ

α α ρ
πρ

ρ

ρ

α
π ρ

α α ρ
πρ

ρ
Λ β κ

ρ

( )

= ( )

=

( ) −
( + + )

( )

− ( ) +

>

( ) −
( + + )

( )

−

=

( ) −
( + + )

( )

+ ( )

<

( )

±

±

±
±

± ± ±
±

± ±

±

±
±

± ± ±
±

±

±
±

± ± ±
±

± ±

7. Transformation to cylindrical coordinate system

So far we have expressed the demagnetization tensor in a
Cartesian coordinate system, as in Eqs. (23) and (36). The trans-
formation matrix M between a Cartesian and a cylindrical co-
ordinate system is

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
r

z

x

y

z

x

y

z

M
cos sin 0

sin cos 0
0 0 1

.

45

θ
θ θ
θ θ

^
^

^
= −

^
^

^
≡

^
^

^ ( )
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The demagnetization tensor in the cylindrical coordinate system is
then

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
N

N N N
N N N
N N N

N

N N N

N N N

N N N

M M M M ,

46

cyl

rr r rz

r z

rz z zz

cart

xx xy xz

xy yy yz

xz yz zz

= = =

( )

θ

θ θθ θ

θ

⊤ ⊤

where we used the symmetry requirement N Nij ji= . Substituting
the Cartesian components from (23) and simplifying the resulting
expression yields the simple and intuitive relation

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟N N r z N

N N
N

N N

,
0

0 0

0

.

47

cyl cyl cart

xx xz

yy

xz zz

0

0

= ( ) = =

( )

θ

θ

=

=

This holds for the case of an object of general cylindrical sym-
metry. In the specific scenario of a finite cylinder, the non-zero
components of the tensor in the reduced cylindrical coordinate
system are

N I I H

I I H H

I I H H

, 2 , 0 , 0

, ,

, , 48

rr
1
4 0 2

0 2

0 2

ρ ζ ρ ρ τ ζ

ρ α ρ α ζ τ τ ζ

ρ α ρ α τ ζ τ ζ

( ) = [ ( ( ) − ( )) ( − | |)

+ ( ( ) − ( ))( ( − ) − ( − ))

+ ( ( ) − ( ))( ( − − ) − ( + ))] ( )

θ

θ θ

θ θ

− −

+ +

N I I H I

I H H I

I H H

, 2 , 0 , 0 ,

, ,

, 49

1
4 0 2 0

2 0

2

ρ ζ ρ ρ τ ζ ρ α

ρ α ζ τ τ ζ ρ α

ρ α τ ζ τ ζ

( ) = [ ( ( ) + ( )) ( − | |) + ( ( )

+ ( ))( ( − ) − ( − )) + ( ( )

+ ( ))( ( − − ) − ( + ))] ( )

θθ θ

θ θ

θ θ

−

− +

+

N D I H I H

H I H H

, , 2 , 0 ,

, 50

zz
1
2 0 0

0

ρ ζ ρ ζ ρ τ ζ ρ α ζ τ

τ ζ ρ α τ ζ τ ζ

( ) = ( ) − [ ( ) ( − | |) + ( )( ( − )

− ( − )) + ( )( ( − − ) − ( + ))] ( )

θ θ

θ θ θ

−

+

N I I, , , , 51rz
1
2 1 1ρ ζ ρ α ρ α( ) = ( ( ) − ( )) ( )+ −

where expressions for I , 00 ρ( ) and I , 02 ρ( ) can be most easily ob-
tained by employing equation (6.512. 38) in [12]. The above results
can be shown to agree with those previously published by Joseph
and Schlömann [2] and Kraus [11] upon a simple translation of the
coordinate system: ζ ζ τ→ + (equivalent to z z d→ + ). As before,
the trace condition (Eq. (2)) is satisfied with N DTr , ,cyl ρ ζ ρ ζ[ ( )] = ( ).

For an excellent discussion concerning the eigenvalues and
eigenvectors of the demagnetization tensor we refer the reader to
Section 4.2 in [10].
8. General cylindrical case – remaining integrals

It is possible to simplify the expression for the demagnetization
tensor in general cylindrical symmetry given in (23) even further.
Remembering from Section 3 that we can always write Nij in terms
of contributions due to simply connected objects of cylindrical
symmetry we only need to focus on one such simply connected
object. Defining the outer radius of such an object as R(z) and
focussing on the non-trivial part of r r rN D Nij i j ij3 3δ δ( ′) = ( ′) + ¯ ( ′) we
find that in the notation of Eq. (37);
52
rN z R z k k J R z k J r k ed dij ij d

d

ij
z z z z k

0

2
sgn

0
1∫ ∫∑

( )
α θ ξ¯ ( ′) = ¯ ( ′) ( ) ( ( ) ) ( ′ )

μ

μ
μ

= −
( − ′) ∞

⊥ ⊥ ⊥ ⊥ −| ′− | ⊥

z R z Id 1, ; 1 .
53

ij d

d

ij
z z

0

2
sgn∫∑ α θ ξ μ= ¯ ( ′) ( ) ( )

( )μ

μ

= −

( − ′)

Note that setting 0θ′ → yields the tensor in a cylindrical co-
ordinate system. In the cases of 0μ = and 1μ = we can directly
take the solutions for I 1, ; 1μ( ) from Eqs. (4.8) and (4.4) in [15],
respectively, whereas for 2μ = we first exploit the recurrence
relation (8.2) in [15]. Defining k ab a b c4 /2 2 2= (( + ) + )± with the
identification a R z= ( ), b r= ′ and c z z= ± ( − ′)± we obtain

I
k a b c

a k ab
E k

k

a ab
K k1, 0; 1

8 1 2
,

54

3 2 2 2

2 3/2π π
( ) =

( − − )
( − )( )

( ) + ( )
( )

±

⎛
⎝⎜

⎞
⎠⎟I

c k
ab

k
k

E k K k1, 1; 1
4

2
1

2 ,
553/2

2

2π
( ) =

( )
( − )

−
( ) − ( )

( )
±

I
b

I I1, 2; 1
2

1, 1; 0 1, 0; 1 , 56( ) = ( ) − ( ) ( )

57
I

a k a b
k ab

K k
a k k a b c

k ka ab
E k1, 2; 1

8 4
2

32 1
8 1

.
2

3/2

2 2 4 2 2 2

2 3/2 ( )π π
( ) = − ( + )

( )
( ) − ( − ) + ( − − )

( − ) ( )
( )

The I 1, ; 1μ( ) integrals converge if c 0>± (see the introduction
section in [15]). This is true in our case, with the c 0=± con-
tribution already included in the rDi j3 3δ δ ( ′) term. More formally
we could write H z z H z zij

z z
ij ij

sgnξ ξ ξ= ( − ′) + ( ′ − )θ θ
( − ′) + − in (53) to

emphasize this. Furthermore, the I 1, ; 1μ( ) are finite if k 1≠ , which
is satisfied as long as c 0≠ and a b≠ , i.e. not on the boundary of
the object.

Expression (53) is as far as the demagnetization tensor for a
simply connected object of general cylindrical symmetry can be
simplified without knowing its radius R(z) as a function of position
along the symmetry axis. The major advantage of this result is that
the only remaining integral is over a finite domain, which makes it
accessible to conventional numerical techniques and thereby
greatly enhances its utility in practical applications.
9. Discussion and conclusions

The approach described in this paper yields analytical results
that can be used to compare with numerical simulations. The cy-
lindrical geometry is suited to the rod-like samples produced by the
mirror furnace growth technique. In fact, the present study was
inspired by the need to account for demagnetization fields arising
in muon-spin rotation experiments on such samples [17]. Further-
more, having analytical expressions for standard simple shapes,
such as boxes [2] and cylinders, allows more complex structures to
be built up and hence model more complex situations such as non-
uniformly magnetized systems [18].

In conclusion, we utilized a recently developed Fourier space
approach to compute the demagnetization tensor of a uniformly
magnetized cylinder of finite extent. Our work corrects a pre-
viously published analytical solution for this geometry and pre-
sents the steps of the rederivation in detail. Our final analytical
result in a cylindrical coordinate system is in agreement with
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published solutions employing the rather more unwieldy elec-
trostatic potential approach. Additionally, we have provided a so-
lution for the case of a simply connected object of general cy-
lindrical symmetry, which depends on only one finite integral and
thus can be solved via conventional numerical methods. We have
illustrated that within the Fourier space approach the demagne-
tization tensor of complex shapes can be obtained by combining
simpler, simply connected shapes.
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Appendix A. Standard integrals and expressions

This is a compilation of the different standard integrals used
here and in [10]. The numbers in brackets represent the equation
numbers used in [12]:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪




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x

x a a
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x

x e a
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x

x e a
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x
n

e
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a
k

n

m a
n

m n

e nx x i J n

x Z x x x Z x

Z

J x J x x

3.721.1 :
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d
2

sgn , for

3.723.2 :
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d
2

, for 0, Re 0

3.723.3 :
sin

d
2

, for 0, Re 0

3.738.2 :
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d
2

sin
2 1

2
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2 1
2

,

for odd, 0, arg
2

, 0 2 1

3.915.2 : cos d , for

5.52.1 : d ,

for a Bessel function 1st, 2nd or 3rd kind

6.512. 3 : d

,

1
2

,

0,

, for Re 0.

a

a

m
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m n

k

n
a k n

i x n
n

p
p

p
p

p

0

0 2 2

0 2 2

0

1

2 2

2

1

sin 2 1 /2

0
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1 1
1

8
0

1

1

∫
∫

∫

∫

∫
∫

∫
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+

= ≥ ( ) >

( ) ( )
+
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=
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=

>
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−

∞ − −
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∞
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−

The following two expressions concern the small argument ex-
pansion of Bessel functions of the first kind and Leibniz's Theorem
for the differentiation of an integral. The numbers in brackets
correspond to the equation numbers in [13]:

⎜ ⎟⎛
⎝

⎞
⎠
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∫ ∫
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∂
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Appendix B. Comparison with reference [10]

B.1. Trace condition

We can compare Eq. (26) with the equivalent expression one
gets from taking the trace of rNij ( ′) as reported in Eq. (42) in [10].
In this case, we obtain a single term that looks exactly like the first
term in Eq. (26) above. Hence, it also has to vanish due to the
structure of the matrices defined in Eq. (43) in [10] and therefore
lead to rNTr 0ij[ ( ′)] = everywhere. Thus, Eq. (42) in [10] is in-
complete. We conclude that the appearance of the extra delta-
function in Eq. (23) is essential in ensuring that the trace of rNij ( ′)
is equal to the shape function rD ( ′).

B.2. Finite cylinder result: Eq. (36)

The resulting expression for the demagnetization tensor of the
finite cylinder in Eq. (36) differs from its counterpart in Eq. (48) in
[10], which we will show now to be inconsistent with the previous
result in Eq. (42) in [10]. Thus, if we take Eq. (48) in [10] and
compute its trace we find that, in the notation of [10], the ij

0α ( ) term
gives the only non-vanishing contributions

N H I s I ITr , , , 0 , , . B.1ij 0 0 0ρ θ ζ ρ ρ α ρ α[ ( ′ )] = ( ) − ( ) − ( ) ( )τζ ζτ − +

We note that this result is neither consistent with the trace con-
dition r rN DTr ij[ ( )] = ( ) nor the result one obtains when taking the
trace of the earlier expression (42) in [10] (see Appendix B.1). We
conclude that the rearranging in [10] from Eqs. (42) to (48) cannot
be correct.

B.3. Additional corrections

The matrix ij
2α θ¯ ( ′) in Eq. (25) differs from its counterpart in [10]

by a factor of 2 in the xy-element, due to the integral (11) being
calculated incorrectly in [10].

The three solutions to the Lipschitz–Hankel integrals Iμ re-
ported in [10] all contain minor errors. The solutions for I0 and I2 in
Eqs. (38) and (44), respectively, show that the subscripts of their
counterparts in Eq. (50) in [10] should be swapped. The result for
I1 in Eq. (42) differs from the corresponding solution reported in
[10] by a factor of 2 in front of E m( )± .
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