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In this paper we investigated the influence of mirror symmetry on the transmission spectra of
quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period
quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg
ferromagnets with bulk exchange constants J4 and Jz and spin quantum numbers S4 and S, respectively.
The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic
material with exchange constant Jc and spin quantum number Sc. For simplicity, the lattice constant
has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer
matrix treatment was used for the exchange-dominated regime, taking into account the random
phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on
(i) transmission spectra and (ii) transmission fingerprints.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades extensive theoretical and experimen-
tal investigations have been carried out for collective excitations
of artificially layered systems. These specimens, composed of a
wide variety of constituent materials, form an intriguing class of
physical structures whose macroscopic properties are subject to
design and control by varying the thickness and composition of
the layers. Most of the initial studies concentrated on the proper-
ties of perfectly periodic structures. However, the discovery of
quasicrystal by Shectman and co-workers [1] in 1984 aroused a
great interest in quasiperiodic systems. This new kind of layered
structure has attracted considerable attention in the past few
years. Quasiperiodic systems display a degree of disorder that can
be defined as an intermediate state between an ordered crystal
(their definition and construction follow purely deterministic
rules) and a disordered solid (many of their physical properties
exhibit an erratic-like appearance) [2-4]. From a theoretical
perspective, many groups have conducted detailed studies on
the spectra of a number of elementary excitations in quasiper-
iodic structures such as light propagation, phonons, electronic
transmission, polaritons, etc. [5-7]. It is interesting that a highly
fragmented fractal energy spectrum can be considered the basic
signature of a quasiperiodic system. The origin of this fractality
may be attributed to the long-range order induced by the unusual
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hierarchical structure of the quasiperiodic sequences used to
construct the system. On the experimental side, Merlin and co-
workers grew the first quasiperiodic superlattice in 1985, follow-
ing the Fibonacci sequence, by means of molecular beam epitaxy
(MBE) [8]. Moreover, Fibonacci quasiperiodic Fe/Cr multilayers
were recently grown on MgO (100) using dc magnetron
sputtering [9].

Studies in the research field called magnonics [10,11] may
allow the development of new devices that control, generate and
propagate information using magnons (quantum of the spin
waves), in a similar way that photons are manipulated in photo-
nic crystals [12]. Therefore, the perspective of new technologies
based on magnonic frequency band gaps has attracted consider-
able attention in recent years [13-18]. These frequency band
gaps, which are intrinsic properties of magnonic crystals, are the
key to controlling magnon propagation and the basis of magno-
nics, whose range of applications varies from magneto-electronic
devices [16] to magnonic waveguides [18]. Therefore, the applica-
tion of new geometries and arrangements in magnonic systems
may affect the profile of magnonic band gaps, thereby opening
new possibilities in magnonics [19].

On the other hand, it is known from the theory of continuous
phase transitions that critical behavior depends only on global
properties, namely the geometric dimension of the system and
the symmetries of its order parameter. It is insensitive to
differences in microscopic interactions between atoms or mole-
cules. Thus, many systems that are distinct within a microscopic
scale show the same critical behavior. It is therefore possible to
classify several systems into a few universality classes. Although
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we are not dealing here with critical properties, in quasiperiodic
arrays a similar classification may be possible, depending on the
quasiperiodic sequence applied to construct the structure. This is
because each specific quasiperiodic sequence used to construct
the system presents a specific degree of disorder, which emerges
in the spectra (see for example Ref. [5]). For this reason a method
was developed to distinguish spectral properties among quasi-
periodic systems [20]. The method is based on calculating
transmission spectra for several generations of a particular
quasiperiodic sequence as a function of energy (or frequency).
The transmission spectra, as expected, display self-similar beha-
vior. The next step is to construct a return map Ty, versus Ty,
where Ty is the transmission probability corresponding to the Nth
generation of the quasiperiodic structure. The return map pro-
vides a pattern (or attractor) that depends only on the specific
quasiperiodic sequence applied in the construction of the quasi-
periodic system. For this reason, the attractors were named
fingerprints since they can promptly identify the quasiperiodic
sequence associated to the physical system under consideration.
The method described above has been applied in the study of
photonic quasiperiodic crystals [21] and quasiperiodic magnetic
superlattices [22]. We recently extended these studies to include
internal structural symmetry, or mirror symmetry, for one-
dimensional photonic crystals [23]. In particular, we studied the
effects of mirror symmetry on the transmittance spectra and
return maps of light waves. The purpose of this paper is to gain
better understanding of the effects of mirror symmetry on layered
structures. More specifically, we investigated the effects of mirror
symmetry on the transmittance spectra and return maps of spin
waves propagating in magnetic multilayers constructed according
to Fibonacci, double period and Thue-Morse quasiperiodic
sequences. This paper is organized as follows. In Section 2 we
discuss the algorithm used to construct the physical system and
the calculation method, which is based on the transfer matrix
approach. Section 3 is devoted to presenting our numerical
results. Finally, our conclusion are summarized in Section 4.

2. Physical system

The geometry of the physical system is described in Fig. 1.
We define the Cartesian axes in such a way that the z-axis is
normal to the planes of the layers. The multilayer system is
composed of slabs made of two Heisenberg ferromagnetic
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Fig. 1. Schematic representation of the third generation of a Fibonacci magnetic
multilayer with mirror symmetry.

materials A and B stacked in a quasiperiodic array. Fig. 1 shows
mirror symmetry around plane z=L/2, where L is the multilayer
size. The multilayer structure is surrounded by two semi-infinite
slabs of a third Heisenberg ferromagnetic material labeled mate-
rial C. We consider the spins in the bulk and across the interfaces
coupled by usual exchange coupling.

Let us now briefly describe the construction of the quasiper-
iodic sequences considered in this study. The Fibonacci sequence
with mirror symmetry can be expressed as Sy = LyRy, where Ly is
generated by the inflation rule A—-AB and B—A, while Ry is
generated by the inflation rule A—BA and B—A. Similarly, the
Thue-Morse sequence with mirror symmetry can be expressed as
Sy =LyRy, where Ly is generated by the inflation rule A—AB and
B— BA, while Ry is generated by A—BA and B—AB. Finally, the
double-period sequence with mirror symmetry can be repre-
sented as Sy =LyRy, where Ly is generated by an equivalent
inflation rule A—»AB and B— AA, while Ry is generated by A— BA
and B—AA.

Although the model is described elsewhere, we will describe it
again, for the reader’s convenience, following the lines of Ref. [22].
In order to calculate the spin waves that can propagate in the
aforementioned quasiperiodic structures, we consider the bulk
exchange parameters as J4, Jp and Jc and, for simplicity, we assume
the same lattice constant a for each material. The exchange
couplings at any interface a—f are I3 (with «, § being A,B or C).
The spins within each material are S, Sz and Sc, respectively.
The Heisenberg Hamiltonian for the bulk of each specimen, in the
absence of an external magnetic field and not considering any
anisotropic exchange field, is given by

Ha=(=1/23 JuS;- S, (M
ij

where o = A, B or C and the sum considers nearest neighbors i and
j. The propagating spin wave is found from the operator
St =8+is], ie.

ih(@S; /ot) =[S H]. 2

The spin wave amplitudes are given, within each material, by a
linear combination of the positive- and negative-going solutions
for each bulk medium, namely,

S+ = {Cexplikc - (F— T )]+ Cexpl—ikc - (F—F o)llexp(—iwt)  (3)

in component C, and with analogous expressions (with C labels
replaced by A and B) in components A and B, respectively. Here T ¢
is the origin of the material C at the interface. The above solutions
must satisfy a matching condition at the interfaces given by

ih(@S;" /o) ="y Ju(S;S;" =SiS;). “4)
ij

The boundary conditions are written in the matrix form, which

can be represented, after some straightforward algebra, as (for

details see Refs. [20-22])

C] Cz
et =M~{ 0 } (5)
Here My is the transfer matrix associated to the Nth generation of
the quasiperiodic multilayer under consideration. It connects the
spin wave amplitudes of the upper semi-infinite slab (C;,C}) to
the spin wave amplitudes of the lower semi-infinite slab (C;,0).
Therefore, once we know the transfer matrix, reflectance and
transmittance are given by the matrix elements as R = |[My1 /M |?
and T =|1/M,|?, respectively.
In fact, the transfer matrix is composed of the product of
transmission and propagation matrices of each individual slab.
For example, the transmission of a normal incident spin wave
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across interfaces o — f3 (o, § being A, B or C) is represented by the
matrix
gl ) [1eap=2eap)lpod - Ul o= ) /[ — e )
= |:(Ia/ilﬁoz_)erﬁjﬁoc)/[(zocﬂ_)Laﬁ)lﬁoc] Unplpu—202p) /1=l |
(6)
while the propagation of the spin wave within a certain slab y
(y=A or B) is represented by the matrix
tf, O
[ 0 &f } '
The elements of the two above matrices are described in Ref. [22].

It is worthwhile to remark that these matrices are completely
analogous to the matrices of Ref. [21].

)

y

3. Numerical results

Here we will present some numerical results for the transmis-
sion probability of magnetic quasiperiodic structures with mirror
symmetry. We assumed that the number of monolayers in each
slab to be ny=ng=4 (see Ref. [22]). Since the size of these
systems grows exponentially, as generation index N increases, the
transmittance goes to zero very quickly. In order to circumvent
this difficulty, we calculate maximum generation index N, for
which the transmittance is less than 107'2, versus reduced
frequency Q. Therefore, the maximum generation index is an
indirect measurement of the transmission probability for the spin
waves. Fig. 2(a) shows the plot of maximum generation number N
versus reduced frequency Q= hw/J4S, for the Fibonacci multi-
layer system in the frequency range 1.800< Q< 1.855. The
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largest generation number attained was N=64. From there, we
can observe several dips and peaks forming band gaps in the
frequency. These band gap regions, which correspond to more
localized states in higher orders of the Fibonacci multilayer
system, exhibit self-similar properties. The self-similarity is illu-
strated in Fig. 2(b) and (c), which shows the same spectra as in
Fig. 2(a), but with other frequency scales. The arrows in the
figures indicate the scaling points where self-similarity occurs.
Fig. 2(b) and (c) shows that the band gaps obey a hierarchical
frequency distribution centered around Q ~ 1.829.

In Fig. 3(a) we plot the maximum generation number N versus
reduced frequency Q for the Thue-Morse multilayer system in the
frequency range 4.6711 < Q < 4.67658. The maximum generation
number achieved was N=100. As in the Fibonacci case, we
observe several band gaps in this frequency range. They also have
self-similar properties, as shown in Fig. 3(b) and (c). The arrows in
these figures indicate the scaling points where the self-similarity
is most evident, i.e., around Q ~ 4.6765.

The double-period multilayer case is shown in Fig. 4(a), where
we plot N versus reduced frequency @ in the range 0.142 <
2 <0.167. As in the previous cases, we have several band gaps
hierarchically distributed in this frequency range. The largest
generation number was N=56. Self-similarity can be observed
in Fig. 4(b) and (c). The arrows in the figures indicate the scaling
points. However, in contrast to Fibonacci and Thue-Morse cases,
the scaling points are not located in the same frequency region.
In Fig. 4(a) the scaling points delimit the frequency region
0.15433 < Q < 0.1566, while in Fig. 4(b) the scaling points delimit
the frequency region 0.1570 < Q < 0.1576.

Before concluding, we should discuss the return maps, without
which our analysis would not be complete. In fact, the study of
return maps is very useful in determining the influence of mirror
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Fig. 2. Maximum generation index N versus reduced frequency Q for a Fibonacci multilayer with mirror symmetry in three different frequency ranges: (a) 1.800 < 2 < 1.855,

(b) 1.8240 < Q@ < 1.8335 and (c) 1.82815 < Q < 1.82856.
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Fig. 3. Maximum generation index N versus reduced frequency @ for a Thue-Morse multilayer with mirror symmetry in three different frequency ranges:
(a) 4.67611 < 2 < 4.67658, (b) 4.676502 < Q2 <4.676514 and (c) 4.6765053 < Q < 4.6765058.
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Fig. 4. Maximum generation index N versus reduced frequency Q for a double-period multilayer with mirror symmetry in three different frequency ranges:
(a) 0.142 <2 <0.167, (b) 0.154 < 2 < 0.160 and (c) 0.1569 < 2 < 0.1584.
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structure on quasiperiodic magnetic multilayers. We can physi-
cally understand the return maps as analogous to attractors of a
time series, generated by some deterministic dynamic evolution.
Return maps Ty 1 versus Ty can be constructed after we generate
the series T1,T3,T3,...,Ty, ... of transmission probabilities corre-
sponding to larger and larger sequences S4,S,,Ss,...,Sn,..., for a
single frequency Q. We choose the frequencies in such a way that
we obtain non-zero transmission for high generation indexes N.
For the quasiperiodic magnetic structures considered in this
work, the deterministic inflation rules induce long-range correla-
tions that are reflected in the spectra and, as a consequence, in the
return maps through the return map’s pattern. Although the
pattern of the return map cannot be determined a priori, it
depends only on the degree of disorder of each quasiperiodic
structure [20].

Fig. 5 shows the return maps for the spin wave transmittance
spectra studied here. As cited previously, we chosen frequency
values corresponding to high transmittance, so that high genera-
tion indexes N could be achieved. Fig. 5(a) shows the return map
for the Fibonacci multilayer with reduced frequency Q =0.5335.
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Fig. 5. The return map Ty, versus Ty illustrating the fingerprint of magnetic
quasiperiodic structures with mirror symmetry: (a) Fibonacci, (b) Thue-Morse
and (c) double-period.

The return map is delimited by a box whose vertices are defined
by 0.001 > Ty > 1.0 and 0.001 > Ty, 1 > 1.0. A similar pattern was
found in the previous studies on quasiperiodic layered systems
[21-23]. Our numerical result shows that mirror symmetry does
not affect the return map for the Fibonacci case. In Fig. 5(b) we
show the return map for Thue-Morse quasiperiodic magnetic
multilayer with reduced frequency 2 =0.000062. The pattern in
the return map is similar to two parabolas, and it is different from
the return maps obtained for Thue-Morse quasiperiodic magnetic
multilayers without mirror symmetry, which show just one
parabola [22]. On the other hand, it is similar to the return map
obtained for Thue-Morse quasiperiodic photonic multilayers with
mirror symmetry, which exhibits a pattern with two parabolas
[23]. Finally, the return map for the double-period quasiperiodic
magnetic multilayers with mirror symmetry is shown in Fig. 5(c).
The pattern was obtained considering reduced frequency Q=
0.0000249. As in the Thue-Morse case, the return map corre-
sponds to two parabolas and it is different from the return map
obtained for double period quasiperiodic magnetic multilayers
without mirror symmetry, but similar to the return map obtained
for double period quasiperiodic photonic multilayers with mirror
symmetry [23]. We can infer, from the numerical results
described, that mirror symmetry had an effect mainly on the
Thue-Morse and double-period transmission spectra, with the
emergence of a two parabolas pattern in the return maps.
The same result was recently found for quasiperiodic photonic
multilayers with mirror symmetry [23].

4. Conclusions

In conclusion, we studied the transmission spectra of spin
waves that can propagate in quasiperiodic magnetic multilayers
constructed according to Fibonacci, double period and Thue-
Morse quasiperiodic sequences with mirror symmetry. Our
numerical results show a beautiful self-similar behavior, with
well-defined scaling points in the plot of maximum generation
index N versus reduced frequency €2, which reveals the presence
of fractality in frequency band gaps distribution (see Figs. 2-4).
It is known that the definition or inflation rules of these
sequences impose long-range correlations on the layers. The
pattern of return map Ty, versus Ty reflects these long-range
correlations. We can conclude from our numerical results that
mirror symmetry, compared to the case without mirror symmetry
[22], (i) has no effect on the return maps for the Fibonacci case
but (ii) it does have effect on the return maps for the Thue-Morse
and double period cases. Finally, comparing these results to the
return maps found for quasiperiodic photonic multilayers [23],
we observe a strict similarity pattern, reinforcing the idea that
return maps depend basically on the quasiperiodic sequence used
to construct the physical system under consideration.

Acknowledgments

This work was partially financed by the Brazilian Research
Agencies CAPES, CNPq, FINEP and FAPEMA.

References

[1] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53 (1984) 1951.

[2] PJ. Steinhardt, S. Ostlund, The Physics of Quasicrystals, World Scientific,
Singapore, 1987.

[3] C. Janot, Quasicrystals: A Primer, Oxford University Press, Oxford, 1993.

[4] M. Senechal, Quasicrystals and Geometry, Cambridge University Press
Cambridge, 1995.

[5] E.L. Albuquerque, M.G. Cottam, Polaritons in Periodic and Quasiperiodic
Structures, Elsevier, Amsterdam, 2004.



LP. Coelho et al. / Journal of Magnetism and Magnetic Materials 323 (2011) 3162-3167 3167

[6] C.G. Bezerra, E.L. Albuquerque, Physica A 245 (1997) 379.

[7] C.G. Bezerra, M.G. Cottam, Phys. Rev. B 65 (2002) 054412.

[8] R. Merlin, K. Bajema, R. Clarke, F.-Y. Juang, P.K. Blattacharya, Phys. Rev. Lett.
55 (1985) 1768.

[9] T. Freire, C. Salvador, M.A. Correa, C.G. Bezerra, C. Chesman, A.B. Oliveira, F.
Bohn, Solid State Commun, 151 (2011) 337.

[10] Z.K. Wang, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, S. Jain, A.O. Adeyeye, ACS
Nano 4 (2010) 643.

[11] KS. Lee, D.S. Han, S.K. Kim, Phys. Rev. Lett. 102 (2009) 127202.

[12] J.D. Joannopulos, S.G. Johnson, J.N. Win, R.D. Meade, Photonic Crystals:
Molding the Flow of Light, Princeton University Press, Princeton, 2008.

[13] M. Krawczyk, H. Puszkarski, Phys. Rev. B 77 (2008) 054437.

[14] V.V. Kruglyak, R]. Hicken, ]J. Magn. Magn. Mater. 306 (2006) 191.

[15] S.A. Nikitov, C.S. Tsai, Y.V. Gulyaev, Y.A. Filimonov, A.L. Volkov, S.L. Vysotskii,
P. Tailhades, Mater. Res. Soc. Symp. Proc. 834 (2005) 87.

[16] H. Xi, X. Wang, Y. Zheng, P.J. Ryan, J. Appl. Phys. 105 (2009) 07A502.

[17] S. Neusser, D. Grundler, Adv. Mater. 21 (2009) 2927.

[18] A. Kozhanov, D. Ouellette, Z. Grith, M. Rodwell, A.P. Jacob, D.W. Lee,
S.X. Wang, SJ. Allen, Appl. Phys. Lett. 94 (2009) 012505.

[19] A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev, J. Appl. Phys.
105 (2009) 083906.

[20] P.M.C. Oliveira, E.L. Albuquerque, A.M. Mariz, Physica A 227 (1996) 206.

[21] M.S. Vasconcelos, E.L. Albuquerque, Phys. Rev. B 59 (1998) 11128.

[22] C.G. Bezerra, M.S. Vasconcelos, E.L. Albuquerque, A.M. Mariz, Physica A 329
(2003) 91.

[23] LP. Coelho, M.S. Vasconcelos, C.G. Bezerra, Phys. Lett. A 374 (2010) 1574.



	Transmission fingerprints in quasiperiodic magnonic multilayers
	Introduction
	Physical system
	Numerical results
	Conclusions
	Acknowledgments
	References




