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The paper critically overviews the recent developments of the theory of spatially dispersive spin fluc-
tuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or
spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin
fluctuations is usually used aside of the range of its applicability actually defined by the constraint of
weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step
in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-
mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present
paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to
qualitatively new results caused by zero-point effects.

& 2014 Published by Elsevier B.V.
1. Introduction

Spin fluctuations (SF) with strong spatial dispersion in itinerant
electron magnets are in the focus of condensed matter physics for
more than half a century and play an important role in many
classes of metallic systems including, e.g., weak itinerant magnets
[1], heavy fermion compounds [2], Invar alloys [3] and magne-
toresistive manganites [4]. Recently they were also found in high-
temperature superconductors [5] and newly discovered Fe-based
superconductors [6] strongly suggesting their possible effect on
mechanisms of unconventional superconductivity. However, up to
now understanding of physics of SF in itinerant magnets and their
role in superconductivity is not clear.

One of the most important problems of the SF theory in itin-
erant electron magnets is caused by strong coupling of SF (spin
anharmonicity) induced by zero-point effects which cannot be
treated within conventional perturbative schemes based on the
random phase approximation (RPA) arguments (or Gaussian ap-
proximation in the high-temperature limit). This problem is
somewhat unique because SF are probably the only type of
strongly coupled Bose excitations in the solid state physics. First
attempts to treat SF go back to 1960s when the theory of
l and Applied Research, N.L.
schevskaya Street, Moscow

ov, Journal of Magnetism
paramagnons, uncoupled overdamped Bose excitations in the
electron–hole continua, was introduced based on the RPA (see Ref.
[1]). In 1970s Murata and Doniach [7] and Moriya and Kawabata
[8] generalized the paramagnon theory in a self-consistent man-
ner accounting for coupling of paramagnons. The formulated then
a self-consistent renormalized (SCR) theory of SF established both
microscopically and phenomenologically (see Refs. [9,10]) treated
overdamped long wavelength SF basing on the RPA-like argu-
ments. The initial version of the SCR theory where zero-point SF
were neglected successfully explained many properties of weak
itinerant magnets including the Curie–Weiss behavior of the
magnetic susceptibility [1,10]. The further version of the SCR
theory partly incorporated zero-point SF and their temperature
dependence [11,12]. However, the authors [11,12] used the same
RPA arguments neglecting strong spin anharmonicity induced by
zero-point effects. The improved version of the SCR theory was
argued to lead to a simple renormalization of the parameters of
the SCR theory treated within the phenomenological approach.

The alternative approach to the theory of SF in itinerant elec-
tron magnets was based on the functional integral arguments and
was successful in explaining metallic magnets with SF of mainly
local single-site nature (see the book [1]). However, this approach
is usually based on uncontrolled approximations and does not
account for the effects of strong spin anharmonicity intrinsic for
itinerant magnets.

A new trend in the description of SF in itinerant magnets
started in 1990s when it was realized that in the vicinity of
and Magnetic Materials (2014), http://dx.doi.org/10.1016/j.
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magnetic instabilities SF soften similarly to softening of phonons
near the structural transitions. However, unlike phonons soft SF
give rise to giant amplitudes of zero-point SF [13] and to strong
spin anharmonicity [14] which cannot be described within per-
turbative approaches based on the RPA arguments. To account for
large zero-point SF amplitudes and strong spin anharmonicity a
soft-mode (SM) theory of SF was formulated using both micro-
scopic [15] and phenomenological [16] approaches. In the present
paper we formulate a generalized theory of SF extending the SM
theory [15–18] for a wider range of temperatures and regimes of
SF. Zero-point SF are shown to lead to new qualitative effects in-
cluding enhancement of low-temperature specific heat.
2. Model for spin fluctuations

To account for various types of magnets with itinerant elec-
trons instead of using microscopic models we start with the fol-
lowing phenomenological form for the inverse dynamical mag-
netic susceptibilities [1,10]

χ ω χ ω
Γ ω

= + −ν ν
− − T c i

T
k k

k
( , ) ( ) ( )

( , , ) (1)
1 1

as a function of the wavevector k, frequency ω, temperature T and
polarization ν (ν¼t marks the transverse and ν¼ l longitudinal
ones), which was supported both theoretically and experimentally
[1,10]. Here χν T( ) are static susceptibilities, which coincide with
the thermodynamic ones

χ χ= ∂
∂

= ∂
∂

− −

M
F
M

F
M

1
, ,

(2)t l
1 1

2

2

c k( ) accounts for their spatial dispersion (we neglect its frequency
and temperature dependencies which do not lead to new physical
results), =F F T M( , ) is the free energy dependent on the order
parameter M . Here Γ ω Tk( , , ) is the relaxation rate defining the
nature of SF. At relatively low temperatures [18,19] SF relaxation is
defined by the linear Landau mechanism in the electron–hole
continua and is ω- and T-independent. In this limit
Γ ω Γ≈Tk k( , , ) ( )0 and SF have a conventional paramagnon nature.
To account for the boundaries of electron–hole continua we
introduce the wavevector kc and frequency ωc cutoffs being
phenomenological parameters of the model. For the Stoner con-
tinuum we also introduce a low frequency cutoff wavevector k0
below which no transverse SF exist [10]. At elevated temperatures
the SF relaxation mechanism is different from the linear Landau
one and is defined by the various non-linear mode–mode scatter-
ing processes which dominate the magnetic relaxation [18,19] and
may result in the strong frequency and temperature dependent
relaxation rate Γ ω Tk( , , ) and lead to a number of novel phenom-
ena [21,22]. Here for simplicity we shall not discuss the effects of
non-linear magnetic relaxation assuming that the temperature is
sufficiently low and set Γ ω Γ Γ≈ ≈ −T kk k k( , , ) ( ) ( / )Z

0 0
2, where the

dynamical exponent z is 3 for ferro- and 2 for antiferromagnetic
instabilities.

To find the free energy of itinerant electron magnets with
strongly coupled SF models we adopt a physically transparent
phenomenological approach based on the Ginsburg–Landau ef-
fective Hamiltonian
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which should be accompanied by the time-dependent equation
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Here δ= +t tM k M m k( , ) ( , )k,0 is the time dependent magnetic

order parameter, tm k( , ) accounts for SF, χ χ= +− − ck k( ) ( )0
1

0
1 and γ0

define the static inhomogeneous paramagnetic susceptibility and
mode-mode coupling constant not affected by SF. Here we treat
(3) and (4) as a model describing both long and short wavelength
SF at various temperatures and do not view them as expansions in
powers of SF amplitudes which are not assumed to be small. The
effective Hamiltonian was shown to arise from microscopic ap-
proaches after integrating out individual quasiparticles degrees of
freedom and charge density fluctuations [9]. It was also widely
used in the theory of critical phenomena near phase transitions
[23].

Then the free energy is given by

χ
γ
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where F T( )0 denotes the contribution independent on magnetiza-
tion, terms with M2 and M4 are related to the Hartree–Fock ap-
proximation, and the SF contribution can be written using an in-
tegration of the equality χ∂Δ ∂ =−F M/ ( ) /2L0
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The squared local magnetic moment (averaged amplitudes of

SF) =M mL
2 2 is given by the fluctuation–dissipation theorem
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where ∫ ω π∑ = ∑κ ω
∞

d( /2 )k, 0
, the factors ω= ℏ −ω

−N k T[ exp ( / ) 1]B
1

and 1/2 are related to thermal and zero-point SF, respectively,
which provides a natural separation of ML

2 into the zero-point
M( )L Z P

2
. . and thermal M( )L T

2 contributions.
Integro-differential Eqs. (1), (2), (5), and (6) are the basic

equations of the theory of SF that should be solved self-con-
sistently. As it follows from Eq. (6) the key parameter defining the
solution of these equations is the derivative

ζ
χ

χ
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ν
−

−
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1

0
1

which is the measure of the effects of SF on the magnetic
susceptibilities.
3. Limitations of the self-consistent renormalized theory of
spin fluctuations

In all versions of the SCR theory this parameter is set to unity

ζ =ν 1, (9)
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which allows to present the SF contribution to the free energy (6)
in the RPA-like form
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χ ωΔ =

+
≡ Δ

ν ω

ν

ν ν
ν

κ ⎡⎣ ⎤⎦
{ }F F F

k

k
k2 ( )

( )

( )
( , ) ,

(10)
osc

SF

sf

RPA
,

( )

( ) 2 2

where ω ω ω= − −ℏ + ℏF k T k T( ) ln [1 exp ( / )] /2osc B B is the free en-
ergy of a harmonic oscillator and

ω Γ χ= +ν
ν
− ck k k( ) ( )[ ( )] (11)SF

( )
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are the relaxation frequencies of SF. The main result of the SCR
theory is the shift of the magnetic susceptibilities [1,10]

γ≈ M(5/3) L0
2 resulting in the new derivation of the Curie tempera-

ture, Curie–Weiss law, etc. According to (8) and (9) this implies the
main constraint for all versions of the SCR theory based on the
RPA-like expression (10) for the SF free energy. Namely, the
dimensionless spin anharmonicity parameter [14]
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must be small compared to unity

= + ⪡g g g 1, (13)SF T Z P. .

where according to the factor +ωN 1/2 in (12) we split it into the
thermal gT and zero-point gZ P. . contributions, similar to the local
moment (7).

As it follows from (12), the limit =g 0SF corresponds to the
uncoupled SF related to the paramagnon theories of 1960s. The
initial version of the SCR theory [7,10] accounting for thermal SF
and neglecting zero-point effects may be regarded as a first-order
approximation in gSF which is valid only in the weak spin anhar-
monicity limit. The advanced version of the SCR theory partly
accounting for zero-point SF within the RPA form for the free
energy (10) will be discussed below.
4. Soft-mode theory of spin fluctuations

However, the weak coupling constraint is hardly applicable to
real itinerant magnets where zero-point SF were shown to have
giant amplitudes both experimentally [13] and theoretically [16],
which inevitably leads to strong spin anharmonicity breaking
down the inequality (13) being the basis of the SCR theory. As-
suming the linear Landau relaxation mechanism for SF one can
easily estimate the squared local moment χ= =ν

−M M[ ( 0)]L L Z P0
2 2 1

. .

and spin anharmonicity χ= =ν
−g g ( 0)Z P0 . .

1 caused by zero-point SF
[16]
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where Ne is the electron density. Thus we arrive to the important
conclusion: the conventional SCR theory of SF based on the RPA-
like approximations for the free energy (10) does not account for
the effects of strong spin anharmonicity caused by zero-point SF,
which are intrinsic for itinerant electron magnets.

The way to take into account of strong anharmonicity of SF and
to go beyond the RPA arguments was suggested within the SM
theory of SF [14–18]. It proposed an outcome to solve self-con-
sistently the Eqs. (1), (2), (5) and (6) without assumption (9), i.e.
without using a perturbation approach. The main idea of the soft-
mode theory is to consider the SM regime of SF, when the long-
itudinal susceptibility is less than the average spatial dispersion of
thermal SF, χ ⪡ν

− cT
1 , where [17] = =c c c T Tk( ) ( / )T T c SF

Z2/ if ≤T TSF
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and =c cT c if >T TSF . Here =c c k( )c c
2 is the measure of the spatial

dispersion of SF, and Γ≈ ℏT c k/SF c B0 is the characteristic SF tem-
perature which separates the temperature scale into the quantum

<T T( )SF and classical >T T( )SF regions.
Within the SM theory self-consistent solution of Eqs. (1), (2),

(5), and (6) based on the expansions in powers of χν
−1 gives the free

energy of SF in the following form:

∑
ζ

χ ωΔ = Δ
ν ν

ν{ }F F k
1

( , ) ,
(15)

RPA

which is enhanced with respect to the RPA expression (10) by the
factors ζ >ν1/ 1. This allows to present the whole free energy (5) in
the Landau form with the renormalized coefficients χ χ→0 , γ γ→0 ,
and ζ = − >ν g1 5 0, where

χ χ γ= − + + <− −g M M(1 5 ) ( ) 0, (16)L T
1

0
1 5

3 0
2 2

γ
γ

= = −
+

g
g

g
g

1 5
1 6 (17)0 0

and χ= = ~ν
− +M M M T T[ ( 0)] ( / )T L T L SF

Z2 2 1
0

2 1 1/ . It should be emphasized
that the results of the SM theory account for both long and short
wavelength SF provided that magnetic relaxation is caused by the
linear Landau mechanism.

Here it is necessary to comment on the advanced version of the
SCP theory which partly accounted for the zero-point SF basing on
the RPA-like expression (10) for the free energy of SF [11,12]. As a
result of their approach the authors [11,12] got the expression for
the inverse paramagnetic susceptibility χ−1 which follows from
(16) after setting =g 0 and changing γ for a value essentially dif-
ferent from given by (17).

The main results of the SM theory were summarized in the
reviews [17,18,22] and may be briefly formulated as follows. The
SM theory
i)
a

clearly shows the limitations of the SCR theory which is valid
in the weak anharmonicity limit ⪡g 1SF within the SM regime
(15) of SF;
ii)
 finds novel equation of states and criterion of magnetic in-
stability with account of zero-point effects and strong spin
anharmonicity;
iii)
 importantly, it founds fundamental limitations of the half-
metallic ferromagnetic ground state due to quantum zero-
point effects.
5. Generalization of the soft-mode theory

Here we generalize the SM theory to discuss low-temperature
anomalies of the specific heat caused by the effects of strong spin
anharmonicity induced by zero-point SF in the Fermi-liquid (FL)
regime of SF [17,18] which is out of the scope of the SM theory. It
should be emphasized that in the FL regime the SF effects may be
incorporated into the parameters of the Fermi-liquid quasi-
particles. Using expressions (10) and (15) for the SF contribution to
the free energy we get the SF specific heat = − ∂ Δ ∂C T F T( )/SF

2 2 in
the low-temperature limit. Up to now the most investigated ef-
fects of SF were reported for weak itinerant ferromagnets [1,10].
Restricting ourselves to ferromagnets we present the SF con-
tribution to the low-temperature specific heat in the following
explicit form:

π ω
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Here we take into account that in the ordered state of isotropic
magnets χ =− 0t

1 and neglect the temperature dependence of the
magnetic susceptibility χl. As it is seen from (18), spin anharmo-
nicity enhances the low-temperature specific heat by a factor

− >−g(1 5 ) 11 compared with the RPA result [20] C( )SF RPA. The
same result holds for the mass enhancement =m m/SF

−m g m( ) /(1 5 )SF RPA caused by SF, where m is the mass of a band
electron inferred, e.g., from the density functional theory and

~m C( ) ( )SF RPA SF RPA is the RPA contribution to the electron mass from
SF. This result should be taken into account while comparing
calculated band structures of magnetic metals with experimen-
tally observed data.

We illustrate the SF specific heat for two weak itinerant fer-
romagnets Ni3Al and MnSi for which parameters of SF are known
probably pretty well [10,20]. The estimated for them spin anhar-
monicity parameters =g 1.10 and =g 3.70 result in the enhance-
ment factors − g1/(1 5 ) which are for them 4.0 and 10, respec-
tively. Using the data from Ref. [20] one can calculate then from
(18) SF contribution to the electron mass =m m/ 7.2SF and

=m m/ 52SF for Ni3Al and MnSi, respectively. These quantities
should be compared with the ones 1.5 and 4.4 calculated from the
observed low-temperature specific heat [20]. The essential dis-
crepancies between these results should be mainly due to the
rough estimate of the electron band mass m inferred from band
structure calculations neglecting effects of zero-point SF, which
may crucially influence the ground state properties of metals [24].
However, involving these effects into the modern density func-
tional schemes forms a rather difficult unresolved problem for the
condensed matter physics.

To conclude, we overview the existing spin fluctuation theories
of itinerant electron magnets and generalize them to show that
the low-temperature specific heat may be essentially affected by
spin anharmonicity caused by zero-point effects.
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