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a b s t r a c t

We studied some magnetic behaviors of the Blume-Capel (BC) model in a site diluted triangular lattice by
means of the effective-field theory (EFT) with correlations. The effects of the exchange interaction (J),
crystal field (D), concentration (p) and temperature (T) on the magnetic properties of the spin-1 BC
model in a triangular lattice, such as magnetization, susceptibility, phase diagram and hysteresis beha-
viors, are investigated in detail. The phase diagrams of the system are presented in two different planes.
The tricritical point as well as the tetracritical and critical end special points are found to depend on the
physical parameters of the system. Moreover, when the hysteresis behaviors of the system are examined,
single and double hysteresis loops are observed for various values of the physical parameters. We show
that the hysteresis loops have different coercive field points in which the susceptibility makes a peak at
these points.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the triangular lattice, local geometric constraints prevent
simultaneous minimization of all the pairwise interactions. Thus,
the Ising model with the nearest-neighbor antiferromagnetic in-
teractions on a triangular lattice is fully frustrated. Recently, the
triangular lattice structure has increasingly attracted much inter-
est due to the fact that it has been used the prototypical modeling
of some real magnetic materials, such as CsCoX3 (X¼Cl or Br) and
Ca3Co2O6 spin-chain compounds, and for low-temperature and
high-degenerate cases showing different behaviors [1–3]. Žukovič
[4] employed a thermodynamic integration method to establish
the values of the residual entropy for the geometrically frustrated
spin-S triangular Ising antiferromagnet, with the spin values S¼1/
2, 1, 3/2, 2 and 5/2. He obtained an analytical formula for the lower
bound in a general spin-S model and conjecture that it should
reasonably approximate the true residual entropy for sufficiently
large S. The first-order [5] and second-order [6] phase transitions
features of the triangular Ising model with the nearest- and next-
nearest-neighbor antiferromagnetic interactions have been stu-
died by using a Wang–Landau entropic sampling scheme. By uti-
lizing the EFT with correlations, Žukovič et al. [7] investigated the
magnetization processes and phase transitions in a geometrically
frustrated triangular lattice Ising antiferromagnet in the presence
of a random site dilution and an external magnetic field. They
tar).
found that the interplay between the applied field and the frus-
tration-relieving dilution results in peculiar phase diagrams in the
temperature-field-dilution parameter space. Melchert and Hart-
mann [8] presented an algorithm for the computation of ground
state spin configurations for the 2d random bond Ising model on a
triangular lattice. They also investigated the critical behavior of the
corresponding T¼0 ferromagnet to spin-glass transition, signaled
by a breakdown of the magnetization, using finite-size scaling
analyses of the magnetization. The triangular Blume-Capel (BC)
model has been studied by using Monte-Carlo simulations (MCs)
and discussed that the effects of bond randomness on the uni-
versality aspects of a two dimensional BC model embedded in a
triangular lattice have been discussed [9]. Žukovič et al. [10] ex-
amined the effects of selective dilution on the phase diagrams and
ground-state magnetizations of the spin-1/2 Ising anti-
ferromagnetic model by using EFT. They found that the obtained
results showed a fairly good agreement with previous studies
using different methods. Low-temperature magnetization pro-
cesses in a stacked triangular Ising antiferromagnet have been
studied [11] in detail by utilizing MCs, and multiple steps and
hysteresis corresponding to the formation of different metastable
states were observed in increasing and decreasing magnetic fields.
Borovský et al. [12] studied the critical and tricritical behaviors of a
selectively diluted triangular Ising antiferromagnet by using both
EFT and MCs. In particular, they focused on the effects of the
frustration-relieving selective dilution on the phase diagram and
found that it can lead to rather intricate phase diagrams in the
dilution-field parameters space. Žukovič and Bobák [13]
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Fig. 1. Schematic representation of triangular Ising system. The red, blue, and
green spheres indicate magnetic atoms at mA, mB, mC, respectively. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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investigated the critical behavior of the BC antiferromagnet on a
triangular lattice by MCs and found two kinds of phases within the
single-ion anisotropy strength �1.47oΔo0. They found that
there is only one phase transition from the long-range ordering to
the paramagnetic region and the transition is of first order for
�1.57oΔo�1.47. Žukovič and Bobák [14] also studied the cri-
tical behaviors of a geometrically frustrated spin-1 Ising anti-
ferromagnet on a triangular lattice in the presence of a single-ion
anisotropy by employing MCs. They showed that the presence of
the single-ion anisotropy can lead to a partial long-range order in
the low-temperature region even below the critical value, namely
for the spin-1, within a certain range of the anisotropy strength.
They also studied densities of various local spin patterns in the
respective phases. Moreover, by using the position-space re-
normalization group (PSRG) [15] and transfer matrix [16] methods,
a frustrated antiferromagnetic spin-1 BC model on a triangular
lattice was examined and found to display a finite-temperature
antiferromagnetic (AF) LRO of the type (1, �1, 0) within a certain
range of the single-ion anisotropy strength, accompanied by a
multicritical behavior.

In spite of these studies, to the best of our knowledge, the
magnetization, susceptibility, phase diagram and hysteresis be-
haviors of the BC model in a site diluted triangular lattice by
means of the EFT with correlations have not been investigated, in
detail. Therefore, in this paper, we have studied the influences of
the exchange interaction (J), crystal field (D), concentration (p) and
temperature (T) on the magnetic properties of the spin-1 BC model
in a triangular lattice. We should also mention that the ferro-
magnets have wide applications, such as a “soft” ferromagnet in a
transformer core and a “hard” permanent magnets in hard disk,
and in magnetic tape and motors depending on the extent of the
hysteresis loop, see [16] and [17]. The further development of
materials with hysteresis needs a deep understanding of their
microscopic interactions and how these interactions influence
their hysteresis phenomena [18].

The paper is arranged as follows. In Section 2, we give the
model and present the formalism of the model in the EFT. The
detailed numerical results and discussions are presented in Sec-
tion 3. Finally Section 4 is devoted to a summary and a brief
conclusion.
2. Model and formalism

Under the Blume-Capel model the Hamiltonian of spin-1 Ising
model can be written as

H J S S D S h S
(1a)ij

i j
i

i
i

i
2∑ ∑ ∑= − − −

⟨ ⟩

where Si is the Ising spin and it takes S 1, 0i = ± values, D is the
crystal field or single-ion anisotropy, h is the external magnetic
field, J is the exchange interaction parameter and i j, denotes the
summation over all the nearest-neighbor pairs. Moreover, the
Hamiltonian of the selectively diluted triangular lattice, which
includes the nearest-neighbor interactions and the crystal field, is
given as follows:

〈 〉
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The parameter iξ is a site occupancy number that is 1 or zero,
depending on whether the site is occupied or not. Since only the
surface is diluted in the present system, iξ are quenched, un-
correlated random variables chosen to be equal to 1 with prob-
ability p, when the site i is occupied by a magnetic atom and 0,
with probability 1�p otherwise. Then the probability distribution
is given by P( iξ )¼p p( 1) (1 ) ( )i iδ ξ δ ξ− + − and p represents the
mean concentration of magnetic sites. These facts are seen ex-
plicitly using the EFT on the different systems such as in a trian-
gular lattice [10,19], an ultrathin Ising film [20], and on a honey-
comb lattice [21].

Within the framework of the EFT with correlations, one can
easily find the sublattice magnetizations, and the quadrupolar
moment terms as coupled equations for the diluted triangular
lattice as follows:
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where x/∇ = ∂ ∂ is the differential operator. The functions F x( ) and
G x( ) are defined as
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Here, k T1/ Bβ = , T is the absolute temperature and kB is the



Fig. 2. Thermal variations of the magnetizations and susceptibilities with various values of p, J and D. (a) p¼1.0, J¼1.0 and D¼�4.0, �3.0, �2.8, �2.0, �1.0. (b) p¼1.0,
D¼1.0 and J¼ 0.25, 0.35, 0.5, 0.75, 1.0. (c) J¼1.0, D¼1.0 and p¼0.75, 0.8, 0.85, 0.89, 1.0.
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Boltzmann constant. By using the definitions of the order para-
meters in Eqs. (2a)–(2c), the total mT magnetizations of each site
can be defined as m m m m1/3( )T A B C= + + .

In order to obtain the susceptibilities of the system, we differ-
entiated magnetizations with respect to h as in the following
equation:

⎜ ⎟⎛
⎝

⎞
⎠

m
h

lim
(5)0

χ =
∂
∂α

→

α

where, α¼A, B and C. By using Eqs. (2) and (5), we can easily
obtain the Aχ , Bχ and Sχ susceptibilities as follows:
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Here, the ai , bi and ci (i¼1, 2 and 3) coefficients have compli-
cated and long expressions, hence they will not give. The total
susceptibility of each site can be obtained via

1/3( )T A B Cχ χ χ χ= + + .
On the other hand, in order to obtain the second-order phase

transition temperatures as well as the phase diagram, we must
expand the right-hand sides of (2a)–(2c) coupled equations. They
are obtained as follows:
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Here, the coefficients k m n, andi i i in each matrix have com-
plicated forms, so that they will not give. These coefficients can be
easily obtained from the coupled equations via the differential
operator technique. The second-order phase transition tempera-
tures of each system can be determined from det (A)¼0. Moreover,
to obtain the first-order phase transition temperatures, we have to
solve Eqs. (2a)–(2c) numerically. In this way, we can obtain the
tricritical point (TCP) by using the existence of the first- and sec-
ond-order phase transition points.

By solving these equations, we can obtain the numerical results
of the spin-1 diluted triangular lattice. We will give these results in
the next section.
3. Numerical results and discussions

In this section our attention is focused on the study of the
magnetic properties, the phase diagrams and hysteresis behavior
of a spin-1 Triangular Ising system (TIS) with a crystal field
interaction.

3.1. Magnetic properties of magnetizations and susceptibilities

The thermal behavior of Fig. 1 the total magnetizations (MT)
and susceptibilities (xT) of the spin-1 TIS are plotted in Fig. 2. In
Fig. 2(a)–(c), we investigated the behavior of the first- and second-
order phase transition points, as well as the tricritical point, for
different values of the crystal field, the bilinear interaction para-
meter and the concentration. Thus, this study led us to char-
acterize the transitions as well as to obtain the transition points.
Fig. 2(a) is obtained for fixed values J¼1.0 and p¼1.0, and the
selected values of D, i.e., �4.0, �3.0, �2.8, �2.0 and �1.0. In this
figure for D¼�4.0, �3.0 and �2.8 values, the total magnetiza-
tions go to zero discontinuously as the temperature increases;
hence, a first-order phase transition occurs. On the other hand, for
D¼�2.0 and �1.0 values the total magnetizations decrease con-
tinuously with the increase in temperature values below the cri-
tical temperature and they become zero; hence, a second-order
phase transition occurs. Moreover, in Fig. 2(b) and (c) for low
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values of J and p, namely J¼0.25 and 0.35 values and p¼0.75, 0.80,
and 0.85 values, the system illustrates first-order phase transi-
tions; the system exhibits a second-order phase transition for high
values of J and p. In the system, the critical values are obtained as
DC¼�2.85, JC¼0.38, and pC¼0.88, for the crystal field, bilinear
interaction parameter and the concentration. The susceptibilities
diverge as the temperature approaches the critical temperature in
Fig. 2. When D, J, and p take higher values, the susceptibility
divergence at the critical temperature shifts to higher tempera-
tures. However, when D, J, and p take lower values, they become
finite and display a jump singularity behavior at the first-order
phase transition.
3.2. Phase diagrams

In this subsection, we will show some typical results for the TIS
with a crystal field. We obtained the phase diagrams in two dif-
ferent planes, namely (D, T) and (p, T) for TIS.

3.2.1. Phase diagrams in (D, T) plane
At first, we present the phase diagrams of the model in the (D,

T) plane, as illustrated in Fig. 3. In these phase diagrams, the solid
and dashed lines represent the second- and first-order phase
transition lines, respectively, and the tricritical points are denoted
by filled circles. It is clear that the second- and first-order phase
transition lines separate the ordered phases, namely (1, 1, 1), (�1,
�1, 1) and (�1, 0, 1) from the paramagnetic (P) phase. From these
phase diagrams the following phenomena were observed. (1) Each
of the phase diagrams exhibits only one tricritical point where the
second-order phase transition turns into a first-order one. (2) In
Fig. 3(a), the reentrant behavior exists in the TIS, i.e., the system
has a disordered (paramagnetic) phase at very low temperatures
and as the temperature increases the system has an anti-
ferromagnetic (1, 1, 1) phase at a critical temperature Tc1 and fi-
nally a paramagnetic phase at a higher critical temperature Tc2.
(3) In Fig. 3(b), are observed the special critical points, namely
critical end point (E) and tetracritical point (M) in the system.

3.2.2. Phase diagrams in (p, T) plane
In Fig. 4, the phase diagram of spin-1 TIS is obtained in order to

examine the influence of the interfacial coupling, namely J. Fig. 4
shows the variations of T as a function of p, when the parameter J
is fixed at J¼1.0 and the value of D is changed (D¼0.0, �1.0, �1.5
and �2.0). In Fig. 4, the phase transition region is divided into two
phases, namely P and (1, 1, 1). From Fig. 4, we can see that the
phase transitions are second-order and first-order phase transi-
tions for high and low values of temperature, respectively. When
the crystal field takes higher values, the tricritical points are ob-
tained at lower temperature.



Fig. 5. Hysteresis behaviors of triangular Ising system. (a) D¼�2.0, J¼0.5, T¼1.0 and p¼0.3, 0.6, 0.8, 1.0. (b) J¼1.0, T¼0.5, p¼0.5 and D¼�3.0, �2.0, �1.0, 1.0. (c) D¼0.0,
T¼0.5, p¼0.5 and J¼0.1, 0.5, 0.7, 1.0. (d) D¼0.0, J¼0.5, p¼0.5 and T¼0.1, 0.5, 0.7, 1.1.
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3.3. Hysteresis behaviors

Our aim in this subsection is to examine the effects of the
crystal field, concentration, bilinear interaction, and temperatures
on the hysteresis behaviors of a spin-1 TIS. Fig. 5(a) is obtained for
four selected typical concentration values, namely p¼0.3, 0.6, 0.8,
1.0 in the case of D¼�2.0, T¼0.5 and J¼1.0 fixed values to in-
vestigate the temperature dependence of the hysteresis and sus-
ceptibility behaviors of the spin-1 TIS. With the increase of the
crystal field parameter, the double hysteresis loop becomes a
single hysteresis loop and the single hysteresis loop becomes
wider. In Fig. 5(b), similar hysteresis loop behaviors as those in
Fig. 5(a) are observed for the increasing values of D. The total
susceptibility peaks confirm the above calculations. In Fig. 5(c), the
hysteresis loops area increases as the bilinear parameter increases.
This fact is also understood from the susceptibility peak having
two values in both directions of the external magnetic field. In
Fig. 5(d), the hysteresis loops area decreases as the temperature
increases. This fact is also understood from the susceptibility peak
turn to reaches a single value in both directions of the external
magnetic field. The physical explanation for this fact is that while
at low temperatures the system becomes hard magnet, with the
increase of the temperature the hard magnet turns to soft magnet.
These results are consistent with some experimental results [22–
25].
4. Summary and conclusion

In this study, we studied some magnetic behaviors of the
Blume-Capel (BC) model in a site diluted triangular lattice by
means of the effective-field theory (EFT) with correlations. We
investigated the magnetic properties of the spin-1 BC model in a
triangular lattice in detail. We also obtained the phase diagrams of



Fig. 5. (continued)
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the system in two different planes. The tricritical point as well as
the tetracritical and critical end special points are found to depend
on the physical parameters of the system. Moreover, when the
hysteresis behaviors of the system are examined, single and dou-
ble hysteresis loops are observed for various values of the physical
parameters. We show that the hysteresis loops have different
coercive field points and that the susceptibility makes a peak at
these points.

Finally, the comparison of our results with Ref. [9], same sys-
tem, but different method, namely MCs, is as follows: (1) the
system within the EFT shows the tricritical point as well as the
tetracritical and critical end special points, but the system within
the MCs displays only a tricritical point. (2) Three different ordered
phases, namely (1 1 1), (�1, �1, 1), (�1, 0, 1), is observed when
using the EFT, but defines only one ordered phase when using the
MCs. (3) The system within the EFT has three fundamental phase
diagrams in the (D, T), but the system within the MCs has one
fundamental phase diagram.
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