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The Ising-like anisotropy parameter d in the Kondo necklace model is analyzed using the bond-operator

method at zero and finite temperatures for arbitrary d dimensions. A decoupling scheme on the double

time Green’s functions is used to find the dispersion relation for the excitations of the system. At zero

temperature and in the paramagnetic side of the phase diagram, we determine the spin gap exponent

nz � 0:5 in three dimensions and anisotropy between 0pdp1, a result consistent with the dynamic

exponent z ¼ 1 for the Gaussian character of the bond-operator treatment. On the other hand, in the

antiferromagnetic phase at low but finite temperatures, the line of Neel transitions is calculated for

d51. For d42 it is only re-normalized by the anisotropy parameter and varies with the distance to the

quantum critical point (QCP) jgj as, TN / jgj
c where the shift exponent c ¼ 1=ðd� 1Þ. Nevertheless, in

two dimensions, a long-range magnetic order occurs only at T ¼ 0 for any d51. In the paramagnetic

phase, we also find a power law temperature dependence on the specific heat at the quantum critical

trajectory J=t ¼ ðJ=tÞc, T ! 0. It behaves as CV / Td for dp1 and � 1, in concordance with the scaling

theory for z ¼ 1.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Quantum phase transitions (QPTs) from an antiferromagnetic
(AF) ordered state to a nonmagnetic Fermi liquid (FL) in heavy
fermion (HF) systems have received considerable attention from
both theoretical [1] and experimental points of view [2]. In
contrast to classical phase transitions (CPT), driven by tempera-
ture, QPT can be driven by tuning an independent-temperature
control parameter (magnetic field, external pressure, or doping).
The physics of HF is mainly due to the competition of two main
effects: the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction
between the magnetic ions which favors a long-range magnetic
order, and the Kondo effect which tends to screen the local
moments and to produce a nonmagnetic ground state. These
effects are contained in the Kondo lattice model (KLM) Hamilto-
nian in which spin degrees of freedom of conduction electrons and
localized moments, as well as charge degree of freedom of the
ll rights reserved.

/MCTCNPq-0364.00/00) and

ant no. 2006CB921400.
conduction electrons, are considered. Here we investigated a
simplified version of the KLM, the so-called Kondo necklace model
[3] (KNM) which for all purposes can be considered to yield
results similar to the KLM. While the ground state properties of
this model have been investigated rather extensively by a variety
of methods [4–14], the thermodynamic and finite temperature
critical properties, close to a magnetic instability, remain an open
issue. It was observed by us, and it was our first motivation for
studying the quantum critical properties of this model, as a
function of the distance to the QCP jgj, at zero and low
temperatures [1,15]. Now we extend this treatment introducing
a finite inter-site anisotropy d in the y-spin operator component
such that, 0pdp1 since the d ¼ 1 case is appropriate to describe
compounds where the ordered magnetic phase has a strong Ising
component. However, the main reason to consider the anisotropy
d in the KNM is to try to describe its effects in the neighborhood of
a magnetic QCP in HF systems, rather than a symmetry problem
[12]. This is a goal in HF systems, and already several theories
were formulated to explain their unusual properties [16–18].
Besides, in a previous work we were successful in finding that the
Neel line exists since turning on a geometric anisotropy [19],
stressing thatanisotropy is an inherent ingredient in real HF
systems. Henceforth, the model will be called anisotropic Kondo
necklace model (AKNM). This model was already investigated
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using the real space renormalization group machinery [20] but
just in one dimension ð1dÞ and zero temperature. We use the
bond-operator approach introduced by Sachdev and Bhatt [21]
which was employed previously in both, KLM [22] and KNM [11]
models but always at ðT ; dÞ ¼ ð0;0Þ. We find that this method
yields a shift exponent that characterizes the shape of the critical
line in the neighborhood of the QCP as well as the power law
temperature dependence on the specific heat along the so-called
quantum critical trajectory J=t ¼ ðJ=tÞc, T ! 0. We consider the
following AKNM:

H ¼ t
X
hi;ji

ðtx
i t

x
j þ ð1� dÞty

i t
y
j Þ þ J

X
i

Si � si, (1)

where ti and Si are independent sets of spin-1
2 Pauli operators,

representing the conduction electron spin and localized spin
operators, respectively. The sum hi; ji denotes summation over the
nearest-neighbor sites. The first term mimics electron propaga-
tion which strength t and the second term is the magnetic
interaction between conduction electrons and localized spins Si

by means of the Kondo exchange coupling J ðJ40Þ. The Ising-like
anisotropy parameter d varies from the full anisotropic case d ¼ 1
to the well established case d ¼ 0.

Considering the bond-operator representation for two spins
S ¼ 1

2, tiðSiÞ
a
¼ �1

2ðs
y

i ti;a þ tyi;asi � i�abgtyi;bti;gÞ ða ¼ x; y; zÞ [21], the
Hamiltonian above, at half-filling, i.e., with one conduction
electron per site, can be simplified. The resulting effective
Hamiltonian Hmf with only quadratic operators is sufficient to
describe exactly the QPT from the disordered Kondo spin liquid to
the AF phase [12,23,24], as discussed below. By replacing the spin
operator representation above in the Hamiltonian given by Eq. (1)
we obtain the following mean-field Hamiltonian:

Hmf ¼ Nð�3
4Js̄2
þ ms̄2

� mÞ þo0

X
k

tyk;ztk;z

þ
X

k

½Lktyk;xtk;x þDkðt
y

k;xty
�k;x þ tk;xt�k;xÞ�

þ
X

k

½L0ktyk;ytk;y þD0kðt
y

k;yty
�k;y þ tk;yt�k;yÞ�, (2)

where Lk ¼ o0 þ 2Dk, L0k ¼ o0 þ 2D0k, Dk ¼
1
4ts̄2lðkÞ,

D0k ¼ 1
4ts̄2lðkÞð1� dÞ, and the structure factor lðkÞ ¼

Pd
s¼1 cos ks.

The singlet order parameter s̄, is consistent with the strong
coupling limit J=t!1, where the model becomes trivial, since
each S spin captures a conduction electron spin to form a singlet,
and where the ground state corresponds to a direct product of
those singlets. The chemical potential m was introduced to impose
the constraint condition of single occupancy, N is the number of
lattice sites and Z is the total number of the nearest neighbors on
the hyper-cubic lattice. The wave vectors k are taken in the first
Brillouin zone and the lattice spacing was assumed to be unity.
This mean-field Hamiltonian can be solved using the Green’s
functions to obtain the thermal averages of the singlet and triplet
correlation functions. These are given by

hhtk;x; t
y

k;xii ¼
ðo2 �o0k

2
ÞðoþLkÞ

2px ,

hhtk;y; t
y

k;yii ¼
ðo2 �o2

k ÞðoþL0kÞ
2px

,

hhtk;z; t
y

k;zii ¼
1

2pðo�o0Þ
, (3)

where x ¼ ðo2 �o2
k Þðo

2 �o0k
2
Þ. The poles of the Green’s func-

tions determine the excitation energies of the system as
o0 ¼ ððJ=4Þ þ mÞ, which is the dispersionless spectrum of the

longitudinal spin triplet states, ok ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

k � ð2DkÞ
2

q
that corre-

sponds to the excitation spectrum of the x-transverse spin triplet
states, and o0k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0k

2
� ð2D0kÞ

2
q

that corresponds to the
y-transverse one. We can see that if d ¼ 0, Dk ¼ D0k, and Lk ¼ L0k.
Thereby, the transverse excitation modes coincide ok ¼ o0k, which
corresponds to the isotropic Kondo lattice model [1].
2. Paramagnetic state

From these modes above and their Bosonic character an
expression for the paramagnetic internal energy at finite tem-
peratures can be easily obtained [1,15,19],

U ¼ e0 þ
X

k

ðo0nðo0Þ þoknðokÞ þo0knðo0kÞÞ, (4)

where

e0 ¼ Nð�3
4Js̄2
þ ms̄2

� mÞ
þ 1

2

X
k

ðok þo0k �Lk �L0kÞ (5)

is the paramagnetic ground state energy, b ¼ 1=kBT , kB the
Boltzman’s constant, nðoÞ ¼ 1

2ðcothðbo=2Þ � 1Þ the Bose factor
and T the temperature. After some straightforward algebra [1,19]
using Eq. (4), the paramagnetic free energy renders

F ¼ e0 �
1

b

X
k

ln½1þ nðokÞ�

�
1

b

X
k

ln½1þ nðo0kÞ� �
N

b
ln½1þ nðo0Þ�. (6)

To obtain the parameters introduced s̄2 and m we minimize the
free energy by the saddle-point equations ðqe=qm; qe=qs̄Þ ¼ ð0;0Þ,
and we get

2ð2� s̄2
Þ ¼ f ðo0Þ þ

1

2N

X
k

Lk

ok
coth

bok

2

þ
1

2N

X
k

L0k
o0k

coth
bo0k

2
,

2J

t

3

4
�
m
J

� �
¼

1

2N

X
k

o0

ok
lðkÞ coth

bok

2

þ
1

2N

X
k

o0

o0k
lðkÞð1� dÞ coth

bo0k
2

, (7)

where f ðo0Þ ¼ ðN=2Þðcothðbo0=2Þ � 1Þ.

2.1. Numerical results at T ¼ 0

We first studied the case T ¼ 0, i.e., without thermal fluctua-
tions. At zero temperature the self-consistent equations given by
Eqs. (7) can be simplified as

4ð2� s̄2
Þ ¼ I1ðyÞ þ I2ðyÞ þ I3ðyÞ þ I4ðyÞ,

4Jy

t

3

4
�
m
J

� �
¼ I2ðyÞ � I1ðyÞ þ I4ðyÞ � I3ðyÞ, (8)

with

I1ðyÞ ¼
1

pd

Z p

0

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ylðkÞ

p ,

I3ðyÞ ¼
1

pd

Z p

0

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yð1� dÞlðkÞ

p ,

I2ðyÞ ¼
1

pd

Z p

0
ddk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ylðkÞ

p
,

I4ðyÞ ¼
1

pd

Z p

0
ddk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yð1� dÞlðkÞ

p
, (9)
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Fig. 2. (Color online) Sketch at zero temperature of the spin gap versus the

strength t=J in two dimensions. The inset shows the log–log plot of the spin gap

versus jðt=JÞc � t=Jj for 0pdp1. It shows that D=J vanishes close to ðt=JÞc with a

exponent nz � 1.
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where we have introduced a dimensionless parameter y ¼ ts̄2=o0.
An equation about y can then be obtained:

y ¼
2t

J
ð1� ½I1ðyÞ þ I3ðyÞ�=4Þ. (10)

We will now obtain the numerical solutions to the zero
temperature self-consistent equations (8) using Eq. (10). In this
case (paramagnetic phase), we have that the z-polarized branch of
excitations has a dispersionless value ozðkÞ ¼ o0 and the other
two branches show a dispersion which has a minimum at the AF
reciprocal vector Q ¼ ðp;p;pÞ in three dimensions ð3dÞ. The
minimum value of the excitations defines

Dx
¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� yd

p
; Dy

¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ydð1� dÞ

p
. (11)

The spin gap energies Dx and Dy define the energy scale for the
Kondo singlet phase, for 0pdp1 and do0, respectively. For d ¼ 0,
Dx and Dy are identical and we obtain the original spin gap in the
KNM [11]. Although we are interested in the case where 0odp1,
we considered do0 due to theoretical reasons. This case will only
be consider at T ¼ 0 and will not be sketched in this report. The
analysis of the spin gap is important because the vanishing of gap
and the appearance of soft modes define the transition from the
disordered Kondo spin liquid to the AF phase at the QCP
ðJ=t ¼ ðJ=tÞc; T ¼ 0Þ. At this point, it is suitable to clarify that in
Figs. 1, 2 and 3, we sketched the spin gap energy like D=J versus t=J

by following the d ¼ 0 case [11], despite that we have considered
throughout this paper the control parameter as J=t. That will not
yield any physical difference since it only will change the onset of
the curves from the left to the right.

In the ð1dÞ case, the energy gap falls linearly for small values of
t=J, and deviates considerably from the linear behavior as t=J gets
larger, as shown in Fig. 1. Thereby, it is always nonzero for any d,
supporting its disordered phase, characteristic of 1d Kondo lattices
[11,25]. However, it was reported in the production of this report a
study for the AKNM in 1d using spin wave approach [26], which
gives a critical value dc that separates the disordered Kondo spin
liquid state from the AF phase. In our case, using a bond-operator
mean field approximation in 1d, we did not find this critical value.
We believe it is a consequence of the strong coupling limit where
the ground state is always a Kondo spin liquid state.

The anisotropy dependence on the spin gap in two dimensions
(2d) is sketched in Fig. 2. For 0odp1, the effect of anisotropy is
1.0

0.5

0.0

Δ/
J

0 1 2 3 4 5
t/J

0
0.01
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1

δ

Fig. 1. (Color online) The spin gap D=J versus the control parameter t=J is sketched

for different values of d in one dimension and T ¼ 0. It shows that spin gap is

always nonzero for 0pdp1.

0.0

t/J
0.0 0.1 0.2 0.3 0.4

Fig. 3. (Color online) Anisotropy dependence on the spin gap versus the strength

t=J in three dimensions at T ¼ 0 and 0pdp1. The scaling of gap close to the QCP is

shown in the inset of the figure. It shows the log–log plot of D=J vs jðt=JÞc � t=Jj for

d ¼ 0;0:1;0:4;1, and scales close to the QCP like D=J�jðt=JÞc � t=Jjnz with spin gap

exponent nz � 0:5.
still weak and it slightly changes the position of the QCP ðt=JÞc,
until d ¼ 0, where both soft modes, Dx and Dy, contribute and we
find the QCP for the 2d isotropic KNM ðt=JÞc � 0:69 [11]. Then, the
qualitative behavior of the spin gap is the same for this range and
the gap exponent is approximately nz ’ 1. It is plotted in the inset
of Fig. 2. On the other hand, for do0, the QCP diminishes its value
and the Kondo spin liquid phase is limited to a narrower region. It
is not shown in Fig. 2.

In 3d, the effect of anisotropy on the spin gap is similar as in
the 2d case. It is sketched in Fig. 3. The spin gap has an exponent
nz ’ 0:5 for 0pdp1 and changes its universality for do0, where
the spin gap is found to vanish continuously around the QCP more
faster. As in the 2d case, for d ¼ 0 all soft modes coincide and we
find the QCP for the 3d isotropic KNM ðt=JÞc � 0:375 [11].
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spin gap energy (dashed line) is shown as a function of g. It was taken from Ref. [1].

Below this line, in the region II of the paramagnetic phase, there is a Kondo spin

liquid state (KSL). The temperature dependence of the specific heat CV / Td is

given along the quantum critical trajectory, in the Non-Fermi liquid (NFL) regime,

for any dimension and for any anisotropy d51 and d � 1. It is shown in the region I

of the paramagnetic phase.
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We conclude that, for all anisotropy between 0pdp1, there
exists a critical value ðt=JÞc, where the spin gap vanishes as
D=J / jðt=JÞc � t=Jjnz, and a QPT to the ordered magnetic phase
occurs in 2d and 3d whereas no transition happens in 1d. This is
similar to the results in Ref. [11] for d ¼ 0, and it gives us a kind of
universality similar as in the isotropic Kondo lattices [1,11,22].
Considering the relationship between the spin gap and the
distance to the QCP, sketched in the onset of Fig. 3, it is shown
that when t=J increases from its strong coupling limit, the triplet
spin gap at the wave vector Q ¼ ðp;p;pÞ decreases and vanishes at
t=J ¼ ðt=JÞc. Since D=J / jðt=JÞc � t=Jj0:5, close to the QPT, we can
immediately identify the spin gap exponent nz � 0:5 at the QCP of
the Kondo lattice, confirming our early theoretical results [1].
Finally, for do0 exists also a QPT in d ¼ 2;3 but no phase
transition appears in 1d.

2.2. Analytical results at the quantum critical trajectory

Since QPTs are generally associated with soft modes at the QCP,
where the gap for excitation vanishes, then physical quantities
have power law temperature dependencies determined by the
quantum critical exponents [27]; one of them is the specific heat
CV , that we will calculate here. This strategy has been intensively
explored in the study of HF materials, in the so-called quantum

critical trajectory J=t ¼ ðJ=tÞc, T ! 0, fixing the pressure (in our case
the control parameter J=t) at its critical value for the disappear-
ance of magnetic order [28]. Then, we calculate analytically the
anisotropy dependence on the specific heat at J=t ¼ ðJ=tÞc, T ! 0
for both cases, d51 and d � 1. All the calculations will be done
considering two essential approximations: (i) The system is at the
QCP J=t ¼ ðJ=tÞc, and temperatures T ! 0. (ii) The temperature
region where the specific heat will be found will be lower than the
Kondo temperature (TK). We will begin writing k ¼ Q þ q and
expanding for small q: lðqÞ ¼ �dþ q2=2þ Oðq4Þ, this yields the
spectrum of transverse spin triplet excitations as

oq � o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ylðqÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
þ Dq2

q
,

o0q � o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ylðqÞð1� dÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
þ Dð1� dÞq2 þo2

0d
q

, (12)

where D ¼ Dx is the spin gap energy given by Eq. (11) since
0pdp1, D ¼ o2

0=2d the spin-wave stiffness at T ¼ 0, and o0 is the
z-polarized dispersionless branch of excitations. Considering
D ¼ 0, at the QCP [27] in the excitations spectrum given by
Eq. (12), and using CV ¼ �Tq2F=qT2 in Eq. (6) we get

CV ¼
Sd

4kBT2pd

Z p

0
dq qd�1ðo2

q þo
0
q

2
Þ

	 sinh�2 boq

2
þ sinh�2 bo0q

2

� �
, (13)

where Sd is the solid angle. Eq. (13) yields the expression for the
anisotropic dependence on specific heat at the quantum critical

trajectory, as a contribution of bosons tx and ty.
Case 0pd51—Having shown the relationship between the

specific heat CV and d, we now discuss the case d51. Making a
change of variables in Eq. (13), we obtain

CV ðd51Þ ¼
SdkBZd=2

pd

kBT

o0

� �d

	 U1ðdÞ þ
d
4
ðU2ðdÞ � 2U1ðdÞÞ

� �
, (14)

where x ¼ bo0q=
ffiffiffi
Z
p

, U1ðdÞ ¼
R1

0 dx xdþ1sinh�2
ðx=2Þ and U2ðdÞ ¼R1

0 dx xdþ2 cothðx=2Þsinh�2
ðx=2Þ. In 2d we found U1ð2Þ ¼ 24zð3Þ
and U2ð2Þ ¼ 96zð3Þ, where z is the Riemann zeta-function. In 3d

U1ð3Þ ¼ 16p4=15 and U2ð3Þ ¼ 16p4=3. For d ¼ 0, the excitations
spectrum given by Eq. (12) coincide and we recover the exact
value as obtained in an previous work for the isotropic KNM [1].

Case d � 1—Here, it is sufficient to consider, x ¼ 1� d51,
where x is a dimensionless parameter that controls the Ising-like
anisotropy in this case. Thereby, working in analogy with the
preceding case, we obtain

CV ðd � 1Þ ¼
SdkBZd=2

4pd

kBT

o0

� �d

U1ðdÞð2� dÞ, (15)

where we have already replaced the x expression. The results
above show that the specific heat of the AKNM for d51 and d � 1
is only re-normalized by the anisotropy, concluding that CV / Td

at the quantum critical trajectory for d51 and d � 1. Notice that
this is consistent with the general scaling result CV / Td=z with the
dynamic exponent taking the value z ¼ 1 [27]. Since z ¼ 1, in 3d

the effective dimension deff ¼ dþ z ¼ dc ¼ 4 where dc is the upper
critical dimension for the magnetic transition [27]. Consequently,
the present approach yields the correct description of the QCP of
the Kondo lattices for dX3, though this mean-field approximation
does not reproduce the logarithmic corrections of the specific heat
typical of systems with deff ¼ dc. Fig. 4 shows the temperature
dependence of the specific heat CV / Td along the quantum
critical trajectory for any dimension and for any anisotropy
0pd51 and d � 1.
3. AF phase

The mean-field approach can be extended to the AF phase
assuming the condensation in the x component of the spin triplet
like: tk;x ¼

ffiffiffiffi
N
p

t̄dk;Q þ gk;x, where t̄ is its mean value in the ground
state and gk;x represents the fluctuations. Making the same steps
as before, the internal energy renders

U0 ¼ e00 þ
X

k

o0nðo0Þ þoknðokÞ þo0knðo0kÞ
� �

, (16)
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where

e00 ¼ N �
3

4
Js̄2
þ ms̄2

� mþ J

4
þ m� 1

2
tZs̄2

� �
t̄

2
� �

þ
1

2

X
k

ðok þo0k �Lk �L0kÞ (17)

is the AF ground state. The free energy is now

F 0 ¼ e00 �
1

b

X
k

ln½1þ nðokÞ�

�
1

b

X
k

ln½1þ nðo0kÞ� �
N

b
ln½1þ nðo0Þ�. (18)

Minimizing the free energy equation (18), as in the paramagnetic
case, using ðqF 0=qm;qF 0=qs̄; qF 0=qt̄Þ ¼ ð0;0;0Þ, we can easily get the
following saddle-point equations:

s̄2
¼ 1þ

J

Zt
�

f ðo0Þ

2

�
1

4N

X
k
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2Zts̄2

� J=4, (19)

with the excitation spectrum of the x-transverse and y-transverse
spin triplet states given now by

ok ¼
1
2Zts̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2lðkÞ=Z

q
, (20)

o0k ¼ 1
2Zts̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2lðkÞð1� dÞ=Z

q
, (21)

respectively. Generally the equations for s̄ and t̄ in Eq. (19) should
be solved and for d ¼ 0 the results of Ref. [1] are recovered. Here,
in the magnetic ordered state, the condensation of triplets
(singlets) follows from the RKKY interaction (Kondo effect). At
finite temperatures the condensation of singlets occurs at a
temperature scale which, to a first approximation, tracks the
exchange J while the energy scale below which the triplet
excitations condense is given by the critical Neel tempera-
ture (TN), which is calculated in the next section. Thus, the fact
that at the mean-field level, both s̄ and t̄ do not vanish may be
interpreted as the coexistence of Kondo screening and antiferro-
magnetism in the ordered phase [1,11,22] for all values of the ratio
J=toðJ=tÞc.
4. Critical line in the AKNM

Following the discussion above, the critical line giving the
finite temperature instability of the AF phase for J=toðJ=tÞc is
obtained making t̄ ¼ 0. Hence, from Eq. (19) we can obtain the
boundary of the AF state as
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where g ¼ jðJ=tÞc � ðJ=tÞj measures the distance to the QCP. The
latter is given by

ðJ=tÞc ¼ Z 1�
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which separates an AF long-range ordered phase from a gapped
spin liquid phase. Performing the same analysis as in Section 2.2,
and expanding the excitations spectrum close to Q ¼ ðp;p;pÞ,
Eq. (22) becomes

jgj
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Sdo0
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dq qd�1

	
1
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coth
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2
� 1
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2
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� � !
, (23)

where we have considered that for temperatures kBT5o0, f ðo0Þ

goes to zero faster than the first term of Eq. (22). This equation
above allows us to obtain the critical line in the AKNM as a
function of the anisotropy parameter d.

4.1. Case 0pd51

We now demonstrate analytically the appearance of a finite
Neel line when a small degree of anisotropy d in y-component
spin is turned on. Then, solving Eq. (23) for 0pd51, we get

jgj

Zd51
¼

SdZd=2

2pd

kBT

o0

� �d�1

	 F1ðdÞ þ
d
8
ðF2ðdÞ þ 2F1ðdÞÞ

� �
, (24)

where F1ðdÞ ¼
R1

0 dx xd�2ðcoth x=2� 1Þ and F2ðdÞ ¼
R1

0 dx xdþ1

sinh�2
ðx=2Þ. We noticed that the integrals F1ðdÞ and F2ðdÞ diverge

for do3, showing that there is no critical line in 2d at finite
temperatures [1,15] for any anisotropy d51, in agreement with
the Mermin–Wagner theorem [29] when d ¼ 0. Nevertheless, for
dX3, the integrals are finite and the equation for the critical line
shows ðTNÞd51 / jgj

f, with f ¼ 1=ðd� 1Þ. If we write the equation
for the critical line, f ðg; TÞ ¼ 0, in the form, ðJ=tÞcðTÞ � ðJ=tÞcð0Þþ
v0T1=c

¼ 0, with v0 related to the spin-wave interaction, we can
identify the shift exponent, c ¼ z=ðdþ z� 2Þ [30], that comparing
with f gives us the dynamic exponent z ¼ 1, a Gaussian result,
since the critical line only exists for d42. The temperature
dependence of the function f arising from the spin-wave
interactions can modify the temperature dependence of the
physical properties, as the specific heat, at J=t ¼ ðJ=tÞc. However,
in the limit T ! 0 we can easily see that the purely Gaussian
results for the specific heat calculated in Section 2.2 is dominant,
in agreement with the mean-field treatment used here. For d ¼ 0,
we obtain the well established result for the critical line in the
KNM [1], which is due to the fact that the spectrum energy of the
two excitations coincide. In summary, we have obtained analyti-
cally the expression for the Neel line below which the triplet
excitations condense, close to the QCP for 0pd51. We have
shown that this line does not exist for d ¼ 2 for any value of the
anisotropy d51, as we expected, whereas for dX3, the power
dependence on jgj of the critical line in the presence of the
anisotropy is the same of the KNM original. Therefore, the
criticality close the QCP is governed by the same critical exponents
of the isotropic d ¼ 0 case that we have calculated before [1].
Fig. 4 shows the phase diagram of the anisotropic KNM at finite
temperatures. The AF phase is located below the Neel line TN

(solid line), which vanishes at a critical value ðJ=tÞc (QCP) for any
anisotropy d51.
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5. Conclusions

In conclusion, we have examined the phase diagram of the
Kondo necklace model in the presence of an Ising-like anisotropy
at zero and low temperatures by means of analytical and
numerical techniques. At zero temperature we have derived and
solved the self-consistent equations on the Kondo spin liquid
phase for any value of d. This allowed us to calculate the
anisotropy dependence on the spin gap for d ¼ 1;2;3. In the 1d

case, there is no indication at all suggesting a critical value for t=J,
where the gap would vanish for any value of anisotropy d. For
d ¼ 2;3 we found that the anisotropy in the range 0odp1
dislocates slightly the QCP’s position until d ¼ 0, where the
excitations spectrum coincide. In this range 0pdp1 the spin gap
exponent is approximately the same, while for do0 the QCP’s
value decreases and it belongs to other universality class. In
particular, in three dimensions, the triplet spin gap for anisotropy
0pdp1, close to the wave vector Q ¼ ðp;p;pÞ, decreases and
vanishes at t=J ¼ ðt=JÞc with spin gap exponent nz � 0:5. It is
consistent with the dynamic exponent z ¼ 1 and with the
correlation length n ¼ 1

2, a result in agreement with the mean-
field or Gaussian character of the approximations we have used to
deal with the bond-operator Hamiltonian. On the other hand, at
low but finite temperatures, we found that in general the
dependence on jgj of the critical line for the AKNM, in the
presence of the anisotropy, is the same as on the original KNM.
This implies that the critical exponents controlling the transition
close to the QCP, for nonzero d, are the same as those of the
isotropic case. We have also obtained the thermodynamic
behavior of the specific heat along the quantum critical trajectory

J=t ¼ ðJ=tÞc, T ! 0. It has a power law temperature dependence as
CV / Td, a result consistent with the scaling theory with the
dynamic exponent z ¼ 1, though it does not reproduce the
logarithmic correction of the specific heat characteristic of
systems with deff ¼ dc. It is alsoworth pointing out that the
approximations used here are valid very close to the quantum
phase transition in the QCP ðJ=tÞc. It was the reason for that we
have expanded the excitation spectrum close to the antiferro-
magnetic wave vector Q ¼ ðp;p;pÞ. Therefore, the most essential
features of the Kondo lattices, i.e., the competition between a
long-range-ordered state and a disordered state, is clearly
retained in the model for 0pdp1. The qualitative features
regarding the stability of the AF phase are well displayed in the
model and it allows a simple physical interpretation of the phase
diagram in anisotropic Kondo lattices.
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