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Abstract 

We review the current theoretical understanding of giant magnetoresistance in magnetic multilayered structures. The 
active ingredients producing magnetoresistance for current in and perpendicular to the plane of the layers are discussed, 
and the effect of superlattice band structure on transport is reviewed. Differences between ballistic and diffusive electron 
transport are highlighted. The effective fields used to account for vertex corrections for current perpendicular to the layers is 
discussed and their meaning is defined. 
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1. Introduction 

The giant magnetoresistance (GMR) observed in 
the transition-metal magnetic multilayers results from 
the change in the scattering of the conduction elec- 
trons as the magnetic configuration of the multilayer 
goes from one where the layers are on the average 
antiparallel in zero or coercive field to one where 
they are aligned in parallel at the saturation field. 
There is some debate as to the origin of the depen- 
dence of this scattering on the magnetic configura- 
tion; however it is clear that spin dependent scatter- 
ing is needed for GMR to occur, and that the scatter- 
ing at interfaces plays a critical role in producing this 
effect. 

From fits to GMR data on magnetic multilayers 
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one arrives at two conclusions: that the strength, and 
that the spin dependence of the scattering at the 
interfaces between layers is stronger than in the bulk 
of the layers. That the scattering is larger at inter- 
faces is not surprising, after all there is a rapid 
change in the electronic structure (potential step) in 
the interfacial region; the layers are not flat so that 
there is geometrical roughness and elements from 
one layer diffuse into the neighboring layer. Each of 
these aspects have received some attention; the 'band 
mismatch' between the dissimilar metals constituting 
the interface is a crude indicator of the strength of 
the scattering induced by roughness (geometrical and 
interdiffusional) [1 ]. Geometrical roughness produces 
an angular dependence to the scattering, i.e., the 
interfacial scattering is stronger for electron trajecto- 
ries perpendicular to the plane of the layers [2]; and 
interfaces have inordinately high concentrations of 
impurities relative to the bulk of the layers, so that it 
is natural that the scattering is stronger than in the 
bulk of the layers. 
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In the transition-metal magnetic multilayers that 
have been grown over the past eight years there are 
two principal geometries for measuring magneto- 
transport properties; current in the plane of the layers 
(CIP), and current perpendicular to the plane of the 
layers (CPP). There are several reviews on the giant 
magnetoresistance in these geometries [3,4]. Here we 
review recent calculations of these transport proper- 
ties, what the approximations are, how we account 
for vertex corrections when using impurity averaged 
propagators, the role of band structure and potential 
steps in the transport, and the meaning of the electric 
fields we introduce to calculate the CPP transport. 

2. Diffusive transport 

Two artifices are introduced to calculate transport 
properties of electron systems in the diffusive regime: 
internal fields and vertex corrections. 

2.1. Internal fields 

The conductivity we calculate usually relates cur- 
rent to an 'internal or local' field in a solid. As 
transport calculations are based on one electron 
Hamiltonians, the Coulomb interaction between elec- 
trons is accounted for in a mean field sense (Hartree 
field); this produces the distinction between exter- 
nally applied fields and internal fields. In the random 
phase approximation (time-dependent Hartree-Fock) 
Coulomb interactions between itinerant electrons are 
represented by polarization diagrams that renormal- 
ize the field acting locally on the electrons. We will 
not be interested in variations of this field on atomic 
length scales; rather we are interested in variations 
on the scale of several lattice constants. It follows 
that for magnetic multilayers this internal field is the 
same for applied fields parallel and perpendicular to 
the layers, as long as the fields are applied along 
equivalent direction of the underlying atomic lattice. 

2.2. Vertex corrections 

Transport calculations occurs in two broad 
regimes. In ballistic transport either there is no scat- 
tering in the sample (rather it takes place in the 
reservoirs), or for a small number of scatterers one 

keeps track of the scattering amplitudes and calcu- 
lates the propagators for a specific distribution of 
scatterers. In the ballistic regime one can calculate 
the conductance exactly by using the Landauer-But- 
tiker approach [5], or one can calculate the conduc- 
tance of a system with a small number of impurities, 
repeat the calculation for different realizations of the 
impurity distributions, and then take the average of 
these to find the conductivity [6]. In both approaches, 
the propagators for the actual potentials are used, 
i.e., there is no impurity averaging before one calcu- 
lates the conductivity, so that there are no vertex 
corrections from impurity averaging to be taken into 
account. 

For diffusive transport scattering is frequent, and 
calculating exact propagators for these densities of 
scatterers is intractable. In these cases one resorts to 
impurity averaged propagators in which one does not 
retain the phase information from one scattering 
center to another. However, transport is sensitive to 
some of these phases, and vertex corrections are 
introduced to account for them and to properly calcu- 
late the conductivity [7]. For example vertex correc- 
tions are needed to distinguish between the life-time 
of an electron due to scattering, and its transport 
life-time as it enters the Boltzmann equation. 

For ab-initio calculations of the resistance in the 
diffusive regime one should definitely start with 
correct wavefunctions of the superlattice, which are 
Bloch states, and self-consistently calculate the ef- 
fects of the defect and impurity scattering on the 
band structure. This is usually done in the coherent 
potential approximation (CPA). The result from such 
a determination is an electronic structure which can- 
not be classified by momentum eigenstates of the 
superlattice. Rather what's left is best described by 
Bloch spectral distribution functions [8], i.e., the 
quasi-particle description of the electron states may 
well break down. In this limit there is a well defined 
procedure for calculating the conductivity based on 
the Kubo formalism that has been used for random 
alloys [9]. An advantage of this approach over the 
Boltzmann formalism is that one does not have to 
constrain the variables of integration to the Fermi 
surface. This condition is enforced by a sort of 
Lagrangian multiplier, because energy and momen- 
tum are independent variables in the Kubo approach 
which uses Green's functions [7]. 
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3. CIP and CPP transport 

With the relation of current to internal field it is 
straightforward, if tedious, to calculate the conduc- 
tivity or resistivity that's measured on multilayered 
structures. While there are always vertex corrections 
from impurity scattering to the non-local two point 
conductivity tensor ~r(r,r'), we distinguish between 
two types of corrections. The first one is the vertex 
correction which is due to momentum dependent 
self-energy; this type of vertex exists in homoge- 
neous systems which we are not interested here. In 
order to exclusively study vertex corrections that are 
induced by the inhomogeneity of the structure (layer- 
ing), we choose scattering to be short-ranged so that 
the first type of vertex correction disappears. For 
layered structures, the fundamental object is the con- 
ductivity tensor o-(z,z') = fdxdy~r(r,r') where z 
is the direction of layer growth. Since layered struc- 
tures are assumed to be homogeneous in the plane of 
the layer, the impurity averaged Green's function is 
translational invariant in the plane of the layer, i.e., 
G(r,r')= G(p-p' ,z ,z ' ) .  It is convenient to work 
in mixed momentum (kit) and coordinate representa- 
tions (z); one can write the conductivity tensor by 
summing over all the ladder diagrams, 

kll 

+ E (k, 
kllkil.zl 

x ) 
X G( k i l , z , , z ' )  + . . .  (3.1) 

and 

~cPP( Z,Z') ~ EC(k l r ,Z ,Z ' )Tz  ~ C ( k , , z , z ' )  
kll 

+ E 
kHkil,Zl 

O 
, ' k '  ' x z , , z , , z  ) 

+ . . .  (3.2) 
where the scattering vertex F(zl) only depends on 
the z coordinate (independent of momentum kll) 

since we assumed short range scattering potentials. 
The first terms in Eqs. (3.1) and (3.2) are the bubble 
diagrams for CIP and CPP. The remaining terms are 
contributions from the ladder diagrams to the con- 
ductivity tensor; we have neglected other diagrams, 
e.g., maximally crossed diagrams for localization 
effects. The terms other than the first in Eq. (3.1) 
vanish because summations over parallel momenta in 
the vertex terms are over odd functions of the mo- 
mentum variables and are zero. Therefore, if the 
scattering potential is short-range we conclude that 
the CIP conductivity is solely determined by the 
bubble diagram; this makes the calculation for CIP 
conductivity simpler than that for CPP. The disap- 
pearance of vertex corrections in CIP has a straight- 
forward consequence: there is no charge or spin 
accumulation for transport parallel to the layers, as 
long as the layers are homogeneous and do not 
contain grains or domains. This approximation is 
good for impurities in the bulk of the layers; how- 
ever, when we account for the extended scattering at 
interfaces this approximation breaks down and ver- 
tex corrections appear from interface scattering for 
CIP. 

On the contrary, vertex corrections contribute to 
the CPP conductivity O-cpp(Z, z') irrespective of the 
range of the scatterers; as one sees from Eq. (3.2) 
vertex corrections exist. This requires us to calculate 
them term by term in Eq. (3.2), which is highly 
non-trivial work. Except for special cases [6] Eq. 
(3.2) is intractable in inhomogeneous medium. How- 
ever, the interpretation of these vertex corrections is 
transparent, i.e., they represent the charge and spin 
accumulation in the presence of inhomogeneous 
spin-dependent scattering. In the next section, we 
will focus our review on CPP transport. 

To summarize, as long as we do not account for 
the extended nature of the scattering at interfaces, the 
bubble (no vertex corrections) CIP conductivity suf- 
fices for CIP; for the CPP geometry vertex correc- 
tions are always needed. 

4. Effective fields 

In ab-initio or model calculations of the CPP 
transport there are two ways in which vertex correc- 
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tions can be accounted for. Either to explicitly calcu- 
late them, as has been done in some simplified 
model calculations [6], or to go the route of effective 
fields, i.e., to stay with the bubble diagram for the 
conductivity and invoke an effective field to satisfy 
current conservation in each 'spin channel'. The 
mathematical advantage of the second method is that 
one avoids calculating the vertex terms in Eq. (3.2) 
for the CPP transport. We now show the equivalence 
of these two methods. 

The effective field is defined as [10] 

EeSif ( z t )  -~- f D ; (  Z t , Zl ) Or s( Zl ' Z2 ) E (  z 2 ) d Z, d Z2, 

(4.1) 

where o- ~ is the conductivity Eq. (3.2) for one spin 
channel s, p~(z ' ,z l)  is the inverse of the bubble 

" ,r t conductivity ~rb(~,Z ) (the first term in Eq. (3.2)), 
and we have dropped the label for CPP. Notice that 
the effective field is spin dependent because both the 
conductivity tensor and the 'bubble' resistivity ten- 
sor are spin dependent. The linear response is now 
written as 

j s (Z)  = fo'~( Z, Z')Ee~ff (Z') dz' .  (4.2) 

By substituting Eq. (4.1) into Eq. (4.2), we can 
easily verify that it is equivalent to the original linear 
response relation 

J"( z) = fcr~( z , z ' ) E (  z') dz' .  (4.3) 

A physical constraint on the vertex corrections in 
Eq. (3.2) is that the conductivity tensor must be 
divergenceless, i.e., (O/3z)~rS(z,z ') = 0 [11], so that 
the current conservation is guaranteed for Eq. (4.3). 
By integrating Eq. (4.3) by parts, one finds the 
measured conductivity is given by 

Orcpp = F.,fo"(z,z')dzdz', (4.4) 
s 

which is independent on the detail of the internal 
field E(z'),  provided one uses correct trS(z,z ') [11]. 
However, the calculation of the full conductivity 
tensor tr ' ,  Eq. (3.2), is usually difficult. Our intro- 
duction of the effective field, Eq. (4.1), supplies an 
alternate and efficient way to calculate the measured 
conductivity as we will show below. 

While the bubble conductivity o'b(z,z ') is easier 
to obtain, it does not possess the property of being 
divergenceless as the full conductivity does. One can 
verify this by a direct calculation [10]. Therefore the 
measured conductivity will depend on the detail of 
the effective field. The central problem of the CPP 
transport is to evaluate the effective field in this 
approach. 

The determination of the effective field relies on 
the principle of the current conservation. Since linear 
response, Eq. (4.2), is one-dimensional, current con- 
servation ( (~/Oz) jS(z)= 0) leads to a constant cur- 
rent j '  for each spin channel (we neglect spin-flip 
processes) and the effective field is simply E~ff(z) = 
• st st" z Zt~ t J JPbt , ) d z  • 

Two questions arise regarding the effective field 
we introduced. First, the relation of these spin-de- 
pendent effective fields to the external or internal 
electric fields used in the more conventional formu- 
lations of the conductivity. If the medium is homoge- 
neous, one can easily show that the effective field is 
same as the intemal field [11]; therefore there is no 
spin-dependence of the field. In inhomogeneous me- 
dia, the effective fields vary spatially. The difference 
between the effective field and the internal field 
describes charge and spin accumulation in inhomo- 
geneous media. Formally, we can introduce the 
spin-dependent voltage drop VS(z) --= f~E~ff(z') d z' 
-- jSfod z' fp~( z', z") d z". When the voltage probe is 
placed across the sample with length L, the bound- 
ary condition requires V ' ( L ) =  V, where V is the 
voltage across the sample which is spin-independent; 
this boundary condition is used to determine the 
spin-dependent constant current jL Finally, the total 
conductivity is obtained via the two current model, 
o-, = E f i s / v .  

The second question is whether there is a way to 
measure these fields. Since these effective fields are 
defined in terms of vertex corrections, Eq. (4.1), they 
are not directly measurable. However, an indirect 
measurement can, in principle, be performed. For 
example, the spin injection-detection experiment [12] 
measures the spin-dependent chemical potentials 
which are the integration of the effective fields. Here 
we outline an experiment that further illustrates the 
role of these effective fields. 

In Fig. 1, a spin-polarized current flows through 
the sample in z-direction. A probe is attached to 
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V (x, z) 

I "J [ 
V(x=0,z=0) ~ \  V(x=0,z=L) 

V (x=0,z) 

Fig. 1. Geometry for the measurement  of spin-dependent effective 
fields at position z. 

measure the voltage at any point z. Let us assume 
that we are able to determine the effective field at 
point z along the sample, i.e., ESef(x=0,  z) = 
• s s Z z s J f p b  ( , z ' ) d z ' ,  or VS(x = O, z)  = foEeff(x = 0, 
z ' )dz ' .  The measured potential at the end of the 
probe is then V m = VS(x  = ~, z), and it is indepen- 
dent of spin [13]. The current-field relation for each 
spin channel in the probe is 

jS( x , z )  = O 'pS- -W(  x , z ) ,  (4.5)  
Ox 

where ~rp ~ is the conductivity of  the probe which is 
assumed to be uniform but may depend on the spin. 
Since the total current in the probe is zero as re- 
quired by the open circuit boundary condition, i.e., 
E j ~ ( x , z )  = 0, we find, from Eq. (4.5), 

~rp T V T ( x , z )  + ~rp ~ V ~ ( x , z )  = C, (4.6)  

where C is a constant. By applying the above equa- 
tion to two points, x = 0 and x = ~, one arrives at 

op~VT(x=O,z) +op~V~(x=O,z) 
V m = Op t q- Opt" 

(4.7)  

If  one uses a non-magnetic probe so that op~ = 
o-p T , the measured potential is simply the average of 
the spin-dependent potential, i.e., V m = (V ~ (x  = 0, 
z) + V ~ (x  = O, z ) ) / 2  - V. I f  one uses a ferromag- 
netic probe, one finds 

V m = V 4- P A V / 2 ,  (4.8)  

where P is the polarization of the ferromagnetic 
probe P = ( O p t  _ O p ~ ) / ( O p t  + O p t )  and A V =  

V ~(x = 0 ,z)  - V ~(x = 0,z). This illustrates that, 
by using a ferromagnetic probe, one can detect the 
spin accumulation AV; it is the same idea which has 
been carried out in spin injection-detection experi- 
ments [12]. 

By using this effective approach we have been 
able to show that in the limit where the mean free 
path of the electrons is small compared to the thick- 
nesses of the layers the measured resistance for CIP 
is given as a sum of the local conductivities, while 
for CPP it is the sum of the local resistivities, i.e., 
resistor network analogies are applicable in this limit, 
so that in CIP the multilayer acts as resistors in 
parallel do, and for CPP as resistors in series [14]. 
These analogies are rather transparent if we use 
effective fields to assure current conservation when 
we do not include vertex corrections for the conduc- 
tivity. 

While the above resistor network analogy may 
seem obvious or intuitive, it has been shown that the 
measured resistance or conductance is a sum over 
the correct non-local conductivity tensor irrespective 
of the internal electric field, i.e., this must hold for 
CPP as well as CIP [6]; see Eq. (4.4). While the 
resistor network analogy seemingly contradicts this, 
the conundrum is resolved by recognizing that the 
correct conductivity tensor for CPP contains vertex 
corrections, which if neglected, must be compen- 
sated for by adding bubble diagram resistivities rather 
than the full conductivities. 

Although the spin and range dependence of these 
effective fields are not essential to the determination 
of the measured resistivity (conductivity), they are 
nonetheless interesting, because they are directly re- 
lated to the spin dependent chemical potentials that 
are produced when current is driven across regions 
with different spin-dependent scattering. These fields 
or potentials have been related to the spin accumula- 
tion attendant to charge transport, i.e., to the current 
driven magnetization. As we have previously shown 
in the limit where the mean free path of  the electrons 
is short compared to the thickness of the layers, this 
effective field is directly proportional to the local 
scattering. Simply put, this is the way one maintains 
current conservation in an inhomogeneous system 
when the scattering is varying from one region to 
another. For inhomogeneous magnetic structures with 
negligible spin diffusion we need separate effective 
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fields to conserve current for each of the independent 
up and down spin channels, and we arrive at the 
concept of spin-dependent fields. The spatial depen- 
dence of these fields is controlled by the diffusion 
propagators as we have shown elsewhere [10]. 

5. Band structure 

Recently there have been a series of studies that 
have stressed the role of the electronic band structure 
of the multilayer in producing different conductivi- 
ties and magnetoresistance for current parallel and 
perpendicular to the layers, when only contributions 
from bubble diagrams are taken into account [15]. 
When the effect of impurity and defect scattering on 
the electronic structure is taken into account we find 
that the transport properties of the transition-metal 
multilayers are governed by features of the multilay- 
ers that are limited to the mean free path of the 
conduction electrons due to momentum relaxing pro- 
cesses [16]. In other words, except for inordinately 
thin layers (of the order of 5-10  A) and very clean 
samples, the superzone band gaps, due to the peri- 
odic potential of the superlattice (coherent scattering 
from the putative potential steps at interfaces be- 
tween dissimilar metals), do not enter the calculation 
of the conductivity (of course the gaps from the 
periodicity of the atomic potentials do enter). Once 
superzone gaps do not enter the conductivity there is 
little difference between the CIP and CPP conductiv- 
ities and magnetoresistance that arise from the band 
structure if these materials are cubic, and if the 
currents are along equivalent symmetry directions of 
the atomic lattice. Therefore, it is the vertex correc- 
tions discussed in Section 3 that are responsible for 
the differences between CIP and CPP. 

To further quantify the above argument we use a 
simple model to determine the role of superlattice 
superzone boundary gaps on the conductivity in the 
presence of impurity scattering. The model consists 
of a one dimensional Kronig-Penney potential with 
wells Va, barriers V b, and the Fermi energy at E v. 
The dispersion relation for this simple model is 

• k = COS( kaa)COS ( kbb ) 

+ 
+ sin(k ,a)s in(kbb ), (5.1) 

2k~kb 

a ' ' ' 1 ' ' ' ' 1 ' ' ' ' [ '  ' ' 1 ' ' ' ' 1 ' ' ' '  

z 

o , , I , , , + 1 , , ,  I t ~ l ~ l l + , a  
0 10 20 30 40 ,50 60 

Mean free path A/a 

Fig. 2. Band gap as a function of the mean free path. The dotted 
line is the gap size without disorder calculated by using Eq. (5.1) 
with equal thickness of all the layers (a = b = 20 ,~). We have 
chosen kaa= 60 and khb = 40. 

where a and b are the thicknesses of the layers for 
the wells and barriers, and k i = ~/2m( • - V / ) / h  
(i = a, b). Eq. (5.1) determines the gaps and bands. 
Now let us introduce disorder to the system; the 
scattering from the disorder (impurities) leads to 
uncertainty in the phases of electrons as they travel 
from one interface to the next. This uncertainty can 
be quantified statistically in terms of the mean free 
path, i.e., t~a = 2~ra/h, ,  where ~b is the uncertainty 
of the phase difference across a well (barrier). From 
calculations similar to those used to arrive Eq. (5.1), 
we find in the presence of disorder, 

• k = c°s (kaa  + At~a)COS(kbb + AC~b) 

+ - - s i n ( k a a  + Aqba)sin(kbb + Aqbb), 
2kakh 

(5.2) 

where A~b i is a random variable within the uncer- 
tainty ~b i defined above. In a perfect superlattice (no 
scattering) the band edge is sharp and well-defined, 
i.e., all energies which are (are no0 solutions of Eq. 
(5.1) determine the bands (gaps). When disorder 
exists, some of the gap states becomes band states, 
i.e., an energy which is not the solution of Eq. (5.1) 
is a solution of Eq. (5.2) due to the phase shift 
caused by scattering. This is precisely the effect of 
smearing of the superlattice bands. To estimate the 
onset of the disappearance of the gap states, we 
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focus on an original gap Eg = e h - e~, where ~h and 
e 1 are high and low energies of the gap, i.e., the 
energy in the gap satisfies 

k , ( e l ) a + q b , , < k a ( e ) a < k a ( e h ) a - q b  a, (5.3) 

a similar relation applies to the barriers. Clearly the 
gap disappears when k , (eh)a  -- k , ( e l )a  < 2q~ a. In 
Fig. 2, we show an example of the gap size as 
function of the mean free path. For superzone gaps 
to be clearly seen in the presence of disorder, the 
mean free path should be about ten times greater 
than layer thickness (a + b). 

Here we want to stress that contributions from 
vertex corrections to CPP transport are not condi- 
tioned on whether the transport in the transition-metal 
multilayers is ballistic or diffuse; they always appear. 
However, we have just shown that the differences 
between CPP and CIP conductivities due to the 
electronic structure of the superlattice are predicated 
on the condition that the mean free paths in these 
multilayers are long enough for the transport to be 
sensitive to the coherent scattering from successive 
potential steps that produce the superzone Brillouin 
zone gaps in the electronic structure. At the present 
time this does not appear to be true, and we believe 
that for the diffusive transport in the transition-metal 
multilayers that display GMR, the difference be- 
tween the CIP-MR and CPP-MR is primarily due to 
vertex corrections and not the superlattice band 
structure. 

Finally we wish to comment on the role of quan- 
tum well effects when systems are truly ballistic (a 
goal not yet attained experimentally, but may be 
reached in the future). The superlattice band struc- 
tures are indeed playing important roles in determin- 
ing the magnetotransport properties. One conceivable 
phenomenon is the oscillatory behavior in the con- 
ductivity and magnetoresistance. Currently, most ef- 
fects due to quantum wells have been discussed for 
the CPP geometry [17]. We want to emphasize that 
quantum well effects are actually more pronounced 
in CIP than in CPP for the following reason. In the 
CIP geometry, the major contribution to the conduc- 
tivity comes from states with large parallel momenta 
(kH). Therefore the energy in the growth direction 
e~ = E F - ekp J is small, and CIP favors states deep in 
the wells, in which quantum well effects or super- 
zone gaps are most pronounced. 

6. Potential steps 

There have been suggestions that potential steps 
(steps in the potential that model differences in the 
electronic properties of the layers) at interfaces by 
themselves (no roughness) are sources of resistance 
for CPP [19]. To clarify how the resistance is af- 
fected by the presence of the potential steps, we 
consider two distinct cases, ballistic and diffusive, 
separately. In the ballistic region, one calculates the 
conducting (itinerant) states in the perfect superlat- 
tice with these spin dependent steps, and one is able 
to use Landauer's formula to connect the resistance 
of the system to the transmission probability of these 
conducting states. Schep et al. [5] have illustrated 
that one can obtain a large magnetoresistance ratio 
merely from this spin-dependent contact resistance. 

In the diffusive region, one can not separate the 
resistivity coming from potential steps and diffusive 
scattering into two parts in general. One may define 
the resistance from the potential steps as 

A R = R(step) - R(0),  (6.1) 

where R(step) and R(0) are the resistance with and 
without potential steps; this definition has been im- 
plicitly adopted by those working on models of 
GMR in the diffusive regime [2,18]. Here we should 
discuss two limiting cases, homogeneous and local 
limits. 

In the homogeneous limit where the mean free 
path is much larger than the layer thickness, one 
would calculate the electronic structure with poten- 
tial steps first, and treat the impurity scattering as a 
perturbation. Since both R(step) and R(0) are pro- 
portional to the scattering parameters, we conclude 
that the resistance from potential steps A R is indeed 
dependent on the scattering rates in the bulk. 

In the local limit where the mean free path is 
much smaller than the layer thickness, it has been 
shown by Barnas and Fert [19], Dugaev et al. [20], 
Vedyaev et al. [21], and Stiles [22] that AR can be 
solely determined by the reflection coefficients at 
potentials steps, i.e., independent of the scattering in 
the bulk. Therefore it is meaningful to single out the 
resistance of the potential steps from that of total. 
We have examined the difference in the contribu- 
tions to the resistance for CPP coming from the 
coherent scattering at the interfaces from potential 
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steps, and from the diffuse scattering in the bulk of 
the layers. The details of this will be published 
elsewhere. 

In ab-initio calculations, it is rather straightfor- 
ward to calculate resistance in the presence of poten- 
tial steps: one calculates the band structure self-con- 
sistently which includes the effect of impurity scat- 
tering, and uses linear response theory (Kubo formal- 
ism) to arrive at conductivity and magnetoresistance. 
Similarly, in model calculations, one assumes spin- 
dependent potential steps and relaxation times at 
interfaces and in the bulk. For example, Hood et al. 
[2] calculated the magnetoresistance in the presence 
of potential steps for the CIP geometry. From their 
results, the magnetoresistance does indeed change as 
one varies the height of potential steps. 

7. Conclusions 

To calculate the measured resistance in the CIP 
geometry it is sufficient to calculate the local con- 
ductivity tensor by considering only contributions 
from bubble diagrams that consist of uncorrelated 
impurity-averaged electron hole propagators, and 
then by summing these local conductivities to arrive 
at the measured conductivity or its inverse the resis- 
tivity. 

O'CIP = PCIP = E p ( Z , z ' ) d z d z .  (7 .1 )  
s 

For CIP transport the additional contributions to 
the local two-point conductivity from vertex correc- 
tions cancel out. For the CPP geometry it is insuffi- 
cient to consider only bubble diagrams; vertex cor- 
rections contribute to this geometry, i.e., they do not 
vanish as we have shown for CIP. 

How we think or model transport in magnetic 
multilayers may be different from how we should 
calculate the transport. In developing an understand- 
ing of the differences between CIP and CPP trans- 
port it is useful to introduce the concept of spin-de- 
pendent electric fields that vary from one layer to the 
other. This naturally invokes the idea that charge 
transport across regions of varying spin-dependent 
scattering, i.e., CPP, produces spin-dependent chemi- 
cal potential build-ups with a concomitant current 

driven or non-equilibrium magnetization. These are 
real effects and produce the differences between CIP 
and CPP transport that have been observed. The fact 
that there is a superlattice band structure, which may 
play some role in producing differences between CIP 
and CPP transport, is very much in the background 
in models where such differences are mainly at- 
tributed to current driven effective field effects. As 
these field or chemical potential effects are not pred- 
icated on the mean free path being long enough 
compared to the thicknesses of the layers, they are 
'robust' and will always produce differences be- 
tween CIP and CPP transport; in fact the differences 
grow as the mean free path becomes small compared 
to the thicknesses of the layers. On the contrary 
effects of the superlattice potential (Section 5) are 
predicated on the mean free path being large com- 
pared to the layer thicknesses; they are fragile, inas- 
much as this condition is not met in most of the 
multilayers that display GMR, so that the differences 
due to superlattice band structure disappear. 

We can summarize the current status as follows: 
In the limit where the mean free path of the 

electrons is large compared to the thickness of the 
layers, one has the concept of 'self-averaging', i.e., 
the global resistivity does not depend on the detail of 
the layering which is in analogy to the case that the 
detail impurity distribution is not important in bulk 
metallic materials. In this case our effective fields do 
not produce differences between CIP and CPP trans- 
port, however the superlattice band structure does 
produce differences. Also in this case Bloch func- 
tions for the superlattice are appropriate for describ- 
ing the transport. 

For the opposite limit, where mean free paths are 
shorter than the thickness of the layers, the superlat- 
tice band structure does not produce differences 
between CIP and CPP transport, but the vertex cor- 
rections most assuredly will. Another source to pro- 
duce the difference is the contribution from potential 
steps at interfaces for CPP transport. 

Therefore the relative importance to CPP-MR of 
superlattice band structure compared to the vertex 
corrections depend on the conditions of transport in 
the transition-metal magnetic multilayers in which 
GMR has been observed. From our fits to the data, 
as well as those by the experimental groups [23], we 
find reality is closer to mean free paths that are 
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comparable to the thickness of the layers. Therefore, 
at the present time we conclude that it is the spin and 
charge accumulation (vertex corrections) that are the 
primary origin for the differences between CPP and 
CIP transport. 
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