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The borocarbides RNi2B2C (R¼magnetic rare earth) exhibit rich H–T magnetic phase diagrams. Using

field-dependent specific heat measurements on single-crystals of RNi2B2C (R¼Gd, Er), this work

investigated the magnetic contribution to the specific heat when T and H are varied across these H–T

phase diagrams. These measurements, together with the ones reported on HoNi2B2C, confirm that the

overall evolution of each CmagðT;HÞ curve is a faithful reflection of the features observed in the

corresponding phase diagram: in particular the successive field-induced metamagnetic modes,

appearing in the reported magnetization MðT;HÞ curves, are also manifested in these CmagðT;HÞ curves,

just as required by the Maxwell identity ð@Cmag=@HÞT ¼ Tð@2M=@T2ÞH. Within the lower ranges of

temperature and fields, the calculations based on linearized field-dependent spin-wave theory are

found to reproduce satisfactorily the measured CmagðT;HÞ curves: accordingly, within these ranges, the

thermodynamical properties of these compounds can be rationalized in terms of only two parameters,

namely, the spin-wave energy gap and the stiffness coefficient. Based on the satisfactory agreement

between theory and experiment, we are able to provide an explanation for the plateau like behavior

observed in, say, the MðT;HÞ isotherms. Finally, for the particular case of GdNi2B2C wherein the

anisotropy is dictated solely by the classical dipole interactions, the main features of its Cmag ðT;HÞ are

found to be reproduced by numerical calculations based on the model of Jensen and Rotter [Phys. Rev. B

77 (2008) 134408].

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The H–T magnetic phase diagrams of the heavy members of
the intermetallic RNi2B2C (R¼ rare earth) magnets are character-
ized by a cascade of metamagnetic transformations, higher Neel
points TN , and stronger saturation fields, Hsat (see Refs. [1,2] and
references therein). Both TN and Hsat are well scaled by de Gennes
factors testifying to the involvement of the indirect exchange
coupling mechanism [3]. Moreover, except for GdNi2B2C, there are
strong anisotropic forces and the competition between these
forces and the exchange interaction is one of the main driving
mechanisms behind the characteristic features of their magnetic
phase diagrams [1,2]. In general, the role of these competing
forces is analyzed in terms of a Hamiltonian that consists of
bilinear exchange, single-ion crystalline electric field (CEF), and
dipolar interactions: calculations based on such a Hamiltonian
ll rights reserved.

ami).
yield H–T phase diagrams that are in reasonable agreement
with experiments on, say, HoNi2B2C [4,5], GdNi2B2C [6,7], and
ErNi2B2C [8].

The zero-field magnetic structures of the RNi2B2C compounds
can be divided into two broad classes [9]: (i) the equal-amplitude,
collinear, and commensurate AFM structures (R¼ Pr, Nd, Dy, Ho
(Tr5 K)): with the exception of Pr wherein k¼ ð0:5;0;0:5Þ, their
moments are coupled ferromagnetically within the layers which
are, in turn, antiferromagnetically stacked on each other along the
c-axis: k¼ ð0;0;1Þ, and (ii) the amplitude-modulated, incommen-
surate structures [R¼Gd, Tb, Ho (5oTo6:3 K), Er, Tm]; on
lowering the temperature, these modulated structures are
gradually transformed into an equal-amplitude [squared-up
spin-density] states. HoNi2B2C is a particular case wherein three
magnetic modes are manifested [9]: a c-axis incommensurate
spiral, k1 ¼ ð0;0;0:91Þ, emerges below 8.5 K while an a-axis
incommensurate state, k2 ¼ ð0:55;0;0Þ, develops below 6.3 K.
Finally, below 5 K, both of the incommensurate states are
substituted by a commensurate antiferromagnetic structure with
k3 ¼ ð0;0;1Þ.

www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2009.10.009
mailto:massalam@if.ufrj.br
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On applying an external magnetic field along the easy-axis of
the ordered states of most RNi2B2C magnets, both of the
commensurate and incommensurate modes are observed to
undergo a cascade of magnetic phase transformations leading to
a set of different magnetic modes; each having a distinct
propagation vector and a distinct total magnetic moment. For
the case of, say, HoNi2B2C and ErNi2B2C, there emerges a very rich
and interesting H–T magnetic phase diagram [10–12] with
characteristic features that are reflected in all measured thermo-
dynamical properties. As an example, the low-temperature
magnetization isotherms show a cascade of step-like metamag-
netic phase transformations with constant plateau between the
consecutive transformations [13–17]. As the low-temperature
magnetic properties are governed by the excitation spectra of
the magnon quasiparticles then, according to the spin-wave
theory, the surge of such stair-like features is a manifestation of
related field-dependent distinct features in the dispersion
relations or density of states of the magnon quasiparticles. Then
a spin-wave analysis of the H- and T-dependence of the
thermodynamical properties would contribute to the understand-
ing of the magnetic phase diagrams and the related thermo-
dynamical properties of these borocarbides. Using field-
dependent specific heat measurements on single-crystals of
RNi2B2C (R¼Gd, Er), this work investigated the magnetic
contribution to the specific heat when T and H are varied across
these H–T phase diagrams.

The magnetic structures of the compounds under study are
well established for the high- and low-field part of their phase
diagram: within the intermediate-field range, the structures are
either unknown or too complex which in turn hinders the
construction of an analytical expression for the dispersion
relations and consequently the magnon specific heat contribution.
Furthermore, it happened that the highest magnetic field available
for this study is lower than the one needed to reach the high-field
saturated state. Accordingly, the comparison of the measured and
calculated magnetic specific heats (the latter is based on spin-
wave theory) was carried out only for the lower field limit
(Sections 2.2 and 4.3). For the intermediate-field range (as well as
across the available H–T plane of the phase diagram), basic
thermodynamical relations were employed to relate the field
evolution of the measured magnetic specific heat to the
temperature dependence of the isofield magnetization curves
(Section 5). Finally, since the linearized magnon theory is
applicable only for the lower temperature range, mean-field
model calculations were carried out to evaluate the magnetic
specific heat within the higher range of the ordered state; this
part of the study was restricted to only GdNi2B2C (Sections 2.2
and 4.3.1.2): in contrast to R¼ Er and Ho [18], GdNi2B2C has
negligible crystalline field anisotropy and as such the classical
dipole interactions play a crucial role in shaping its magnetic
structure.
2. Theoretical background

As mentioned above, three approaches will be used to analyze
the field and temperature dependence of the measured CmagðT;HÞ

curves: (i) basic thermodynamical analysis which allows us to
relate the evolution of CmagðT;HÞ to that of the magnetization
measurements: thus permitting a generalization to field and
temperature ranges beyond the limitation of our experimental
setups, (ii) the linearized spin-wave analysis which allows us to
investigate the low-temperature, low-field range, and (iii) mean-
field model calculation based on which we will be able to probe
the higher temperature region, a region which is not accessible to
spin-wave analysis.
2.1. Field-dependent magnon specific heat of RNi2B2C

A theoretical expression for the description of the zero-field
CmagðT;HÞ of the AFM-ordered borocarbide have been reported
previously [19]. Along similar theoretical considerations we
calculated the field-dependent CmagðT;HÞ of these AFM samples
for the low-field limit wherein the applied field is lower than that
of the spin flop field ðHoHsf Þ. The external field H is applied at
angle y away from the easy axis. Then at the low-temperature
limit, CmagðT;HÞ is found to be

CmagðT;HÞ ¼ RD4
a=ð4p

2D3
aT2Þ

X1
m ¼ 1

fTcoshðmx=TÞ½K4ðmDa=TÞ

þ/1þ2x2=D2
aSK2ðmDa=TÞ� � 0:5mxsinhðmx=TÞ½K4ðmDa=TÞ

�K0ðmDa=TÞ�g; ð1Þ

where KnðmDa=TÞ represents the modified Bessel function of the
second kind, x¼ gmBHcosðyÞ=kB (J, g¼ gJ, mB, and kB have their
usual meanings). In this expression, the only fit parameters are Da

and Da: Da is a measure of the stiffness and is given by

Da ¼ ½16ðJ 0þJ 1ÞJ 0J2þ2J 0JðgmBHaÞ�
1=3 � ð4J 1JÞ1=3; ð2Þ

where J 0 and J 1 are effective exchange couplings among the
nearest neighboring moments within, respectively, the same
plane and within neighboring planes. ~Ha is a measure of the
magnetic anisotropy while the two distinct field-dependent
energy gaps D7

ðHÞ are given by (in the limit of low temperature)

D7
ðHÞ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgmBHaÞ

2
þ16J 1gmBJHa

q
7gmBHcosðyÞ

¼Da7gmBHcosðyÞ: ð3Þ

Evidently D7
ðHÞ do not depend on J o and their separation is

linearly related to HcosðyÞ. Due to the type of the undertaken
approximations, Eq. (1) does not hold when HcosðyÞ is equal to or
higher than the spin-flop field, Hsf , which is the value at which the
lower branch goes to zero. The field influence on Eq. (1) enters
only through HcosðyÞ. Furthermore, this equation reduces to
Eq. (25) of Joenk [20] when J 0 ¼J 1 and it gives the well-known
T3 relation when kBT44Da [21].

For T-0, Da=T-1; then, if xoDa, Eq. (1) reduces to:

CmagðT;HÞC
RD7=2

a

21=2p3=2D3
aT1=2

exp
x� Da

T

� �
1� 2

x
Da
þ

x
Da

� �2

::

" #
ð4Þ

indicating a dominant exponential character within this H–T

region.
From above, it is evident that the applied field tends to remove

the degeneracy appearing in Eq. (3). As a consequence, the
fractional contribution of the lower mode to CmagðT;HÞ increases
leading to ð@Cmag=@HÞT 40. On the other hand, for H-Hsat, an
increase in H would induce a gradual decrease in CmagðT;HÞ

resulting in ð@Cmag=@HÞT o0. Similar arguments hold for MðT;HÞ.

2.2. Mean-field model calculation of CmagðT;HÞ of GdNi2B2C

The above calculations of the magnon CmagðT;HÞ of RNi2B2C
compounds are valid only within the lower temperature range,
mostly around liquid helium temperatures. To investigate the
magnetic contribution across the whole magnetically ordered
range, we resort to mean-field model calculations applied on the
simpler case of the ordered 7/2S�moments of GdNi2B2C. Jensen
and Rotter [7] showed that a model consisting of a sum of the
bilinear Heisenberg exchange term and the classical dipole
interaction is able to explain (i) the features of the whole
magnetic phase diagram, (ii) the so-called magnetoelastic paradox
[22], and (iii) the zero-field CmagðTÞ of GdNi2B2C. Here, in this
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work, their calculations of CmagðT;HÞ are extended to fields up to
Hr80 kOe using the McPhase program package (www.mcphase.
de) [23].
3. Experimental

The RNi2B2C (R¼Gd, Er) single-crystals, together with R¼Ho
[18], were selected for this study because they offer a good
representation of the magnetic properties of the whole RNi2B2C
series: ErNi2B2C and GdNi2B2C are good representatives of the
modulated, incommensurate magnetic structures; the anisotropic
forces are stronger in the former [24] while extremely weaker in
the latter [25,26]. It is recalled that HoNi2B2C is a typical
representative of the collinear, commensurate, AFM structures.

The single crystals of these three representatives compounds,
together with that of the reference YNi2B2C, were grown by
floating zone method [27]. Results from extensive structural and
physical characterizations are in good agreement with the
reported data, confirming the good quality of our crystals. The
temperature-dependent specific heat at fixed fields was measured
on two different setups. One is pulse-type adiabatic calorimeter
[500 mKoTo25 K, 120 kOe] and the second is a quasi-adiabatic
setup with a temperature range covering 1.5–100 K and a field up
to 80 kOe.
4. Results and discussion

4.1. Electronic and lattice contribution

For all compounds, the total specific heat Ctot was analyzed as a
sum of an electronic Ce, a phonon Cph, a nuclear Cn, and a magnetic
contribution Cmag:

Ctot ¼ CeþCphþCnþCmag : ð5Þ

Both Ce and Cph are calculated based on the analysis of the specific
heat of the isomorphous single-crystal YNi2B2C. As CMðTÞ of the
studied compounds are much larger than CeþCph, then CMðTÞ

would not be noticeably modified even if we take the bare values
of YNi2B2C. Specifically, instead of estimating Cph directly from
that of YNi2B2C [28], we tried other means (such as mass
normalization [29] or using other nonmagnetic isomorphs
[28,30]). We found out that, irrespective of the estimation
method, the obtained spin-wave fit-parameters are differing by
only a few percent: other than this weak variation, the use of
different estimation processes does not influence the conclusions
drawn from this work.

The low-temperature electronic contribution was estimated as
follows: while the normal-state contribution was evaluated from
that of the single-crystal YNi2B2C (the same as that used in Ref.
[28]), the contribution within the superconducting region was
evaluated as 3gT3=T2

c . As LuNi2B2C and YNi2B2C have almost the
Table 1

The nuclear hyperfine parameters and the spin-wave parameters (Da and Da) of ErNi2B

RNi2B2C Temp. range (K) Liso (%) I

HoNi2B2C [0.5, 1.5] 100 7/2

Ho metal [31] [0.03, 0.5] 7/2

ErNi2B2C [0.1, 0.5] 90(5) 7/2

Er metal [32] [0.03, 0.8] 7/2

The expression of CnðTÞ depends on the isotope abundance, Liso , the magnetic dipole para

nuclear spin I [31,32]. The parameters are obtained after fitting the experimental (Ctot �

temperature range indicates the region wherein the nuclear contribution is dominant

nuclear parameters are compared with the corresponding parameters of the R-metal (s
same g [30], then it is reasonable to consider g of the heavy
members of RNi2B2C to be equal.

Within the normal state (or H4Hc2 if applicable), the
electronic, phononic or nuclear contributions are taken to be field
independent (see below). The various zero-field contributions of
RNi2B2C (R¼Gd, Ho, Er) were illustrated in, e.g., Ref. [28].
4.2. Nuclear contribution

The magnetic contribution was obtained as follows: after
subtracting the electronic and phonic contribution by the process
explained in Section 4.1, the resultant (Ctot � Ce � Cph) is con-
fronted with the sum of the calculated nuclear and magnetic
(Eq. (1)) terms. CnðTÞ was obtained after diagonalizing the nuclear
Hamiltonian (see e.g. Refs. [31,32]).

The least square fit involves the simultaneous search for the
best values of the five parameters, namely the nuclear parameters
Liso, aint , and P as well as the spin-wave parameters Da and Da

(see below). The fit does reproduce satisfactorily the measured
nuclear specific heat of ErNi2B2C and HoNi2B2C [18] (GdNi2B2C
has no nuclear contribution): Table 1 give the best-fit parameters.
It is evident from Table 1 that aint of the studied R3þ compounds
are close to the values reported for the corresponding rare-earth
metals [31,32] indicating that the hyperfine field is determined
mainly by the internal electronic configuration of the R3þ ion. On
the other hand, the P parameters are extremely small; this is not
surprising since the point group of the sites at which the R3þ

nucleus resides is D4h in borocarbides and D6h in the elemental
rare earth. Finally, aext , associated with the externally applied
magnetic field, is extremely small if compared to the internal
field: for, say, ErNi2B2C [32], Hint � 7� 106 Oe and thus the highest
applied field in this study is only � 1% of this Hint .
4.3. Magnetic contribution

Based on the general features of the CmagðT;HÞ curves (see e.g.
Figs. 1 and 4, one distinguishes four temperature regions: (i) a
paramagnetic region, T4TNðHÞ, wherein CmagðT;HÞ is due to
change in the population of the crystal field levels, (ii) a critical
region, T � TNðHÞ, wherein CmagðT;HÞ is related to critical phenom-
ena, (iii) an intermediate region, TX oToTN (TX ¼ TR for GdNi2B2C
or TWFM for ErNi2B2C) which encompasses the sine-modulated
states. Within this region, the spin-wave analysis of Section 2.1 is
not applicable. Finally (iv) the low–temperature region. For
the range ToDa and HoHsf (none of the applied fields on
the compounds under study satisfies the inequality H4Hsat), the
collinear AFM/squared-up states are established and therefore the
measured CmagðT;HÞ can be confronted with Eq. (1). It is worth
mentioning that for extremely low-temperatures (T5Da), the
exponential decaying character of CmagðT;HÞ (see Eq. (4)) and the
relatively large contribution of the nuclear Schottky contribution
2C and HoNi2B2C (for the latter, these values are improvements on Ref. [18]).

aint (K) P (mK) Da (K) D (K)

0.362 �9.6 7:770:3 4:670:2

0.32 7.0

0.054 2.9 7:070:1 3:070:1

0.042 �2.7

meter, aint , the electric quadrupole interaction parameter, P, and of course, the total

Ce � Cph) curves to a sum of the nuclear and magnetic (Eq. (1)) terms. The specified

(for the temperature range of the fit see Sections 4.3.2 and 4.3.3). The obtained

ee text).

www.mcphase.de
www.mcphase.de
www.mcphase.de
www.mcphase.de
www.mcphase.de
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set a lower temperature limit for the usefulness of the magnon
analysis.
4.3.1. GdNi2B2C

The zero-field magnetic structure of GdNi2B2C (TN ¼ 19:5 K) is an
incommensurate sine-modulated structure (moments along b-axis
and k¼ 0:551a�) [25,33,34]. At TR � 13:5 K, a moment reorientation
sets-in leading to an additional modulated mode transver-
sely polarized and having a small amplitude along the
c-axis [33,34]. Two H–T phase diagrams were reported [26]: one
for HJa and another for HJc. The phase diagram for HJa shows three
field-induced magnetic phase transitions [see inset of Fig. 1(a)]: (i)
the saturation boundary at Hsat; (ii) the reorientation boundary at
HJa

R ; and finally (iii) the domain-wall [26] (or double-single q [7])
boundary at HJa

D . In contrast, the phase diagram for HJc shows only
two transitions [see inset of Fig. 1(b)]: HJc

sat (which is similar to HJa
sat)

and HJc
R (which is different from HJa

R ). None of the two phase
diagrams shows those characteristic H-induced cascade of
metamagnetic phase transitions which are common in, say, the
case of R¼ Er, Ho; this is attributed to the absence of strong
anisotropic features.
Fig. 1. (Color online) The isofield Cmag ðT ;HÞ of GdNi2B2C at various magnetic fields

applied along: (a) HJa and (b) HJc. The inset at the bottom-left (top-left) illustrates

the H–T phase diagram for HJaðHJcÞ [26]; there, the horizontal dotted lines

represent the fields that were applied during these measurements. Evidently, both

HJc
R and HJc

R anomalies in the Cmag (T ;H) curve do reproduce the boundaries of

the phase diagrams, in particular the reentrant feature appearing for the HJa case

(see text).
As mentioned above, the experimental magnetic specific heat
of GdNi2B2C would be confronted with two model calculations:
(a) the magnon calculation which is valid for sub-helium
temperature (Section 2.1) and (b) the model calculations of Jensen
and Rotter [7] which are extended from the helium-temperature
range up to TN (Section 2.2).

4.3.1.1. Magnon contribution to CmagðT;HÞ. Fig. 1 shows that the
most prominent features of CmagðT;HÞ of GdNi2B2C are (i) the
characteristic and distinct evolution of the HsatðTÞ and HRðTÞ

curves and that (ii) within a certain region of T and H, CmagðT;HÞ

appears to be hardly influenced by H. The cause of this apparent
collapse of the CmagðT;HÞ curves becomes clear if we compare
these curves with the predictions of Eq. (1): Fig. 2 shows a fit of
the measured CmagðT;H¼ 0Þ curve to Eq. (1) and the obtained fit
parameters are Da ¼ 2:970:1 K and D¼ 5:670:1 K which are
close to the values reported in Ref. [19]. As both Da and Da are field
independent, then the insertion of these values into Eq. (1) leads
to the calculated CmagðT;HÞ curves (with no adjustable
parameters) for all fields up to HokBDa=ðgmBÞ � 20 kOe (which
is the field above or equal to which the magnon calculations based
on Eq. (1) are not valid). Evidently the calculated and measured
curves collapse on each other when (T=Da-1): thus the apparent
collapse is a reminder that our experimental conditions are good
only for probing that part of the phase diagram wherein the field
has a weak influence on the strongly exchanged-coupled AFM-like
state. It is worth mentioning that this collapse is reflected also, by
virtue of Eq. (6b), in the low-temperature MðT;HÞ curves [25,26].

Fig. 1 shows also that the field-evolution of the low-
temperature CmagðT;HJcÞ curves is similar to that of CmagðT;HJaÞ

ones; the only difference is that all values of HJa are lower than
HJa

R ðToTRÞ boundary while, in contrast, some of the applied HJc

values are higher than HJc
R ðToTRÞ (see above); then it is no

surprise that the presence of the TRðHJcÞ�event in CmagðT;HJcÞ is
more pronounced than in CmagðT;HJaÞ; in fact there is no
manifestation of the reorientation event in the isofield
CmagðT;HJc 432 kOeÞ curves while, in contrast, for HJa, the
presence of the reorientation event is evident in all applied field
1 10
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Fig. 2. (Color online) Log–log plot of Cmag versus the normalized temperature

(T=D) under different applied fields (HJa). Symbols denote measurements while

lines represent the calculated Cmag ðT;HÞ based on Eq. (1) (see text).
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up to the maximum 80 kOe (see insets of Fig. 1). It is noted that
the reentrant feature of the HJa

R ðTÞ curve within the neighborhood
of 15 K is well evident in the CmagðT;HJaÞ curves: as HJa is
increased, the peak associated with this event moves first to
higher temperature but reverts to a decreasing tendency when HJa

reaches values higher than 30 kOe.
Within To5 K and HJaoHRðTÞ range, ð@Smag=@HÞT , ð@Cmag=@HÞT ,

and ð@M=@TÞH (Ref. [25,26]) are weak but positive. Similar features
are evident for the HJc case. When HJc-HRðTÞ, CmagðT;HJcÞ is
observed to increase, reaching a maximum at the phase boundary.
A further increase in HJc 4HRðToTRÞ leads to ð@Cmag=@HÞT o0
indicating a decrease in the entropy and as such an increase in the
ordered component along the c-axis. For T4TR, both ð@M=@TÞH
[Refs. [25,26]] and ð@Cmag=@HÞT are weak and positive for
Ho30 kOe but negative for 30 kOeoHoHsat.

4.3.1.2. Model calculation of CmagðT;HÞ. Fig. 3 compares the mea-
sured magnetic specific heat of GdNi2B2C with the model
calculation of Jensen and Rotter (see Section 2.2). [7] It is noted
that, even though there are no adjustable parameters (other than
the experimental TN) in these calculations, the model is able to
reproduce the main features of the measured Cmagð2 KoToTNÞ

for both HJar80 kOe and HJc r80 kOe [see, respectively, Fig. 3(a)
and (b)]. The following achievements of the model calculations
should be highlighted: (i) the calculated magnitude of the steps at
both TR and TN compare favorably with the measured values.
Fig. 3. Comparison of the calculated (solid lines) and measured (symbol) field-

dependent magnetic specific heat of GdNi2B2C for (a) HJa axis and (b) HJc axis. For

ease of visualization, the successive curves are displaced upwards with the same

amount of vertical shift (10 J/mol K). The calculations (with no adjustable

parameters other than the experimental TN) are based on the model proposed

by Jensen and Rotter [7] (see text).
In particular, for the HJc case, the model reproduces clearly the
monotonic field-induced decrease of the step size at TR, while for
the HJa case, the model reproduces (though exaggeratedly) the
three-events structure at H¼ 20 kOe (see the bottom-left inset of
Fig. 1); (ii) the surge of an anisotropy for the spherical 7/2S Gd-
moments even at temperatures as high as 20 K is well accounted
for; and (iii) the reorientation process at TR (along both field
orientations) is shown to be a consequence of the joint action of
exchange interactions and dipolar forces even though the energy
of the former is at least five times larger than that of the latter:
isotropic bilinear interaction, alone by themselves, do not lead to
any reorientation processes. [35,29,36] Evidently in spite of the
above-mentioned successes, this mean-field model calculations
do not match quantitatively all the measured data and are not
expected to account for the magnetic features of the specific heat
within the very low-temperatures or in the neighborhood of TN

(the critical region).
4.3.2. ErNi2B2C

The magnetic phase diagram of ErNi2B2C is shown in the inset
of Fig. 4 [16]: in zero field, this compound superconducts at 10.5 K
and orders at TN ¼ 6:4 K into an incommensurate modulated AFM
structure with k¼ ð0:55;0;0Þ and moments pointing along the
Fig. 4. (Color online) Thermal evolution of Cmag ðT;HÞ of ErNi2B2C at various

magnetic fields. The inset shows the H–T phase diagram (adapted from Ref. [16]):

the thick dashed line represents the Hc2ðTÞFsuperconductivityFcurve while the

solid lines represent the various magnetic transformations. The horizontal dotted

lines represent the magnetic fields that were applied during this study.



ARTICLE IN PRESS

M. ELMassalami et al. / Journal of Magnetism and Magnetic Materials 322 (2010) 523–529528
b-axis [37]. Below TWFM ¼ 2:2 K, a weak ferromagnetic (WFM) state
[14] emerges together with an equal-amplitude, squared-up state
[38,39]. A series of field-induced metamagnetic transformations
appears when a field (HoHsat) is applied along the easy axis
(0,1,0) [10,16,40,17]: at 2 K, three metamagnetic transformations
occur at 4, 11, and 20 kOe. For H4Hsat, the paramagnetic saturated
state is stabilized.

To investigate the H- and T-dependence of CmagðT;HÞ across
such a phase diagram, we carried out a series of isofield
measurements with HJð0;1;0Þ. The resulting CmagðT;HJaÞ curves
are shown in Fig. 4. The temperature dependence of the zero-field
entropy (not shown) suggests that the lowest four level are fully
populated above 10 K; this result is in agreement with the findings
of Gasser et al. [41] that the electronic ground state is a doublet
which is separated from the immediate excited state (also a
doublet) by 0:6� 0:7 meV.

For ToTWFMðHoH1Þ, the zero-field magnetic sate is approxi-
mated as an AFM structure (see Section 2.1); accordingly, the
measured CmagðToTWFM ;HoH1Þ curves are confronted with
Eq. (1). Fig. 5 shows the excellent fit of CmagðT;H¼ 0 kOeÞ which
gives Da ¼ 7:070:1 K and D¼ 3:070:1 K. Using these para-
meters, we calculated the field-dependent CmagðT;HÞ curves
(see Fig. 5). Once more, one observes the collapse of the
CmagðToTWFM ;HoH1Þ curves within the immediate
neighborhood of T�WFM . Due to experimental limitations, we were
unable to probe the field evolution of CmagðT;HÞ for ToTWFM nor
its temperature dependence for H4Hsat.
Fig. 5. (Color online) A log–log plot of the CMðT;HÞ curves of ErNi2B2C at various

applied magnetic fields. The magnetic specific heat (symbol) are compared with

the theoretical calculation (lines) based on Eq. (1) (see text). The calculated curves

of H¼ 0;5;10 kOe are different from each other only at ToD.
4.3.3. HoNi2B2C

The magnetic specific heat of HoNi2B2C, reported by various
groups (see e.g. [13,18,42,43]) reproduces faithfully the features of
the magnetic phase diagram (in particular those incommensurate
modes cited in Introduction) [13,15]. The main features of these
CmagðT;HÞ curves can be comprehended in the light of Eq. (6b) and
the evolution of the MðT;HÞ curves [13]. Specifically, the overall
features of the isofield CmagðTo5 K;HJð1;0;0ÞoH1Þ, i.e. within the
low-T collinear AFM state [18], are well reproduced by Eq. (1): on
reanalysis, the best fit parameters for the measured CmagðT;H¼ 0Þ
were found to be Da ¼ 7:770:3 K and D¼ 4:670:2 K.
5. Discussion and summary

The general evolution of CmagðT;HÞ within the magnetically
ordered state of representative RNi2B2C (R¼Gd, Ho, Er) is found
to reflect faithfully the characteristic features of their H–T phase
diagrams [13–16]. This is not surprising since the following
Maxwell equations relate the evolution of MðT;HÞ (based on which
most of these phase diagrams were built) to that of CmagðT;HÞ:

ð@Smag=@HÞT ¼ ð@M=@TÞH ð6aÞ

ð@Cmag=@HÞT ¼ Tð@2M=@T2ÞH : ð6bÞ

It is worth adding that similar characteristic phase diagram
features are evident also in many other magnetic properties such
as the integrated intensities of the magnetic neutron diffracto-
grams [10,11], the magnetostriction [17,26], and the magnetor-
esistivity [44,45].

One of the characteristic features of the magnetic phase
diagrams is the stair-like behavior observed in the magnetization
isotherms: it is assuring that this feature is manifested also in the
CmagðT;HÞ case. Thus all CmagðT;HÞ curves that are within the same
metamagnetic mode do collapse on each other (see e.g. inset of
Fig. 3 in Ref. [18]). This feature is related to the contribution of the
elementary magnetic excitations to the thermodynamical proper-
ties and here, in this work, we discuss this contribution in terms of
the linearized spin-wave model (see the theory in Section 2.1 and
its confrontation with the measured CmagðT;HÞ curves in Section
4.3)

Based on the analysis of Section 4 one is able to delineate the
low-field, low-temperature range of the H–T phase diagrams
wherein the linearized magnon contribution is found to describe
satisfactory the experimental results: for GdNi2B2C, it is the
HoHRðTÞ range wherein the sine-modulated state is squared-up;
for ErNi2B2C it encompasses the HoH1ðToTWFMÞ range wherein
the squared-up AFM-like state is established; and finally for
HoNi2B2C, it is the HoH1 (ToTN) range wherein the collinear
AFM structure is established. In all these magnetic states, the
magnetic specific heat is expressed by Eq. (1): the satisfactorily
agreements between the calculated and measured CmagðT;HÞ

justifies the assumptions considered in this model.
The values of the fit parameters evolves reasonably well across

the studied compounds: as an example, the gap parameter of
GdNi2B2C (Da ¼ 2:9 K) is much smaller than the corresponding
values of HoNi2B2C (Da ¼ 7:7 K) and ErNi2B2C (Da ¼ 7:0 K); based
on Eq. (3), such a result does agree with the well-established fact
that the anisotropic field for GdNi2B2C is extremely small. On the
other hand, the stiffness constant of GdNi2B2C (D¼ 5:5 K) is
greater than that of HoNi2B2C (D¼ 4:6 K) and ErNi2B2C
(D¼ 3:0 K); based on Eq. (2), this is related to the fact that the
effective exchange couplings of GdNi2B2C (proportional to the de
Gennes factor) are the strongest. It is recalled that no direct
scaling with the de Gennes factor should be expected since D

given by Eq. (2) contains also Ha.
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As the investigated compounds are good representatives of the
other magnetic borocarbides, then it is expected that the above
mentioned characteristic step-like behavior should be manifested
also in other magnetic RNi2B2C compounds: indeed, the MðT;HÞ

isotherms of TbNi2B2C (having similar anisotropic features as
those of ErNi2B2C) manifest such a stair-like feature [40,46,47].
Then, based on Eq. (6b), its CmagðT;HÞ features should be similar to
those of the studied compounds. It is emphasized that the
manifestation of such stair-like features is a more general
property since it is manifested, not only in the MðT;HÞ isotherms,
but also in several other thermodynamical quantities (see above).
Accordingly such a generality suggests that, although other
models have been applied to analyze these stair-like features in,
e.g., HoNi2B2C (Refs. [4,5]) and ErNi2B2C [8], an analysis in terms
of the spin-wave model is shown to be extremely useful for the
description of the low-temperature thermodynamical properties
of these magnetic compounds.
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