
The magnetization plateaus of the ferro and anti-ferro spin-1 classical
models with Sz

2 term

S.M. de Souza a, M.T. Thomaz b,n

a Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 3037, CEP 37200-000, Lavras-MG, Brazil
b Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/no, CEP 24210-346, Niterói-RJ, Brazil

a r t i c l e i n f o

Article history:
Received 9 April 2013
Received in revised form
1 August 2013
Available online 5 November 2013

Keywords:
Quantum statistical mechanics
Ising model
Spin-1
Single-ion anisotropy term
Staggered
Thermodynamics
Optical device

a b s t r a c t

We study in detail the exact thermodynamics of the one-dimensional standard and staggered spin-1
Ising models with a single-ion anisotropy term in the presence of a longitudinal magnetic field at low
temperatures. The results are valid for the ferromagnetic and anti-ferromagnetic (AF) models and for
positive and negative values of the crystal field for T40. Although the excited states of the ferro and
anti-ferro models are highly degenerate, we show that the temperature required for reaching the first
excited state in the classical spin-1 ferro model gives a scale of temperature that permits fitting the
z-component of the magnetization only by the contribution of two ground states of the model. This
approximation is not true for the equivalent AF function due to the fact that the AF model is gapless along
the lines separating the phases in its phase diagram at T¼0. We relate the number of plateaus in the
magnetization of each model to their respective phase diagrams at T¼0. The specific heat per site of the
AF model distinguishes, at low temperature, the transitions A⇌E and G⇌E as the external magnetic field
is varied. The exact Helmholtz free energy of the classical spin-1 model is mapped onto the equivalent
function of the ionic limit of the 1D extended Hubbard model by proper transformations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Exactly solvable models help us having insights on more complex
systems. In one space dimension (1D), the thermodynamics of the
spin�1

2 Ising model in the presence of a longitudinal magnetic field
has been solved in the whole interval of temperature using the
density matrix approach [1–3]. To do so, it is essential the commu-
tative nature of all operators in its Hamiltonian. This model is usually
called a classical system.

Cold atoms have made possible simulations of spin models.
Recently Simon et al. [4] simulated a one-dimensional spin-1/2
Ising model in the presence of a magnetic field with longitudinal
and transverse components by using a Mott insulator of spinless
bosons in a tilted optical lattice. The device was used to study the
phases of this classical model at low temperatures. These optical
devices have permitted the experimental study of properties of chain
models, including the spin models.

The spin-1 Ising model with single-ion anisotropy term, the
Blume [5]–Capel [6] model, in the presence of a longitudinal
magnetic field, has also a classical nature. This fact permits us to
apply the transfer matrix method [1–3] to solve it. With this
approach, Aydiner and Akyüz [7] obtained the numerical solution

of the 1D spin-1 anti-ferromagnetic (AF) Ising model with a single-
ion anisotropy term in the presence of a longitudinal magnetic
field. They studied the magnetic and thermal behavior of the
model at very low temperatures. Chen et al. [8] applied the
classical Monte Carlo (CMC) technique to the numerical calculation
of the phase diagram at T¼0 of the spin-1 anti-ferromagnetic Ising
model in the presence of a single-ion anisotropy term for positive
crystal field. The CMC was applied also to the study of magnetiza-
tion plateaus of this model at low temperature.

Mancini [9] used the mapping between the 1D extended
Hubbard model in the ionic limit (i.e., jtj≪jUj; jV j, in which t is
the hopping exchange, U is the on-site Coulomb interactions and V
is the inter-site Coulomb interaction) and the spin-1 Ising model
with a single-ion anisotropy term in the presence of a longitudinal
magnetic field to write the exact Helmholtz free energy (HFE) of
the latter [9] as a set of coupled equations. The hierarchy of the
equations of motion is closed, and they can be solved numerically.
In Ref. [10] they have extended the approach to include a
biquadratic nearest-neighbor interaction term, numerically sol-
ving the coupled equations and presenting the behavior of some
thermodynamic functions at low temperatures. We derived in
Ref. [11] the exact expression of the HFE of the 1D spin-1 Ising
model with the ðSzÞ2 term in the absence of a magnetic field. This
HFE has a simple analytic expression valid for the ferromagnetic
and AF models in the whole range of temperature. The absence
of a magnetic field in this solution prevents accessing some
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information about the system, e.g.: information about the magne-
tization and the susceptibility of the model.

All the previously mentioned papers on the one-dimensional
spin-1 Ising model seem to be unaware of the nice work by
Krinsky and Furman [12], which presents the calculation of the
exact HFE for the 1D ferromagnetic spin-1 Ising model with a
single-ion anisotropy term, a biquadratic nearest-neighbor inter-
action term and a nonsymmetric term, in the presence of a
longitudinal magnetic field. More recently Litaiff et al. also applied
the transfer-matrix technique to calculate the exact expression of
the HFE of this model. The authors did not use this thermody-
namic function to explore its low temperature behavior.

Although the 1D spin-S Ising model with the single-ion
anisotropy term in the presence of a magnetic field is called a
classical model, it has a quantum nature that manifests itself as
plateaus in the z-component of the magnetization at very low
temperature. The existence of those plateaus has been demon-
strated in a number of 1D models [14] and experimentally
measured in some materials [15–17] described by 1D spin-
models. Magnetization plateaus in the AF spin-1 Ising model with
positive crystal field in the presence of a longitudinal magnetic
field have been obtained numerically in Refs. [7,8,10]. The authors
of Ref. [12] mentioned the discontinuous change of the magneti-
zation of the ferromagnetic model, but their focus was on the
exact renormalization group of the model and the discussion of its
critical points.

The study of the simple one-dimensional spin-1 Ising model
helps to understand the origin of plateaus in the magnetization
function. In the present communication we present the exact
analytic expressions of the HFE's of the standard and the staggered
versions of the 1D spin-1 Ising model with the ðSzi Þ2 term in the
presence of a longitudinal magnetic field, valid for T40 in Section
2. Our solutions apply equally well to the ferromagnetic and to the
AF models of both versions, extending the validity of the solution
derived in Ref. [12] for the ferromagnetic model. We study the
z-component of the magnetization and the entropy per site at very
low temperatures for the ferro and AF versions of the classical
spin-1 model in Sections 3 and 4, respectively. We relate the
number of plateaus in the magnetization to the number of phases
in the ground state of the model at T¼0. Finally in Section 5 we
present our conclusions. More detailed calculations are shown in
Appendices A and B.

2. The Hamiltonians of the classical spin-1 models in the
presence of a longitudinal magnetic field

The Hamiltonian of the one-dimensional of the classical spin-1
Ising model with a single-ion anisotropy term, the Blume–Capel
model, in the presence of a longitudinal magnetic field is [5,6]

H′¼ ∑
N

i ¼ 1
JSzi S

z
iþ1�h′Szi þD′ðSzi Þ2

h i
¼ ∑

N

i ¼ 1
Hi;iþ1; ð1Þ

where Si
z is the z-component of the spin-1 operator with norm:

‖ S
!

‖2 ¼ 2. J is the exchange strength and it can have either a
negative value (ferromagnetic model) or a positive value (AF
model). The crystal field D can assume positive, negative or null
values. The model satisfies spatial periodic boundary condition in a
chain with N sites. The external magnetic field is oriented along
the easy-axis z. In this paper we use natural units, e¼m¼ ℏ¼ 1.
Comparing our Hamiltonian (1) to the Hamiltonian (25) in Ref. [13]
we have J ¼ Jn, h′¼ μBH

n and D′¼Dn, in which Jn, Hn and Dn are the
parameters of the Hamiltonian of the single spin-1 Ising model in
Ref. [13].

Mancini and Mancini [9] affirm that by the substitution Szi ¼
ni�1i (where 1i is the identity operator at the i-th site, in which

ni ¼ ni;↑þni;↓, ni;s � c†i;sci;s with sAf↑; ↓g, c†i;s is the fermionic
creation operator of an electron at the i-th site with the spin
component s and ci;s is the corresponding destruction operator,
the Hamiltonian (1) is mapped onto the ionic limit of the
Hamiltonian of the 1D extended Hubbard model in the presence
of a chemical potential, that is

H′¼HHubþNðJþh′þD′Þ1; ð2Þ

where [18,19]

HHub ¼ ∑
N

i ¼ 1
ð ~Uni;↑ni;↓þ2Vniniþ1� ~μniÞ: ð3Þ

The last equality is valid for ~U ¼ 2D′, V ¼ J=2 and ~μ ¼ 2Jþh′þD′.
The number of states per site of Hamiltonians (1) and (3) are
different. In Ref. [9] Mancini and Mancini assert that the partition
function of these two Hamiltonians are equal if the parameters ~μ
and ~U are renormalized: ~μ-μ¼ ~μ� lnð2Þ=β and ~U-U ¼ ~U�
2 lnð2Þ=β. For these values of parameters, that WHubðU;V ;μ;βÞ ¼
W1ðJ;h′;D′;βÞ�ðJþh′þD′Þ, where WHub ðW1Þ is the HFE of the
extended Hubbard model in the ionic limit (the HFE of the spin-1
Ising model (1)). One is reminded that β¼ 1=kT , where k is the
Boltzmann's constant and T is the absolute temperature in Kelvin.

The Hamiltonian (1) in the presence of a staggered longitudinal
magnetic field is

H′
stag ¼ ∑

i ¼ 1

2M
JSzi S

z
iþ1�h′ð�1ÞiSzi þD′ðSzi Þ2

h i
: ð4Þ

The Hamiltonian continues to satisfy space periodic condition, but
now we have an even number of sites in the chain: N¼ 2M.

Applying the method presented in Ref. [20] we calculated in
Ref. [21] the β-expansion of the HFE of the one-dimensional spin-S
Ising model, with single-ion anisotropy term, in the presence of a
longitudinal magnetic field, WSðJ;h′;D′;βÞ, up to order β17, in the

thermodynamic limit. The β-expansion of the HFE of the staggered

Hamiltonian (4), with D′¼ 0, Wstag
S ðJ;h′;0;βÞ, was derived in

Ref. [23] up to the same order in β also for M-1. Unfortunately
those expansions do not permit us to study the thermodynamics
of the standard and the staggered 1D spin-1 Ising model close to
T¼0. In our web page1 we provide the data files with the quantum
(arbitrary spin-S) and the classical HFE's of the normalized
Hamiltonians (1) and (4) up to order β17 for both versions
(standard and staggered) of the model.

In the present work we apply the transfer matrix method [3]
together with the β-expansion of the function W1ðJ;h′;D′;βÞ
obtained from the results of Ref. [21] with S¼1 to calculate the
exact HFE of the Hamiltonian (1) in the thermodynamic limit
ðN-1Þ, valid for T≳0. The expression of Wstag

1 ðJ;h′;D′;βÞ is
obtained by using a well known result in the literature [23],
namely, Wstag

S ðJ;h′;D′;βÞ ¼WSð� J;h′;D′;βÞ, with S¼ 1
2;1;

3
2;…. This

equality is valid for TA ½0;1Þ.
In order to calculate the exact function W1ðJ;h′;D′;βÞ, valid for

T40 and in the limit of N-1, using the transfer matrix method,
we rewrite Hamiltonian (1) as a symmetric operator in the i-th
and ðiþ1Þ-th sites, that is,

HðSÞ
i;iþ1 ¼ JSzi S

z
iþ1�hSzi �hSziþ1þDðSzi Þ2þDðSziþ1Þ2: ð5Þ

By comparing Eqs. (1) and (5), we verify that the β-expansion
of the HFE of this model, in terms of the parameters J, h and D in
Hamiltonian (5) may be obtained by applying the following change

1 Our web page: http://www.proac.uff.br/mtt.
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of variables: h′-2h and D′-2D, in the expansion of Ref. [21] with
S¼1.

In Appendix A we calculate the three roots of the third degree
equation derived from the transfer matrix method for the classical
spin-1 model with a single-ion anisotropy term in the presence of
a longitudinal magnetic field. The root with the largest modulus
gives the expression of the HFE of the model (1)/(5) (see Eq. (A.4)).

By direct inspection of the roots (A.8a)–(A.8c), it is not possible
to determine the one with the largest modulus. In order to
verify which root corresponds to the eigenvalue λ1 of matrix U,
assumed to be the root with the largest modulus, we calculate the
β-expansion of the functions �ð1=βÞln½si�; i¼ 1;2;3, and compare
each one with the expansion of the HFE of Ref. [21] with S¼1
(having made the change of variables h′¼ 2h and D′¼ 2D in the
β-expansion of Ref. [21]). By direct comparison of the expansions,
we obtain for finite value of β, up to order β10, that the root s1,
Eq. (A.8a), is the eigenvalue λ1, that has the largest modulus
among the eigenvalues of matrix U. Our analysis is valid for finite
value of β, which excludes the value T¼0.

Our solution s1 is equal to the eigenvalue of the cubic equation
with the largest modulus calculated in Ref. [12] for the ferromag-
netic model ðJo0Þ. The way we write the solutions (A.9a)–(A.8c)
avoids the necessity of defining a cut in the complex plane for
their calculation. Our results extended those derived in Ref. [12] to
include the HFE of the AF spin-1 Ising model in the presence of a
longitudinal magnetic field.

The β-expansions of the roots s2 and s3 do not agree with the
terms of the expansion in Ref. [21], not even for the β�1 term. The
Perron–Frobenius Theorem [22] applied to matrix U (see Eq. (A.2)),
with elements Uij40, i; jAf1;2;3g, affirms that its largest eigen-
value is nondegenerate at each temperature T. The eigenvalues
s2 and s3 are also regular functions of J, D, h and β, thus
guaranteeing that s1 be the largest eigenvalue of U at any
temperature T40. Otherwise, two eigenvalues of U would be equal
at a given temperature, which is forbidden by the Perron–Frobenius
Theorem.

The exact HFE of the standard one-dimensional spin-1 Ising
model with the single-ion anisotropy term in the presence of a
longitudinal magnetic field h is

W1ðJ;h;D;βÞ ¼ �1
β
ln 2

ffiffiffiffiffiffiffiffiffi
� ~Q

q
cos

θ
3

� �
þP
3

� �
; ð6Þ

in which P, θ and ~Q are given respectively by Eqs. (A.7a), (A.9a),
(A.9b). The HFE (6) is an even function of h: W1ðJ;h;D;βÞ ¼W1ðJ;
�h;D;βÞ. One is reminded that Wstag

1 ðJ;h′;D′;βÞ ¼W1ð� J;h′;D′;βÞ
and WHubðU;V ;μ;βÞ ¼W1ðJ;h′;D′;βÞ�ðJþh′þD′Þ, with U ¼ 2D′,
V ¼ J=2 and μ¼ 2Jþh′þD′.

From the simple expression (6) one can calculate the thermo-
dynamic functions of the standard and the staggered models, as
well of the extended Hubbard model in the ionic limit in the
absence of an external magnetic field, for any finite value of β, that
does not include the temperature T¼0, that is, TAð0;1Þ. It is a
well known fact that at T¼0, h¼0 and D¼0, two eigenvalues of
matrix U are degenerated. Our results are valid in the limit of
T-0. Due to the presence of the longitudinal magnetic field in the
HFE (6) we can derive from it the z-component of the magnetiza-
tion and the magnetic susceptibility per site for the ferromagnetic
ðJo0Þ and AF ðJ40Þ versions of the standard Hamiltonian (1)/(5)
as well as the staggered magnetization and the staggered mag-
netic susceptibility [23] of the Hamiltonian (4) for any value of the
exchange strength J. For h¼0, the expression (6) of the HFE
W1ðJ;0;D;βÞ coincides with the exact result presented in Ref. [11].

Our exact result permits us to study the plateaus of the
standard and the staggered z-component of the magnetization
per site of the ferro and the AF models of the standard and the
staggered versions, respectively, of the one-dimensional spin-1

Ising model, with the single-ion anisotropy term, in the presence
of a longitudinal magnetic field for temperatures close to T � 0.
The authors of Ref. [12] mentioned the discontinuity of the
magnetization and the magnetic quadrupolar moment of the
ferromagnetic model at T¼0, not going any further on this point.
Aydiner and Akyüz [7] and Chen et al. [8] studied numerically
these plateaus in the AF version of Hamiltonian (1)/(5). More
recently, Mancini and Mancini [10] solved (also numerically) the
self consistent equations that yield the exact HFE of the AF S¼1
Ising model with a biquadratic nearest-neighbor term in the
presence of a longitudinal magnetic field.

In the rest of this paper we let J ¼ �1 for the ferromagnetic
model and J¼1 for the AF model. The values of the parameters D, h
and T are given in units of jJj, that is: D=jJj, h=jJj and T=jJj,
respectively.

We restrict our presentation mainly to the behavior of two
thermodynamic functions associated to the Hamiltonians (1)/(5)
and (4) that helps us to understand the presence of plateaus in
the classical spin-1 model: the z-component of the magnetization
[25],MzðJ;h;D;βÞðMz ¼ �1

2∂W1=∂hÞ, of the standard model (1)/(5),
and the staggered z-component of the magnetization [23],

Mstag
z ðJ;h;D;βÞðMstag

z ¼ 1
2½〈Sz2〉� 〈Sz1〉� ¼ �1

2
∂Wstag

1
∂h Þ, of the staggered

Hamiltonian (4); and the entropy per site, SðJ;h;D;βÞ
ðS ¼ β2∂W=∂βÞ, where W ¼W1ðWstag

1 Þ for the standard (staggered)
model. Those are studied at very low temperatures. The HFE's W1

and Wstag
1 are even functions of h, therefore SðJ;h;D;βÞ and the

magnetization functions (MzðJ;h;D;βÞ and Mstag
z ðJ;h;D;βÞ) are

even and odd functions of h, respectively. For this reason we
restrict ourselves to the case of hZ0.

In Fig. 1 we present the phase diagram of the ferro ðJ ¼ �1Þ and
AF (J=1) versions of Hamiltonian (1)/(5) at T¼0. In its caption we
describe the meaning of the phases in each diagram. It is inter-
esting to notice that the exchange coupling term J in the ferro-
magnetic Hamiltonian (1)/(5) favors the states with z-component
of the spin szi ¼ 81 and parallel neighboring spins. The same term
in the AF version of this Hamiltonian also favors the states with
szi ¼ 81 but for anti-parallel (Néel state) neighboring spins. In the
ferro and AF models the Zeeman term favors states with szi ¼ 81
aligned with the external magnetic field h, whereas the single-ion
anisotropy term shows two distinct behaviors: for Do0 states
with szi ¼ 81 are favored, independently of their relative align-
ment; and for D40 states with szi ¼ 0 are favored, the spin being
perpendicular to the external magnetic field applied. For Do0 and
J=–1 all the terms in Hamiltonian (1)/(5) force the neighboring
spins to align to each other and consequently to the external
magnetic field at T¼0. The ground state is a collective stable state
under small temperature fluctuations, a point which will be made
clear after we discuss the necessary temperature to excite the first
excited state of the ferromagnetic chain. For D40 the effect of the
crystal field D competes with the exchange strength J and the
external magnetic h. In the near future we will verify that in this
case we need a smaller energy to break the alignment between
neighboring spins and excite the first excited energy level of the
ferromagnetic chain.

For h=jJjZ0 and only for D= J Z1
2

���� Fig. 1a has two distinct
phases. The line between the phases is: h= J ¼D= J �1

2

�������� . In the
region A of Fig. 1a, at T¼0, the single-ion anisotropy term gives the
main contribution to the ground state and the spins are perpen-
dicular to the longitudinal magnetic field. Our phase diagram
Fig. 1a coincides with Fig. 2 of Ref. [12] with K¼0.

Fig. 1b presents the phase diagram of the standard AF model
(J¼1) at T¼0. For D=jJjo0 and h=jJjZ0 there are two distinct
phases that correspond to the competition between the exchange
coupling term J and the Zeeman term. One of them is the phase G
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that is the Néel state when 0rh=jJjo1; the exchange term gives
the largest contribution to the ground state energy. For D=jJj40
and h=jJjZ0 the three terms in the AF Hamiltonian (1)/(5) favor
distinct states at T¼0. Their competition is responsible for a richer
phase diagram at T¼0 for the AF model in this region of
parameters. On the other hand, this competition among the terms
of Hamiltonian (1)/(5) makes the ground state of the one-
dimensional system less stable under small fluctuations of the
thermal energy, as we will verify in the discussion of the first
excited state of the AF chain. The diagram of this model has two
tricritical points: Pðh=jJj ¼ 1 and D¼0) and Qðh= J ¼ 1

2

���� and
D= J ¼ 1

2

���� ) in Fig. 1b. For 0oD= J o1
2

���� and h=jJjZ0, the AF model
has three distinct phases at T¼0, namely: the G (Néel) phase, the E
phase (in which half of the spins in the chain are perpendicular to
the external magnetic field), and the B phase (in which all the
spins are aligned with the magnetic field). We also have three
phases for D= J Z1

2

���� , but in this region of the phase diagram at T¼0
the Néel state is not one of the possible ground states of the
system; there is an A phase instead, in which all spins are
perpendicular to the longitudinal magnetic field, besides the
phases B and E. The phase diagram Fig. 1b agrees with Fig. 2b of
Ref. [8] and shows qualitative agreement with Fig. 2 of Ref. [7].

The transitions between the ground states of the standard AF
model happen for the following values of magnetic field h=jJjZ0
and the intervals of D=jJj:

G⇌B :
D
jJjo0 and

h
jJj ¼ 1; ð7aÞ

G⇌E : 0oD
jJjo

1
2

and
h
jJj ¼ 1�D

jJj; ð7bÞ

A⇌E :
D
jJj4

1
2

and
h
jJj ¼

D
jJj; ð7cÞ

E⇌B :
D
jJj40 and

h
jJj ¼ 1þD

jJj: ð7dÞ

The phase diagram of the staggered ferromagnetic ðJ ¼ �1Þ
Hamiltonian (4) at T¼0 is shown in Fig. 1b whereas the diagram of
the staggered AF (J¼1) model at T¼0 is depicted in Fig. 1a.

To the best of our knowledge, there is no detailed discussion in
the current literature regarding the presence of plateaus in the
z-component of the magnetization in 1D ferromagnetic spin models
at very low temperatures, although its discontinuity is mentioned in

Ref. [12]. From the exact expressions of the z-component of the
magnetizations of the ferro and AF spin-1 classical models, valid in
the thermodynamic limit, we verify that they have no discontinuity
for T≳0. Rather, there is a range of values of the magnetic field for
which a continuous transition from one magnetization plateau to
another takes place. These plateaus in the ferro and AF models are
smeared out as the temperature increases above certain values.
A discussion on the interval of temperature in which those plateaus
are manifest is carried out in Sections 3 and 4.

Our result (6) is equally valid for the HFE of the ferro ðJ ¼ �1Þ
and the AF (J¼1) models of the standard and staggered spin-1
Ising model with ðSzi Þ2 term in the presence of a longitudinal
magnetic field for T≳0. A natural way to describe those models at
finite temperature is through their respective density matrix
operator. From now on, we restrict our discussions to the condi-
tion h=jJjZ0.

3. The ferromagnetic classical spin-1 model

In this section we estimate the temperature above which the z-
component of the magnetization of the ferromagnetic model has a
“step-like” form.

Let us consider the ferromagnetic model (1)/(5) with J ¼ �1.
The ground states of the chain at T¼0 in the phases A, B and C in
Fig. 1a are

jΨ 0〉A ¼ j0〉1 � j0〉2 � ⋯ � j0〉N ; ð8aÞ

jΨ 0〉B ¼ j1〉1 � j1〉2 � ⋯ � j1〉N ; ð8bÞ

jΨ 0〉C ¼ j�1〉1 � j�1〉2 � ⋯ � j�1〉N ; ð8cÞ

where Szi js〉i ¼ sjs〉i, s¼ 0; 71 and i¼ 1;2;…;N. Their respective
ground state energy are named E0

A, E0B and E0
C. The ground state

(8c) is presented since at h¼0 its energy degenerates into the
energy of the state jΨ 0〉A.

The values of the ground state energies in units of jJj are

EA0
jJj ¼ 0; ð9aÞ

EB0
jJj ¼N �1�2h

jJj þ
2D
jJj

� �
; ð9bÞ

Fig. 1. The phase diagrams of the ferromagnetic (J¼�1) and the anti-ferromagnetic (J¼1) models (1)/(2) at T¼0. (a) The ferromagnetic phases represent the following
configurations of the z-components of the neighbour spins: A-ð0;0Þ, B-ð1;1Þ and C-ð�1; �1Þ. (b) The AF phases include the configurations A, B and C that are found in
the ferromagnetic diagram plus the phases: E-ð1;0Þ, F-ð0; �1Þ and G-ð�1;1Þ. This diagram has also two tricritical points: Pðh=jJj ¼ 1 and D¼0) and Qðh= J ¼ 1

2

���� and
D= J ¼ 1

2

���� ). The phase diagram of the staggered ferromagnetic and the AF models of the Hamiltonian (4), at T¼0, are given by the figures (b) and (a) respectively.
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EC0
jJj ¼N �1þ2h

jJj þ
2D
jJj

� �
; ð9cÞ

where N is the number of sites in the chain.
The density matrix operator of the ferromagnetic Hamiltonian

(1)/(5) is

ρ �1;
D
jJj;

h
jJjjJj;β

 !
¼ e�βEA0

Z1
jΨ 0〉AA〈Ψ 0jþ

e�βEB0

Z1
jΨ 0〉BB〈Ψ 0j þ

e�βEC0

Z1
jΨ 0〉CC〈Ψ 0j þ

e�βE1

Z1
� ∑

N

l ¼ 1
jΦðlÞ

1 〉〈ΦðlÞ
1 jþ⋯;

ð10Þ

where Z1 is the partition function associated to the ferromagnetic
Hamiltonian (1)/(5), Z1 ¼ Tr½e�βH�, with β¼ 1=kT . E1 is the first
excited state of the chain and its degeneracy is equal to N for all
three ferromagnetic phases. The first excited state is obtained from
the ground state vectors (8a)–(8c) by flipping one of its spin-1 in
the chain. In the thermodynamic limit, the first excited state is
highly degenerate as well the higher excited states [26]. In
principle, the contribution of all excited states of the chain should
be taken into account for non-null temperatures. We have no
mathematically sound argument to affirm that, at low tempera-
tures, the expansion (10) should be cut after the contribution of
the first excited state. The exact expressions of the thermodynamic
functions can be derived from result (6) of the HFE (6) of the HFE,
and they show plateaus in the z-component of the magnetization
of this model at low temperature. The comparison between the
exact result and a proposed approximation expression of Mz

should be able to say how good is the latter.
It is common sense that the least value of temperature for

which the contribution of the first excited state must be taken into
account for the behavior of the thermodynamic functions is
determined by the factor e�ðE1 �E0Þ=kT . But in the present model
the excited states have degeneracy at least of order N, so all of
them should contribute to the functions at non-zero temperature.

In the following discussion we determine in each phase of the
diagram Fig. 1a the value of temperature Tmax where

e�ðE1 �E0Þ=kTmax � e�15 � 3:06� 10�7; ð11Þ

where E0 is the ground state energy of the phase and E1 is its first
excited state. Then

kTmax

jJj � E1�E0
15

: ð12Þ

We want to verify if the temperature Tmax at each ferromag-
netic phase is such that, for temperatures lower than Tmax, the
dependence of the z-component of the magnetization on the
external magnetic field has a “step-like” form.

We have three distinct first excited states of the ferro classical
spin-1 model (1)/(5). They depend on the values of the parameters
h=jJj and D=jJj.

There are two distinct first excited states in phase B (see
Fig. 1a):

(1.1) for h=jJj40 and D=jJjr�1�h=jJj

jΦðlÞ
1 〉B ¼ j1〉1 � j1〉2 � ⋯ � j�1〉l � ⋯�j1〉N ; l¼ 1;2;…;N; ð13Þ

and

EB1�EB0
jJj ¼ 4 1þ h

jJj

� �
: ð14Þ

Replacing the result (14) in Eq. (12), we obtain

kTmax

jJj � 4
15

1þ h
jJj

� �
: ð15Þ

That gives the lowest temperature for which the first excited state
is expected to contribute to the behavior of the thermodynamic
functions. Eq. (15) shows that Tmax is independent of the value of
D=jJj. In this region of parameters of the Hamiltonian (1)/(5), the
action of the crystal field D term is more relevant than the
exchange coupling term J and the Zeeman term.

(1.2) for �1�h= J rD= J r1
2

�������� and h= J 40 [ D= J 41
2

�������� and
h= J ZD= J �1

2

��������
jΦðlÞ

1 〉B ¼ j1〉1 � j1〉2 � ⋯ � j0〉l � ⋯ � j1〉N ; l¼ 1;2;…;N; ð16Þ
and

EB1�EB0
jJj ¼ 2 1þ h

jJj�
D
jJj

� �
: ð17Þ

For this set of parameters h=jJj and D=jJj, Eq. (12) gives

kTmax

jJj � 2
15

1þ h
jJj�

D
jJj

� �
: ð18Þ

The results (15) and (18) belong to the same phase B and their
difference with respect to the first excited state come from the fact
that they describe the behavior of the chain of spins-1 in distinct
ranges of the parameters of the Hamiltonian: in case (1.1) (case
(1.2)) the effect of D=jJj is more (less) important than the exchange
coupling and the term Zeeman effect together.

(2) the first excited state in phase A (see Fig. 1a): D= J Z1
2

���� and
0rh= J rD= J �1

2

��������
jΦðlÞ

1 〉A ¼ j0〉1 � j0〉2 � ⋯ � j1〉l � ⋯ � j0〉N ; l¼ 1;2;…;N; ð19Þ
and

EA1�EA0
jJj ¼ 2 � h

jJjþ
D
jJj

� �
: ð20Þ

Replacing the variation of energy (20) in Eq. (12), we have

kTmax

jJj � 2
15

� h
jJjþ

D
jJj

� �
: ð21Þ

In the present case the value of Tmax depends on the value of
the crystal field D and Tmax is a decreasing function of h=jJj. The
latter implies that the ground state vector (8a) is less stable than
the vector (8b) and (8c) under an increasing external magnetic
field. In phase A of Fig. 1a we have a competition between the
crystal field D term and the other two terms in the ferromagnetic
Hamiltonian (1)/(5).

In Fig. 2 we plot the curves kTmax=jJj as a function of h=jJj for
three values of D=jJj, covering all the regions of h=jJjZ0 described
in the discussion of the first excited states of the ferromagnetic
classical spin-1 model (1)/(5). For D=jJj ¼ 2:5 we have phase A at
T¼0 and there is a competition between the action of the single-
ion anisotropy term and the two other terms in the Hamiltonian
(1)/(5). For 0rh=jJjr2 we have a negative slope in the curve
kTmax=jJj. This negative slope means that the first excited state can
be reached without increasing the temperature.

In Fig. 3a and b we plot the exact curves (solid lines) of Mz �
h=jJj with D=jJj ¼ �2 and 2.5 at kT=jJj ¼ 0:266 and 0.0665, respec-
tively. In Fig. 3a the z-component of the magnetization of the
ferromagnetic model begins at null value with h¼0 and reaches its
saturated value Mz ¼ 1 for variations of the magnetic field Δh so
that Δh=jJj � 7� 10�4. With D=jJj ¼ 2:5 the function Mz in Fig. 3b
has a continuous transition from Mz ¼ 0 to Mz ¼ 1 for
Δh=jJj � 4� 10�4. The maximum value of the entropy per site
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for these two cases is equal to 4:62� 10�3 at h¼0 and h=jJj ¼ 2.
These are the values of the external magnetic field that happens
the ferromagnetic phase transitions at T¼0 in diagram Fig. 1a.

In Fig. 3c we compare the graphs of the z-component of
the magnetization of the model with D=jJj ¼ 2:5 at two
different temperatures: kT=jJj ¼ 0:0665 (dotted line) and 0.11
(solid line). The latter value of temperature is almost twice
the value of kTmax=jJj with h¼0. It is clear from Fig. 3b and c the
presence of the two plateaus at Mz ¼ 0 and Mz ¼ 1 at those
low temperatures. These plateaus of Mz satisfy the Oshikawa,
Yamanaka and Affleck (OYA) condition [27]. We remind that
this condition, when applied to the periodic Hamiltonian (1)/(5)
with spin-1, imposes that pð1�MzÞ be an integer, where p is
the spatial period of the ground state. This is a necessary
condition for the occurrence of a plateau in the magnetization
curve of the one-dimensional spin system [8,27]. The same
condition is satisfied in Fig. 3a. In Fig. 3b, the transition between
the two plateaus happens at h=jJj ¼ 2, the value of the magnetic
field per unit of jJj in which this ferromagnetic model suffers a
transition between the phases A and B at D=jJj ¼ 2:5. Note that
doubling the temperature per unit of jJj does not change much
the “step-like” form of the plateaus in the curve of Mz . We could
say that in the standard ferromagnetic model the plateaus
are stiff.

From Fig. 3 we verify that outside the transition region Δh=jJj
where the value of Mz suffers a finite transition, the values of this
thermodynamic function correspond to their respective value of
the ground state in the phase diagram at T¼0. We can use a
phenomenological approach to fit Mz in the whole interval of h=jJj
at T≲Tmax. We assume that the contributions to Mz in the
transition region of h=jJj at T≲Tmax come only from the ground

Fig. 3. The exact and approximate expressions ofMz of the ferromagnetic spin-1 model (1)/(5) versus h=jJj. In (a) we have D=jJj ¼ �2 at kT=jJj ¼ 0:266. The solid (dotted) line
is its exact (approximate) expression. In (b) we have D=jJj ¼ 2:5 at kT=jJj ¼ 0:0665. The solid (dotted) line is its exact (approximate) expression. In (c) we compare the exact
expressions of MZ with D=jJj ¼ 2:5 at temperatures kT=jJj ¼ 0:11 (solid line) and 0.0665 (dotted line).

Fig. 2. The curves of kTmax=jJj for the three distinct first excited states of the
ferromagnetic model. The dotted line has D=jJj ¼ �2, the solid line has D= J ¼ �1

2

����
and the piecewise solid line has D=jJj ¼ 2:5. The vertical dashed line gives the value
of the magnetic field where the first excited state in the ferromagnetic phase A
changes.
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states in the density matrix operator (10). We have two distinct
situations to discuss.

Situation 1: h=jJj≳0 and D= J r1
2

���� . In this approximation we
obtain for h=jJj≳0:

MzðJ;D;h;βÞ ¼
e�βEB0 �e�βEC0

e�βEB0 þe�βEC0
¼

0B
E oEC0

tanhð2 J βNhÞ:
���� ð22Þ

Since we consider h=jJj to be non-zero and positive we have
EB0oEC0 . We do not have, a priori, a mathematical sound argument
to affirm that the approximation (22) gives the right picture of the
z-component of the magnetization in the ferromagnetic model at
low temperatures.

On the last term on the r.h.s. of result (22) we have a product of
two limit processes in the region of h=jJj � 0 : N-1 (thermody-
namic limit) and h=jJj-0. The result (22) depends on the assump-
tion that

lim
h
jJj-0
N-1

N 	 hjJj ¼ lðh;βÞ; ð23Þ

in which the function lðh;βÞ is assumed to be finite. The simplest
phenomenological function lðh;βÞ is a linear function

lðh;βÞ ¼ a 	 hjJj; ð24Þ

where we take a as a constant.
Situation 2: h= J �D= J �1

2

�������� and D= J Z1
2

���� . Assuming that for
T≲Tmax only the ground states of the ferromagnetic phases A and
B contribute to Mz, we derive the approximate expression of this

thermodynamic function Mz valid for D= J Z1
2

���� at low tempera-
ture,

MzðJ;D;h;βÞ � e�βNɛ

1þe�βNɛ
; ð25aÞ

where

ɛ� 2jJj h
jJj� �1

2
þD
jJj

� �� �
: ð25bÞ

Again in the exponential functions on the r.h.s. of Eq. (25a) we
need to calculate the product of two limits in the region
h= J � ð�1

2þD= J Þ : N-1
�������� and h= J -ð�1

2þD= J Þ
�������� . In analogy to

Eqs. (23) and (24) we write

lim
h=jJj� ð�1=2þD=jJjÞ-0

N-1
N 	 h

jJj� �1
2
þD
jJj

� �� �
¼ lðh;βÞ: ð26Þ

In this case we also take the simplest linear function for the
phenomenological function lðh;βÞ,

lðh;βÞ � a 	 h
jJj� �1

2
þD
jJj

� �� �
; ð27Þ

where a is a constant.
In Table 1 we present the values of the parameter a for various

values of D=jJj at distinct low temperatures. Some of the values of a
were used in the approximate curves of Mz in Fig. 3a and b.

4. The antiferromagnetic classical spin-1 model

Fig. 1b shows the six distinct phases at T¼0 for the AF spin-1
Ising model with a single-ion anisotropy term in the presence of a
longitudinal external magnetic field. With null crystal field (D¼0),
the model has only three different phases at T¼0.

The three terms in the AF (J¼þ1) Hamiltonian (1)/(5) com-
pete: the exchange coupling term J favors neighbor spins to align
anti-parallel. The most stable configurations of the AF ground state
happens when the effect of two terms on each spin in the chain
are in the same direction.

We present in Appendix B the ground state vectors and
energies of the six phases of the AF Hamiltonian (1)/(5) at T¼0
and their respective energy difference between the first excited
state and its ground state. We also present in that appendix the

Table 1
The values of the parameter a in Eqs. (24) and (27) for several values of D=jJj and
different values of temperature. Δh=jJj is the interval of variation of the magnetic
field in which the function Mz varies continuously between Mz ¼ 0 and Mz ¼ 1.

D
jJj

kT
jJj

A Δh
jJj

�2 0.06 2.9�1014 1.3�10�15

0.133 3.39�106 1.8�10�7

0.266 1.842�103 6.7�10�4

�1
2

0.0665 1.15�1013 2.9�10�14

0.1995 2.25�104 4�10�6

2.5 0.04 4.9�105 10�6

0.0665 3.42�103 10�3

Fig. 4. The functions kTmax=J � h=J for the AF classical spin-1 model. In (a) we have the curves with D=J ¼ �2 (dashed line) and D=J ¼ �1
2 (solid line), and in (b) D=J ¼ 1

3
(dashed line) and D=J ¼ 2:5 (solid line).
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relation between kTmax=J and the parameters h=J and D=J such that
the condition (11) is valid for the classical AF spin-1 model.

In Fig. 4 we plot the curves of kTmax=J for various values of D=J
that spans all AF phases at T¼0 in the phase diagram Fig. 1b. The
fundamental difference between Figs. 2 and 4 of the ferromagnetic
and AF models, respectively, is that the temperature required to
excite the first excited ferromagnetic state never vanishes.

In Fig. 4a with D=Jo0 we have Tmax ¼ 0 at h=J ¼ 1. The line
h=J ¼ 1 with D=Jo0 separates the phases B and G in diagram
Fig. 1b. The result Tmax ¼ 0 along this line means that the classical
AF spin-1 model (1)/(5) is gapless along the separation of these
two phases.

We also have Tmax ¼ 0 in Fig. 4b with D=J ¼ 1
3 at h=J ¼ 2

3 and 4
3.

These values of h=J are on the lines that separate the phases E⇌G
and B⇌E respectively. For the interval 0rD=Jr1

2 the AF model
(1)/(5) is gapless along the lines h=J ¼ 1�D=J and h=J ¼ 1þD=J.
At h=J ¼ 2:5 and h=J ¼ 3:5 with D=J ¼ 2:5 we also have Tmax ¼ 0 in
Fig. 4b. These values of h=J are on the lines that separate the
phases A⇌E and B⇌E respectively. The AF model (1)/(5) is gapless
for D=JZ1

2 along the lines h=J ¼D=J and h=J ¼ 1þD=J. We partially
summarize the contents of the curves in Fig. 4 by saying that the
classical AF spin-1 Hamiltonian (1)/(5) is gapless along the lines
that separate the phases in the diagram Fig. 1b at T¼0.

The presence of plateaus in the thermodynamic functions Mz

of the AF Hamiltonian (1) has been reported previously by some
authors [7,8,10] for positive values of D=J [8]. In the following we
discuss the behavior of the thermodynamic functions Mz and S of
the AF version of Hamiltonian (1), that is J¼1, by varying the value
of the crystal field per unit of J, D=J, to span part of the phase
diagram of the AF model (1) at T¼0 (see Fig. 1b).

Here we draw a more detailed comparison between our phase
diagram in Fig. 1b with the phase diagram of Ref. [8], in which only
the case D=J40 is considered. Before we continue the comparison,
we should notice that hChen ¼ 2h and DChen ¼ 2D, where h and D are
our parameters in the Hamiltonian (5). Their Fig. 2b agrees with
our diagram Fig. 1b for D=J40, except for the fact that in their
phase diagram the phase Mz ¼m¼ 0 does not distinguish the
phases A and G (see the caption of our Fig. 1b) that correspond to
different ground states. In our phase diagram of the AF model we
point out the presence of two tricritical points, that is, the points:
Pðh=J ¼ 1 and D¼0) and Qðh=J ¼ 1

2 and D=J ¼ 1
2Þ.

For D=Jo0 and h=jJj40 we have at T¼0 the phases B and G in
diagram Fig. 1b for the standard AF model. In this region of
parameters of the Hamiltonian we have a competition between
the states favored by the exchange coupling term and those
favored by the Zeeman term.

Fig. 5 shows the thermodynamic functions Mz and S versus h=J
with D=J ¼ �2 (long-dashed lines). The z-component of the
magnetization for D=jJjo0 has two plateaus, Mz ¼ 0 and
Mz ¼ 1, at very low temperatures. They satisfy the OYA condition
[27]. In this region of D=J, the transition between these two
plateaus happens at h=J ¼ 1, that is the value in which the
transition between the phases B and G at T¼0 also occurs, for
D=Jo0. Since along any vertical line in this region of D=J only two
phases are crossed at T¼0 (see Fig. 1b), the AF spin-1 Ising model
(1) has only two plateaus at very low temperatures for D=Jo0.
Fig. 5a shows the curve Mz � h=J at T=J ¼ 0:266, that is the same
temperature used in plotting this function for the ferro model
in Fig. 3a with D=J ¼ �2. The curve of Mz at T=J ¼ 0:266 still has
little resemblance to a “step-like” function. This behavior differs
from that of the magnetization of the standard ferromagnetic
model (see Fig. 3a). By comparing the behavior of the plateaus in
the magnetization in the standard ferro and the AF models
at T=J ¼ 0:266, we can say that the plateaus of the latter smear
out even at low temperatures. This happens because although
the neighbor spins are aligned (anti-aligned) in phase B (G) the
exchange coupling term and the Zeeman term together with
the crystal field D compete in promoting opposing effects on these
spins. Fig. 5b presents the entropy per site with D=J ¼ �2 at
T=J ¼ 0:266 (long-dashed line). From this plot we verify that we
cannot approximate the function Mz by taking into account only
the contribution of the two ground states of the phases B and G
as was done in the ferromagnetic version of the model. At
T=J ¼ 0:266, the interval Δh of the magnetic field for which the
transition between the plateaus Mz ¼ 0 and Mz ¼ 1 occurs is such
that Δh=J � 1. For temperatures of three orders of magnitude
lower, the function Mz as a function of h=J has a “step-like” form
and Δh=J � 10�3.

Next we consider the AF model (1) with D=jJj ¼ 2:5. In Fig. 5a
we plot Mz versus h=J at T=J ¼ 0:065 (solid line). We verify that at
this temperature three plateaus still occur; namely, at
MzA 0; 12;1

� 	
, for which the OYA condition is satisfied. We have

Fig. 5. The exact expressions of the thermodynamic functions Mz and S of the AF spin-1 model (1)/(5) are plotted versus h=J with D=J ¼ �2 and 2.5. (a) Mz as a function of
h=J with D=J ¼ �2 at T=jJj ¼ 0:266 (long-dashed line) and with D=J ¼ 2:5 at T=jJj ¼ 0:0665 (solid line). The entropy per site, S, is plotted in (b) for the same set of parameters:
D=J ¼ �2 at T=jJj ¼ 0:266 (long-dashed line) and D=J ¼ 2:5 at T=jJj ¼ 0:0665 (solid line).
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three plateaus in this case because the vertical line in the diagram
Fig. 1b, localized at D=jJj ¼ 2:5, crosses three phases (B, E and G).
The values h=J ¼ 2:5 and 3.5 where the transitions between the
plateaus of the z-component of the magnetization occur is the
same as that of the transition between the AF phases A⇌E and
E⇌B, respectively, of the standard model (1) at T¼0. Also in this
case the curve of Mz looses its “step-like” form at T=J ¼ 0:266. The
width of the transition between the plateaus of Mz is Δh=J � 0:5.
This width reduces to 10�3 for temperatures three orders of
magnitude lower than 0.0665.

To understand why the AF function Mz looses its “step-like”
form at T=J ¼ 0:266 and 0.665 with D=J ¼ �2 and 2.5 respectively,
we plot in Fig. 5b the function S as a function of h

J for these
two set of parameters. The function S is non-null around h=J ¼ 1
with D=J ¼ �2 (long-dashed line) and around the values
h=J ¼ 2:5 and 3.5 (solid line). These points in the phase diagram
Fig. 1b are on the transitions line between the phases A⇌E and
E⇌B respectively, of the standard model (1)/(5) with D=J ¼ 2:5 at
T¼0. Although the AF models are presented at very low
temperature, the excited states of the AF model already con-
tribute to the thermodynamic function Mz around the values of
h=J that correspond to the lines that separate the AF phases in
Fig. 1b.

The curve Mz � h=J with D=J ¼ 1
3 and 2.5 are very similar at low

temperatures. For D=J ¼ 0:25, the transition from the plateaus
Mz ¼ 0 to Mz ¼ 1

2 corresponds, in the phase diagram Fig. 1b, to
the transition G⇌E, whereas for D=J ¼ 2:5 (see Fig. 5a) the same
transition corresponds to the phase crossover A⇌E. The magneti-
zation functions are almost insensible if the initial configuration of
the spins is either a Néel state or a state with all the spins
perpendicular to the longitudinal magnetic field. Comparing
Fig. 6a and b, we see that the specific heat per site, CðJ;h;D;βÞ
ðC¼ �β2∂2½βW1�=∂β2Þ distinguishes the transitions A⇌E and G⇌E
at very low temperatures. In Fig. 6a the function C is symmetric
around h=jJj ¼ 0:75.

From Fig. 5a we could say that the plateaus of Mz in the AF
model (1)/(5) are soft, in the sense that they are already smeared
out at T=J ¼ 0:26 and 0.0665 with D=J ¼ �2 and 2.5 respectively.

Since Wstag
1 ðJ;h′;D′;βÞ ¼W1ð� J;h′;D′;βÞ, we obtain

SstagðJ;h;D;βÞ ¼ Sð� J;h;D;βÞ ð28Þ

and

Mstag
z ðJ;h;D;βÞ ¼Mzð� J;h;D;βÞ: ð29Þ

The plateaus in the z-component of the magnetization of the
standard ferromagnetic (AF) model (1) appear in the z-component of
the staggered magnetization of the staggered AF (ferromagnetic)
model (5). This fact implies that the plateaus in the staggered
magnetization of Hamiltonian (4) satisfy the OYA condition, but for
this thermodynamic function the AF model has only two plateaus for
D=jJj40.

The behavior of the curves of Sstag versus h=jJj of the staggered
ferro and AF models is identical to the curves of the entropy per
site of the standard AF and ferromagnetic models (1)/(5) respec-
tively. It is very simple to understand this situation once the phase
diagram at T¼0 of the staggered ferromagnetic and AF models are
depicted by Fig. 1b and a respectively.

5. Conclusions

The density matrix method [3] and the β-expansion of the HFE
[20] have been applied to the obtainment of the exact expressions
of the HFE's of the one-dimensional standard [21] and the
staggered [23] spin-1 Ising models with ðSzÞ2 term in the presence
of a longitudinal magnetic field. The analytic expressions of these
functions have been written in terms of exponentials of the
parameters of the Hamiltonians (4) and (1)/(5). Our results are
valid for their respective ferromagnetic ðJo0Þ and AF ðJ40Þ
models in the interval TAð0;1Þ, extending the results of Ref.
[12] to the AF models. These results do not coincide with the
results of Ref. [13]. We present the phase diagram of the standard
and the staggered spin-models (1)/(5) and (4), respectively, at
T¼0. Our result also gives the exact HFE of the one-dimensional
extended Hubbard model in the ionic limit but in the absence of
an external magnetic field.

We have studied the behavior of the z-component of the
magnetization Mz and the entropy S, both per site, of the ferro-
magnetic and AF models of Hamiltonian (1)/(5) at low temperatures
and their respective staggered versions.

We have presented the two plateaus of Mz at low tempera-
tures of the standard ferromagnetic model for D= J 41

2

���� and show

Fig. 6. Comparison of the behavior of the function C � h=J under the transitions G⇌E and A⇌E at low temperature. In (a) we have the transition G⇌E with D=J ¼ 0:25.
In (b) is plotted the specific heat per site of the transition A⇌E with D=J ¼ 2:5. For both curves of the exact expression of C we have kT=J ¼ 0:01.
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that the value in which the transition between plateaus at low
temperatures occurs is the same as that of diagram Fig. 1a.

For the AF model (1)/(5) we show that the number of plateaus
of the z-component of the magnetization at very low temperatures
depends on the number of phases of the model at T¼0 for a given
value of D=jJj. Our results for the AF model with D=jJj40 agree
with previous results in the literature [7,8,10].

The ferromagnetic classical spin-1 model (1)/(5) has highly
degenerate excited states, but we showed that for temperatures
T≲Tmax the function Mz can be approximated by the contribution
of only two ground states. This fact is not true for the AF model
because it is gapless for values of h=J and D=J along the line
separating the AF phases in the diagram Fig. 1b at T¼0.

The AF specific heat at very low temperatures distinguishes the
phase transitions E⇌G (at h=J ¼ 0:75) and E⇌B (at h=J ¼ 1:25) at
D=jJj ¼ 0:25 and 2.5, respectively, in Fig. 6.

By comparing the plots of the Mz as a function of h=J at
T=jJj ¼ 0:266 and 0.0665 to D=J ¼ �2 and 2.5 respectively, we
verify that the plateaus of this function of the standard ferro and
AF models can be called stiff and soft, respectively.

All the plateaus in the z-component of the magnetization of the
ferro and AF models of the standard and staggered version satisfy
the OYA condition.

As a final comment we should say that the presence of plateaus
in the function Mz in the classical spin-1 Ising model with single-
ion anisotropy term in the presence of a longitudinal magnetic
field comes from the stability at low temperature of the ground
state vector under the action of increasing the norm of the
external magnetic field and the temperature.
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Appendix A. Calculation of the roots of the third degree
equation of the spin-1 classical model

Krinsky and Furman applied the transfer matrix method [1–3]
to calculate the HFE of the classical spin-1 model in Ref. [12]. The
roots coming from the cubic equations have to be real, but they
write them in terms of complex quantities. When we handle those
roots numerically these complex quantities may not disappear. In
this appendix we recalculate their results for Hamiltonian (1)/(5),
showing explicitly that the roots of the cubic equation are real.

Following Ref. [3] we obtain that the partition function
Z1ðJ;h;D;βÞ of the spin-1 Hamiltonian (1)/(5) is equal to

Z1ðJ;h;D;βÞ ¼ Tr½UN�; ðA:1Þ

where N is the number of sites in the periodic chain and the
matrix U for the symmetric Hamiltonian (5) is

UðJ;h;D;βÞ ¼
e�βðJþ2hþ2DÞ e�βðhþDÞ e�βð� Jþ2DÞ

e�βðhþDÞ 1 e�βð�hþDÞ

e�βð� Jþ2DÞ e�βð�hþDÞ e�βðJ�2hþ2DÞ

2
64

3
75: ðA:2Þ

The matrix UðJ;h;D;βÞ is Hermitian for any value of J, h, D and β.
Its three eigenvalues λi, i¼1, 2 and 3, are real. The matrices U
(see Eq. (A.2)) and T (in Ref. [12]) differ by a rearrangement of
lines, only.

In terms of the eigenvalues of U, the partition function (A.1)
becomes

Z1ðJ;h;D;βÞ ¼ ðλ1ÞN 1þ λ2
λ1

� �N

þ λ3
λ1

� �N
" #

; ðA:3Þ

in which λ1 is assumed to be the eigenvalue of matrix U with the
largest modulus.

In the thermodynamic limit ðN-1Þ, the partition function
(A.1) of the model is

Z1ðJ;h;D;βÞ ¼ ðλ1ÞN ; ðA:4Þ
for non-degenerate eigenvalues of U. The HFE of the model is

W1ðJ;h;D;βÞ ¼ �1
β
ln ½λ1ðJ;h;D;βÞ�: ðA:5Þ

The eigenvalues λi, i¼1, 2, 3, are roots of the cubic equation

�λ3þPλ2þQλþR¼ 0; ðA:6Þ
where

P ¼ 1þ2e�βðJþ2DÞ cosh ð2βhÞ ¼ tr½U� ðA:7aÞ

Q ¼ 4e�2βDe�βJ=2 cosh ð2βhÞ sinh βJ
2

� �
þ2e�4βD sinh ð2βJÞ; ðA:7bÞ

R¼ �8e�4βD sinh
βJ
2

� �� �2
sinh ðβJÞ: ðA:7cÞ

The roots of the cubic equation (A.6) are well known [24]

s1 ¼ 2
ffiffiffiffiffiffiffiffiffi
� ~Q

q
cos

θ
3

� �
þP
3
; ðA:8aÞ

s2 ¼ 2
ffiffiffiffiffiffiffiffiffi
� ~Q

q
cos

θ
3
þ2π

3

� �
þP
3
; ðA:8bÞ

s3 ¼ 2
ffiffiffiffiffiffiffiffiffi
� ~Q

q
cos

θ
3
�2π

3

� �
þP
3
; ðA:8cÞ

where

cos ðθÞ ¼
~Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� ~Q Þ3
q ðA:9aÞ

with

~Q ¼ �3QþP2

9
ðA:9bÞ

and

~R ¼ 9QPþ27Rþ2P3

54
: ðA:9cÞ

Our previous result s1 does not agree with the expression of
λmax of the model 2 in Ref. [13]; we believe that there are some
misprints in their Eqs. (18)–(24).

Appendix B. The ground states of the classical AF spin-1 and
the calculation of Tmax

For the AF version of the Hamiltonian (1)/(5) we assume that the
chain has a even number of sites. Let N¼ 2M, inwhichM is a positive
integer. In the thermodynamic limit ðN-1Þ we have M-1.

The ground state vectors at each phase in Fig. 1b at T¼0 are

jΨ 0〉A ¼ j0〉1 � j0〉2 � ⋯ � j0〉2M ; ðB:1aÞ

jΨ 0〉B ¼ j1〉1 � j1〉2 � ⋯ � j1〉2M ; ðB:1bÞ

jΨ 0〉C ¼ j�1〉1 � j�1〉2 � ⋯ � j�1〉V ; ðB:1cÞ
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jΨ 0〉E ¼ j0〉1 � j1〉2 � j0〉3 � j1〉4 � ⋯ � j0〉2M�1j1〉2M ; ðB:1dÞ

jΨ 0〉F ¼ j0〉1 � j�1〉2 � j0〉3 � j�1〉4 � ⋯ � j0〉2M�1j�1〉2M ; ðB:1eÞ

jΨ 0〉G ¼ j1〉1 � j�1〉2 � j1〉3 � j�1〉4 � ⋯ � j1〉2M�1j�1〉2M : ðB:1fÞ
One is reminded that Szi js〉i ¼ sjs〉i, s¼ 0; 71 and i¼ 1;2;…2M.

We are interested in the discussion of the thermodynamic
function Mz at low temperatures. This function has an even
dependence on h=J; then we restrict our discussion to h=JZ0.
In the following we do not mention the quantum behavior of the
phases C and F at low temperature.

The value of the ground state energy of the phases A, B, E and G
are, respectively,

EA0
J
¼ 0; ðB:2aÞ

EB0
J
¼N 1þ2D

J
�2

J

� �
; ðB:2bÞ

EE0
J
¼N

D
J
�h
J

� �
; ðB:2cÞ

EG0
J
¼N �1þ2D

J

� �
: ðB:2dÞ

We have a much more complex distribution of first excited
states E1 in the AF spin-1 Ising model (1)/(5) than in the
ferromagnetic version of the model.

Let us present the difference between the first excited and the
ground states of each phase A, B, E and G in Fig. 1b.

(1) Phase A: D=JZ1
2 and h=JrD=J. We have

E1�EA0
J

¼ 2 �h
J
þD

J

� �
; ðB:3Þ

which is substituted in Eq. (12) to give

kTmax

J
� 2
15

�h
J
þD

J

� �
: ðB:4Þ

(2) Phase B: We have two distinct first excited states
(2.1) D=Jr0 and h=JZ1�D=J [ D=JZ0 and h=JZ1þD=J. Then

E1�EB0
J

¼ 2 �1þh
J
�D

J

� �
ðB:5Þ

and Eq. (12) gives

kTmax

J
� 2
15

�1þh
J
�D

J

� �
: ðB:6Þ

(2.2) D=Jr0 and 1rh=Jr1�D=J. Then

E1�EB0
J

¼ 4 �1þh
J

� �
; ðB:7Þ

and Eq. (12) becomes

kTmax

J
� 4
15

�1þh
J

� �
: ðB:8Þ

(3) Phase E: In this phase we have three distinct first excited
states.

(3.1) 0rD=Jr1
2 and 1�D=Jrh=Jr1. We have

E1�EE0
J

¼ 2 �1þh
J
þD

J

� �
; ðB:9Þ

with Eq. (12) giving

kTmax

J
� 2
15

�1þh
J
þD

J

� �
; ðB:10Þ

(3.2) 0rD=Jr1
2 and 1rh=Jr1þD=J [ D=JZ1

2 and
1
2þD=Jrh=Jr1þD=J. We have

E1�EE0
J

¼ 2 1�h
J
þD

J

� �
; ðB:11Þ

which gives

kTmax

J
� 2
15

1�h
J
þD

J

� �
: ðB:12Þ

(3.3) 1
2rD=Jr1 and 1rh=Jr1

2þD=J [ D=JZ1 and
D=Jrh=Jr1

2þD=J. We have

E1�EE0
J

¼ 2
h
J
�D

J

� �
; ðB:13Þ

that substituted in Eq. (12) gives

kTmax

J
� 2
15

h
J
�D

J

� �
: ðB:14Þ

(4) Phase G: In this phase we have two distinct first excited states.
(4.1) D=Jr�1 and 0rh=Jr1 [ �1rD=Jr0 and

h=Jr1þD=J. We have

E1�EG0
J

¼ 4 1�h
J

� �
: ðB:15Þ

From Eq. (12) we obtain

kTmax

J
� 4
15

1�h
J

� �
: ðB:16Þ

(4.2) �1rD=Jr0 and h=Jr1þD=J [ 0rD=Jr1
2 and

1
2rh=Jr1�D=J [ 0rD=Jr1

2 and 0rh=Jr1
2. We have

E1�EG0
J

¼ 2 1�h
J
�D

J

� �
; ðB:17Þ

with Eq. (12) given

kTmax

J
� 2
15

1�h
J
�D

J

� �
: ðB:18Þ
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