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The temperature dependencies of magnetic response functions of the anhydrous dihalides of iron-

group elements are examined in the neighborhood of the multicritical points (tricritical point, critical

end point, and double critical end point) within molecular field approximation. Our findings reveal the

fact that the spin -1
2 metamagnetic Ising system exhibits anomalies in the temperature dependence of

the magnetic response functions for ro0:3. In addition, we extensively investigated how an inter- and

intra-layer exchange interaction ratio influence the magnetic response properties of these systems.

Finally, a comparison has been made with related works.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Intensive theoretical and experimental efforts have been devoted
to investigating the multicritical phenomena for more than half a
century. The tricritical point (TCP) is one of the first multicritical
points which can be roughly viewed as a point separating a second-
order transition line from a first-order transition line and at which
the three coexisting phases simultaneously become critical. Itinerant
ferromagnets [1], multicomponent fluid mixtures [2], pentenary
micro-emulsions [3], ammonium chloride [4], and 3He–4He mix-
tures [5] are other systems that represent tricritical behavior. In
addition, it is shown that there exist TCPs in an experimentally
accessible three-dimensional space of the electric field, temperature,
and pressure in ferroelectrics [6]. For an extensive review on the
critical behavior of the ferroelectrics at Lifshitz points, tricritical
points, and tricritical Lifshitz points, see Ref. [7].

On the other hand, a critical end point (CEP) appears when a
line of second-order phase transitions terminates at a first-order
phase boundary delimiting a new noncritical phase. At this
multicritical point, a line of second-order phase transitions inter-
sects with a first-order phase boundary beyond which a new
noncritical phase is formed. Binary alloys [8], relaxor ferroelec-
trics [9], binary fluid mixtures [10], ferromagnets [11], the
random-field Ising model [12], and metamagnets [13,14] are the
physical systems in which the CEP is common. In 1997, an extensive
ll rights reserved.
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nar).
Monte Carlo (MC) simulation [15] presented the singular behavior of
the first-order transition line close to CEP in a classical binary fluid
[16–18].

In addition to TCP and CEP, the double critical (bicritical) end
point (DCP) appears where two critical lines end simultaneously at a
first-order phase boundary. DCPs have been observed in binary and
quasi-binary mixtures [19], and there is also some indication of the
existence of a DCP in the metamagnet FeBr2 [20,21]. According to
mean-field approximation (MFA), the next-nearest-neighbor
Ising anti-ferromagnetic model, the layered metamagnet and the
random-field Ising model have DCPs [12,13,22]. In addition, MC
simulations exhibited the decomposition of the TCP into a DCP and a
CEP in three dimensional spin-1 Blume–Capel (BC) model [23]
whereas, in d¼2 only a fully stable TCP is observed [24]. Recently,
Plascak and Landau studied the behavior of the d¼2 spin -3

2 BC
model near the DCP via extensive MC simulations [25].

The behavior of the staggered and direct susceptibilities in the
neighborhood of phase transitions has been a subject of experi-
mental and theoretical research for quite a long time: In 1975, a
two lattice model of anti-ferromagnetic phase transitions is
discussed in detail using the Gell–Mann–Low formulation of
renormalization group methods and Wilson’s E expansion [26].
In this study, Alessandrini et al. have obtained the disordering and
the staggered susceptibilities in terms of two-point function at
zero magnetic field and zero momentum [26]. Later, Landau has
obtained MC data for a simple cubic anti-ferromagnet with
nearest- and next-nearest-neighbor interactions which reveal
asymptotic tricritical behavior of the order parameter and high-
temperature susceptibilities which are mean-field-like without
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corrections and in agreement with renormalization-group calcula-
tions [27,28]. Using the high-temperature series expansion for the
extended Hubbard model, Barkowiak et al. have obtained the series
to the sixth order for the staggered magnetic and the charge-ordered
susceptibilities [29]. Recently, Li et al. studied the susceptibility of
the two-dimensional Ising model on a distorted Kagome lattice by
means of the exact solutions and the tensor renormalization-group
method [30]. In addition, magnetic behaviors of the b-Cu2V2O7

single crystals are investigated by means of magnetic susceptibility
measurements [31]. Millis et al. reported the measurements of the
magnetization and the susceptibilities of a series of samples of two
different variants of the molecular magnet Mn12-ac: the usual, much
studied form referred to as Mn12-ac and a new form abbreviated as
Mn12-ac-MeOH [32].

Metamagnetic materials are of great interest since it is
possible to induce novel kinds of critical behavior by forcing
competition between ferromagnetic and anti-ferromagnetic cou-
plings existing in them, in particular by applying an external
magnetic field. Magnetic materials that exhibit field-induced
transitions can generally be divided in two classes; (i) highly
anisotropic, (ii) weakly anisotropic or isotropic. The phase transi-
tions in anisotropic materials (class (i)) are usually characterized
by simple reveals of the spin directions which are in contrast with
transitions in class (ii). The field-induced transitions in class (ii)
materials are related to a rotation of the local spin directions [33].
Iron group dihalides; compounds such as FeCl2, FeBr2, FeCl22H2O,
FeMgBr2, CoCl2 and NiCl2 fall in the first class [34,35]. Some
theoretical Hamiltonian models describing the behavior of iron
group dihalides have been proposed. MC [36,37] and high-
temperature series expansion calculations [38,39] have been
performed on the simple cubic lattice Ising model with in-plane
ferromagnetic coupling and anti-ferromagnetic coupling between
adjacent planes (the metamodel) and on the next-nearest-neigh-
bor (nnn) model with anti-ferromagnetic nearest-neighbor (nn)
and ferromagnetic nnn interactions. Recently, a MC simulation
has been performed on a quite realistic model of FeCl2 in a
magnetic field [40] and this typical metamagnet has also been
treated by the high-density expansion method on the two-
sublattice collinear Heisenberg–Ising (S¼1) metamagnet with
uniaxial three- and four-ion anisotropies [41,42]. In addition,
metamagnetism has also been discussed for magneto-caloric
applications: Mukherjee et al. discussed the concept of magnetic
cooling by utilizing multi-layers. They provided an experimental
evidence of principle, and explained the involved thermody-
namics by a two-sublattice mean-field model [43]. Gulpinar and
Vatansever have presented a study which investigates the critical
behavior of the AC anti-ferromagnetic and ferromagnetic suscept-
ibilities of nnn model with anti-ferromagnetic nn and ferromag-
netic nnn interactions [44]. In this paper, the temperature
variations of the equilibrium and the non-equilibrium anti-
ferromagnetic and ferromagnetic susceptibilities of a metamag-
netic system are examined near the critical point.

Harbus and Stanley investigated the spin -1
2 Ising metamagnet

via high temperature expansions and shown that the staggered
susceptibility has an exponent 5

4 at the critical line, while at the
TCP, the direct magnetic susceptibility shows a tricritical expo-
nent of 1

2 [45]. A study on a dilute hexagonal anti-ferromagnet
(Fe0:85Mg0:15Br2) which is under the effect of an axial external
field has illustrated the existence of a spin-flop phase line ending at
a multicritical point [46]. Katori et al. reported that the diamagnetic
impurities in the diluted anti-ferromagnet Fe0:95Mg0:05 Br2 have
given rise to random-field criticality along the second-order phase
line between TN ¼ 13:1 K and a multicritical point at TM ¼ 5 K, and
to a spin-flop transition line between TM and TCEP ¼ 3:5 K [47]. In
that study, field variances of the field derivatives of the total magne-
tization (@m=@H versus H), and temperature, field dependencies of the
complex direct susceptibilities which have been obtained by means of
the super-conducting quantum interference device and Faraday
rotation techniques have been investigated in detail. In addition, it
is discussed by Azevedo et al. that regions of strong noncritical
fluctuations are encountered above the multicritical point, apart from
the critical phase line HC(T) [48]. Recently, Chou and Pleimling have
investigated the equilibrium behavior of the Ising metamagnets in
thin film geometry and shown that the phase diagram of the thin film
Ising metamagnets includes an additional intermediate phase in
which one of the surface layers has aligned itself with the direction
of the external magnetic field. This additional phase transition is of
first-order and the first-order transition line ends in a CEP [49].
Although much effort devoted the critical and multicritical behavior
of the metamagnetic systems, to the best of our knowledge, there has
been no studies investigating the temperature and field dependencies
of direct magnetic and staggered magnetic susceptibilities of iron
group dihalides by making use of the spin -1

2 metamagnetic Ising
model in the neighborhood of its multicritical critical points such as
CEP, DCP, and TCP.

The layout of this paper is as follows: the derivation of the
expressions describing the mean field staggered magnetic and
magnetic susceptibilities is represented in Section 1. The results
describing the temperature and field dependencies of the direct
and staggered magnetic response functions are given in Section 3,
and finally Section 4 contains the conclusions and discussions.
2. Equilibrium magnetic response functions of iron group
dihalides

In iron group dihalides, there exists two competing interactions
which characterize the metamagnetic feature of the materials. The
nn interactions in the Hamiltonian of the spin -1

2 metamagnetic Ising
model should be anti-ferromagnetic Jo0, whereas the nnn inter-
actions should be ferromagnetic J040. Because of the existence of
the anti-ferromagnetic coupling, for the sake of the analysis, it is
convenient to divide the system into two sublattices. Under these
conditions, the total Hamiltonian can be written as below:

Ĥ ¼�
X

i,jEa,kEb
siðJsjþ J0skþHþHsÞ�

X
i,jEb,kEa

siðJsjþ J0skþH�HsÞ, ð1Þ

where si ¼ 71 is the spin variable and H and Hs are the physical
and staggered external magnetic fields.

The mean-field Helmholtz free energy per spin is

f ¼
1

2
Jz1mamb�

1

4
J0z2ðm

2
aþm2

bÞ�
1

2
mHðmaþmbÞ�

1

2
NmHsðma�mbÞ

�
kT

4
ð4 ln 2�ð1þmaÞlnð1þmaÞ�ð1�maÞlnð1�maÞ

�ð1þmbÞlnð1þmbÞ�ð1�mbÞlnð1�mbÞÞ: ð2Þ

In the constant magnetic field distribution, the sublattice magne-
tization ma and mb are functions of the independent variables T, H,
and Hs so that free energy per spin represented by Eq. (2) is a non-
equilibrium thermodynamic potential which depends on several
order variables [50]. The equilibrium state corresponds to the
minimum of f with respect to ma and mb. In order to investigate
the behavior of the metamagnetic system in the neighborhood of
phase transition points, it is more convenient to formulate the
system in terms of total and staggered magnetization which are
given as follows:

mt ¼
maþmb

2
, ms ¼

ma�mb

2
: ð3Þ

Inserting ma and mb in Eq. (3), one obtains the following mean-
field equations of state for the spin -1

2 metamagnetic Ising model
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on a cubic lattice as below

mt ¼
1

2
tanh

z2rma�z1mbþHrþHsr

Tr

� ��

þtanh
z2rmb�z1maþHr�Hsr

Tr

� ��
,

ms ¼
1

2
tanh

z2rma�z1mbþHrþHsr

Tr

� ��

�tanh
z2rmb�z1maþHr�Hsr

Tr

� ��
, ð4Þ

here Hr ¼ mH=J0, Hsr ¼ mHs=J0, Tr ¼ kBT=J0, r¼ J=J0, z1 ¼ 2, and z2 ¼ 4.
The spin -1

2 metamagnetic Ising model exhibits field-induced
phase transitions. Kincaid and Cohen has shown in their extensive
review that metamagnetic Ising model exhibits different types of
phase boundaries [13]. In this study, a Landau expansion of the
free energy is performed and the possibility of different phase
diagrams has been revealed by a careful analysis of the signs of
the coefficients. Moreira et al. have extended this analysis con-
sidering terms up to 12th order [51]. The Landau expansion
consists in expressing the mean-field free energy given by
Eq. (2) in a power series of the order parameter (ms) which
vanishes near the critical point:

CðT,H,msÞ ¼
Xn

k ¼ 0

c2kðT ,HÞm2k
s : ð5Þ

The spin -1
2 metamagnetic Ising model exhibits different phase

diagram topologies according to the values and signs of the
expansion coefficients as well as the value of the ratio of the
exchange interactions (Z¼ z2J=z1J0). For Z40:6, the phase dia-
gram contains a TCP. In this case there are three types of phase
transition points:
(i)
 If c2 ¼ 0 and c440, an ordinary critical point takes place.

(ii)
 If c2 ¼ 0, c4 ¼ 0, and c640, one observe a TCP whose

location in the field-temperature plane (hTCP ,tTCP) depends
on Z

hTCP ¼
tTCP

2
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�tTCP

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�tTCP

p þ
1�Z
1þZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�tTCP

p
,

tTCP ¼ 1�
1

3Z

� �
, ð6Þ

here h¼ mH=ðz2Jþz1J0Þ,t¼ kBT=ðz2Jþz1J0Þ and Hs¼0.

(iii)
 If c2 ¼ 0, c4o0, and c640, a first-order transition appears.
At Z¼ 0:6 different type of critical behavior is observed. Kincaid
et al. named this point as a higher order point (Tn). At this specific
point, c2 ¼c4 ¼c6 ¼ 0 and the coexistence mn�Tn curve inter-
sects the l line in a manner similar to this which happens when
Z40:6 [13,51]. The difference arises from the fact that the lower
branch of the coexistence curve approaches the critical point
parabolically. The TCP point decomposes into the DCP and CEP for
Zo0:6 with a line of first-order transitions in between separating
two anti-ferromagnetic phases [13,14].

The staggered magnetic susceptibility of a metamagnetic
system is

ws ¼ lim
Hsr -0

@ms

@Hsr

: ð7Þ

If one uses this definition and the equations of state given in Eq. (9),
the staggered magnetic susceptibility can be written as below:

ws ¼ lim
Hsr -0

c2a12�a22c1

a21a12�a22a11

� �
: ð8Þ

The relations for a11, a12, a21, a22, c1, and c2 are given in Appendix A.
The direct magnetic susceptibility (wt) corresponds to the
response function of a system due to the variance of physical
field and it can be expressed as

wt ¼ lim
Hsr -0

@mt

@Hr
: ð9Þ

Following the similar steps we have used in obtaining staggered
magnetic susceptibility, one obtains wt as

wt ¼ lim
Hsr -0

b22d1�b12d2

b11b22�b12b21

� �
, ð10Þ

b11, b12, b21, b22, d1, and d2 are given in Appendix B. Before
discussing the findings of mean field analysis done in this paper
one should note that the role of fluctuations, consequently the
self-consistency of mean field theory can be assessed by applying
a real space version the Ginzburg criterion: Nielsen and Birgenau
shown that the concept of marginal dimensionality dn emerges in
a natural way [52]. As it is discussed in Ref. [52], the marginal
dimensionality is given by the following expression:

dn
¼ ðgþ2bÞ=ðn�mÞ, ð11Þ

where m is a parameter which takes different values for the
systems with short range interactions, TCPs and percolation
phenomena. For d4dn, MFA represents a self-consistent picture
at least insofar as the critical exponents are concerned. Ising
model with only nn interactions, which is a paradigmatic model
of cooperative phenomena with short range interactions, corre-
sponds to the case m¼0 and dn

¼ 4. Consequently, MFA is not
self-consistent for the d¼3 Ising model. If d is further away from
dn, i.e. for two dimensional Ising model and d¼2 anti-ferromagnet
K2CoF4, one should expect even more larger deviations from the
mean-field exponents [53,54]. On the other hand, the systems
such as the Ising type metamagnet FeCl2 and 3He–4He mixtures
which have TCPs are characterized with dn

tcp ¼ 3. Thus, we should
note that the analysis and critical exponents given in this study
are in accordance with conventional there-dimensional systems
with logarithmic correction terms. The experimental results
reveal the fact that the phase diagrams of the FeCl2 [55,56] and
3He–4He mixtures [57–59] are well depicted by MFA with
marginal dimensionality corrections [52].
3. Results

Fig. 1(a) and (b) represents the behavior of staggered and
direct magnetic susceptibilities of the spin -1

2 metamagnetic Ising
model in the neighborhood of TCP for r¼1.0. One can see from the
figure that the staggered susceptibility (ws) increases rapidly with
increasing temperature and diverges at the TCP. Meanwhile, there
is a discontinuity in the direct magnetic susceptibility (wt) at the
TCP. We should note that Z̧ukovic et al. presented a study on the
dilute metamagnetic Ising Model within effective field theory
(EFT) which takes account of the spin correlations [60,61].
Comparing Fig. 12 of Ref. [60] with Fig. 1(b) of the present paper,
one can see that our results are in accordance with the results of
EFT. We should stress that the discontinuity in the direct
susceptibility (wt) is an artifact of MFA. It is discussed in detail
in the fourth chapter of Ref. [50] that the discontinuity in the non-
ordering parameter’s response function is a characteristics of a
second-order transition. Here we observe that same behavior is
valid also for the TCP. In addition, Z̧ukovic et al. shown the
existence of a finite jump in the inverse direct susceptibility of the
dilute metamagnetic Ising model at TC as well as TTCP (see Ref. [60,
Fig. 9 and Fig. 12]). Fig. 2 illustrates the temperature variation of
the tricritical direct magnetic susceptibility for various values of
the ratio of the exchange interactions (r). One can see from this



Fig. 1. Behaviors of staggered (a) and magnetic (b) susceptibilities each as a function of reduced temperature for Hr ¼ mH=J0 ¼ 1:354 and r¼ J=J0 ¼ 1:0. For these values, the

system has a TCP. And also, staggered susceptibility increases rapidly with increasing temperature and diverges as the temperature approaches to the TCP.

Fig. 2. The temperature variation of the tricritical direct magnetic susceptibility

for various values of the ratio of the exchange interactions. Here the arrows

illustrate the phase transition temperatures.
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figure that the amplitude of the ferromagnetic susceptibility
grows considerably high values for r41:78.

One of the characteristic behavior of the spin -1
2 metamagnetic

Ising model for strong anti-ferromagnetic case is the existence of
the re-entrance phenomena. One can see this fact in the phase
diagram of the system for ro0:3. For high values of the magnetic
field, the spin -1

2 metamagnetic Ising model is in a disordered state
for Tr-0 and there is a transition from disorder to order at a finite
temperature. In addition, the system undergoes another second-
order phase transition between ordered and disordered phases in
high temperature regime (see Fig. 6(a) and (b) of the present
paper).

Fig. 3(a) illustrates the temperature dependence of anti-ferro-
magnetic susceptibility for H¼HrDCP

¼ 1:994 which corresponds
to the field value of the DCP of the spin -1

2 Ising model for r¼0.2.
For r¼0.2 and H¼HrDCP

¼ 1:994, firstly, the system undergoes a
second-order transition from paramagnetic phase to anti-ferro-
magnetic phase at TrN1

oTrDCP
. The staggered susceptibility

diverges as T-TrN1
and T-TrDCP

. In addition, one can clearly see
from Fig. 3(a) that there exist a non-critical maximum at the
ordered phase. This maximum corresponds to an anomaly in the
multicritical behavior of iron group dihalides. It is important to
emphasize that Selke has reported the existence of the two lines
of anomalies in the MFA phase diagram of the spin -1

2 Ising model
at which the temperature derivative of the total magnetization
exhibits an isomagnetic maximum below the transition point (see
Ref. [14, Fig. 3]). In that study, the anomalies are related to the
competing ordering tendencies of the external field and the inter-
layer couplings in a metamagnetic crystal. Pleimling and Selke
have investigated the anomalies of the specific heat and the total
magnetization in the ordered phase of related spin models to
FeBr2 by extensive numerical simulations [62]. Their results
suggest that the anomalies usually do not correspond to a sharp
phase transition [62]. We should also note that, there are experi-
mental data which emphasizes the anomalies for quite some time
[13]. There have been various experimental studies on the field-
induced Griffiths phase in Ising-type metamagnets such as FeBr2,
FeCl2 and Fe1�xZnxF2 [63,64]. Katori et al. commented the phase
line due to anomalies is probably due to symmetric non-diagonal
exchange in Fe0:95Mg0:05Br2 [47]. Fig. 3(b) shows the temperature
variation of ferromagnetic susceptibility for H¼HrDCP

. In this case
the signature of the second-order transition from paramagnetic
phase to anti-ferromagnetic phase is a discontinuity in the direct
magnetic susceptibility which is in accordance with the literature
[44,50]. In addition, there exists a special multicritical point
which separates the two different anti-ferromagnetic phases
(AFI and AFII). This special continuous phase transition is of
fourth-order and the direct magnetic susceptibility represents a
discontinuity at the DCP. In addition, direct susceptibility has a
finite jump at TrN2

, the regular second-order transition tempera-
ture from anti-ferromagnetic phase to paramagnetic phase.
Fig. 4(a) and (b) shows the temperature dependencies of stag-
gered and direct susceptibilities of the spin -1

2 metamagnetic
system for r¼0.2 and H¼HrCEP

¼ 1:99176. At this value of the
reduced physical magnetic field, the system undergoes two phase
transitions of different character. The first transition which occurs
at the CEP which is of fourth-order [13]. This transition is between
the disordered phase at lower temperatures and the anti-ferro-
magnetic phase at higher temperature regime. One can easily
observe from Fig. 4(a) and (b) that the staggered susceptibility
diverges at CEP and the direct magnetic susceptibility shows a
discontinuity. Similar to the anomaly at H¼HrDCP

, both wt and ws

make non-critical maximums in the anti-ferromagnetic phase. In
Fig. 5(a) and (b) we have given the temperature variations of the
magnetic response functions of the system for different constant
reduced physical field values. One can see from these figures that
the broad maximum in the ordered phase declines with decreas-
ing the amplitude of the physical external magnetic field. Finally,
the line of anomalies in the staggered and direct susceptibilities is
depicted in Fig. 6. Here ðT�HÞw denotes the field and temperature



Fig. 3. The temperature dependencies of staggered and total susceptibilities in the neighborhood of the DCP and second-order phase transition point which takes place for

the value of the reduced magnetic field HrDCP
¼ 1:994 for r¼0.2. Here the arrows illustrate the phase transition temperatures.

Fig. 4. The temperature dependencies of staggered and total susceptibilities in the neighborhood of the CEP and second-order phase transition point which takes place for

the value of the reduced magnetic field HrCEP
¼ 1:99176 for r¼0.2. Here the arrows illustrate the phase transition temperatures.

Fig. 5. The behavior of (a) the staggered susceptibility ws and (b) the direct magnetic susceptibility wt as a function of the reduced temperature, where Tr ¼ kBT=J0 is for

several values of reduced field, Hr ¼ mH=J0 .
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values at which both the staggered and direct susceptibilities
exhibit a broad maximum in the ordered phase as exemplified in
Figs. 3 and 4.Unlike the anomalies discussed by Selke, the broad
maximum does not diverges as one approaches the double critical
endpoint. Further, the anomalies the magnetic response functions
of the metamagnetic Ising system disappear for the case rZ0:3
where the critical end point and the double critical end points
emerge to a TCP. We should note that there is no re-entrance in
the phase diagram for rZ0:3.
4. Conclusions and discussions

In this paper, the temperature dependencies of the magnetic
response functions of spin -1

2 Ising model are studied in the neighbor-
hood of multicritical points. The expressions that describe the
staggered (anti-ferromagnetic) and direct (ferromagnetic) suscept-
ibilities are derived by making use of the MFA. The findings of this
study can be summarized as follows: the direct susceptibility exhibits
discontinuity not only at the second-order transition point but also at



Fig. 6. (a) The calculated MFA phase diagram of the metamagnetic Ising model for r¼ J=J0 ¼ 0:2 in the temperature-field plane. (b) Detailed phase diagram in the

neighborhood of the CEP and the DCP. The dashed lines denote the anomalies in the staggered and direct susceptibilities.
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multicritical points such as TCP, CEP, and DCP. In addition, the both
magnetic response functions of the metamagnetic Ising model exhibit
non-critical maximums in the ordered phase at the region of the
Hr�Tr where the system shows re-entrance phenomena.
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Appendix A

The coefficients a11,a12,a21,a22,c1, and c2 which are used in
Eq. (9) are defined as follows:

a11 ¼ 1� 1�tanh
�2ðmt�msÞþ4rðmtþmsÞþHrþHsr

Tr

� �2
 !

ð2þ4rÞT�1
r ,

a12 ¼ 1� 1�tanh
�2ðmt�msÞþ4rðmtþmsÞþHrþHsr

Tr

� �2
 !

ð�2þ4rÞT�1
r ,

a21 ¼�1þ 1�tanh
�2ðmtþmsÞþ4rðmt�msÞþHr�Hsr

Tr

� �2
 !

ð2þ4rÞT�1
r ,

a22 ¼ 1� 1�tanh
�2ðmtþmsÞþ4rðmt�msÞþHr�Hsr

Tr

� �2
 !

ð�2þ4rÞT�1
r ,

c1 ¼ 1�tanh
�2ðmt�msÞþ4rðmtþmsÞþHrþHsr

Tr

� �2
 !

T�1
r ,

c2 ¼ �1þtanh
�2ðmtþmsÞþ4rðmt�msÞþHr�Hsr

Tr

� �2
 !

T�1
r : ð12Þ
Appendix B

The coefficients b11,b12,b21,b22,d1, and d2 in Eq. (10) are
defined as follows:

b11 ¼ 1� 1�tanh
�2ðmt�msÞþ4rðmtþmsÞþHrþHsr

Tr

� �2
 !

ð2þ4rÞT�1
r ,
b12 ¼ 1� 1�tanh
�2ðmt�msÞþ4rðmtþmsÞþHrþHsr

Tr

� �2
 !

ð�2þ4rÞT�1
r ,

b21 ¼�1þ 1�tanh
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 !
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Tr

� �2
 !

T�1
r ,
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� �2
 !

T�1
r : ð13Þ
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